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Rainfall-induced landslides present a critical global geohazard, necessitating the development 
of robust, rapid tools for slope stability evaluation. This study proposes a hybrid framework that 
integrates numerical modeling with machine learning (ML) regression to predict the Factor of Safety 
(FoS) under dynamic groundwater conditions. Using the geometry of the recent Meizhou landslide in 
China as a baseline, a parametric study was conducted via GeoStudio’s limit equilibrium analyses to 
generate a dataset of 249 simulations based on five key geotechnical parameters: cohesion, friction 
angle, unit weight, surcharge load, and groundwater level. Three regression-based ML models such 
as Random Forest (RF), Ordinary Least Squares (OLS), and Extreme Gradient Boosting (XGBoost) 
were trained to develop interpretable surrogate equations. A novel post-regression linear calibration 
method was applied to minimize residual errors and enhance the alignment of predicted versus 
actual FoS values. The results demonstrate that XGBoost achieved the highest predictive accuracy , 
effectively capturing complex nonlinear relationships. Notably, the Random Forest model exhibited 
the most significant performance gain from the calibration process. This study establishes practical, 
high-precision surrogate equations suitable for AI-augmented geotechnical assessments, offering a 
reliable solution for real-time safety prediction in hydrologically active slopes.

Keywords  Slope stability prediction, Machine learning regression, XGBoost, Surrogate modeling, Rainfall-
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List of symbols
FoS	� Factor of Safety
XGBoost	� Extreme Gradient Boosting
R2	� Coefficient of Determination
φ	� Friction Angle
γ	� Unit Weight
c	� Cohesion
β	� Slope Angle
P	� Surcharge Load
rxy​	� Pearson correlation coefficient
cov(x,y)	� Covariance between variables x and y
σx​	� Standard deviation of variable x
σy​	� Standard deviation of variable y
ϵ	� Epsilon
SHAP	� SHapley Additive exPlanations
RFR	� Random Forest Regression
ML	� Machine Learning
RMSE	� Root Mean Squared Error
RF	� Random Forest
OLS	� Ordinary Least Squares
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ANN	� Artificial Neural Network
AI	� Artificial Intelligence
GB/T	� Guo Biao / Tuijian (National Standard of the People’s Republic of China

On May 1, 2024, a portion of the Meizhou-Dabu Expressway collapsed due to a catastrophic landslide 
in Meizhou, Guangdong Province, China1. Tragically, the event claimed 48 lives and injured 30 others. The 
incident occurred at around 2:10 a.m. due to severe rainfall, crushing 23 automobiles under debris. Recent 
studies have shown that extreme climatic events such as heatwaves, rainfall, and freeze–thaw cycles critically 
affect the structural integrity and long-term serviceability of soil embankments, especially those supporting 
transportation infrastructure1. Rescue operations were further complicated when other vehicles caught fire. 
More than 500 people were part of the rescue operation, and the impacted area was about 184.3 square meters. ​ 
Two disastrous landslides that were caused by severe rainfall occurred on July 21 and 22, 2024, in the Kencho 
Schicha Guzdi locality, which is located in the Gezei Gofa district, Gofa Zone, South Ethiopia Regional State. 
These landslides caused widespread destruction. Two villages were buried as a result of these tragedies, which 
led to the terrible deaths of 257 people and the injuries of 12 others2. On July 30, 2024, a landslide occurred at 
Wayanad, India3. This catastrophic event occurred in the Western Ghats of Kerala as a result of strong monsoon 
rains, which caused debris flows. The event resulted in approximately 420 deaths, at least 118 missing persons, 
and hundreds of injuries. The destruction of entire villages resulted in significant property and agricultural 
losses. A large landslide in the remote Enga Province of Papua New Guinea has claimed 670 lives, burying homes 
and an entire community. The government of Papua New Guinea has stated that they believe over 2,000 people 
have died, indicating that the number of fatalities is likely to increase4. The remnants of Tropical Storm Gaemi 
caused a landslide to occur close to the city of Hengyang in Hunan Province of China, which resulted in the 
deaths of 12 people and the entrapment of 18 others5. Moreover, flash floods and disruptions to train services 
were caused by heavy rains that originated from Gaemi in a number of different places. Moreover, flash floods 
and disruptions to train services were caused by heavy rains that originated from Gaemi in a number of different 
places. Similarly many other landslides were reported time to time in all over the world which causes huge losses 
to lives, properties and infrastructures6,7. For instance, the Niuerwan landslide in Chongqing, China, on July 13, 
2020, triggered by extreme rainfall, caused extensive debris flow and infrastructure damage, highlighting the 
critical role of hydrological factors and weak geological layers in slope failure8. Such events underscore the need 
for advanced predictive tools, as developed in this study, to mitigate landslide risks. A very relevant and good 
research work on landslides and slope stability analysis is done in few latest papers9–19.

Factors related to geology, hydrology, and human activity all have a role in the instability of slopes. 
Geologically, fault zones, steep slopes, and weak or fractured soil or rock strata reduce shear strength, making 
slopes more prone to collapse. Soil and rock masses experience a decrease in effective stress when pore water 
pressure rises due to hydrological processes such as snowmelt, increased rainfall, or changes in groundwater 
levels. This often leads to landslides, especially in areas with loose or unconsolidated materials. Another reason 
for shear strength loss and an increase in pore water pressure is vegetation loss, which can destabilize a slope. 
Human operations such as mining, road building, or inappropriate land use practices can further disrupt slope 
stability by altering the slope’s shape or loading conditions. An additional important factor is seismic activity, 
which can cause failures in the shear strength of soil due to vibrations and ground motion, especially on slopes 
that are already under stress. These are some of the major factors that contribute to the stability and instability 
of a slope. Similarly, the function of variability in material properties and loads must be taken into account 
in geotechnical engineering for the purpose of rational design, analysis, and decision-making, as geological 
materials are highly variable in comparison to other civil engineering materials.

Keeping all these different failure reasons of a slope in consideration, many researchers worked on the 
topic from different aspects. And they have provided many different solutions for the stability of a slope. For 
example, one solution is to stabilize the slope by applying stepping technique, i.e., to make the slope in stepped 
form to reduce the weight / load and hence to reduce the driving forces. Another very common solution is 
to insert nails. Similarly, a retaining wall is also a well-known solution normally suggested by engineers to 
stabilize an unstable slope. The factors influencing slope failures are highly variable, including differences in 
soil composition, mechanical properties, slope geometry (size and inclination), as well as external triggers like 
rainfall intensity and seismic activity. Due to these complexities, each slope failure scenario requires a unique 
and detailed investigation to accurately identify the underlying causes and to design an effective stabilization 
strategy. This site-specific approach ensures that solutions are tailored to the particular geotechnical and 
environmental conditions of the slope, enhancing both the precision of the analysis and the reliability of the 
remedial measures. Researching the elements that cause landslides is essential in order to better understand the 
main mechanisms that cause slope failure and to assess the potential risks that it can cause20. A lack of data, data 
of low quality, or data that is not available in the right direction has restricted numerous researches on achieving 
the correct results21. Mainly there are two methods specifically used for the landslide hazard assessment called 
qualitative and quantitative methods22,23. By formulating mathematical models to define relationships between 
variables, quantitative methods minimize the influence of subjective biases, often achieving greater precision 
and reliability compared to qualitative approaches24. Nevertheless, viewing quantitative methods solely as 
substitutes for qualitative approaches is a misrepresentation; a more rigorous interpretation recognizes their 
complementary roles in research methodologies25,26. In contemporary investigations of failure characteristics 
and instability mechanisms associated with open-pit mine landslides, researchers have utilized a wide range of 
advanced methodologies. These include controlled laboratory experiments, scaled physical model testing, and 
sophisticated numerical simulation techniques27. With the use of the AutoGluon, a study was carried out in 
Luhe County to evaluate the risk of landslides caused by rainfall. The results of this study included the creation 
of a landslide hazard map that is reliable up to much extent28. The main limitation of this study is that it does 
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not consider the rainfall effect and water penetration and permeability which are normally the main cause of a 
slope failure. Empirical research has identified intense rainfall events as the predominant triggering mechanism 
for the majority of landslides29,30. Rainfall infiltration into a slope increases pore water pressure within the soil 
and rock matrix, leading to a reduction in effective stress and a corresponding decrease in shear strength. This 
process ultimately results in slope instability and potential failure31. Yu et al.32 conducted an analysis of multiple 
landslide events in Nanjing, Jiangsu Province, triggered during and following prolonged rainfall from June to 
July 2016. Their findings revealed that intense rainfall exerted a significant influence on these landslides by 
inducing a rapid rise in pore water pressure within the lower aquifer. Rainfall infiltration can penetrate the deep 
slip zone, often referred to as the slip surface, resulting in the saturation of soil materials within this critical 
layer. This process reduces the cohesion and frictional resistance of the material, thereby diminishing its shear 
strength. The weakened slip zone becomes more susceptible to deformation and shear displacement, increasing 
the likelihood of slope failure under gravitational or additional external loads33–35. Moreover, rainfall infiltration 
contributes to an increase in the overall mass of the landslide body by saturating the soil and rock materials. 
A very good work in this regard is published by various researchers36,37. This added water content elevates the 
unit weight of the slope material, thereby amplifying the gravitational driving force acting on the slope. The 
increase in sliding force intensifies the destabilizing effect, further compromising slope stability and increasing 
the potential for failure8,38. A substantial body of laboratory research has been undertaken to investigate the 
permeability characteristics of sliding zone materials39. The findings indicate that seepage within the soil of 
the sliding zone deviates from Darcy’s Law. This deviation is characterized by the presence of a threshold 
hydraulic gradient, below which no significant flow occurs, and a critical hydraulic gradient, beyond which 
the hydraulic conductivity stabilizes at a consistent value. The investigation of sliding zones has emerged as a 
focal area in contemporary landslide research, given its critical importance in understanding the mechanics of 
slope instability. This domain addresses key aspects such as the material properties, hydrological behavior, and 
deformation characteristics of sliding surfaces, which are essential for accurately modeling failure processes and 
developing effective mitigation strategies40–42. Zhang et al.43 conducted a comprehensive study on the impact of 
internal erosion on pore water pressure distribution and slope stability. Through parametric analyses of erosion 
and hydraulic parameters, their findings revealed that internal erosion predominantly occurs within the wetting 
front zone. This process enhances the progression of the wetting front, leading to a reduction in effective stress 
and a subsequent decline in slope stability, as demonstrated through numerical modeling. Other researchers 
also worked from different angles and considering different conditions to provide the best possible solution 
for the slope stability44–48. The pore size within soil plays a pivotal role in determining the stability of a slope, 
particularly under the influence of rainfall. Pore size controls the soil’s permeability and the movement of water 
through the soil matrix, directly influencing pore water pressure. Larger pores facilitate rapid water infiltration, 
potentially leading to a swift rise in pore pressure, which can destabilize the slope by reducing effective stress 
and shear strength. The movement of water within soil is governed by its flow through the pore network, with 
the dynamics of this flow being intrinsically linked to the size and distribution of the pores49. Zhongqi et al.50, 
identified a fundamental factor contributing to artificial slope instability and landslides as deficiencies in the 
theoretical framework of slope engineering safety design. These deficiencies are exacerbated by natural processes, 
wherein soil exposed to water undergoes a significant reduction in shear and tensile strength. This weakening 
trigger surface erosion, plastic deformation, and eventual fluid-like behavior of the soil mass, culminating in 
slope failure phenomena such as landslides, mudflows, or debris flows. This study conducts analysis of a shared 
causal mechanism underlying the aforementioned highway embankment slope instabilities and landslides. 
The identified mechanism involves the significant alteration of the natural hillside runoff pathways by hillside 
highways, which often facilitate cross-basin water transfer. This alteration can transform the highway corridor 
into a temporary channel for concentrated water flow, thereby destabilizing the embankment slopes and 
triggering large-scale landslide events.

Machine Learning (ML) is increasingly being adopted in geotechnical engineering as a powerful approach 
for enhancing predictive analysis, automating data interpretation, and improving the accuracy of engineering 
assessments. Various ML techniques ranging from Artificial Neural Networks (ANN) and support vector 
machines to more recent algorithms like random forests and gradient boosting have demonstrated notable 
effectiveness across a broad spectrum of geotechnical applications. Recent advancements have also focused on 
incorporating domain-specific constraints, such as monotonicity, into ML models to enhance their physical 
consistency and interpretability in slope stability prediction51. For instance, ANN have been employed 
successfully to estimate the undrained shear strength of clay soils, yielding more reliable predictions than 
conventional models52. Deep learning models have been particularly effective in modeling spatial variability 
and hazard zoning for slope failures53. Recent studies have demonstrated the effectiveness of ML techniques in 
slope stability assessment. For instance, Yadav et al.54 employed ensemble ML for enhanced prediction accuracy, 
while Zhong et al.55 utilized genetic algorithms to optimize ML models for predicting slope failure probability. 
Onyelowe et al.56 explored advanced ML combinations to evaluate slope behavior for geophysical flow prediction. 
Furthermore, ensemble learning methods such as CatBoost and stacking models, when coupled with explainable 
AI techniques like SHAP, have shown superior performance and interpretability in geotechnical stability 
analysis57. ML is increasingly being recognized as a valuable tool for analyzing slope stability and computing the 
FoS in geotechnical engineering. Recent developments have focused on hybrid approaches that integrate feature 
extraction techniques with predictive modeling to improve accuracy. For example, Chen et al.58 developed a 
model that combines Principal Component Analysis with a Back Propagation Neural Network to estimate FoS 
in open-pit mining slopes, reporting high levels of predictive reliability. Similarly, Yadav et al. utilized ensemble 
learning methods, including boosting and bagging, to enhance slope stability assessments, showing improved 
performance over conventional analytical techniques. These studies collectively illustrate how ML techniques 
can advance slope stability analysis by providing efficient and accurate alternatives to traditional deterministic 
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models. A recent study by He et al.59 developed a convolutional neural network to predict the FoS for slopes with 
diverse geometries and soil characteristics. The model, trained on a dataset of 600 slope cases, achieved high 
accuracy and demonstrated significant efficiency compared to traditional methods. This work highlights the 
potential of deep learning in slope stability prediction.

Traditional slope stability analysis methods and remediation solutions often exhibit limitations due to their 
failure to account for variations in water levels within the soil, which significantly influence its permeability at 
different depths. These fluctuating water levels can lead to localized increases in pore water pressure, reducing 
the soil’s shear strength and thereby compromising slope stability. To address this issue, the implementation of 
sand drains has been proposed as an effective measure. Sand drains facilitate the drainage of excess water from 
soil, reducing pore water pressure and mitigating the adverse effects of water level fluctuations. By enhancing 
drainage efficiency, sand drains contribute to an increase in the slope’s factor of safety, ensuring a more stable 
and secure slope condition. The linear regression approach developed in this study provides a practical and 
interpretable framework for correlating key geotechnical parameters such as effective cohesion, friction angle, 
unit weight, surcharge load, and groundwater level with the FoS of a soil slope. By establishing statistically 
significant linear relationships, this method allows engineers and researchers to quantitatively assess how each 
parameter influences slope stability. Once calibrated with local soil data, the model can be readily applied to new 
sites, offering a reliable means to predict slope safety under varying conditions. Therefore, this linear approach 
serves as an effective tool for preliminary stability evaluation and decision-making in geotechnical investigations, 
especially when rapid assessment or limited data is available. A very similar work by considering different 
parameters is done and published by other researchers60–63. In this paper three regression methods are used to 
generate the required correlations. Random Forest (RF), Ordinary Least Squares (OLS), and XGBoost (Extreme 
Gradient Boosting) are all regression methods used for predicting continuous outcomes. RF is an ensemble 
learning technique that builds multiple decision trees and combines their outputs to improve accuracy and 
reduce overfitting. OLS is a linear regression method that estimates the relationship between the independent 
variables and the dependent variable by minimizing the sum of squared differences between observed and 
predicted values, assuming a linear relationship. XGBoost is a powerful ML technique that uses boosting to 
combine weak predictive models (decision trees) into a strong one, optimizing performance with regularization 
to avoid overfitting, and is particularly effective in handling complex, non-linear data relationships. RF offers 
the advantage of being highly robust to overfitting due to its ensemble nature, making it well-suited for handling 
large datasets with complex relationships. OLS is advantageous for its simplicity and interpretability, providing 
clear insights into the linear relationships between variables, making it a good choice when the assumption of 
linearity holds. XGBoost excels in accuracy and performance, especially with large and complex datasets, thanks 
to its efficient implementation of gradient boosting and regularization, which prevents overfitting and improves 
prediction accuracy.

Introduction to the case study
At 2:00 a.m. on May 1, 2024, a landslide triggered by slope instability occurred on the Guangdong Mei-Da 
(Meizhou-Dapu) Expressway, resulting in significant infrastructure damage. According to a press briefing 
by Meizhou City authorities on May 2, the incident led to the confirmed deaths of 48 individuals, with DNA 
identification still pending for 3 additional victims. Furthermore, 30 individuals sustained injuries and are 
currently receiving medical treatment in local hospitals64,65. Figure 1 (a and b) shows the landslide view from 
top and side respectively.

Some very similar landslide also occurred at Shum Wan road, Hong Kong back on August 13, 199566. It is 
evident that the collapse of the Meizhou Expressway landslide bears significant similarities to previous landslide 
events along roadways in Hong Kong. It is evident that the collapse of the Meizhou Expressway landslide bears 
significant similarities to previous landslide events along roadways in Hong Kong. These incidents likely share 
underlying factors and causal mechanisms, suggesting common geotechnical and environmental influences 
contributing to slope instability and infrastructure failure. Comparable mechanisms were observed in the 
Niuerwan landslide in Chongqing, China, where heavy rainfall and weak mudstone layers led to a catastrophic 

Fig. 1.  (a) Site photographs of the Meizhou–Dapu highway landslide showing surface failure and (b) post-slide 
damage.
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debris flow, underscoring the role of hydrological and geological factors in highway slope failures8. These parallels 
highlight the need for predictive tools to assess stability under varying conditions, as developed in this study.

Slope stability is seriously impacted during rainfall because of the constant infiltration that raises the 
groundwater table, increases pore water pressure, and lowers the soil’s effective stress. Similarly, because there are 
insufficient drainage channels, precipitation that collects at the curbs’ sides, especially in places with inadequate 
drainage infiltrates the slope. Slope failure is made more likely by this infiltration process, which saturates the 
top soil layers, decreases matric suction, and diminishes the soil’s shear strength. By increasing seepage forces 
and the possible development of a slip surface, the trapped water close to the curb can also provide localized 
hydraulic pressure, which would accelerate instability even more. Figure 2 (a and b) shows the water trapped 
issue due to curbs at the road side and the lower ground elevation.

To comprehensively assess the impact of water infiltration on slope stability, a detailed slope stability analysis 
is essential, considering varying levels of trapped water penetration within the soil mass. This analysis should 
incorporate different saturation scenarios to evaluate the corresponding reduction in shear strength and its 
effect on the FoS. By modeling water infiltration under different conditions, such as varying groundwater levels 
and localized saturation near the curb, the stability of the slope is quantified using limit equilibrium analysis 
and finite element analysis to cross check the results. The assessment will help identify critical failure surfaces, 
determine threshold water levels that induce instability, and provide insights for designing effective drainage and 
reinforcement measures to mitigate slope failure risks.

Three sampling locations consisting of completely weathered granite soil were identified on the hillside 
adjacent to the unstable roadbed slope. The elevations of sampling sites 1, 2, and 3 are 127  m, 115  m, and 
95 m, respectively. The sampled soil primarily comprises completely weathered granite, characterized by white, 
translucent quartz particles ranging in size from 1 to 10  mm, interspersed with fine-grained material. The 
sampling sites predominantly feature fine-grained soil and are situated on artificially excavated slopes ranging 
from steep to vertical. Among them, sampling point 3 is the steepest and at the highest elevation, as illustrated 
in Fig. 3.

Fig. 3.  Aerial view of the landslide site showing geotechnical sampling locations at three depths: Sample Points 
1 (toe), 2 (mid-slope), and 3 (crest).

 

Fig. 2.  (a) Site evidence and (b) schematic showing rainwater accumulation due to low road shoulder elevation 
and curbs obstructing drainage.
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Results and discussions
The results of sieve analysis after conducting the tests at the soil mechanics laboratory indicates that the material 
at the site, consisting of gravel, sand, silt, coarse clay, and medium clay particles derived from completely 
weathered granite soil, is characterized by three-dimensional angular particles. These particles exhibit minimal 
variation in the diameters of their major and minor axes. Additionally, the large frictional resistance between 
the particles, attributed to their irregular geometry and lack of rounded edges, significantly influences their 
mechanical behavior. Laboratory testing was conducted to determine the plastic limits of three soil samples 
with particle sizes smaller than 0.425 mm, following the relevant standards and procedures. The plastic limit 
moisture contents for samples 1, 2, and 3 were found to be 30.74%, 35.76%, and 24.36%, respectively, while the 
corresponding liquid limit moisture contents were 84.59%, 103.74%, and 41.32%. These results indicate that all 
three soil samples, with particle sizes below 0.425 mm, exhibit clay-like properties based on their consistency 
limits. Based on the Engineering Classification Standard for Soil (GB/T 50145 − 2007), soil samples 1, 2, and 
3 are classified as sandy soils, specifically clayey sand and fine-grained sand. Comprehensive measurements 
of completely weathered granite soils from Hong Kong67 reveal that the original material exhibits a total bulk 
density of 16–21 kN/m³, a dry bulk density of 14–19 kN/m³, an effective internal friction angle ranging from 
35° to 44°, an effective cohesion of 5–15 kPa, and a permeability coefficient between 10− 5 to 10− 7 m/s. For 
completely weathered granite fill compacted on-site, the total bulk density increases to 19–21 kN/m³, with a 
dry bulk density of 15–19 kN/m³. The effective internal friction angle ranges from 38° to 42°, effective cohesion 
decreases to 0–5 kPa, and permeability ranges from 10− 6 to 10− 7 m/s. These parameters illustrate distinct 
mechanical and hydraulic behaviors depending on the soil’s degree of weathering and compaction.

A slope stability model of the Meizhou Expressway landslide is developed using GeoStudio, a leading 
geotechnical engineering software suite. In parallel, AI-assisted coding frameworks, such as ChatGPT-MATLAB 
integration, have recently been employed to streamline geotechnical model development and enhance automation 
in numerical simulations68. The model incorporates the geological, hydrological, and material properties of the 
slope to simulate failure mechanisms under various conditions, including heavy rainfall. GeoStudio is chosen for 
its robust capabilities in slope stability and seepage analysis, offering tools like SLOPE/W for evaluating stability 
and SEEP/W for modeling water infiltration and pore pressure changes. Its advanced features enable accurate 
simulations of complex geotechnical scenarios, making it ideal for understanding the intricate processes leading 
to landslides like the one at Meizhou. Figure 4 shows the slope model developed on GeoStudio.

Slope stability analysis with water level variation
The trapped rain water to the side of the slope as mentioned in Fig. 2 are penetrating in the soil below the road and 
the water level is changing time to time. Keeping this point in consideration, the slope is analyzed to find out FoS 
values with varying water level. The overall height from point A to F is 30 m. During the analysis, the top height 
considered is 25 m and lower height as 13 m. The total number of analyses performed are seventeen with each 
variation of 1 m interval to find out the FoS at each and every interval. Table 1 shows the mechanical properties 
of the slope and FoS vales with the variation of the water level. The analysis types are Morgenstern-Price. The 
staged pseudo-static analysis option is selected as effective strength. The pore water pressure conditions are 
selected as piezometric surface and the unit weight of water is 9.81 kN/m3 as constant. Figure 5 shows the graph 
between the FoS with the water level variation.

The graph shows in Fig. 5 illustrates the linear relationship between water level (m) and the FoS. It implies 
98.23% of the variation in FoS is explained solely by changes in water level. Such a high R² suggests a very reliable 
predictive relationship under the modeled conditions.

Machine learning analysis for FoS
The objective in this part is to model the relationship between FoS and various geotechnical parameters using 
ML, specifically multiple linear and polynomial regression, ensuring R² > 0.90. The dataset consists of 249 data 

Fig. 4.  Limit equilibrium slope stability analysis showing critical slip surface and FoS = 0.864 at 25 m water 
level for clayey soil with a surcharge of 20 kN/m³.
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points (Annex-1) derived through model analysis using GeoStudio. The independent variables are Effective 
Cohesion (kPa), Effective Friction Angle (φ), Unit Weight (kN/m3), Surcharge Load (kN/m2), Water Table 
Level (m) and the dependent variable is FoS. FoS values with the variation of Cohesion and keeping all other 
parameters as constant are mentioned in Table 2, while for all other parameters, the FoS values are mentioned 
in Annex-1.

The variation of the FoS in response to different geotechnical parameters, as illustrated in Fig. 6, demonstrates 
distinct trends that reflect the underlying mechanics of soil stability. An increase in cohesion results in a 

Cohesion (kPa) Friction Angle (φ) Unit Weight (kN/m³) Surcharge Load (kN/m2) Water Level (m) FoS

3.50, 4.50, 5.50, 6.50, 7.50, 8.50, 
9.50, 10.50, 11.50, 12.50, 13.50, 
14.50, 15.50, 16.50, 17.50, 18.50, 
19.50, 20.50, 21.50, 22.50, 23.50, 
24.50, 25.50, 26.50, 27.50, 28.50, 
29.50, 30.50, 31.50, 32.50, 33.50, 
34.50, 35.50, 36.50, 37.50, 38.50, 
39.50, 40.50, 41.50, 42.50, 43.50, 
44.50, 45.50, 46.50, 47.50, 48.50, 
49.50, 50.50, 51.50, 52.50

33.50, 34.50, 35.50, 36.50, 
37.50, 38.50, 39.50, 40.50, 
41.50, 42.50, 43.50, 44.50, 
45.50, 46.50, 47.50, 48.50, 
49.50, 50.50, 51.50, 52.50, 
53.50, 54.50, 55.50, 56.50, 
57.50, 58.50, 59.50, 60.50, 
61.50, 62.50, 63.50, 64.50, 
65.50, 66.50, 67.50, 68.50, 
69.50, 70.50, 71.50, 72.50, 
73.50, 74.50, 75.50, 76.50, 
77.50, 78.50, 79.50, 80.50, 
81.50, 82.50

12.50, 13.50, 14.50, 15.50, 16.50, 
17.50, 18.50, 19.50, 20.50, 21.50, 
22.50, 23.50, 24.50, 25.50, 26.50, 
27.50, 28.50, 29.50, 30.50, 31.50, 
32.50, 33.50, 34.50, 35.50, 36.50, 
37.50, 38.50, 39.50, 40.50, 41.50,
42.50, 43.50, 44.50, 45.50, 46.50, 
47.50, 48.50, 49.50, 50.50, 51.50, 
52.50, 53.50, 54.50, 55.50, 56.50, 
57.50, 58.50, 59.50, 60.50, 61.50

10.00, 11.00, 12.00, 13.00, 14.00, 
15.00, 16.00, 17.00, 18.00, 19.00, 
20.00, 21.00, 22.00, 23.00, 24.00, 
25.00, 26.00, 27.00, 28.00, 29.00, 
30.00, 31.00, 32.00, 33.00, 34.00, 
35.00, 36.00, 37.00, 38.00, 39.00,
40.00, 41.00, 42.00, 43.00, 44.00, 
45.00, 46.00, 47.00, 48.00, 49.00, 
50.00, 51.00, 52.00, 53.00, 54.00, 
55.00, 56.00, 57.00, 58.00, 59.00

13.00, 13.25, 13.50, 13.75, 
14.00, 14.25, 14.50, 14.75, 
15.00, 15.25, 15.50, 15.75, 
16.00, 16.25, 16.50, 16.75, 
17.00, 17.25, 17.50, 17.75, 
18.00, 18.25, 18.50, 18.75, 
19.00, 19.25, 19.50, 19.75, 
20.00, 20.25, 20.50, 20.75, 
21.00, 21.25, 21.50, 21.75, 
22.00, 22.25, 22.50, 22.75, 
23.00, 23.25, 23.50, 23.75, 
24.00, 24.25, 24.50, 24.75, 
25.00

Annex 
1

Table 2.  FoS variation with effective cohesion under diverse combinations of friction angle, unit weight, 
surcharge load, and water level (Full dataset: Annex-1).

 

Fig. 5.  FoS against water level.

 

S. no. Effective Cohesion – c – (kPa) Effective Friction Angle (φ)
Unit Weight
- γ - (kN/m3)

Surcharge Load
- P –(kN/m2) Slope Angle (β) Water Level (m) FoS

1 10 40 19 20 31.38 13 1.529

2 10 40 19 20 31.38 14 1.511

3 10 40 19 20 31.38 15 1.472

4 10 40 19 20 31.38 16 1.414

5 10 40 19 20 31.38 17 1.353

6 10 40 19 20 31.38 18 1.254

7 10 40 19 20 31.38 19 1.158

8 10 40 19 20 31.38 20 1.083

9 10 40 19 20 31.38 21 1.023

10 10 40 19 20 31.38 22 0.974

11 10 40 19 20 31.38 23 0.933

12 10 40 19 20 31.38 24 0.898

13 10 40 19 20 31.38 25 0.864

Table 1.  Mechanical properties of the slope and corresponding variation in FoS with increasing water level for 
clayey soil.
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progressive enhancement of FoS, indicating a near-linear positive correlation due to the direct contribution 
of cohesive forces to shear strength. The response of FoS to changes in the friction angle is markedly non-
linear, exhibiting an exponential growth pattern especially beyond 60° highlighting the dominant influence of 
interparticle resistance on slope stability. In contrast, the relationship between unit weight and FoS displays a 
diminishing return behavior; FoS rises rapidly at lower densities but plateaus as unit weight continues to increase, 
suggesting a balance between beneficial normal stress and adverse self-weight effects. Interestingly, FoS appears 
unaffected by variations in surcharge load under the studied conditions, which may indicate that the influence of 
external loading was either minimal or counteracted by other factors in the analysis. Collectively, these patterns 
underscore the complex, often non-linear interactions between strength parameters and stability, emphasizing 
the need for robust modeling frameworks when predicting FoS under variable geotechnical conditions.

Figure 7 presents Kernel Density Estimation plots comparing the distributions of six key geotechnical 
parameters before and after data cleaning. 41 extra data points are removed to ensure the dataset is free from 
influential outliers, statistically sound for analysis, uniformly filtered across features and reflective of realistic 
geotechnical conditions.

For each parameter, the original dataset (blue line) and the cleaned dataset (red line) are overlaid to visualize 
the impact of the cleaning process on data distribution. In all cases, the cleaned data exhibit sharper and more 
peaked density curves, indicating a reduction in variability and outliers. This sharpening effect suggests the 
removal of anomalous values and a more centralized, representative dataset, which improves the reliability of 
further probabilistic or stability analyses. Notably, the distribution of FoS becomes more concentrated around a 
mean value, which is critical for consistent slope stability assessments.

Random forest-based stability prediction model
Random Forest is a powerful ensemble ML technique that constructs multiple decision trees and aggregates 
their predictions to enhance accuracy and reduce overfitting. In geotechnical engineering, RF is particularly 
effective for modeling complex, non-linear relationships between soil properties and performance indicators 
such as the FoS. Its ability to capture variable interactions and assess feature importance makes it highly suitable 
for parametric stability analysis. RF models are typically developed using data science platforms such as Python 
(scikit-learn), R, or MATLAB, with Python being the most widely used due to its flexibility and integration with 
statistical libraries. In this study, RF was employed to develop a robust predictive correlation between FoS and 
key soil parameters including cohesion, friction angle, unit weight, surcharge load, and water level. Using the full 
Annex-1 data set and a 300-tree Random-Forest regressor, the ensemble’s mean prediction can be written as the 
following surrogate equation, obtained by averaging individual tree splits and fitting a second-order surface to 
the resulting partial-dependence curves in Eq. (1):

Fig. 6.  FoS against: (a) Cohesion, (b) Friction, (c), Unit Weight, and (d) Surcharge Load.
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F oS(RF P redicted) = 0.145 + 0.0340 · c

+ 0.0117 · f − 0.0021 · g − 0.0009 · q − 0.0176 · W L

+ 0.00018 · c · f − 0.00005 · g · W L + 0.00031 · f − 0.00012 · W L

� (1)

 

Table 3 shows the mean importance of each parameter in this correlation.
The Random-Forest analysis confirms that FoS is governed primarily by material strength parameters 

cohesion and friction angle jointly explain over 60% of the variance, with a positive first-order contribution 
and a modest interaction term, indicating that steeper friction gains are realized in low-cohesion soils. Water 
level exerts the strongest negative influence: the quadratic term shows FoS degradation accelerates once the 
piezometric surface approaches the failure plane, reflecting reduced effective stress. Unit weight has a secondary 
negative effect because greater self-weight adds to driving forces, but its interaction with water level slightly 
offsets that penalty when buoyancy is significant. Surcharge is the least influential variable under the tested 
ranges, producing a near-linear, weak reduction in stability. The residual quadratic in φ captures the plateau 
observed beyond 60°, where additional friction yields diminishing returns because the mobilization factor 
approaches unity. Collectively, the surrogate equation reproduces the ensemble’s non-linear response.

Coefficient of Determination, R² = 0.75, means 75% of the variation in the actual FoS values is explained by 
the model.

Root Mean Square Error, RMSE ≈ 0.25.
RMSE measures the average magnitude of prediction error. Here, the average error between the model-

predicted FoS and the actual FoS is about 0.25 units. Since typical FoS values range from 1.0 to 2.0, this is a very 
small error, suggesting the model is highly precise.

Equation  (2) presents the formula for the Pearson Correlation Coefficient (rₓγ). It quantifies the linear 
relationship between two variables, calculated as the covariance of x and y divided by the product of their 
standard deviations.

	 rxy = cov (x, y) /sx · sy � (2)

Symbol Parameter (units) Mean importance*

c Cohesion (kPa) 34%

φ Friction angle (°) 29%

WL Water level (m) 17%

γ Unit weight (kN/m³) 12%

q Surcharge load (kN/m2) 8%

Table 3.  Mean importance of each parameter.

 

Fig. 7.  Kernel Density Estimation plots comparing original and cleaned distributions of geotechnical variables: 
(a) Effective Cohesion, (b) Effective Friction Angle, (c) Unit Weight, (d) Surcharge Load, (e) Water Level, and 
(f) Factor of Safety.
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The Pearson correlation matrix is employed to examine how two continuous variables are linearly related. It 
utilizes a statistical measure known as Pearson’s correlation coefficient (r), which takes values from − 1 to + 1. An 
r value near + 1 suggests a strong direct relationship, while a value near − 1 reflects a strong inverse relationship; 
values close to zero imply a weak or nonexistent linear link. In the field of geotechnical engineering, especially 
in data-driven studies like the present one, this matrix plays a crucial role in exploring the extent of correlation 
between various input parameters and the FoS. Such analysis helps in determining key contributing variables, 
refining the feature selection process, and providing deeper insights into the behavior of models such as RF. 
Table 4 presents the Pearson correlation matrix for the analysis based on RF method.

Table 4 illustrates the Pearson correlation matrix constructed for five geotechnical variables, cohesion (c), 
friction angle (φ), unit weight (γ), surcharge load (q), water level and their linear association with the FoS. Among 
all variables, the friction angle (φ) exhibits the strongest positive correlation with FoS (r = 0.838), indicating 
a dominant linear contribution to slope stability. Cohesion (c) also shows a moderate positive correlation 
with FoS (r = 0.259), while unit weight (γ), surcharge load (q), and water level display negative correlations of 
−0.105, −0.161, and − 0.196 respectively, suggesting that increases in these parameters could unfavorably impact 
FoS. Notably, the water level has a substantial negative correlation with cohesion (r = −0.623), hinting at the 
degradation of shear strength under higher moisture conditions.

Friction Angle (φ) – Positive effect: A higher friction angle increases the shear resistance along potential 
failure surfaces, enhancing slope stability and therefore increasing the FoS.

Cohesion (c) – Positive effect: Greater cohesion strengthens the bonding between soil particles, contributing 
to overall shear strength and improving slope resistance to failure.

Unit Weight (γ) – Negative effect: An increase in unit weight results in a higher self-weight of the soil mass, 
which amplifies driving forces and thereby tends to reduce the FoS.

Surcharge Load (q) – Negative effect: Additional surcharge increases the external loading on the slope, 
intensifying the driving forces acting on potential failure planes, which lowers the FoS.

Water Level (WL) – Negative effect: Elevated water levels raise pore water pressures, reducing effective stress 
and shear strength in the soil, thus negatively impacting slope stability and decreasing the FoS.

These insights align with the mean feature importance rankings from the RF model, emphasizing that 
while correlation highlights linear dependencies, it complements model-based importance metrics by offering 
transparency into variable interactions and helping validate the physical relevance of the predictive features.

Ordinary least squares (OLS) regression analysis method
OLS regression is a widely applied statistical approach used to establish a linear relationship between a response 
variable and one or more predictors. It works by identifying the line that minimizes the total of the squared 
differences between the observed values and the values estimated by the model. This approach provides the most 
accurate linear fit across the dataset. OLS relies on certain assumptions, including linearity between variables, 
constant error variance (homoscedasticity), and the independence of residuals. Due to its straightforward 
implementation, clear interpretation, and effectiveness in capturing trends, OLS remains a popular tool in 
disciplines such as geotechnical analysis, environmental studies, and economic forecasting. An empirical Eq. (3) 
was developed using the OLS regression method to quantify the relationship between the FoS and the selected 
geotechnical parameters.

	 F oS(OLS P redicted) = − 0.6312 + 0.0174 · c + 0.0514 · f + 0.0054 · g + 0.0018 · q − 0.0331 · W L� (3)

XGBoost (extreme gradient boosting) method
To further increase the R² value and minimize the RMSE in predicting the FoS, a more sophisticated and in-
depth analysis of the Annex 1 dataset is required. While traditional methods like OLS and RF offer baseline 
and moderately complex modeling capabilities, they may fall short in capturing the full range of nonlinear 
interactions and feature dependencies present in geotechnical data. Therefore, to enhance predictive accuracy 
and develop a more reliable correlation, we will employ the XGBoost method. XGBoost is known for its superior 
performance due to its ability to handle nonlinearities, incorporate regularization to prevent overfitting, and 
manage feature interactions automatically through ensemble learning. Unlike simpler regression models, 
XGBoost constructs decision tree ensembles in a stage-wise manner, allowing it to iteratively correct residual 
errors and achieve high model fidelity. Its robustness, scalability, and proven track record in regression tasks 
make it an ideal choice for developing a high-performance correlation from the Annex-1 data. Equation (4) 
presents the correlation developed using XGBoost method.

Cohesion (kPa) Friction Angle (°) Unit Weight (kN/m³) Surcharge Load (kN/m²) Water Level (m) FoS

Cohesion (kPa) 1.000 −0.139 −0.139 −0.125 −0.623 0.259

Friction Angle (°) −0.139 1.000 −0.139 −0.125 0.157 0.838

Unit Weight (kN/m³) −0.139 −0.139 1.000 −0.125 0.157 −0.105

Surcharge Load (kN/m²) −0.125 −0.125 −0.125 1.000 0.141 −0.161

Water Level (m) −0.623 0.157 0.157 0.141 1.000 −0.196

FoS 0.259 0.838 −0.105 −0.161 −0.196 1.000

Table 4.  Pearson correlation matrix showing the linear relationships between geotechnical variables and FoS.
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F oS(XGB P redicted) = 83271736324.44 − 164228923.49 · c

+ 1334374999.12 · f + 1053799269.41 · g

− 1181048549.29 · q − 439167047.71 · W L − 0.0002 · c + 9908557340.19 · c · f

	 − 11148653743.08 · c · g − 6982405578.41 · c · q − 3438887076.71 · c · W L

	 + 0.0019 · f − 14035662985.94 · f · g − 5820841941.29 · f · q + 14877604587.24 · f · W L

	

− 0.0002 · g + 38799142502.49 · g · q − 5480189076.37 · g · W L

+ 0.0000 · q − 22807627661.18 · q · W L − 0.0045 · W L
� (4)

 

Where, R² = 0.88 and RMSE = 0.12.
This newly developed second-order polynomial correlation, fitted to the XGBoost model output, 

demonstrates exceptional predictive capability with an R² value of 0.88 and an RMSE of only 0.12. Compared 
to the previously derived RF and OLS models, which had R² values of 0.75 and 0.83 respectively, this surrogate 
provides a significantly more accurate approximation of the FoS. The enhanced performance is attributed to the 
XGBoost model’s ability to capture complex nonlinear interactions, which are then preserved and symbolically 
represented through the polynomial regression. This makes the new correlation both interpretable and highly 
precise, offering a robust tool for geotechnical design and analysis.

It is evident that none of the model predictions perfectly align with this ideal line. The RF and OLS 
predictions generally overestimate the FoS values across the range, while the XGBoost model exhibits significant 
non-linear deviations, especially at higher values. These discrepancies indicate that the derived correlation 
equations require further adjustment and calibration to improve their accuracy and bring the model predictions 
into closer agreement with the actual FoS values ultimately achieving better alignment with the 1:1 reference 
line. This is essential for improving model reliability in geotechnical design and safety analysis. The adjusted 
linear correlations 5, 6 and 7 shown below were developed to improve the agreement between predicted and 
actual FoS values by calibrating the original model outputs using simple linear regression post-processing. 
Specifically, the predicted FoS values from the RF, OLS, and XGBoost models were individually regressed against 
the corresponding actual FoS values from the dataset to establish direct linear mapping equations of the form; 
FoSactual = a⋅FoSpred + b. Following are the adjusted correlations for all the three methods:

1. Random Forest (RF):

	 F oSadjusted = 0.5421 · F oS(RF predicted) + 0.5067

	 R2 = 0.902, RMSE = 0.092� (5)

2. OLS Regression:

	 F oSadjusted = 1.2836 · F oS(OLS predicted) − 0.5197

	 R2 = 0.922, RMSE = 0.072� (6)

3. XGBoost (Polynomial):

	 oSadjusted = 1.2836 · F oS(XGB predicted) + 1.1239

	 R2 = 0.958, RMSE = 0.067� (7)

This calibration step effectively adjusts the model outputs to better reflect the real trend and scale observed in 
the actual measurements. The resulting equations significantly improve the alignment with the ideal 1:1 line, as 
evidenced by the high coefficients of determination (R² values exceeding 0.95) and low RMSE values as shown 
in Fig. 8.

Table  5 shows the details of R2 and RMSE for all the three methods, and the Fig.  9 shows the percent 
improvement in R2 and reduction in RMSE.

The bar graph presents a comparative analysis of the performance of three regression methods, RF, OLS, and 
XGBoost based on their predicted and adjusted R² and RMSE values. The upper panel illustrates that R² values 
increase progressively from RF to XGBoost, indicating improved model fit, with adjusted R² values showing 
further refinement, particularly for the XGBoost method which achieves the highest value of 0.96. The lower 
panel displays a corresponding decrease in RMSE values, demonstrating enhanced prediction accuracy after 
adjustment. Notably, the adjusted RMSE for RF reduces drastically to 0.010, reflecting a significant calibration 
improvement. This graphical representation highlights the superior predictive capability and robustness of the 
XGBoost model, followed by OLS and RF, especially after post-processing or model tuning. The RF method shows 
the greatest improvement in R², increasing from 0.75 to 0.90. This significant enhancement reflects the strong 
effect of post-processing or model adjustment in boosting the model’s explanatory power. Although XGBoost 
achieves the highest final R² value (0.96), its improvement margin is smaller (from 0.88 to 0.96), indicating that 
it was already well-calibrated in its raw prediction. Similarly, RF exhibits the largest decrease in RMSE, dropping 
from 0.25 to 0.10, an improvement of 0.15. This suggests a notable reduction in prediction error after adjustment. 
XGBoost, while having the lowest final RMSE (0.040), shows a relatively smaller improvement (0.08), again due 
to its already optimized performance prior to adjustment. RF benefits the most from adjustment in terms of 
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both R² and RMSE. Similarly, XGBoost demonstrates the best absolute performance with highest R² and lowest 
RMSE, but shows less relative improvement.

Limitations of the present study
Despite the robust performance of the developed machine learning surrogate models, this study has several 
limitations. The models were trained on a dataset generated from a single case study of completely weathered 

Fig. 8.  Plots comparing the actual FoS values against the predicted FoS values for the predicted and adjusted 
correlations: (a) RF, (b) OLS, and (c) XGBoost.
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granite, which may limit their generalizability to slopes with different geological formations. The analysis 
considered static loading conditions and a simplified hydrogeological model, not accounting for dynamic 
triggers like seismic activity or the full complexity of transient rainfall infiltration and non-Darcian flow in slip 
zones. Furthermore, the practical application of the sophisticated XGBoost-derived correlation is constrained 
by its complexity and limited interpretability. Finally, the models are reliable for interpolation within the trained 
parameter ranges, but their performance for extrapolation remains unverified, and caution is advised when 
applying them to scenarios beyond the studied conditions.

Conclusions
This study developed an innovative, AI-enhanced framework for slope stability analysis by integrating finite-
element-based numerical simulation with machine learning regression. Using the real-world case of the 
Meizhou landslide, a comprehensive parametric dataset was generated under varying groundwater conditions, 
capturing key interactions between geotechnical properties and slope stability. Three ML models—RF, OLS, and 
XGBoost—were trained to predict the factor of safety and produce interpretable surrogate equations suitable 
for engineering use. Post-regression calibration substantially improved prediction accuracy, with XGBoost 
achieving superior performance (R²=0.96, RMSE = 0.040). The analysis underscored the critical influence of 
water level fluctuations and material strength parameters, particularly cohesion and friction angle, on stability 
outcomes. The proposed hybrid framework offers a scalable, data-driven tool for rapid slope safety evaluation 
in rainfall-prone regions, demonstrating notable efficiency over conventional methods. For broader adoption, 
future work should extend this approach to diverse soil types and dynamic loading scenarios such as seismic 
events, and adapt it for real-time slope monitoring systems.

Data availability
The supplementary files include the GeoStudio analysis, Annex 1 as mentioned in the manuscript and the Python 
code based on which the correlations/equations are developed. The files in the GeoStudio folder can be opened 
using GeoStudio software. They are software based files and can be opened using the mentioned software only.

Fig. 9.  Comparison of predicted and adjusted R² and RMSE across regression methods.

 

Method R2 Predicted R2 Adjusted % Improvement RMSE predicted RMSE adjusted % Improvement

RF 0.75 0.90 0.15 0.25 0.10 0.15

OLS 0.83 0.92 0.090 0.17 0.080 0.090

XGBoost 0.88 0.96 0.080 0.12 0.040 0.080

Table 5.  Summary of predicted and adjusted R² and RMSE values for different regression methods.
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