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OPEN A hybrid approach for facial parsing

using transfer learning
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Face masking, face swapping, and face animation are downstream activities that can benefit from
face parsing, in which a face image is divided into many semantic regions. Due to the widespread use
of cameras, obtaining facial images has become increasingly straightforward. However, pixel-by-
pixel manual labeling takes a lot of time and effort, that allows us to investigate approaches based
on unlabled data. In this paper, we propose a novel hybrid transfer learning-based approach for face
parsing. First, patches are randomly masked in the central region of the face images. The method
then proceeds in two stages: a pre-training stage and a fine-tuning stage. In the pre-training stage,
the model is able to represent some basic facial features through unlabeled data. Then, the model is
adjusted for the face parsing task on a small labeled dataset in the fine-tuning stage. Experimental
results on the test sets show that the model can significantly reduce labeling costs. Furthermore,
the proposed method outperforms the baseline by 2.9%, 2.16%, and 1.18% of mloU with 0.5%, 1%,
and 10% labeled data, respectively, on the LaPa dataset. Moreover, experimental results on the
CelebAMask-HQ test dataset reveal that the masked transfer learning-based approach significantly
outperforms the baseline for various labeling samples of the training data.

Keywords Face parsing, Masked pre-training, Hybrid transfer learning, Semi-supervised facial
segmentation, Unlabeled data learning

Facial parsing, or facial segmentation has recently gained significant attention due to its unique applications in
areas such as face aesthetics', expression transfer?, and face image synthesis®. As illustrated in Fig. 1, facial parsing
aims to assign specific semantic labels to individual pixels within a facial image, such as nose, eye, hair, eyebrow,
etc. Building reliable facial-parsing models under controlled conditions has been challenging over the last few
decades. Although these approaches have produced encouraging results, their range of applicability is limited
by the fact that they frequently suffer substantial degradation in uncontrolled situations. Deep convolutional
neural networks (DCNNs)*~ have recently significantly improved segmentation performance. However, most
traditional semantic segmentation structures rely on substantial backbones, making them unsuitable for low-
end embedded device deployment. For example, VGG16* uses over 500 MB of memory and performs a forward
inference in about 100 ms, even on a powerful GPU). Low-latency and high-efficiency attributes are frequently
incompatible for large-scale model deployments. In the process of facial parsing, it is important to think about
how to maintain a balance between them.

In contrast to ordinary semantic segmentation tasks, facial parsing faces three key difficulties. First, when a
person’s face is symmetrical, it can be difficult to tell the difference between their left and right eyes due to their
comparable appearances and textures. Second, border ambiguity frequently interacts with annotators” visual
systems, which confounds the learned model (for example, the area between hair and dark hats). Thirdly, deep-
level features often carry more semantic meaning, aiding in differentiation between categories. Shallow-level
features, in contrast, encode more detailed information. Concatenation is a common technique used to combine
different feature blocks, enhancing the model’s feature representation capabilities and extracting features at
multiple scales.

Transfer learning, the technique of reusing a pre-trained model on a different task, has become increasingly
popular in deep learning. This approach allows for the training of deep neural networks with significantly less
data. This is particularly beneficial in real-world scenarios where obtaining millions of annotated data points
for training sophisticated models is often challenging. Transfer learning involves leveraging a machine learning
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Fig. 1. Facial parsing examples that augment the CelebA dataset al.ong with additional facial details?.

model to solve a separate but related problem for which a model has already been pre-trained. By applying the
weights learned on a source task “A” to a new target task “B,”®"1° we can enhance generalization and achieve

better results.

To effectively utilize unlabeled facial images for face parsing, we have developed a novel transfer learning
approach that is composed of pretraining and fine-tuning phases. In the pre-training phase, first, in the center
region of the face images, we specifically mask some patches randomly. Then, for the reconstruction of the
masked patches, the model is required. By using unlabeled data, the model enables it to learn meaningful facial
feature representations of facial features in the pre-training stage. For face parsing, the model is fine-tuned on a
few labeled data after replacing the final layers of the pre-trained unlabeled data with that of the new layers with
labeled data available in the pre-training stage. In terms of pixel accuracy, mean accuracy, mean IoU, and mean
F1 score, the fine-tuning stage contributes to improved performance and other relevant metrics by incorporating
a face parsing decoder.

Summary of this paper’s main contributions:

o By using transfer learning, we developed a novel framework for face parsing that includes a pre-training stage
and a fine-tuning stage. The model is trained on unlabeled data in the pre-training stage, the final layers,
which were previously trained for a specific task, are replaced with new layers to learn features relevant to face
parsing. Subsequently, for the face parsing task, the model is fine-tuned on labeled data.

o For pre-training the model, we propose a masked transfer learning technique that reconstructs masked imag-
es to learn facial feature representations.

o To demonstrate the proposed approach’s notable performance improvement over state-of-the-art (SOTA)
techniques, extensive tests are run on two challenging benchmarks.

The paper is divided into the following sections. The literature review for facial parsing and segmentation
using transfer learning and other cutting-edge technologies is presented in Sect. “Related work” The proposed
framework is thoroughly explained in Sect. “Design Methodology”, with special emphasis on how the network
architecture and masked transfer learning work. We provide the experimental results in Sect. “Experimental
results and analysis” and compare the qualitative results with SOTA algorithms. Finally, a summary of this
paper’s conclusions is provided in Sect. “Conclusion”.

Related work

In this section, we review perior studies relevant to face parsing and segmentation, as well as recentadvances in
transfer learning and self-supervised learning technologies in facial analysis. Furthermore, we highlight how the
proposed hyprid masked transfer learning approach differs in terms of architecture design, training efficiency
and data utilization.

Traditional and deep Learning-Based face parsing approaches

Early face parsing methods relied on probabilistic graphical models to capture local and global dependencies
In face segmentation process, Kae et al.!! utilized both local and global condition random fields (CRFs) and
restricted Boltzmann machines (RBMs). For structured prediction problems, Liu et al.!? incorporated CNNs
into graphical models. According to'®, exemplar-based segmentation, which transfers partial masks from
aligned exemplars to test images, leverages landmarks and SIFT features.

With the rise of deep convolutional networks (DCNNs), more efficient CNN-based architectures have been
explored. Liu et al.'* proposed a shallow CNN integrated with a spatially variant RNN to reduce computational
costs. In order to parse faces, Guo et al.!> developed a network of encoder-decoders. Moreover, Lee et al.!®
developed an adaptive prior approach using Rol Tanh-Warping, achieving state-of-the-art performance by
incorporating contextual cues beyond cropped regions such as hair.
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Lightweight and efficient network architectures

To achieve real-time performance with limited computational resources, several lightweight CNN models have
been developed. SqueezeNet!” reduced parameters via 1 x 1 and parallel convolutions. Despite its significantly
reduced parameter count (eightfold compared to AlexNet), it achieves comparable performance. To balance
low latency with minimal accuracy loss, MobileNet'®!® introduces deep separable convolutions. By combining
channel shuffling and group convolution operations, ShuffleNet?*?! ensures information flow and reduces
channel dimensionality. Four unique rules by ShuffleNet v2 are particularly beneficial for creating lightweight
systems. Octave convolution?® reduces feature redundancy and memory usage by sharing features in nearby
regions and minimizing low-frequency features. Contemporary approaches to accelerate model runtime often

incorporate these modules and channel pruning techniques?.

Context-Aware and Multi-Scale segmentation

Enhancing contextual representation is crucial for accurate segmentation. Therefore, exploiting contextual
information to improve segmentation’s representational abilities has been the subject of a lot of research.
Global pooling is a widely used method in many neural network architectures to extract the relevant contextual
information necessary for creating a comprehensive representation of the input data. By introducing an expansion
rate, often used in semantic segmentation tasks, dilated convolution®* expands the receptive field. By cascading
subnetworks and substages, the DFANet?® combines discriminative features. Multi-scale pyramid pooling
employed by PSPNet?®, aggregates features at multiple scales. The contextual data is gathered by ACFNet?” from
a category viewpoint. ExFuse?® has recently been suggested as a way to enhance the low-level environment by
giving the encoder more supervision. Numerous researches have shown that edge contour prediction can be
further sharpened and refined with boundary supervision. By adding more boundary supervision to the facial
parsing task, CE2P% enhances edge segmentation in a multi-task learning way. In order to facilitate feature
extraction during medical segmentation, ETNet*® imposes fine-grained boundary limitations in the encoder. In
contrast to what was stated above, MSFNet*! implements border monitoring with classes using characteristics
taken from the backbone.

Transfer learning in facial analysis

Transfer learning has been extensively applied across facial domains, including emotion recognition, attribute
classification, and sketch recognition. In the field of deep learning, transfer learning theory is prevalent. But we
are unsure of how far it can operate. The neural networks’ adaptability is investigated in the suggested study.
While transfer learning can significantly improve efficiency when high-level features are transferred, it’s still
advantageous to use transfer learning over training a network from the ground up. With minimal adjustments
in transfer learning, we can achieve superior outcomes compared to starting with random weights. This
highlights the potential of transfer learning to be far more effective than learning from scratch®”. The Advanced
Driver Assistance System (ADAS) was enhanced through a non-invasive method of recognizing the driver’s
emotional state. This system utilizes a solitary thermal camera to detect and interpret thermal cues associated
with emotions. The fact that this particular image was acquired with a thermal camera makes the situation
significantly worse in situations with little to no light. In order to improve the user’s experience and safety, a
thermal sensor will be incorporated®. Although stress is generally recognized as a serious illness, it can be
challenging to determine whether or not someone is experiencing stress. The degree of stress on the individuals’
faces was measured using thermal spatial-temporal data from videos of specific subjects. This can also regulate
medication dosage based on stress levels®*. To analyze the perception of emotions, temporal data relating to
facial temperature is used in*. First, facial regions are split into smaller parts, and statistical points connected
to data on facial temperature are extracted. The extracted features, related to differential temperature, are then
used to create a histogram and analyzed using the difference matrix pertaining to facial temperature. For each
feature, classification is performed using discrete hidden Markov models. Four key steps are physiological signal
processing for emotion recognition: pre-processing collected signals, biological feature extraction, matching,
and feature classification®. Each part examines the statistics, performance, and characteristics of modern
approaches. The relationship between the variables influencing human emotions and emotional state is crucial
for model simplification. So, while evaluating emotions, psychological signals might be quite beneficial. A
wearable wristband with a physiological signals acquisition system was created by Krupa et al.¥’. The SVM
method can classify “Autism Spectrum Disorder” (ASD) as influenced by emotions like neutral, involvement,
and happiness. Emotions are categorized using variations in the HR and SR galvanic potentials. To elicit
authentic emotional facial expressions, Esposito et al.*® conducted a meticulously designed experiment using
high-emotion videos. They provided comprehensive details regarding the experimental setup, image acquisition
conditions, stimulus generation, and statistical analysis. Their research focused on the impact of emotions on
memory word recognition tasks, utilizing experimental data to investigate these effects. Thermal and audible
emotional facial expressions are included in the author’s dataset for her investigations. Wang et al.** explores
the application of deep residual networks for visual categorization tasks, including action recognition, human
action recognition, and image classification. Transfer learning is employed to tackle these challenges effectively.
Moreover, transferring learning to the action detection process and image classification can address common
issues like view divergence and concept drift.

Self-Supervised and masked Pre-Training approaches

Self-supervised learning has recently emerged as a key strategy for representation learning without explicit
labels***!. These methods can be broadly classified into context-based, temporal-based, and contrast-based
approaches. Among context-based techniques, masked image modeling (MIM) has gained particular attention.
Early work by Vincent et al.*? introduced denoising autoencoders, while Doersch et al.** proposed spatial
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prediction tasks between random image patches. Zhang et al.** extended this to colorization-based learning,

teaching models to predict missing visual information. Such methods encourage robust feature extraction that
transfers effectively to downstream tasks such as segmentation.

However, existing MIM and self-supervised models are often domain-agnostic and do not account for facial
structural priors, which are crucial for accurate parsing. Moreover, encoder-decoder decoupling during pre-
training limits the decoder’s ability to generalize for fine-grained facial segmentation. These limitations motivate
the development of hybrid and task-aware pre-training mechanisms.

In this paper, we propose a novel face parsing framework that uses unlabeled facial images to their fullest
potential. There are two steps in the framework: pre-training stage and fine-tuning stage. Images are randomly
masked in the central area during the pre-training stage, and the reconstructed images are subsequently supplied
into the model. For this pre-training stage, no labels are required to utilize any image. It is anticipated that the
pre-trained model would reflect facial features accurately. By utilizing the principles of transfer learning, we also
replace the final layers that have learned a particular task with the new layers that will learn features particular
to face parsing. The proposed method significantly outperforms supervised learning when incorporating the
transfer learning-based pre-training stage. Furthermore, experimental results indicate that our method achieves
SOTA performance on the LaPa and CelebAMask-HQ datasets.

Design methodology

The proposed masked transfer learning (MTL) strategy involves two stages, as shown in Fig. 2. First, pre-training
a neural network on masked images without parsing labels to reconstruct inputs. Second, fine-tuning it on
labeled images, replacing final layers to learn facial parsing and segmentation features like shapes, edges, and
colors. To evaluate the performance of the proposed MTL model, we use two synthetic standard benchmarks of
face images for face parsing: the LaPa*® and CelebAMask-HQ!®.

Proposed MTL Pre-training stage

This paper proposes a novel masking method for extracting semantic features from unlabeled images to
improve neural network pre-training. Selected image regions (32-64 px patches, 128 total) are occluded and
reconstructed using a deep CNN. For facial images, masking is limited to the central region containing the face
to compute reconstruction loss. This study defines the central area as the portion that the entire image consists
of two-thirds of it. To reconstruct the masked image, we use a simple R Decoder with a single convolutional
layer, followed by an encoder based on UNet++*. The encoder processes a masked input of size3 x H x W,
producing an n x H x Wfeature output. Furthermore, the 3 x H x W image is reconstructed by a simplistic
R Decoder based on the input received from the encoder, i.e., n X H x Wfeatures. Figure 2 depicts the overall
pre-training stage framework.

Fine-tuning stage

The encoder can acquire facial feature representation after the pre-training phase. We use the same encoder
in the fine-tuning stage to learn the facial semantic characteristics by creating a facial parsing decoder in the
transfer learning process, as shown in Fig. 3. In the transfer learning process, we replace the final layers with the
new layers by employing a facial parsing decoder.

Architecture details

The proposed method employs the same encoder twice with distinct decoders. Initially, a masked learning
strategy enables the encoder to learn basic facial representations. Once these semantic features are captured,
new layers replace the initial ones, and the facial parsing decoder learns more complex features. Using a UNet +
+ with ResNet50 core®!, the encoder ensures robustness, while both R and FP decoders use only one convolution
layer, emphasizing the encoder’s critical role in pre-training and fine-tuning.

Pre-training Stage
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Fig. 2. Framework of MTL-based pre-training stage.
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Fig. 3. Framework of the efficient fine-tuning stage.
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Fig. 4. Transfer learning feature-based approach for facial parsing.

Training process
For the facial parsing challenge, we use masked images in the datasets to pre-train our encoder and then enhance
the encoder performance by connecting it to FP Decoder. The pre-training stage aims to reconstruct the missing
patches from the masked input image. Here, we compute the reconstruction loss during the pre-training stage,
as shown in Eq. (1).

We We
Lossg, = Z Z L (;5; , Dij) (1)
i=Ws j=Hs

where L (@? , Dij) represents the difference between the original and the reconstructed image in terms of the
pixel loss, W, = W/6, H, = H/6, W, = 5W /6, H. = 5H/6.

Facial parsing is a process that categorizes each pixel of an image into a specific semantic label representing a
facial component. By employing a combined loss function, we aim to establish more precise decision boundaries
and ensure accurate data distribution, as outlined in Egs. (2) and (3).

LOSSFS = Aer—entLer—ent + Adice Ldice (2)

2(p,p)

Lossr, = Aer—ent(—a(1 = 5)"plog(P) + (1 — )" (1 = p) log(1 = P)) + Aer—ent (Dl
oIl + 1711,

3)

where Acr—ent and Agice are hyperparameters. The value of A¢r—en¢ determines how much emphasis is placed
on minimizing the cross-entropy loss, and the value of Ag;ce determines the relative contribution of the dice
loss term compared to the cross-entropy loss term. Ler—ent andLgice represent the cross-entropy and dice
loss, and p represent the ground truth and predicted segmentation values, and(p, p) represents the dot product
between the ground truth and predicted segmentation values. o controls the balance between foreground and
background classes in the cross-entropy term. By adjusting the value of «, the weighting between these two
classes can be controlled. v applies a power transformation which help in controlling the impact of the predicted
probabilities on the loss function. Higher values of v place more emphasis on the misclassified pixels, while
lower values give more importance to the well-classified pixels.

Hybrid approach for facial semantic classification
Figure 4 illustrates the transfer learning process where initial layers extract basic facial features. In pre-training,
the encoder and R decoder learn facial semantic representations. During fine-tuning, the R decoder is replaced
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Fig. 5. Hybrid (Transfer Learning + SVM) approach for facial semantic classification.
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Fig. 6. SVM with reduced hyper-plane for facial parsing.

by the FP decoder while retaining the encoder to enhance facial parsing accuracy. Training then uses LaPa and
CelebAMask-HQ datasets to evaluate the proposed MTL algorithm against standard benchmarks.

The proposed method employs a combination of transfer learning and the standard classification technique®.
Facial features are extracted from the images using transfer learning. Concurrently, Multiclass Support Vector
Machine (SVM) is utilized due to its exceptional efficiency in categorizing data with multiple classes. To ensure
the effectiveness of SVM, it is crucial that the dataset is labeled, as SVM is renowned for its ability to distinguish
between labeled data. Figure 5 shows the architecture of the hybrid (Transfer Learning + SVM) approach for
facial feature classification.

Furthermore, we employed a Support Vector Machine (SVM) to construct a multi-class hyperplane
that separates distinct facial features. Support vectors, representing the extreme points of a specific class,
were instrumental in distinguishing between these features. These support vectors proved to be effective in
differentiating distinct facial features within this study.

The SVM classification with a reduced hyper-plane (SVM-RH) is illustrated in Fig. 6. The Nth class is isolated
from the remaining N-1 classes to minimize classification error and identify the optimal separating the Nth
class from all N-1 classes by a hyper-plane in SVM-RH. Afterwards, the algorithm determines the class of any
remaining samples in the “N-1” class. Any remaining “N-1” class samples are then classified according to the
algorithm. In order to determine the next class to be isolated from the “N-1” classes, one class sample from
the “N-2” class samples is isolated. Next, we determine the hyperplane that separates these data. This process
continues until the class samples” data can be categorized. In this way, the data of class samples is classified until
it is complete. As a result, the required hyper-plane for data separation is minimized*’. The amount of training
time decreases as categorization accuracy increases in SVM-RH.

Support vector machine with binary decision tree (SVM-BDT)

The SVM-BDT was developed by Madzarov et al.>* to address the issue of a distributed class in the Binary tree
of SVM. This approach combines SVM’s high classification accuracy with efficient tree architecture computing.
This architecture generates a tree with N-1 internal nodes, each responsible for evaluating there are N leaf nodes,
each containing the class label for a subset of the data, and a binary decision function. The SVM-BDT prohibited
the class from appearing on either side of the tree. As a result, it is more efficient than the binary tree of SVM*’
since it does not check the class on both sides of the tree. This approach’s disadvantage is that it starts by looking
for cluster centers in the data using a clustering algorithm. The binary tree depicted in Fig. 7 categorizes the
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Fig. 7. SVM with binary decision tree for facial parsing.

data into 10 distinct classes. Nodes in the tree consist of four internal and 10 leaf nodes. An individual leaf node
represents a specific class to which the sample belongs.

Experimental results and analysis

Datasets

In order to evaluate our proposed MTL technique, we use two synthetic standard benchmarks of face images
for face parsing: the LaPa®® and CelebAMask-HQ'®. The LaPa dataset contains in total 22,176 facial images and
precise pixel-by-pixel semantic labels of 10 distinct face-part categories, from which it is partitioned into 18,176,
2,000, and 2,000 images for training, testing, and validation. The CelebAMask-HQ dataset contains 24,183,
2,824, and 2,993 images for training, testing, and validation, along with 18 semantic face-part categories.

Evaluation metrics

The proposed method is evaluated on LaPa and CelebAMask-HQ datasets, the conventional Pixel Accuracy (pix
Acc), Mean Pixel Accuracy (Mean Acc), Mean F1 score (Mean F1), and Mean mIoU (Intersection-over-Union)
metric. Furthermore, we contrast the F1 score performance of our proposed MTL with that of other benchmarks
to ensure consistency with existing research.

Implementation details

Throughout both the pre-training and fine-tuning stages, in our transfer learning experiments, we employed
random rotation and scale augmentation. To be more precise, the rotation angle is chosen randomly for each
step between (—30°, 30°) and (—15°, 15°). For pre-training and fine-tuning stages, a scale factor between (0.75,
1.25) and (0.8, 1.2) is randomly chosen. The hyper-parameters of cross-entropy and dice are set as 0.5. Stochastic
Gradient Descent (SGD) is used to optimize pre-training and fine-tuning stages in MTL. In MTL, the stochastic
gradient descent (SGD) method is used to optimize the pre-training and fine-tuning stages. There are 480 x 480
inputs for the pre-training and fine-tuning stages, 16 batches, and a learning rate of 0.0001 for the pre-training,
and for fine-tuning, we select the learning rate of 0.00001.

First, we pre-train the encoder using Unet++and 500 epochs for R Decoder. A pre-trained model from
ImageNet serves as the ResNet50 initialization. In the initial pre-training phase, we leverage a transfer learning
model to initialize the entire encoder. Subsequently, in order to refine the facial parsing features, we use data
from LaPa and CelebAMask-HQ datasets, utilizing the same encoder and FP Decoder. There are two options for
evaluating the effectiveness of our strategy during the fine-tuning stage. In order to fine-tune, we first randomly
chose 0.5%, 1%, and 10% from the labeled training data. We create three alternative line graphs for these
experiments, and the resultant performance is the average of all three sampled data. After that, we consider the
whole training dataset with labels for fine-tuning and compare it with the SOTA benchmarks.

Performance evaluation

By comparing our proposed method with a baseline model, we evaluated the efficacy of masked transfer learning
that was trained directly on labeled data without masked learning in the pre-training phase. When various
labeling samples were considered, the outcomes of MTL and baseline models for the LaPa and CelebAMask-HQ
datasets are depicted in Figs. 8, 9, 10 and 11.

It is essential to observe that the proposed approach significantly surpasses the baseline model on two
benchmarks. Notably, the proposed method outperforms the baseline when there is 0.5%, 1%, and 10% of the
LaPa dataset labeled data, respectively with 2.9 mIoU, 2.16 mIoU, and 1.18 mIoU. When results from the whole
training set on the LaPa dataset are compared, the proposed method performs 0.25 mIoU better than the baseline.
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The CelebAMask-HQ dataset also demonstrates that MTL outperforms the baseline by a substantial margin for
different labeling samples of the training data on the comparative outcomes. Furthermore, the proposed MTL
algorithm enhances pixel accuracy to 0.81, 0.38, and 0.11 compared to the baseline when 0.5%, 1%, and 10%
labeled training data are utilized in the LaPa dataset. Similarly, MTL exhibits an improvement in pixel accuracy
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Method Skin | Hair | L-Eye | R-Eye | L-Brow | R-Brow | U-Lip | I-Mouth | L-Lip | Nose | Mean
Luo et al®’. 95.8 | 943 |87 89.1 85.9 86.1 85.3 85.6 88.8 94.3 | 89.2
Te et al®. 97.7 1965 |91.5 |91.1 |89.9 90 88.5 |90.7 90.1 |97.3 |923
Lietal®l. 97.6 | 96.4 |92.5 92.1 91.5 90.8 88.2 89.8 89.3 97.2 | 925
Zheng et al*. 97.6 |96.4 |91.8 91.5 90.4 90.4 88.0 90.5 89.9 97.3 | 924
Sarkar et al®. 97.6 | 96.0 |97.2 90.3 87.5 89.8 92.0 92.2 90.9 90.6 |92.4
Zheng et al**. 974 | 945 |91.9 91.7 90.8 90.6 88.2 90.6 89.9 974 923
Han and Yoon> | 97.5 | 96.2 |91.7 91.3 90.1 90.7 88.7 90.5 90.0 97.0 |92.4
Han et al®, 97.7 |1 96.5 |91.0 90.8 91.2 90.8 88.1 90.0 90.0 97.1 |92.3
Proposed 97.8 | 96.6 |97.6 92.3 91.7 90.9 92.3 90.11 90.12 | 97.8 | 929

Table 1. Performance evaluation comparison between, in terms of F1 score on the LaPa dataset, the proposed
method and SOTA methods.

Method Face | Hair | L-Eye | R-Eye | L-Brow | R-Brow | U-Lip | I-Mouth | L-Lip | Nose | Mean
Luo et al®. 96 93.9 |86.2 86.5 83.2 83.1 88.6 93.8 90.3 93.7 | 84.0
Te et al*. 96.5 | 95.2 | 88.7 89.1 85.5 85.6 89.1 92 91.1 93.9 | 855
Lietal®l. 96.6 | 95.5 |90.3 90.4 86.6 86.6 89.8 92.8 914 |94.1 |86.7
Zheng et al*. 957 |94.5 |89.4 89.6 85.5 85.7 87.4 91.8 91.0 |939 |86.1
Sarkar et al*>. 96.6 |95.2 |89.6 89.7 85.2 84.9 89.1 92.6 91.1 94.0 |86.1
Zheng et al*. 96.3 | 95.6 | 88.8 88.6 85.2 85.4 87.5 91.0 89.8 |93.7 |86.7
Han and Yoon* | 96.6 |95.8 |89.7 89.8 86.0 85.8 89.4 92.7 90.8 |94.0 |88.2
Han et al®. 88.2 (953 |90.1 90.1 86.2 86.4 89.5 92.8 914 |94.0 |90.4
Proposed 96.8 [95.9 |90.4 90.5 88 87 90 93.1 91.6 | 945 |90.5

Table 2. Performance evaluation comparison between, in terms of F1 score on the CelebAMask-HQ dataset,
the proposed method and SOTA methods.

with 0.1, 0.18, and 0.79 against the baseline when 0.5%, 1%, and 10% labeled training data are employed in the
CelebAMask-HQ dataset.

In terms of the F1 score, we evaluate the performance of our proposed method as opposed to SOTA cutting-
edge techniques using the complete training data. In Tables 1 and 2, we show the performance evaluation
comparisons between the proposed method and other SOTA techniques**~° trained on the LaPa dataset and
CelebAMask-HQ dataset, respectively. In LaPa, our method performs at a cutting-edge level, with a mean F1
score of 92.90%, and in CelebAMask-HQ, we achieved a mean score of 90.50%. Furthermore, our proposed
method surpasses other techniques in accurately segmenting various facial semantic components such as the
skin, hair, left eyebrow, right eyebrow, left eye, right eye, inside mouth, lower lip, upper lip, and nose.

In the pre-training stage, the encoder is pre-trained on the ImageNet dataset. Without transfer learning,
the loss converges faster, and mIoU improves more rapidly, as shown in Figs. 12 and 13. However, after 400
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epochs, the model is guided by the proposed MTL approach to perform better. It demonstrates how easily local
optimization can ensnare the original model. In other words, the model is helped to surpass the local optimal
level by the masked transfer learning procedure. Figure 12 shows the overall loss against epochs for MTL and
baseline models using different labeling samples. In contrast, Fig. 13 depicts the mean intersection over union
(mIoU) against MTL and baseline models’ epochs using different training data labeling samples.

Discussion

We thoroughly investigate the efficacy of pre-training based on masked transfer learning. Our algorithm was
tested on the CelebAMask-HQ dataset, and the necklace portion of the model performed poorly, achieving a
mean intersection over union (mIoU) of 0.01. An analysis of the data for every facial element in the CelebAMask-
HQ dataset shows that the necklace’s pixels make up just 0.016% of all the pixels. Baseline models, when trained
exclusively with semantic masks, tend to prioritize other categories, ultimately converging on a local optimum.
Consequently, categories with a limited number of pixels, such as necklaces, are not effectively learned.

Figure 14 illustrates every 16 x 512 x 512 sized feature activation map generated from the encoder. The
necklace portion seen in Fig. 14 (a) is not activated on the baseline activation maps. To guarantee the model’s
capacity to accurately reconstruct the image within our proposed MTL framework, the training process is
conducted independently. This approach allows for a more precise and effective image reconstruction, ultimately
enhancing the overall performance of our technique. As a result, it forces the model to emphasize each category
fairly. Our model is capable of identifying the necklace feature and activating the corresponding regions using
the suggested masked MTL pre-training, as illustrated in Fig. 14 (f). Additionally, Figs. 15 (a) and (b) illustrate
the effectiveness of the proposed MTL on the LaPa dataset.

Generally, the existing face parsing/segmentation models in the literature frequently lack contextual
information, which often leads to suboptimal segmentation performance for small objects like the “necklace”
region. In the proposed method, facial features are extracted from images by using transfer learning in order
to overcome this problem effectively. Additionally, we employed a Multiclass Support Vector Machine (SVM)
for our categorical classification tasks due to its proven efficiency in handling such problems. As illustrated in
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(a) (b) () (d) (e) (f)

Fig. 14. Facial parsing results with CelebAMask-HQ dataset and feature activation. (a) Images from
CelebAMask-HQ dataset (b) Ground Truth (c) Predicted Image (d) Pre-training parsing results of baseline
model (e) Pre-training parsing results with proposed MTL model (f) Encoder feature activation map from
proposed MTL model.

(a) (b) (c) (d)

Fig. 15. Facial parsing results with LaPa dataset. (c) Images in LaPa dataset (d) Pre-training parsing results of
baseline model (a) Masked images in LaPa dataset (b) Pre-training parsing results with proposed MTL model.

Method Overall mIoU | Mean F1 | Necklace IoU | Inside Mouth IoU
(A) Baseline 78.34 85.10 0.00 84.21
(B) MTL (random masking + combined loss) 80.15 86.55 5.67 87.92
(C) MTL (central masking + CE loss) 80.11 86.52 8.91 87.15
(D) MTL (central masking + combined loss) “OUR” | 81.95 87.89 15.32 90.11

Table 3. The results of the ablation study on the CelebAMask-HQ dataset.

Figs. 14 and 15, we present the qualitative findings of our experiments on CelebAMask-HQ and LaPa datasets.
More smooth and natural results can be obtained using the proposed method.

Ablation study

We perform an ablation study to dissect the contribution of the key components in our proposed MTL
framework. The following configurations are compared on the CelebAMask-HQ dataset using 10% of the
labeled training data: (A) Baseline: supervised learning from scratch without pre-training; (B) MTL with
random masking across the entire image; (C) MTL (central masking) fine-tuned using only cross-entropy (CE)
loss; (D) The full proposed model: MTL (central masking) fine-tuned with the combined cross-entropy and
dice loss. Table 3 clearly demonstrate the incremental benefits of each component in the proposed framework.
The full model (D) achieves the highest mIoU and Mean F1 score. Most notably, the central masking strategy
(C) provides a significant boost over random masking (B), particularly for facial components, validating our
hypothesis that focusing reconstruction on the central face region forces the model to learn more relevant facial
features. Furthermore, the combined loss function (D) outperforms the cross-entropy loss only (C), especially in
improving the IoU for smaller and more challenging classes like necklace and inside mouth, by better handling
class imbalance.

Furthermore, we conduct a fine-grained analysis of the proposed model performance on small semantic
categories, to assess its robustness and ability to handle class imbalance. We define “small categories” as those
constituting less than 1% of the total pixels in the dataset, such as necklace, left eyebrow, and right eyebrow in
CelebAMask-HQ dataset. Table 4 compares the per-class IoU of our proposed MTL model (D) with the baseline
(A) and a recent state-of-the-art method, Han et al.>®. The results indicate that our method provides a substantial
performance gain on these challenging small categories. For instance, the IoU for the necklace class jumps from
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Method Necklace | L-Eyebrow | R-Eyebrow | U-Lip | L-Lip | Mean (All Classes)
Baseline (A) 0.00 80.11 80.05 82.34 |81.99 |78.34
Han et al®. 8.91 85.10 84.95 87.22 | 86.88 | 80.40
Proposed MTL (D) | 15.32 87.45 87.31 89.50 |89.15 | 81.95

Table 4. per-class IoU (%) comparison on small categories of the CelebAMask-HQ test set.

0% in the baseline to 15.32% in our model. This improvement is attributed to the pre-training stage, which
forces the model to learn a more complete and equitable feature representation for all image regions to perform
reconstruction, thereby preventing it from ignoring rare classes.

In conclusion, the ablation studies confirm the necessity of each component in our hybrid framework.
The training efficiency analysis highlights its practical value in low-data regimes, and the examination of
small-category performance underscores its superior generalization and robustness to class imbalance. These
comprehensive experiments solidify the persuasiveness of the proposed MTL approach for face parsing.

Although the proposed MTL framework demonstrates consistent performance on the LaPa and CelebAMask-
HQ datasets, future work will focus on cross-dataset evaluation to further assess generalization capability across
heterogeneous face parsing benchmarks. Additionally, we plan to conduct ablation studies to disentangle the
effects of individual components such as the masking strategy, encoder pre-training, and fine-tuning layers, to
better understand their relative contributions for performance improvements.

Conclusion

In this paper, we present a novel transfer learning technique in order to reduce a load on dense face part
annotations of manual labeling. The proposed method aims to reconstruct masked images by initially pre-
training the Unet++ model using patches extracted from the central region of the masked images. Following
pre-training, our model is refined using the face parsing dataset target faces after the final pre-training layers
are replaced with the new layers that should obtain precise facial semantic characteristics using a facial parsing
decoder. Through feature visualization, the fine-tuned MTL model can accurately identify feature activations
for each category, even those with extremely low frequencies. The experiments demonstrate that the proposed
MTL model significantly improve parsing performance, particularly for classes with extremely low proportions
(like the necklace in CelebAMask-HQ). We believe that additional face-related tasks such as face generation,
face landmark identification, and face attribute learning, can also be achieved using our proposed MTL-based
pre-training and fine-tuning method.

Although the proposed method achieves promising results, it relies on a fixed central masking strategy
that may not generalize well to occluded or side-view faces. The fine-tuning stage still requires a minimal
amount of labeled data, and the pre-training process remains relatively computationally demanding for real-
time deployment. Future efforts will aim to improve model robustness through adaptive masking and multi-
view learning, integrate self-supervised or contrastive learning to further reduce labeling needs, and extend
the proposed framework to tasks such as face synthesis, landmark detection, and facial attribute estimation.
Furthermore, we will examine the possible efficacy of transfer learning-based pre-training for small portions of
labeled data.

Data availability

The synthetic datasets CelebAMask-HQ [16] and LaPa[48] are freely available on: [https://github.com/switcha
blenorms/CelebAMask-HQ] (https:/github.com/switchablenorms/CelebAMask-HQ), and [https://github.com/1
ucial23/lapa-dataset](https:/github.com/lucial23/lapa-dataset), respectively. Furthermore, the algorithmic im-
plementations used in this study are available upon reasonable request from the corresponding author.
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