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Face masking, face swapping, and face animation are downstream activities that can benefit from 
face parsing, in which a face image is divided into many semantic regions. Due to the widespread use 
of cameras, obtaining facial images has become increasingly straightforward. However, pixel-by-
pixel manual labeling takes a lot of time and effort, that allows us to investigate approaches based 
on unlabled data. In this paper, we propose a novel hybrid transfer learning-based approach for face 
parsing. First, patches are randomly masked in the central region of the face images. The method 
then proceeds in two stages: a pre-training stage and a fine-tuning stage. In the pre-training stage, 
the model is able to represent some basic facial features through unlabeled data. Then, the model is 
adjusted for the face parsing task on a small labeled dataset in the fine-tuning stage. Experimental 
results on the test sets show that the model can significantly reduce labeling costs. Furthermore, 
the proposed method outperforms the baseline by 2.9%, 2.16%, and 1.18% of mIoU with 0.5%, 1%, 
and 10% labeled data, respectively, on the LaPa dataset. Moreover, experimental results on the 
CelebAMask-HQ test dataset reveal that the masked transfer learning-based approach significantly 
outperforms the baseline for various labeling samples of the training data.

Keywords  Face parsing, Masked pre-training, Hybrid transfer learning, Semi-supervised facial 
segmentation, Unlabeled data learning

Facial parsing, or facial segmentation has recently gained significant attention due to its unique applications in 
areas such as face aesthetics1, expression transfer2, and face image synthesis3. As illustrated in Fig. 1, facial parsing 
aims to assign specific semantic labels to individual pixels within a facial image, such as nose, eye, hair, eyebrow, 
etc. Building reliable facial-parsing models under controlled conditions has been challenging over the last few 
decades. Although these approaches have produced encouraging results, their range of applicability is limited 
by the fact that they frequently suffer substantial degradation in uncontrolled situations. Deep convolutional 
neural networks (DCNNs)4–7 have recently significantly improved segmentation performance. However, most 
traditional semantic segmentation structures rely on substantial backbones, making them unsuitable for low-
end embedded device deployment. For example, VGG164 uses over 500 MB of memory and performs a forward 
inference in about 100 ms, even on a powerful GPU). Low-latency and high-efficiency attributes are frequently 
incompatible for large-scale model deployments. In the process of facial parsing, it is important to think about 
how to maintain a balance between them.

In contrast to ordinary semantic segmentation tasks, facial parsing faces three key difficulties. First, when a 
person’s face is symmetrical, it can be difficult to tell the difference between their left and right eyes due to their 
comparable appearances and textures. Second, border ambiguity frequently interacts with annotators’ visual 
systems, which confounds the learned model (for example, the area between hair and dark hats). Thirdly, deep-
level features often carry more semantic meaning, aiding in differentiation between categories. Shallow-level 
features, in contrast, encode more detailed information. Concatenation is a common technique used to combine 
different feature blocks, enhancing the model’s feature representation capabilities and extracting features at 
multiple scales.

Transfer learning, the technique of reusing a pre-trained model on a different task, has become increasingly 
popular in deep learning. This approach allows for the training of deep neural networks with significantly less 
data. This is particularly beneficial in real-world scenarios where obtaining millions of annotated data points 
for training sophisticated models is often challenging. Transfer learning involves leveraging a machine learning 
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model to solve a separate but related problem for which a model has already been pre-trained. By applying the 
weights learned on a source task “A” to a new target task “B,”8–10 we can enhance generalization and achieve 
better results.

  
To effectively utilize unlabeled facial images for face parsing, we have developed a novel transfer learning 

approach that is composed of pretraining and fine-tuning phases. In the pre-training phase, first, in the center 
region of the face images, we specifically mask some patches randomly. Then, for the reconstruction of the 
masked patches, the model is required. By using unlabeled data, the model enables it to learn meaningful facial 
feature representations of facial features in the pre-training stage. For face parsing, the model is fine-tuned on a 
few labeled data after replacing the final layers of the pre-trained unlabeled data with that of the new layers with 
labeled data available in the pre-training stage. In terms of pixel accuracy, mean accuracy, mean IoU, and mean 
F1 score, the fine-tuning stage contributes to improved performance and other relevant metrics by incorporating 
a face parsing decoder.

Summary of this paper’s main contributions:

•	 By using transfer learning, we developed a novel framework for face parsing that includes a pre-training stage 
and a fine-tuning stage. The model is trained on unlabeled data in the pre-training stage, the final layers, 
which were previously trained for a specific task, are replaced with new layers to learn features relevant to face 
parsing. Subsequently, for the face parsing task, the model is fine-tuned on labeled data.

•	 For pre-training the model, we propose a masked transfer learning technique that reconstructs masked imag-
es to learn facial feature representations.

•	 To demonstrate the proposed approach’s notable performance improvement over state-of-the-art (SOTA) 
techniques, extensive tests are run on two challenging benchmarks.

The paper is divided into the following sections. The literature review for facial parsing and segmentation 
using transfer learning and other cutting-edge technologies is presented in Sect. “Related work”. The proposed 
framework is thoroughly explained in Sect. “Design Methodology”, with special emphasis on how the network 
architecture and masked transfer learning work. We provide the experimental results in Sect.  “Experimental 
results and analysis” and compare the qualitative results with SOTA algorithms. Finally, a summary of this 
paper’s conclusions is provided in Sect. “Conclusion”.

Related work
In this section, we review perior studies relevant to face parsing and segmentation, as well as recentadvances in 
transfer learning and self-supervised learning technologies in facial analysis. Furthermore, we highlight how the 
proposed hyprid masked transfer learning approach differs in terms of architecture design, training efficiency 
and data utilization.

Traditional and deep Learning-Based face parsing approaches
Early face parsing methods relied on probabilistic graphical models to capture local and global dependencies 
In face segmentation process, Kae et al.11 utilized both local and global condition random fields (CRFs) and 
restricted Boltzmann machines (RBMs). For structured prediction problems, Liu et al.12 incorporated CNNs 
into graphical models. According to13, exemplar-based segmentation, which transfers partial masks from 
aligned exemplars to test images, leverages landmarks and SIFT features.

With the rise of deep convolutional networks (DCNNs), more efficient CNN-based architectures have been 
explored. Liu et al.14 proposed a shallow CNN integrated with a spatially variant RNN to reduce computational 
costs. In order to parse faces, Guo et al.15 developed a network of encoder-decoders. Moreover, Lee et al.16 
developed an adaptive prior approach using RoI Tanh-Warping, achieving state-of-the-art performance by 
incorporating contextual cues beyond cropped regions such as hair.

Fig. 1.  Facial parsing examples that augment the CelebA dataset al.ong with additional facial details2.
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Lightweight and efficient network architectures
To achieve real-time performance with limited computational resources, several lightweight CNN models have 
been developed. SqueezeNet17 reduced parameters via 1 × 1 and parallel convolutions. Despite its significantly 
reduced parameter count (eightfold compared to AlexNet), it achieves comparable performance. To balance 
low latency with minimal accuracy loss, MobileNet18,19 introduces deep separable convolutions. By combining 
channel shuffling and group convolution operations, ShuffleNet20,21 ensures information flow and reduces 
channel dimensionality. Four unique rules by ShuffleNet v2 are particularly beneficial for creating lightweight 
systems. Octave convolution22 reduces feature redundancy and memory usage by sharing features in nearby 
regions and minimizing low-frequency features. Contemporary approaches to accelerate model runtime often 
incorporate these modules and channel pruning techniques23.

Context-Aware and Multi-Scale segmentation
Enhancing contextual representation is crucial for accurate segmentation. Therefore, exploiting contextual 
information to improve segmentation’s representational abilities has been the subject of a lot of research. 
Global pooling is a widely used method in many neural network architectures to extract the relevant contextual 
information necessary for creating a comprehensive representation of the input data. By introducing an expansion 
rate, often used in semantic segmentation tasks, dilated convolution24 expands the receptive field. By cascading 
subnetworks and substages, the DFANet25 combines discriminative features. Multi-scale pyramid pooling 
employed by PSPNet26, aggregates features at multiple scales. The contextual data is gathered by ACFNet27 from 
a category viewpoint. ExFuse28 has recently been suggested as a way to enhance the low-level environment by 
giving the encoder more supervision. Numerous researches have shown that edge contour prediction can be 
further sharpened and refined with boundary supervision. By adding more boundary supervision to the facial 
parsing task, CE2P29 enhances edge segmentation in a multi-task learning way. In order to facilitate feature 
extraction during medical segmentation, ETNet30 imposes fine-grained boundary limitations in the encoder. In 
contrast to what was stated above, MSFNet31 implements border monitoring with classes using characteristics 
taken from the backbone.

Transfer learning in facial analysis
Transfer learning has been extensively applied across facial domains, including emotion recognition, attribute 
classification, and sketch recognition. In the field of deep learning, transfer learning theory is prevalent. But we 
are unsure of how far it can operate. The neural networks’ adaptability is investigated in the suggested study. 
While transfer learning can significantly improve efficiency when high-level features are transferred, it’s still 
advantageous to use transfer learning over training a network from the ground up. With minimal adjustments 
in transfer learning, we can achieve superior outcomes compared to starting with random weights. This 
highlights the potential of transfer learning to be far more effective than learning from scratch32. The Advanced 
Driver Assistance System (ADAS) was enhanced through a non-invasive method of recognizing the driver’s 
emotional state. This system utilizes a solitary thermal camera to detect and interpret thermal cues associated 
with emotions. The fact that this particular image was acquired with a thermal camera makes the situation 
significantly worse in situations with little to no light. In order to improve the user’s experience and safety, a 
thermal sensor will be incorporated33. Although stress is generally recognized as a serious illness, it can be 
challenging to determine whether or not someone is experiencing stress. The degree of stress on the individuals’ 
faces was measured using thermal spatial-temporal data from videos of specific subjects. This can also regulate 
medication dosage based on stress levels34. To analyze the perception of emotions, temporal data relating to 
facial temperature is used in35. First, facial regions are split into smaller parts, and statistical points connected 
to data on facial temperature are extracted. The extracted features, related to differential temperature, are then 
used to create a histogram and analyzed using the difference matrix pertaining to facial temperature. For each 
feature, classification is performed using discrete hidden Markov models. Four key steps are physiological signal 
processing for emotion recognition: pre-processing collected signals, biological feature extraction, matching, 
and feature classification36. Each part examines the statistics, performance, and characteristics of modern 
approaches. The relationship between the variables influencing human emotions and emotional state is crucial 
for model simplification. So, while evaluating emotions, psychological signals might be quite beneficial. A 
wearable wristband with a physiological signals acquisition system was created by Krupa et al.37. The SVM 
method can classify “Autism Spectrum Disorder” (ASD) as influenced by emotions like neutral, involvement, 
and happiness. Emotions are categorized using variations in the HR and SR galvanic potentials. To elicit 
authentic emotional facial expressions, Esposito et al.38 conducted a meticulously designed experiment using 
high-emotion videos. They provided comprehensive details regarding the experimental setup, image acquisition 
conditions, stimulus generation, and statistical analysis. Their research focused on the impact of emotions on 
memory word recognition tasks, utilizing experimental data to investigate these effects. Thermal and audible 
emotional facial expressions are included in the author’s dataset for her investigations. Wang et al.39 explores 
the application of deep residual networks for visual categorization tasks, including action recognition, human 
action recognition, and image classification. Transfer learning is employed to tackle these challenges effectively. 
Moreover, transferring learning to the action detection process and image classification can address common 
issues like view divergence and concept drift.

Self-Supervised and masked Pre-Training approaches
Self-supervised learning has recently emerged as a key strategy for representation learning without explicit 
labels40,41. These methods can be broadly classified into context-based, temporal-based, and contrast-based 
approaches. Among context-based techniques, masked image modeling (MIM) has gained particular attention. 
Early work by Vincent et al.42 introduced denoising autoencoders, while Doersch et al.43 proposed spatial 
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prediction tasks between random image patches. Zhang et al.44 extended this to colorization-based learning, 
teaching models to predict missing visual information. Such methods encourage robust feature extraction that 
transfers effectively to downstream tasks such as segmentation.

However, existing MIM and self-supervised models are often domain-agnostic and do not account for facial 
structural priors, which are crucial for accurate parsing. Moreover, encoder–decoder decoupling during pre-
training limits the decoder’s ability to generalize for fine-grained facial segmentation. These limitations motivate 
the development of hybrid and task-aware pre-training mechanisms.

In this paper, we propose a novel face parsing framework that uses unlabeled facial images to their fullest 
potential. There are two steps in the framework: pre-training stage and fine-tuning stage. Images are randomly 
masked in the central area during the pre-training stage, and the reconstructed images are subsequently supplied 
into the model. For this pre-training stage, no labels are required to utilize any image. It is anticipated that the 
pre-trained model would reflect facial features accurately. By utilizing the principles of transfer learning, we also 
replace the final layers that have learned a particular task with the new layers that will learn features particular 
to face parsing. The proposed method significantly outperforms supervised learning when incorporating the 
transfer learning-based pre-training stage. Furthermore, experimental results indicate that our method achieves 
SOTA performance on the LaPa and CelebAMask-HQ datasets.

Design methodology
The proposed masked transfer learning (MTL) strategy involves two stages, as shown in Fig. 2. First, pre-training 
a neural network on masked images without parsing labels to reconstruct inputs. Second, fine-tuning it on 
labeled images, replacing final layers to learn facial parsing and segmentation features like shapes, edges, and 
colors. To evaluate the performance of the proposed MTL model, we use two synthetic standard benchmarks of 
face images for face parsing: the LaPa48 and CelebAMask-HQ16.

Proposed MTL Pre-training stage
This paper proposes a novel masking method for extracting semantic features from unlabeled images to 
improve neural network pre-training. Selected image regions (32–64 px patches, 128 total) are occluded and 
reconstructed using a deep CNN. For facial images, masking is limited to the central region containing the face 
to compute reconstruction loss. This study defines the central area as the portion that the entire image consists 
of two-thirds of it. To reconstruct the masked image, we use a simple R Decoder with a single convolutional 
layer, followed by an encoder based on UNet++45. The encoder processes a masked input of size3 × H × W , 
producing an n × H × W feature output. Furthermore, the 3 × H × W  image is reconstructed by a simplistic 
R Decoder based on the input received from the encoder, i.e., n × H × W features. Figure 2 depicts the overall 
pre-training stage framework.

Fine-tuning stage
The encoder can acquire facial feature representation after the pre-training phase. We use the same encoder 
in the fine-tuning stage to learn the facial semantic characteristics by creating a facial parsing decoder in the 
transfer learning process, as shown in Fig. 3. In the transfer learning process, we replace the final layers with the 
new layers by employing a facial parsing decoder.

Architecture details
The proposed method employs the same encoder twice with distinct decoders. Initially, a masked learning 
strategy enables the encoder to learn basic facial representations. Once these semantic features are captured, 
new layers replace the initial ones, and the facial parsing decoder learns more complex features. Using a UNet + 
+ with ResNet50 core51, the encoder ensures robustness, while both R and FP decoders use only one convolution 
layer, emphasizing the encoder’s critical role in pre-training and fine-tuning.

Fig. 2.  Framework of MTL-based pre-training stage.

 

Scientific Reports |         (2026) 16:3405 4| https://doi.org/10.1038/s41598-025-33366-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Training process
For the facial parsing challenge, we use masked images in the datasets to pre-train our encoder and then enhance 
the encoder performance by connecting it to FP Decoder. The pre-training stage aims to reconstruct the missing 
patches from the masked input image. Here, we compute the reconstruction loss during the pre-training stage, 
as shown in Eq. (1).

	
LossRs =

We∑
i=Ws

We∑
j=Hs

L
(
p̂ij , pij)� (1)

where L
(
p̂ij , pij) represents the difference between the original and the reconstructed image in terms of the 

pixel loss, Ws = W/6, Hs = H/6, We = 5W/6, He = 5H/6.
Facial parsing is a process that categorizes each pixel of an image into a specific semantic label representing a 

facial component. By employing a combined loss function, we aim to establish more precise decision boundaries 
and ensure accurate data distribution, as outlined in Eqs. (2) and (3).

	 LossFs = λcr−entLcr−ent + λdiceLdice� (2)

	
LossFs = λcr−ent(−α(1 − p̂)γp log(p̂) + (1 − α)p̂γ(1 − p) log(1 − p̂)) + λcr−ent(

2⟨p, p̂⟩
||p||1 + ||p̂|| 1

)� (3)

where λcr−ent and λdice are hyperparameters. The value of λcr−ent determines how much emphasis is placed 
on minimizing the cross-entropy loss, and the value of λdice determines the relative contribution of the dice 
loss term compared to the cross-entropy loss term. Lcr−ent andLdice represent the cross-entropy and dice 
loss, and p̂ represent the ground truth and predicted segmentation values, and⟨p, p̂⟩ represents the dot product 
between the ground truth and predicted segmentation values. α controls the balance between foreground and 
background classes in the cross-entropy term. By adjusting the value of α, the weighting between these two 
classes can be controlled. γ applies a power transformation which help in controlling the impact of the predicted 
probabilities on the loss function. Higher values of γ place more emphasis on the misclassified pixels, while 
lower values give more importance to the well-classified pixels.

Hybrid approach for facial semantic classification
Figure 4 illustrates the transfer learning process where initial layers extract basic facial features. In pre-training, 
the encoder and R decoder learn facial semantic representations. During fine-tuning, the R decoder is replaced 

Fig. 4.  Transfer learning feature-based approach for facial parsing.

 

Fig. 3.  Framework of the efficient fine-tuning stage.
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by the FP decoder while retaining the encoder to enhance facial parsing accuracy. Training then uses LaPa and 
CelebAMask-HQ datasets to evaluate the proposed MTL algorithm against standard benchmarks.

The proposed method employs a combination of transfer learning and the standard classification technique46. 
Facial features are extracted from the images using transfer learning. Concurrently, Multiclass Support Vector 
Machine (SVM) is utilized due to its exceptional efficiency in categorizing data with multiple classes. To ensure 
the effectiveness of SVM, it is crucial that the dataset is labeled, as SVM is renowned for its ability to distinguish 
between labeled data. Figure 5 shows the architecture of the hybrid (Transfer Learning + SVM) approach for 
facial feature classification.

Furthermore, we employed a Support Vector Machine (SVM) to construct a multi-class hyperplane 
that separates distinct facial features. Support vectors, representing the extreme points of a specific class, 
were instrumental in distinguishing between these features. These support vectors proved to be effective in 
differentiating distinct facial features within this study.

The SVM classification with a reduced hyper-plane (SVM-RH) is illustrated in Fig. 6. The Nth class is isolated 
from the remaining N-1 classes to minimize classification error and identify the optimal separating the Nth 
class from all N-1 classes by a hyper-plane in SVM-RH. Afterwards, the algorithm determines the class of any 
remaining samples in the “N-1” class. Any remaining “N-1” class samples are then classified according to the 
algorithm. In order to determine the next class to be isolated from the “N-1” classes, one class sample from 
the “N-2” class samples is isolated. Next, we determine the hyperplane that separates these data. This process 
continues until the class samples’ data can be categorized. In this way, the data of class samples is classified until 
it is complete. As a result, the required hyper-plane for data separation is minimized47. The amount of training 
time decreases as categorization accuracy increases in SVM-RH.

Support vector machine with binary decision tree (SVM-BDT)
The SVM-BDT was developed by Madzarov et al.54 to address the issue of a distributed class in the Binary tree 
of SVM. This approach combines SVM’s high classification accuracy with efficient tree architecture computing. 
This architecture generates a tree with N-1 internal nodes, each responsible for evaluating there are N leaf nodes, 
each containing the class label for a subset of the data, and a binary decision function. The SVM-BDT prohibited 
the class from appearing on either side of the tree. As a result, it is more efficient than the binary tree of SVM47 
since it does not check the class on both sides of the tree. This approach’s disadvantage is that it starts by looking 
for cluster centers in the data using a clustering algorithm. The binary tree depicted in Fig. 7 categorizes the 

Fig. 6.  SVM with reduced hyper-plane for facial parsing.

 

Fig. 5.  Hybrid (Transfer Learning + SVM) approach for facial semantic classification.
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data into 10 distinct classes. Nodes in the tree consist of four internal and 10 leaf nodes. An individual leaf node 
represents a specific class to which the sample belongs.

Experimental results and analysis
Datasets
In order to evaluate our proposed MTL technique, we use two synthetic standard benchmarks of face images 
for face parsing: the LaPa48 and CelebAMask-HQ16. The LaPa dataset contains in total 22,176 facial images and 
precise pixel-by-pixel semantic labels of 10 distinct face-part categories, from which it is partitioned into 18,176, 
2,000, and 2,000 images for training, testing, and validation. The CelebAMask-HQ dataset contains 24,183, 
2,824, and 2,993 images for training, testing, and validation, along with 18 semantic face-part categories.

Evaluation metrics
The proposed method is evaluated on LaPa and CelebAMask-HQ datasets, the conventional Pixel Accuracy (pix 
Acc), Mean Pixel Accuracy (Mean Acc), Mean F1 score (Mean F1), and Mean mIoU (Intersection-over-Union) 
metric. Furthermore, we contrast the F1 score performance of our proposed MTL with that of other benchmarks 
to ensure consistency with existing research.

Implementation details
Throughout both the pre-training and fine-tuning stages, in our transfer learning experiments, we employed 
random rotation and scale augmentation. To be more precise, the rotation angle is chosen randomly for each 
step between (−30o, 30o) and (−15o, 15o). For pre-training and fine-tuning stages, a scale factor between (0.75, 
1.25) and (0.8, 1.2) is randomly chosen. The hyper-parameters of cross-entropy and dice are set as 0.5. Stochastic 
Gradient Descent (SGD) is used to optimize pre-training and fine-tuning stages in MTL. In MTL, the stochastic 
gradient descent (SGD) method is used to optimize the pre-training and fine-tuning stages. There are 480 × 480 
inputs for the pre-training and fine-tuning stages, 16 batches, and a learning rate of 0.0001 for the pre-training, 
and for fine-tuning, we select the learning rate of 0.00001.

First, we pre-train the encoder using Unet + + and 500 epochs for R Decoder. A pre-trained model from 
ImageNet serves as the ResNet50 initialization. In the initial pre-training phase, we leverage a transfer learning 
model to initialize the entire encoder. Subsequently, in order to refine the facial parsing features, we use data 
from LaPa and CelebAMask-HQ datasets, utilizing the same encoder and FP Decoder. There are two options for 
evaluating the effectiveness of our strategy during the fine-tuning stage. In order to fine-tune, we first randomly 
chose 0.5%, 1%, and 10% from the labeled training data. We create three alternative line graphs for these 
experiments, and the resultant performance is the average of all three sampled data. After that, we consider the 
whole training dataset with labels for fine-tuning and compare it with the SOTA benchmarks.

Performance evaluation
By comparing our proposed method with a baseline model, we evaluated the efficacy of masked transfer learning 
that was trained directly on labeled data without masked learning in the pre-training phase. When various 
labeling samples were considered, the outcomes of MTL and baseline models for the LaPa and CelebAMask-HQ 
datasets are depicted in Figs. 8, 9, 10 and 11.

It is essential to observe that the proposed approach significantly surpasses the baseline model on two 
benchmarks. Notably, the proposed method outperforms the baseline when there is 0.5%, 1%, and 10% of the 
LaPa dataset labeled data, respectively with 2.9 mIoU, 2.16 mIoU, and 1.18 mIoU. When results from the whole 
training set on the LaPa dataset are compared, the proposed method performs 0.25 mIoU better than the baseline. 

Fig. 7.  SVM with binary decision tree for facial parsing.
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The CelebAMask-HQ dataset also demonstrates that MTL outperforms the baseline by a substantial margin for 
different labeling samples of the training data on the comparative outcomes. Furthermore, the proposed MTL 
algorithm enhances pixel accuracy to 0.81, 0.38, and 0.11 compared to the baseline when 0.5%, 1%, and 10% 
labeled training data are utilized in the LaPa dataset. Similarly, MTL exhibits an improvement in pixel accuracy 

Fig. 10.  Mean F1 score against Labeled data for MTL and baseline modeling.

 

Fig. 9.  Mean Accuracy against Labeled data for MTL and baseline modeling.

 

Fig. 8.  Pixel Accuracy against Labeled data for MTL and baseline modeling.
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with 0.1, 0.18, and 0.79 against the baseline when 0.5%, 1%, and 10% labeled training data are employed in the 
CelebAMask-HQ dataset.

In terms of the F1 score, we evaluate the performance of our proposed method as opposed to SOTA cutting-
edge techniques using the complete training data. In Tables 1 and 2, we show the performance evaluation 
comparisons between the proposed method and other SOTA techniques49–56 trained on the LaPa dataset and 
CelebAMask-HQ dataset, respectively. In LaPa, our method performs at a cutting-edge level, with a mean F1 
score of 92.90%, and in CelebAMask-HQ, we achieved a mean score of 90.50%. Furthermore, our proposed 
method surpasses other techniques in accurately segmenting various facial semantic components such as the 
skin, hair, left eyebrow, right eyebrow, left eye, right eye, inside mouth, lower lip, upper lip, and nose.

In the pre-training stage, the encoder is pre-trained on the ImageNet dataset. Without transfer learning, 
the loss converges faster, and mIoU improves more rapidly, as shown in Figs. 12 and 13. However, after 400 

Method Face Hair L-Eye R-Eye L-Brow R-Brow U-Lip I-Mouth L-Lip Nose Mean

Luo et al49. 96 93.9 86.2 86.5 83.2 83.1 88.6 93.8 90.3 93.7 84.0

Te et al50. 96.5 95.2 88.7 89.1 85.5 85.6 89.1 92 91.1 93.9 85.5

Li et al51. 96.6 95.5 90.3 90.4 86.6 86.6 89.8 92.8 91.4 94.1 86.7

Zheng et al52. 95.7 94.5 89.4 89.6 85.5 85.7 87.4 91.8 91.0 93.9 86.1

Sarkar et al53. 96.6 95.2 89.6 89.7 85.2 84.9 89.1 92.6 91.1 94.0 86.1

Zheng et al54. 96.3 95.6 88.8 88.6 85.2 85.4 87.5 91.0 89.8 93.7 86.7

Han and Yoon55 96.6 95.8 89.7 89.8 86.0 85.8 89.4 92.7 90.8 94.0 88.2

Han et al56. 88.2 95.3 90.1 90.1 86.2 86.4 89.5 92.8 91.4 94.0 90.4

Proposed 96.8 95.9 90.4 90.5 88 87 90 93.1 91.6 94.5 90.5

Table 2.  Performance evaluation comparison between, in terms of F1 score on the CelebAMask-HQ dataset, 
the proposed method and SOTA methods.

 

Method Skin Hair L-Eye R-Eye L-Brow R-Brow U-Lip I-Mouth L-Lip Nose Mean

Luo et al49. 95.8 94.3 87 89.1 85.9 86.1 85.3 85.6 88.8 94.3 89.2

Te et al50. 97.7 96.5 91.5 91.1 89.9 90 88.5 90.7 90.1 97.3 92.3

Li et al51. 97.6 96.4 92.5 92.1 91.5 90.8 88.2 89.8 89.3 97.2 92.5

Zheng et al52. 97.6 96.4 91.8 91.5 90.4 90.4 88.0 90.5 89.9 97.3 92.4

Sarkar et al53. 97.6 96.0 97.2 90.3 87.5 89.8 92.0 92.2 90.9 90.6 92.4

Zheng et al54. 97.4 94.5 91.9 91.7 90.8 90.6 88.2 90.6 89.9 97.4 92.3

Han and Yoon55 97.5 96.2 91.7 91.3 90.1 90.7 88.7 90.5 90.0 97.0 92.4

Han et al56. 97.7 96.5 91.0 90.8 91.2 90.8 88.1 90.0 90.0 97.1 92.3

Proposed 97.8 96.6 97.6 92.3 91.7 90.9 92.3 90.11 90.12 97.8 92.9

Table 1.  Performance evaluation comparison between, in terms of F1 score on the LaPa dataset, the proposed 
method and SOTA methods.

 

Fig. 11.  Mean IoU against Labeled data for MTL and baseline modeling.
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epochs, the model is guided by the proposed MTL approach to perform better. It demonstrates how easily local 
optimization can ensnare the original model. In other words, the model is helped to surpass the local optimal 
level by the masked transfer learning procedure. Figure 12 shows the overall loss against epochs for MTL and 
baseline models using different labeling samples. In contrast, Fig. 13 depicts the mean intersection over union 
(mIoU) against MTL and baseline models’ epochs using different training data labeling samples.

Discussion
We thoroughly investigate the efficacy of pre-training based on masked transfer learning. Our algorithm was 
tested on the CelebAMask-HQ dataset, and the necklace portion of the model performed poorly, achieving a 
mean intersection over union (mIoU) of 0.01. An analysis of the data for every facial element in the CelebAMask-
HQ dataset shows that the necklace’s pixels make up just 0.016% of all the pixels. Baseline models, when trained 
exclusively with semantic masks, tend to prioritize other categories, ultimately converging on a local optimum. 
Consequently, categories with a limited number of pixels, such as necklaces, are not effectively learned.

Figure 14 illustrates every 16 × 512 × 512 sized feature activation map generated from the encoder. The 
necklace portion seen in Fig. 14 (a) is not activated on the baseline activation maps. To guarantee the model’s 
capacity to accurately reconstruct the image within our proposed MTL framework, the training process is 
conducted independently. This approach allows for a more precise and effective image reconstruction, ultimately 
enhancing the overall performance of our technique. As a result, it forces the model to emphasize each category 
fairly. Our model is capable of identifying the necklace feature and activating the corresponding regions using 
the suggested masked MTL pre-training, as illustrated in Fig. 14 (f). Additionally, Figs. 15 (a) and (b) illustrate 
the effectiveness of the proposed MTL on the LaPa dataset.

Generally, the existing face parsing/segmentation models in the literature frequently lack contextual 
information, which often leads to suboptimal segmentation performance for small objects like the “necklace” 
region. In the proposed method, facial features are extracted from images by using transfer learning in order 
to overcome this problem effectively. Additionally, we employed a Multiclass Support Vector Machine (SVM) 
for our categorical classification tasks due to its proven efficiency in handling such problems. As illustrated in 

Fig. 13.  mIoU against epochs for MTL and baseline using different labeling samples.

 

Fig. 12.  Overall loss against epochs for MTL and baseline using different labeling samples.
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Figs. 14 and 15, we present the qualitative findings of our experiments on CelebAMask-HQ and LaPa datasets. 
More smooth and natural results can be obtained using the proposed method.

Ablation study
We perform an ablation study to dissect the contribution of the key components in our proposed MTL 
framework. The following configurations are compared on the CelebAMask-HQ dataset using 10% of the 
labeled training data: (A) Baseline: supervised learning from scratch without pre-training; (B) MTL with 
random masking across the entire image; (C) MTL (central masking) fine-tuned using only cross-entropy (CE) 
loss; (D) The full proposed model: MTL (central masking) fine-tuned with the combined cross-entropy and 
dice loss. Table 3 clearly demonstrate the incremental benefits of each component in the proposed framework. 
The full model (D) achieves the highest mIoU and Mean F1 score. Most notably, the central masking strategy 
(C) provides a significant boost over random masking (B), particularly for facial components, validating our 
hypothesis that focusing reconstruction on the central face region forces the model to learn more relevant facial 
features. Furthermore, the combined loss function (D) outperforms the cross-entropy loss only (C), especially in 
improving the IoU for smaller and more challenging classes like necklace and inside mouth, by better handling 
class imbalance.

Furthermore, we conduct a fine-grained analysis of the proposed model performance on small semantic 
categories, to assess its robustness and ability to handle class imbalance. We define “small categories” as those 
constituting less than 1% of the total pixels in the dataset, such as necklace, left eyebrow, and right eyebrow in 
CelebAMask-HQ dataset. Table 4 compares the per-class IoU of our proposed MTL model (D) with the baseline 
(A) and a recent state-of-the-art method, Han et al.56. The results indicate that our method provides a substantial 
performance gain on these challenging small categories. For instance, the IoU for the necklace class jumps from 

Method Overall mIoU Mean F1 Necklace IoU Inside Mouth IoU

(A) Baseline 78.34 85.10 0.00 84.21

(B) MTL (random masking + combined loss) 80.15 86.55 5.67 87.92

(C) MTL (central masking + CE loss) 80.11 86.52 8.91 87.15

(D) MTL (central masking + combined loss) “OUR” 81.95 87.89 15.32 90.11

Table 3.  The results of the ablation study on the CelebAMask-HQ dataset.

 

Fig. 15.  Facial parsing results with LaPa dataset. (c) Images in LaPa dataset (d) Pre-training parsing results of 
baseline model (a) Masked images in LaPa dataset (b) Pre-training parsing results with proposed MTL model.

 

Fig. 14.  Facial parsing results with CelebAMask-HQ dataset and feature activation. (a) Images from 
CelebAMask-HQ dataset (b) Ground Truth (c) Predicted Image (d) Pre-training parsing results of baseline 
model (e) Pre-training parsing results with proposed MTL model (f) Encoder feature activation map from 
proposed MTL model.
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0% in the baseline to 15.32% in our model. This improvement is attributed to the pre-training stage, which 
forces the model to learn a more complete and equitable feature representation for all image regions to perform 
reconstruction, thereby preventing it from ignoring rare classes.

In conclusion, the ablation studies confirm the necessity of each component in our hybrid framework. 
The training efficiency analysis highlights its practical value in low-data regimes, and the examination of 
small-category performance underscores its superior generalization and robustness to class imbalance. These 
comprehensive experiments solidify the persuasiveness of the proposed MTL approach for face parsing.

Although the proposed MTL framework demonstrates consistent performance on the LaPa and CelebAMask-
HQ datasets, future work will focus on cross-dataset evaluation to further assess generalization capability across 
heterogeneous face parsing benchmarks. Additionally, we plan to conduct ablation studies to disentangle the 
effects of individual components such as the masking strategy, encoder pre-training, and fine-tuning layers, to 
better understand their relative contributions for performance improvements.

Conclusion
In this paper, we present a novel transfer learning technique in order to reduce a load on dense face part 
annotations of manual labeling. The proposed method aims to reconstruct masked images by initially pre-
training the Unet + + model using patches extracted from the central region of the masked images. Following 
pre-training, our model is refined using the face parsing dataset target faces after the final pre-training layers 
are replaced with the new layers that should obtain precise facial semantic characteristics using a facial parsing 
decoder. Through feature visualization, the fine-tuned MTL model can accurately identify feature activations 
for each category, even those with extremely low frequencies. The experiments demonstrate that the proposed 
MTL model significantly improve parsing performance, particularly for classes with extremely low proportions 
(like the necklace in CelebAMask-HQ). We believe that additional face-related tasks such as face generation, 
face landmark identification, and face attribute learning, can also be achieved using our proposed MTL-based 
pre-training and fine-tuning method.

Although the proposed method achieves promising results, it relies on a fixed central masking strategy 
that may not generalize well to occluded or side-view faces. The fine-tuning stage still requires a minimal 
amount of labeled data, and the pre-training process remains relatively computationally demanding for real-
time deployment. Future efforts will aim to improve model robustness through adaptive masking and multi-
view learning, integrate self-supervised or contrastive learning to further reduce labeling needs, and extend 
the proposed framework to tasks such as face synthesis, landmark detection, and facial attribute estimation. 
Furthermore, we will examine the possible efficacy of transfer learning-based pre-training for small portions of 
labeled data.

Data availability
The synthetic datasets CelebAMask-HQ [16] and LaPa[48] are freely available on: ​[​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​s​w​i​t​c​h​a​
b​l​e​n​o​r​m​s​/​C​e​l​e​b​A​M​a​s​k​-​H​Q​]​(​h​t​t​p​s​:​/​g​i​t​h​u​b​.​c​o​m​/​s​w​i​t​c​h​a​b​l​e​n​o​r​m​s​/​C​e​l​e​b​A​M​a​s​k​-​H​Q​)​, and ​[​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​l​
u​c​i​a​1​2​3​/​l​a​p​a​-​d​a​t​a​s​e​t​]​(​h​t​t​p​s​:​/​g​i​t​h​u​b​.​c​o​m​/​l​u​c​i​a​1​2​3​/​l​a​p​a​-​d​a​t​a​s​e​t​)​, respectively. Furthermore, the algorithmic im-
plementations used in this study are available upon reasonable request from the corresponding author.
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