
A spatio-temporal graph diffusion 
and federated contrastive learning 
framework for cross-institutional 
educational evaluation
Xi Fang1 & Feng Xiao2

This study introduces a novel evaluation framework that combines a space-time graph diffusion model 
(STG-DM) and federated contrastive learning (FedCL) to address collaborative optimization challenges 
in cross-school education evaluation. This integration enables the creation of a thermodynamically 
driven space-time diffusion equation and an adaptive graph convolution mechanism, facilitating 
accurate modeling of the space-time evolution of multimodal educational behaviors. It effectively 
overcomes the shortcomings of traditional methods, which often suffer from local overfitting and 
dynamic correlation modeling failures due to data silos. The graph diffusion operator, constrained 
by non-equilibrium thermodynamic principles, has proven to enhance the prediction accuracy of 
cross-regional education strategies, reducing the average absolute error (MAE) by 18.7% compared 
to conventional space-time models. In the context of heterogeneous data distribution across 
30 universities, the system successfully reduces the privacy leakage risk (ε) to below 1.5, while 
simultaneously achieving balanced optimization of cross-school model generalization performance. 
The lightweight evaluation system developed includes a multimodal real-time analysis engine that 
enables space-time heatmap rendering and collaborative decision-making for 100,000-level nodes, 
with a system response delay of less than two seconds. This provides education managers with efficient 
and reliable data intelligence tools.
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As higher education institutions increasingly digitize their educational frameworks, cross-institutional 
collaborative assessment has become crucial for improving teaching quality. However, the conflict between 
multi-institutional data sharing and privacy protection is escalating1. Currently, about 78% of universities operate 
independent evaluation systems, leading to severe data silos that obscure correlations between cross-institutional 
educational behaviors and outcomes2. Mainstream assessment methods over-rely on static indicators such as 
course completion rates and exam scores, failing to reflect the dynamic nature of teacher–student interactions3. 
Although the traditional Analytic Hierarchy Process (AHP) allows weight quantification, it struggles to 
incorporate fluid factors like classroom atmosphere and regional cultural differences4. Moreover, integration 
techniques for multi-source data—such as video, text, and administrative records—remain underdeveloped; 
approximately 63% of evaluation systems support only single-mode analysis5. These limitations prevent current 
approaches from meeting modern education’s demands for precision, collaboration, and intelligence.

In recent years, federated learning has introduced innovative solutions for data privacy, yet model 
generalization across institutions remains challenging. For example, non-IID data can induce prediction biases of 
up to 22% in global models across heterogeneous populations6. While spatio-temporal graph models are capable 
of capturing complex relational patterns, their high computational complexity hinders practical deployment. A 
novel end-to-end federated comparative learning model has been proposed for cross-domain recommendation, 
helping mitigate bias between global and local models7. Another approach introduces a bi-heterogeneous three-
stage coupled network with multivariate feature-aware learning, which adapts to evolving patterns by integrating 
low-, mid-, and high-level feature extraction to improve multi-feature perception and prediction accuracy8.
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Thus, there is an urgent need to develop an evaluation framework that reconciles privacy preservation, 
dynamic modeling, and computational efficiency.

The core challenge in cross-institutional educational assessment lies in balancing data privacy with model 
efficacy. Data silos across institutions increase the risk of local model overfitting. Conventional federated 
aggregation strategies such as FedAvg can reduce global model accuracy by 14%–18% under non-IID data 
distributions9,10. Additionally, educational behaviors exhibit strong spatio-temporal dependencies—such as 
regional cultural impacts on instructional strategies—which conventional temporal models like LSTM fail to 
adequately capture across spatial nodes11. Experiments indicate that single-time-series models yield a 26% 
higher RMSE compared to spatio-temporal fusion models in cross-regional evaluations12.

Multimodal data fusion introduces further complexity. Educational outcomes are influenced by numerous 
factors, including teaching behavior (video), student feedback (text), and administrative policies (structured 
data). Current fusion techniques often rely on simple feature concatenation, leading to information loss of 
up to 35%13. Privacy mechanisms like differential noise injection may also impair model sensitivity to critical 
features; for instance, noise addition in joint models has been shown to reduce the F1 score by 9.3% in sentiment 
classification tasks14. Therefore, it is essential to design adaptive noise injection and feature enhancement 
strategies that reconcile privacy constraints with model robustness.

In the domain of spatio-temporal graph models, the ST-GCN model captures spatial correlations by 
fixing the topological structure15. However, this structure struggles to adapt to dynamic policy interventions 
during the propagation of educational behaviors. While ConvNeXt-V2 aims to enhance visual representations 
through masked modeling, its inherent Euclidean space assumption fundamentally conflicts with the manifold 
characteristics of educational data16,17. In federated learning scenarios, Fed Avg’s homogeneous aggregation 
method generates up to 22% prediction bias when handling cross-school non-IID data18. Although FedProx 
employs regularization to constrain client drift19, it fails to address cross-modal knowledge alignment issues20. 
In thermodynamic modeling, the equilibrium diffusion hypothesis fails to explain abrupt phenomena 
triggered by regional cultural impedance factors, such as the sixth-month curriculum adjustment at the Beijing 
campus21. Spatio-temporal Graph Neural Networks (STGNNs) have demonstrated their modelling capabilities 
for dynamic correlations across domains such as transportation and meteorology. ST-GCN and DCRNN 
pioneered the integration of graph diffusion processes with convolutional operations; however, their default 
static topology and node homogeneity render them ill-suited to accommodate rapid topological shifts in 
educational settings arising from policy or cultural variations. DGT-MTL enhances traffic prediction robustness 
through a multi-task dynamic graph Transformer, with its adaptive multi-task learning module capable of 
revealing implicit associations and dynamic relationships between road segments22. FDGNN further proposes 
decoupled contrastive objectives to prevent sensitive attribute leakage, achieving fair representation23. Unlike 
the aforementioned approaches, this study’s FedCL-STGDM decouples contrastive learning across temporal and 
spatial domains. It constructs cross-calibration samples using course semantics and generates negative samples 
through discipline-heterogeneous methods. Furthermore, it extends dynamic graph transformations to policy-
triggered topological evolution, employing a non-equilibrium thermodynamic diffusion operator for adaptive 
edge weight adjustment. Complemented by Stiefel manifold projection for lightweight aggregation, it achieves 
38% reduced communication with ε ≤ 1.5. This pioneering approach unites communication efficiency and 
privacy protection, enabling cross-institutional educational assessment through integrated dynamic STGNN 
and privacy-aware contrastive learning.

This study pioneers the introduction of nonlinear response terms, enabling the diffusion coefficient matrix to 
dynamically adapt to each campus’s unique characteristics. In the field of fourth-order tensor theory, traditional 
third-order modeling results in up to 35% loss of cross-modal mutual information. This study pioneers the 
construction of a pattern interaction matrix, encoding the correlations among video, text, and management 
records into higher-order tensors via fourth-order convolutional kernels. This approach achieves a cross-modal 
mutual information value of 3.05 ± 0.35 at the Guangzhou campus.

Recent studies have further expanded the technical path of federated learning and spatio-temporal modelling. 
For example, one study proposed a joint communication optimisation strategy based on the attention mechanism, 
which significantly reduces the bandwidth overhead of cross-device collaboration24; scholars combined LSTM 
and GRU to capture the range of long and short information in population sequences to mitigate the limitations 
of previous approaches25; and another deployed diffusion models into a federated learning framework to achieve 
optimal privacy preservation and performance for heterogeneous data26. In this study, the advanced concepts 
of the above achievements are borrowed and integrated in the design of STG-DM and FedCL frameworks, 
especially in the optimisation of the joint aggregation efficiency and multimodal feature extraction, which are 
innovatively explored.

This system integrates a Spatio-Temporal Graph Diffusion Model (STG-DM) with Federated Contrastive 
Learning (Fed CL) to address key limitations in data privacy, dynamic modeling, and system efficiency. The 
STG-DM model, inspired by thermodynamic diffusion theory, employs spatio-temporal attention mechanisms 
and adaptive graph convolutions to enhance dynamic modeling of cross-regional educational behaviors. 
Experiments show it reduces mean absolute error (MAE) by 18.7% over conventional spatio-temporal models 
under heterogeneous data conditions27. Additionally, a hierarchical Fed CL framework utilizing dynamic 
weight aggregation and local knowledge distillation effectively mitigates the generalization bottleneck caused 
by multi-university data silos. In cross-domain tests involving 30 universities, this approach increased global 
evaluation accuracy by 12.5% while maintaining privacy leakage risk (ε) below 1.5, achieving an optimal balance 
between privacy and performance28. For practical application, a lightweight evaluation system incorporating a 
multimodal visualization engine and a real-time decision-making module was developed. It supports spatio-
temporal heatmap analysis, risk alerts, and cross-institutional interventions for over 100,000 samples, with 
system response latency under 2 s, offering administrators an efficient and reliable data intelligence tool29,30.
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As illustrated in Fig. 1, the system not only bridges technical gaps in dynamic association modeling and 
privacy-preserving collaborative computing but also provides a theoretical and engineering foundation for 
building secure educational assessment frameworks.

This study addresses the problem of Spatio-Temporal Predictive Evaluation for Cross-Institutional Education. 
Formally, the task can be defined as follows:

Input: At any time step t, the input consists of multimodal data from N universities, denoted as 
{G(i)

t , X(i)
t , M(i)

t }N
i=1, where:

G(i)
t  is the spatio-temporal graph for university i, with nodes representing classrooms/teachers and edges 

representing interaction relationships.
X

(i)
t  is the node feature matrix, encompassing features like teaching behavior entropy and teacher-student 

interaction frequency.
M

(i)
t  is the multivariate time series of management records.

Output: The model aims to predict future educational outcomes Ŷ
(i)
t+1:t+τ  (e.g., comprehensive evaluation 

scores) for each university over a future time horizon τ .
Objective: The goal is to learn a global predictive model under the federated learning constraint, where the 

raw data {G(i)
t , X

(i)
t , M

(i)
t } never leaves each local institution i. The model must simultaneously:

	(1)	 Achieve high prediction accuracy by capturing complex spatio-temporal dependencies.
	(2)	 Preserve data privacy against potential leakage from shared model updates.
	(3)	 Maintain robustness against heterogeneous (non-IID) data distributions across institutions.

The main contributions of this work are summarized as follows:

	1.	 A non-equilibrium ST graph diffusion model (STG-DM) that reduces MAE by 18.7% vs. best baseline.
	2.	 A hierarchical federated contrastive learning (FedCL) module that improves global accuracy by 12.5% while 

keeping ε < 1.5.
	3.	 A lightweight evaluation system that renders 100 k-node heat-maps within 2s.
	4.	 Extensive experiments on the real-world CSED−24 dataset and a 30-university deployment.

The remainder of this paper is organized as follows. Section  “Method design” introduces the methodology, 
including cross-school education data modeling, the spatio-temporal graph diffusion model (STG-DM), and 
the federated contrastive learning (FedCL) framework. Section  “Method overview and framework” details 
the system implementation and experimental setup, including dataset description, model configurations, and 
performance evaluation. Section  “Educational adaptation of STGNN principles” presents the application 
and verification of the proposed framework in a real-world case study. Section “Cross school education data 
modeling” discusses the implications and limitations of the study, and Sect. “Space-time alignment and feature 
extraction” concludes the paper with future research directions.

Method design
Method overview and framework
To tackle the problem defined in Sect.  “Introduction”, we propose the Fed CL-STGDM framework, whose 
components are specifically designed to address the core challenges:

	1)	 Challenge A: Modeling Dynamic Spatio-Temporal Dependencies in Educational Behaviors.

Solution: We design the Spatio-Temporal Graph Diffusion Model (STG-DM) (Sect. “Educational adaptation of 
STGNN principles”). Its thermodynamic diffusion equations and adaptive graph convolutions are tailored to 
capture the non-linear evolution of interactions and policy impacts across the educational graph.

	2)	 Challenge B: Enabling Collaborative Learning under Privacy and Data Heterogeneity Constraints.

Fig. 1.  Design of Teaching Evaluation System.
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Solution: We introduce a Federated Contrastive Learning (FedCL) scheme (Sect. “Cross school education data 
modeling”). This component uses dynamic weight aggregation and local knowledge distillation to align models 
from different institutions without sharing raw data, thereby mitigating the effects of data silos and non-IID 
distributions.

	3)	 Challenge C: Fusing Multimodal Educational Data.

Solution: We construct a Cross-school Education Data Model (Sect. “Method overview and framework”) based 
on high-order tensor decomposition and manifold embedding, which provides a unified representation for 
heterogeneous features (video, text, records) as inputs to the STG-DM.

The interplay of these components ensures that our framework directly targets the requirements of the 
defined predictive evaluation task. The schematic diagram of the modelling framework is shown in Fig. 2.

Educational adaptation of STGNN principles
Although the core mechanisms of Spatio-Temporal Graph Neural Networks (STGNNs) have been extensively 
studied in fields such as traffic forecasting and human behavior modeling, their direct application to education 
remains challenging. We hereby elucidate how the proposed framework uniquely adapts STGNN principles to 
modeling educational processes:

	1)	 Domain-specific graph construction. Unlike physical-space graphs (e.g., road networks), the graph in our 
study represents instructional relationships and learning-behavior dependencies. Nodes correspond to stu-
dents’ learning states or learning activities, while edges represent pedagogical correlations such as prerequi-
site knowledge, learning-behavior co-occurrence, or knowledge-concept transition probability. This educa-
tional graph structure embeds explicit semantic information aligned with instructional theory.

	2)	 Educationally meaningful temporal dynamics. The temporal patterns modeled by STGNN are not gener-
ic time correlations but represent learning progression trajectories. Our temporal module is designed to 
capture phenomena such as forgetting curves, periodic learning cycles, and the accumulation of cognitive 
load—features that differ significantly from STGNN applications in other domains.

	3)	 Pedagogically interpretable feature aggregation. During spatial–temporal message passing, aggregated fea-
tures reflect how multiple learning behaviors jointly influence a learner’s performance or engagement. We 
constrain the aggregation rules to maintain interpretability, enabling educators to understand which behav-
ioral signals contribute to observed outcomes.

	4)	 Task-specific educational optimization. Unlike traditional STGNN objectives, our loss function incorporates 
indicators that reflect instructional performance, such as mastery progression, engagement variation, and 
learning-path efficiency. This aligns the model with educational goals rather than generic prediction accura-
cy.

These domain-driven adaptations ensure that the proposed method is not merely a direct reuse of standard 
STGNN concepts but an education-centered redesign that captures the unique dynamics of real-world learning 
environments.

Cross school education data modeling
This study uses high-order tensor decomposition and nonlinear manifold embedding methods to construct a 
multi modal space-time data model, and its mathematical framework is as follows.

Space-time alignment and feature extraction
High Order Dynamic Time Warping (HODTW) introduces a fourth-order tensor penalty term through skeletal 
sequence alignment to address differences in sampling rates across devices31. The formula used is as follows.

Fig. 2.  Diagram of the modelling framework.
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T (S,T) =argminπ∈p

(∑
K
k=1wk · ∥ Fk

(
Sπ(I:k)

)
-Fk

(
Tπ(I:k)

)
∥2

Hd
+γ · Tr

(
Ω·∧I

π

))
� (1)

Among them, Fk (· ) is the k-th Chebyshev polynomial basis function, Ω = diag (w1,w2t, · · · ,w4) is the 
diagonal matrix of each order weight, ∧I

π  represents the covariance matrix of path curvature, γ = 1.2 and 
controls geometric variation constraints.

In deep spectral clustering sentiment analysis, text features enhance separability through hypersphere 
manifold projection, with the following formula.

	
Ψ (x) =exp

(
-
arccos2 (⟨Wϕ x,e0⟩)

2σ2

)
· LSTM0 (WΨ x)� (2)

In the equation, e0 is the reference vector of the Riemannian manifold, σ=0.8 controls the bandwidth of the 
kernel function, Wϕ ∈ R768×256and WΨ ∈ R768×256 is the trainable projection matrix.

Heterogeneous space-time embedding
Traditional Euclidean coordinates (e.g. latitude and longitude) or complex representations have inherent 
limitations in modelling the spatio-temporal dynamics of educational behaviour. They have difficulty dealing 
uniformly with rotations (e.g., orientation relationships between different school districts) and temporal 
evolution in three-dimensional space and cannot naturally characterize complex interactions between 
multimodal features.

For this reason, we introduce quaternion spatio-temporal coding. In contrast to the simple representation, 
quaternions (of the form q=w+xi+yj+zk) provides a compact, non-commutative algebraic framework capable 
of uniformly representing rotations and translations in three-dimensional space, which is more consistent with 
the geometrical properties of educational strategies propagating through physical space and abstract feature 
space. Specifically, as shown in Eq. (3), we map geographic locations to quaternion spaces, thereby embedding 
spatial relationships into a learnable representation of the model.

Further, in order to effectively fuse the spatio-temporal features encoded by quaternions with those of other 
modalities (e.g., text, video), we employ Clifford algebra operations. As shown in Eq. (4), this operation allows 
us to perform implicit multiplication and addition operations on features from different manifolds (e.g., spatio-
temporal manifolds, textual-semantic manifolds) in a unified algebraic system, which preserves the geometric 
structure of the modalities and facilitates deeper interactions between them than simply splicing them together 
and feeding them into a fully connected network.

The utility of this higher-order representation is ultimately validated by its ability to enhance cross-modal 
synergy. As shown in Table 1, the cross-modal mutual information of the Guangzhou campus using this method 
reaches 3.05 ± 0.35, which is significantly higher than the other campuses. This confirms the effectiveness of the 
representation in capturing the complex associations between video, text and management records, providing 
more informative node features for subsequent graph diffusion models.

In quaternion space-time encoding, referring to the study32, geographic location is mapped into a four-
dimensional hypercomplex space using the following formula.

	 qi=sin (ϕi) cos (λi) +sin (ϕi) sin (λi) i+cos (ϕi) cos (λi) j+cos (ϕi) sin (λi) k� (3)

Generate graph node features through Clifford algebraic operations33.

	 hi=ReLU
(
U ·

(
qi ⊗ q+

i

)
+b

)
� (4)

Among them, ⊗  represents quaternion multiplication and U ∈ R4×128is the parameter matrix.
Then, a hierarchical cross attention mechanism is constructed to fuse heterogeneous features as follows.

	
CrossAttn (Q,K,V) =

∑
M
m=1Wm ⊙

(
νec−1 (

Q⊖mKT
)

√
d

⊗ VΦm

)
� (5)

Campus

Spacetime curvature ∇ 2τ Hypersphere emotional 
entropy Hψ

Quaternion modulus length 
∥ q ∥

Mutual information 
I (V,T)

Hypergraph 
diffusion 
rate 
Tr (Ht)

Beijing 0.127 ± 0.021 1.34 ± 0.18 0.89 ± 0.07 2.71 ± 0.32 4.28 ± 0.51

Shanghai 0.154 ± 0.019 1.67 ± 0.23 0.76 ± 0.09 2.13 ± 0.27 3.79 ± 0.46

Guangzhou 0.092 ± 0.015 1.22 ± 0.15 0.94 ± 0.05 3.05 ± 0.35 5.12 ± 0.63

Chengdu 0.183 ± 0.024 1.89 ± 0.31 0.68 ± 0.11 1.84 ± 0.25 3.12 ± 0.38

Wuhan 0.143 ± 0.018 1.53 ± 0.21 0.82 ± 0.08 2.47 ± 0.29 4.03 ± 0.49

Xi’an 0.116 ± 0.016 1.41 ± 0.19 0.91 ± 0.06 2.88 ± 0.33 4.95 ± 0.58

Table 1.  Multi modal feature statistics of cross school education dataset (CSED−24).
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In the formula, Θ m ∈ Rd× d and Φ m ∈ Rd× d are learnable parameter tensors, ⊙  represents Hadamard 
product, M = 6 and is the number of multi-scale branches.

Dynamic graph topology optimization
The definition of hypergraph diffusion operator is based on the space-time correlation matrix of hot nuclei34.

	 Ht=exp (-β · (Lgeo+αLsem) · t) · Xt� (6)

Among them, Lgeo=Dgeo-Ageo is the geographic Laplacian matrix, Lsem=I-XtXT
t  is the semantic similarity 

matrix, β=0.05,α=1.3and is the diffusion coefficient.
Then evaluate the effectiveness of feature fusion using the formula proposed by Bankert et al.

	
I (V, T) =1

2 log

∣∣∑ VΣT
∣∣∣∣∑ VT

∣∣ +Tr
(∑

V − ΣT−
∑

VT
)

−d
2 � (7)

Among them, ΣV and are the covariance matrices of video and text features, ΣVT and ΣT are the cross 
modal covariance matrices.

The statistical characteristics and preprocessing effects of the CSED−24 dataset are shown in Table 1.
Research has determined that the success of education is intimately linked to the synergy of multimodal 

systems. Key drivers of this success are high diffusion rates and robust mutual information35. This can be 
illustrated by the data in Table 1, which shows that Chengdu has the highest space-time curvature and emotional 
entropy, indicating significant activity dynamics and emotional complexity. However, Chengdu’s quaternion 
modulus and mutual information are the lowest, suggesting weak data stability and cross modal correlation. 
In contrast, Guangzhou has the lowest space-time curvature but the highest quaternion modulus. When this is 
combined with the advantages of hypergraph diffusion rate and mutual information, it suggests that Guangzhou’s 
educational mode has strong stability and high efficiency in information integration. Shanghai, Wuhan, and Xi’an 
occupy the middle tier, requiring targeted optimization of their multidimensional collaboration capabilities.

Space-time graph diffusion model
The diffusion model is an architecture that combines graph structure and diffusion model, mainly used to 
process complex data with space-time dependencies (as shown in Fig. 3). In the construction of heterogeneous 
space-time graphs, school nodes viinclude teaching behavior entropy εi= −Σp (x) log (x), teacher-student 
interaction frequency fi ∈ [0,1], ideological and political scores Si ∈ R+, and cross-school cooperation 
strength and teacher-student interaction relationship in edge weight calculation. The specific formulas are as 
follows.

Fig. 3.  Diffusion model.
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The definition of thermodynamic driven diffusion equation is based on the state transition equation of non-
equilibrium thermodynamics (Xu et al., 2023).

	
∂Ht

∂t
=λ▽ (D▽Ht) +Q (Ht,At) -µHt ⊙ Ht� (10)

Among them, D=diag (dii) ∈ RN×Nis the diagonal matrix of node diffusion coefficient, dii=exp (-εi) Q (·) 
is the nonlinear response term, and µ=0.05 is the control saturation effect. The medium nonlinear response 
term is moderated by the regional cultural impedance factor. For example, in the Chengdu campus, due to 
frequent policy intervention, the fluctuation range of its value reaches ± 0.24, which is 161% higher than that in 
the Guangzhou campus (0.092). This verifies the validity of non-equilibrium thermodynamic constraints for the 
adaptation of dynamic policies.

The dynamic graph convolution operator is jointly modeled using Chebyshev polynomials and adaptive 
space-time attention (ASTA).

	
Zl+1

t =σ
(∑

K
k=0 Tk

(∼
Lt

)
Zl

tW
l
k

)
⊕ASTA

(
Zl

t,Z
l
t-△t

)
� (11)

The calculation formula for the ASTA module is.

	
ASTA (X,Y) =Softmax

(
X⊖aY T

√
d

)
· Y · Φa� (12)

Among them, ⊖a,Φa ∈ Rd×d is the learnable parameter.
In the optimization objective and regularization, a multi-objective loss function is used to jointly optimize 

the prediction error and graph structure sparsity.

	

L=
1
T

∑
T
t=1∥ Ĥt-Ht ∥1

↓
LOSS

+γ∥ A⊙M ∥2,1
↓

SparsityHalty

+η · Tr
(
HT

t LHt
)

↓
SmoothmeGibnstrint

� (13)

In the equation, M is the sparse mask matrix, γ=0.2, η=0,1.
The optimization of dynamic adjacency matrix enhances graph structure through differentiable sparsity.

	

Aij=
exp(−βReLU())∑

k∈N(i)
exp(−βReLU()) � (14)

Among them, β =10 controlling the sparsity sharpness is τ=0.6 the activation threshold.
The measurement of high-order space-time feature propagation is based on Binkowski et al. (2018) 

introducing fourth-order tensor convolution to capture cross modal dependencies.

	
Zt+1=G*Zt=

∑ M

m=1

∑ N

n=1
UmZtVT

n · Ξmn� (15)

Among them, G ∈ RM×N×d×d is the fourth order convolution kernel and Ξ ∈ Rd×d is the modal interaction 
matrix. The fourth-order convolution kernel achieves cross-modal feature decoupling through the modal 
interaction matrix Ψ. Its GPU memory usage has been reduced from 8.7GB in the traditional third-order 
modeling to 4.2GB. In particular, the Ψ optimization at the Guangzhou campus increased the hypergraph spread 
rate to 5.12 ± 0.63, verifying the enhancing effect of the fourth-order tensor on cross-campus collaboration.

The experiment on hyperparameter optimization for the space-time diffusion model, STG-DM, elucidates the 
systematic influence of parameter configurations on model efficacy. As illustrated in Fig. 4(A) and Fig. 4(B), with 
a diffusion coefficient (λ) of 0.8 and a Chebyshev order (K) of 3, the model attains optimal values of RMSE 2.87 
and MAE 2.31. This represents a 12.7% reduction in error relative to the baseline parameter set. Furthermore, 
the dynamic correlation index (DCD) achieves its maximum value of 0.83 at an adjacency matrix sparsity of 
0.72, suggesting that moderate sparsity is beneficial in identifying significant node correlations.

Federated comparative learning framework
During the local optimization process on the client side, each school’s local model is based on the STG-DM 
submodule and uses truncated Gaussian mechanism differential privacy (DP-SGD) to protect the gradient.

	
gt

i = ClipC (∇Li) +N
(
0,σ2c2I

)
, σ =

√
2ln (1.25/δ)

e2
� (16)
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Among them, C = 1.5 is the gradient clipping threshold, 
(
ε=1.5, δ=10-5

)
 which satisfies Rényi differential 

privacy (RDP), the cumulative privacy loss satisfies εtotal=
√

T
(
ε2+ 2ε3

3

)
, Tand is the training round.

To ensure strict privacy guarantees throughout the federated learning process, this study performs formal 
privacy accounting for the client-side local training. As shown in Formula (16), each client performs one DP-
SGD optimization step per round of local training. This operation, given a sampling rate q and noise multiplier 
σ, satisfies 

(
α,α/

(
2σ2

))
-RDP..

For a complete process involving a total of T rounds of federated training, with each client performing E local 
iterations per round, the privacy consumption is accounted for using the RDP composition theorem. The total 
privacy cost in the RDP dimension for the entire training process is ϵRDP (α) =T · E · α/

(
2σ2

)
..

Finally, we convert the accumulated RDP privacy cost to the standard (ϵ,δ)-Differential Privacy guarantee 
using the following formula:

	
ε= inf

α>1

[
εRDP (α) +

log (1/δ)
α-1

]
� (17)

In our experiments, setting δ=10-5 (a conservative value less than the reciprocal of the dataset size) and 
optimizing over α, we calculated that under the set number of training rounds T and local iterations E, the total 
ε is strictly bounded above by 1.5. This ε=1.5 is a theoretical upper bound of our privacy protection capability, 
based on a worst-case analysis. The empirical PLR metric reported later serves as an empirical validation of 
this theoretical bound under the actual data distribution. Its value (0.12) being significantly lower than the 
theoretical bound further strengthens the reliability of our conclusion.

The global model of server-side knowledge distillation utilizes Asif et al.‘s (2020) KL divergence fusion of 
heterogeneous knowledge and introduces a distillation strategy of temperature scaling and attention weighting.

	
LKL=τ2 · Ex∼Dpub

[
KL

(
exp (zg/τ)∑

exp (zg/τ)

) [[
1
K

K∑
i=1

exp (zi/τ)∑
exp (zi/τ)

]
� (18)

In Eq. (15), τ=0.7 represents the temperature parameter, zg represents the global model output, zi represents 
the client model output.

When constructing cross-school comparative samples, the study defined the cross-modal positive and 
negative sample pairs as follows based on Chen et al.‘s (2018) research.

Positive sample pair P(). Data from different schools but belonging to the same curriculum. In this context, 
‘the same course’ refers to courses with identical or highly similar official course names and objectives, such 
as Introduction to Mao Zedong Thought and Theoretical System of Socialism with Chinese Characteristics 
in different schools. Cross school data for the same course category 

(
xi,x+

j

)
 meets the requirements 

Simsem
(
xi,x+

j

)
⩾ 0.8.

Negative sample pair N(). In this study, ‘course heterogeneity ′  was determined based on the following two 
levels of criteria:

Differences in disciplines: The primary criterion is the classification of the first-level disciplines in the 
Catalogue of Undergraduate Programmes in General Colleges of Higher Education of the Ministry of Education 
of the People’s Republic of China (MOE). Courses belonging to different disciplines (e.g., ‘Computer Science and 
Technology’ vs. ‘Marxist Theory’) are automatically determined as heterogeneous courses.

Course content similarity: We calculate the TF-IDF vector cosine similarity between the syllabus and the 
teaching objectives of the courses at the same level of discipline. If the similarity is lower than a preset threshold 
θ = 0.3 (determined by grid search on the validation set), the course is determined to be heterogeneous. For 
example, Introduction to Computing and Data Structures, which belong to the same computer discipline, are 

Fig. 4.  (A) Optimization experiment results of RMSE; (B) Optimization experiment results of MAE.
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considered as negative samples because their core content focus is different and the similarity is calculated to be 
below the threshold. Heterogeneous course data 

(
xi,x−

k

)
, satisfying Simsem

(
xi,x−

k

)
⩽ 0.3..

The multi-granularity contrastive loss is based on the research of Pradhan et al., using a mixed contrastive 
loss that combines inter-school course similarity and space-time correlation.

	
LCL= −log

∑
(i,j+)∈P exp

(
Sij+ /TC

)
∑

(i,j+)∈P exp
(
Sij+ /TC

)
+

∑
(i,k−)∈N exp (Sik− /TC)

+λ ∥ Wc ∥2
Fro� (19)

Among them, Sij = zizj/ ∥ zi ∥ ∥ zj ∥  represents cosine similarity, τc=0.7 represents temperature 
comparison, λ=0.01 and controls regularization intensity.

Dynamic weight aggregation adjusts the aggregation weight based on the client’s contribution (Zhao et al., 
2016), defining the contribution index as.

	
αi=

I (zi,zg)∑
K
j=1I (zi,zg) � (20)

The global model is updated to.

	
Wt+l

g =
∑

K
i=lαiWt

i+η · Projs (∇ LKL)� (21)

Among them, Projs (·)represents the Stiefel manifold projection to ensure parameter orthogonality.
The enhancement of adversarial robustness is based on the introduction of adversarial sample generators in 

Wang et al. (2019) research.

	
min

θ
gmax

ϕ
Ex∼ D⌊LCL (x + Gφ (x)) − β · ∥ Gϕ (x) ∥T V ⌋� (22)

Among them, Gϕ (x) =sign (∇ xLCL) for Fast Gradient Symbol Attack (FGSM), the disturbance intensity is 
controlled β = 0.1 .

This study compares the performance of Federated Contrastive Learning (Fed CL) under varying privacy 
budgets, utilizing the federated contrastive learning framework as illustrated in Fig. 5. As indicated in Table 2, 
when ε=1.5, the system strikes an optimal balance between privacy protection and model performance. The 
system’s classification accuracy is 89.3%, only a 2.4% decrease from ε=2.0, while the Privacy Leakage Risk (PLR) 
reduces significantly from 0.18 to 0.12. The dynamic weight aggregation error remains minimal at 2.45 × 10⁻³ 
when α=0.18, confirming the efficacy of the Stiefel manifold projection strategy. Furthermore, the Adversarial 
Robustness Index (AR) achieves its highest value of 82.4% at ε=1.5, suggesting that moderate noise injection can 
simultaneously enhance model security.

The specific algorithm steps of this study are shown in Table 3.

	1)	 The study proposes a technology roadmap that delineates a sophisticated, multi-tiered architecture for the 
cross-school education evaluation system, depicted in Fig. 6. This architecture is anchored by two central 
engines: the “space-time graph diffusion model” and “federated contrastive learning.” Together, they form 
a comprehensive, closed-loop system for research and development, encompassing theoretical modeling, 
system implementation, and application verification. The technical framework is organized into six distinct 
modules, structured hierarchically from top to bottom.

	2)	 The first module, labeled “Introduction,” sets forth the fundamental objective of ensuring privacy protection 
and optimizing dynamic modeling in a collaborative context.

	3)	 From a methodological perspective, the space-time evolution of educational behavior is effectively modeled 
through the thermodynamic diffusion equation of STG-DM. This approach integrates the dynamic weight 
aggregation mechanism of FedCL to address the issue of data silos.

	4)	 Within the engineering implementation layer, a visualization engine was devised to facilitate real-time anal-
ysis of nodes at the 100,000 level. Through five-fold cross-validation, it was ascertained that the model’s 
prediction error diminished by 18.7%.

	5)	 Through the implementation of a conversion layer and the establishment of an “evaluation feedback op-
timization” dynamic cycle mechanism, there was a notable enhancement in the efficiency of cross-school 
resource sharing. Specifically, within the empirical study of the Beijing Tianjin Hebei University Alliance, 
there was a significant improvement, measuring at 53.8%.

	6)	 In this study, we engage in a comprehensive discussion and offer pertinent suggestions. We draw compari-
sons with previous research and construct a dynamic cycle mechanism for “evaluation feedback optimiza-
tion.” Furthermore, we propose a three-pronged optimization path to address the challenges associated with 
technology implementation.

	7)	 Conclusion: This paper heralds a paradigm shift in educational evaluation, transitioning from an experi-
ence-driven approach to a data-driven one. Its methodological framework offers universally applicable guid-
ance for developing a smart education ecosystem.
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Step Step name Core code short sentences (key implementation)

1 Dynamic time alignment alignment = DynamicTimeWarping (seq1, seq2, max_warps = 4)

2 Hypersphere feature mapping manifold_proj = HypersphereProjection(embed_dim = 128)

3 Quaternion space encoding quaternion = Quaternion (x = lat, y = lng, z = 0, w = 1)

4 Cross modal attention fusion fusion = CrossAttention (q = video_feat, k = text_feat).forward()

5 Thermonuclear diagram diffusion graph = GeoSemanticGraph (alpha = 0.7, k_neighbors = 15)

6 space-time convolution operator conv = ChebConv (in_channels = 64, out_channels = 64, K = 3)

7 Federal gradient clipping grads = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm = 1.5)

8 Comparative knowledge distillation distill_loss = KLDivLoss (global_logits, local_logits, temperature = 0.7)

9 multi modal contrastive learning contrastive_loss = NTXentLoss (temperature = 0.5, neg_mode = cross_school)

10 Orthogonal parameter aggregation global_weights = stiefel_aggregate ([client1, client2])

11 Adversarial training enhancement adv_samples = fgsm_attack (model, inputs, epsilon = 0.3)

12 Real time rendering of heat map heatmap_layer = WebGLHeatmap (nodes = 100000, decay_factor = 0.95)

13 Incremental model inference pred = model.incremental_inference (last_hidden, new_data)

14 Privacy leakage monitoring auditor = RenyiDPAccountant (alpha = 5, target_epsilon = 1.5)

Table 3.  Introduction to algorithm Steps.

 

ε τ Aggregate weight α Classification accuracy
Comparative Loss
(CL)

Model Consistency
(MC)

Privacy Leakage Risk
(PLR)

Adversarial Robustness
(AR)

1.5 0.7 0.18 ± 0.02 89.3 ± 1.2 1.23 ± 0.15 0.85 ± 0.03 0.12 ± 0.02 82.4 ± 1.5

2 0.5 0.22 ± 0.03 91.7 ± 0.9 0.95 ± 0.12 0.78 ± 0.04 0.18 ± 0.03 79.6 ± 1.8

1.2 0.8 0.15 ± 0.02 87.6 ± 1.5 1.45 ± 0.18 0.89 ± 0.02 0.09 ± 0.01 84.3 ± 1.2

1.8 0.6 0.20 ± 0.03 90.2 ± 1.1 1.07 ± 0.14 0.82 ± 0.03 0.15 ± 0.02 81.1 ± 1.6

1.5 0.7 0.18 ± 0.02 89.3 ± 1.2 1.23 ± 0.15 0.85 ± 0.03 0.12 ± 0.02 82.4 ± 1.5

Table 2.  Performance comparison of fed CL framework in cross school ideological and political Assessment.

 

Fig. 5.  Federated contrastive learning framework.
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Model architecture and implementation details
To ensure reproducibility, we specify the core network architectures. The STG-DM encoder consists of a two-
layer adaptive graph convolution with hidden dimensions of [64, 128], followed by a spatio-temporal attention 
layer (ASTA, Eq. 12) with 8 attention heads. The extracted features are then processed by a temporal decoder 
comprising a Gated Recurrent Unit (GRU) with a hidden size of 256 and a linear output layer.

The FedCL framework’s projection heads, used for contrastive learning, are implemented as a 3-layer 
Multilayer Perceptron (MLP) with dimensions [feature_dim, 512, 256, 128] and ReLU activation. This projects 
client features into a common latent space for comparison. All models were implemented in PyTorch 1.12.1 and 
trained on a server with NVIDIA A100 GPUs.

System implementation and experimentation
System architecture
This study proposes a distributed intelligent system for cross-school education evaluation, designed and 
implemented based on the theoretical framework of the Space-Time Graph Diffusion Model (STG-DM) and 
Federated Comparative Learning (Fed CL). In constructing the CSED−24 dataset, our research team gathered 
classroom surveillance videos from 30 universities using multimodal fusion technology. Specifically, we utilized 
the Hikvision DS−2CD3T86 camera, which was sampled at 5 frames per second and adjusted to a resolution 
of 1280 × 720. Additionally, we collected student course feedback texts, totaling 23,000 instances. These were 
gathered via a questionnaire network platform, with an average text length of 58.3 characters, as well as 
structured management records exported from the educational administration system. These records comprised 
12 types of fields including attendance and grades. For video preprocessing, we first sparsified the original 5 
fps 1280 × 720 H.264 stream by retaining one key frame out of every three. We then applied YOLOv5m-face 
(confidence threshold = 0.65, NMS = 0.45) to detect teacher and student bounding-boxes, discarding boxes 
whose area < 1% of the frame. A TSN backbone extracted an 8-D behaviour vector (hand-raising, head-lowering, 
writing, etc.). Any segment with action entropy < 0.15 or confidence fluctuation > ± 0.25 for eight consecutive 
frames was regarded as an abnormal silence clip and removed. Each lecture was finally represented by a fixed-
length sequence of L v = 150 frames; sequences shorter than 150 frames were zero-padded at the tail, whereas 
longer ones were down-sampled uniformly to guarantee identical tensor size across campuses. Textual feedback 
was first tokenised and POS-tagged by Harbin-IT LTP 4.1. Stop-words were removed using the Harbin extended 
list (1 893 words) together with any token shorter than two characters. We built an education-specific sentiment 
dictionary of 1 847 entries (892 positive, 955 negative) and obtained 1 024-dimensional sentence embeddings 
via RoBERTa-wwm-ext. To handle length variance, we set a maximum length of 64 tokens; shorter posts were 
padded with [PAD], and longer ones were head-and-tail truncated (first 48 + last 16 tokens), yielding a uniform 
input tensor of size N×64 × 1024.

Data cleansing standards were set as follows: noise records containing fewer than 15 characters or exhibiting 
sentiment polarity variability exceeding 3.0 were removed. For missing values, the administrative records 

Fig. 6.  Technical Roadmap.

 

Scientific Reports |         (2026) 16:3386 11| https://doi.org/10.1038/s41598-025-33376-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


comprised 12 fields (attendance rate, grades, assignment submission rate, etc.). We first calculated the proportion 
of missing values grouped by course-class-week. Fields with less than 5% missing values were imputed using 
linear interpolation; the remaining fields were processed via MissForest. All numerical features undergo Z-score 
standardisation, whilst categorical variables are target-coded to mitigate the high cardinality effect. The final 
cleaned dataset is organised into a 12 × 24-hour tensor, with remaining hourly-level missing values imputed via 
forward filling to preserve temporal continuity. This yielded a comprehensive multimodal dataset encompassing 
video behaviour matrices (25 dimensions per sample), textual sentiment vectors (1024 dimensions per sample), 
and management feature tensors (12 × 24 dimensions). Following data cleansing, the dataset comprised 187,000 
valid samples with a purity rate of 93.6%.

The data suggests a strong correlation between the rendering performance of space-time heatmaps and the 
node embedding dimension, as evidenced in Table 4. When the node embedding dimension is set at 128, the 
delay is only 680 ms for 50,000 nodes, but rises to 2450 ms for 200,000 nodes. This suggests that WebGL’s 
hierarchical detail optimization effectively mitigates the challenges posed by large-scale data.

The results indicate that with a batch size of 32 and a concurrent client of 30, the throughput of the federated 
training module is 850 samples/second. The GPU memory usage is 6.2 GB, the federated aggregation frequency 
stands at 3.2 times/second, and the dynamic weight aggregation error is 2.45 × 10⁻³. This error aligns with 
the theoretical value of the manifold projection constraint as presented in Eq. 17. Furthermore, the real-time 
inference module processed 8900 samples per second with a response time of 18 ms and a regularization loss of 
0.45 under conditions of batch 128 and concurrent 100. As detailed in Table 5, these findings confirm the space-
time attention compression capabilities of the ASTA module.

As shown in Table 6, with a privacy budget ε of 1.5, the model experiences an accuracy loss of 4.3% and a 
gradient noise standard deviation of 0.15. These values align with the theoretical values of the Rényi differential 
privacy constraints (α=5, δ=1e−5), as presented in Eq. 16. The process of parameter encryption takes 1150 ms, 
which corresponds to the cost of generating and decrypting a 1024-bit key using Paillier encryption. The weight 
variance in federal aggregation is noted at 2.87 × 10⁻², suggesting that the Stiefel manifold projection effectively 
curtails parameter divergence. A cross-school data leakage rate (PLR) of 0.12 confirms the successful inhibitory 
effect of the Fed CL framework’s contrastive learning on privacy leakage. With ε set at 1.5, adversarial robustness 
achieves 82.4%, demonstrating that a moderate privacy budget can strike a balance between the robustness 
and utility of the model. Finally, a local model KL divergence of 0.78 (with ε=1.5) indicates that knowledge 
distillation effectively reduces the impact of heterogeneous data distribution.

The front-end visualisation engine of the system adopts an incremental information presentation strategy, 
and the default interface only displays key indicators (such as MAE, F1-score, resource usage) and their trends, 
while the advanced functions (such as hypergraph diffusivity and fourth-order tensor information) are placed 
under the ‘Expert Mode’ for in-depth analysis by the technical team. Advanced features (e.g. hypergraph diffusion 

Module Federal Training Federal Training Real time reasoning
Parameter encryption 
transmission

Dynamic weight 
aggregation

Adversarial 
sample 
generation

Batch size 32 64 128 16 32

Number of concurrent clients 30 50 100 50 30

Throughput 850 ± 45 1120 ± 68 8900 ± 320 450 ± 25 1050 ± 55 220 ± 18

GPU memory usage 6.2 ± 0.3 8.7 ± 0.5 3.5 ± 0.2 1.8 ± 0.1 4.2 ± 0.3 4.2 ± 0.3

Response time 1,200 ± 85 980 ± 62 18 ± 3 1,150 ± 75 890 ± 55 220 ± 18

Gradient clipping threshold 0.15 ± 0.02 0.18 ± 0.03 0.12 ± 0.01 0.05 ± 0.01 0.20 ± 0.02 0.22 ± 0.03

Local training rounds 5 3 2 10

Regularization loss 1.28 ± 0.12 1.05 ± 0.09 0.45 ± 0.05 0.32 ± 0.04 0.28 ± 0.03 2.15 ± 0.21

Dynamic weight aggregation error (×10⁻ ³) 2.45 ± 0.31 1.87 ± 0.24 0.75 ± 0.12

Federated aggregation frequency 3.2 ± 0.4 4.8 ± 0.6 12.5 ± 1.2 2.1 ± 0.3 5.5 ± 0.7 1.8 ± 0.2

Table 5.  Performance indicators for federated computing Backend.

 

Data type Data scale Render Mode Average latency Frame rate Memory usage Node embedding dimension

Space-time heatmap

5k nodes WebGL 680 ± 75 60 128 ± 18 128

100k nodes WebGL + LOD 1,320 ± 152 60 245 ± 32 128

200k nodes WebGL + LOD 2,450 ± 310 45 487 ± 65 128

Time series trend chart
500 courses Canvas2D 220 ± 34 120 62 ± 8 64

1000 courses Canvas2D 480 ± 67 120 128 ± 18 64

Teacher student interaction radar chart
Class 200 SVG 120 ± 18 90 45 ± 6 32

Class 500 SVG + WASM 220 ± 34 90 89 ± 12 32

3D topological diagram 10,000 edges Three.js 950 ± 110 30 320 ± 42 256

Table 4.  Performance test of front end visualization Engine.
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rate, fourth-order tensor mutual information) are placed in ‘Expert Mode’ for in-depth analysis by the technical 
team. Meanwhile, all the indicators are accompanied with common explanations and suggestions for teaching 
management, for example, ‘hypergraph diffusion rate > 5.0’ corresponds to the tip ‘This campus is highly efficient 
in integrating information, and is recommended to be used as a hub for cross-campus cooperation’.

Experimental design
The CSED−24 dataset covers 30 universities in 6 provinces and cities, integrating multi-modal data through 
space-time alignment and quaternion encoding. The experiment uses five - fold cross validation, with a space-
time window set to 24 h. The regional cultural impedance factor is generated by weighting historical policy data, 
as shown in Table 7.

Table  7 demonstrates that the Beijing campus has both the largest sample size and the lowest mean 
space-time curvature. This suggests a strong degree of space-time continuity in their teaching strategies. In 
contrast, the Chengdu campus exhibits the highest space-time curvature, indicative of significant fluctuations 
in teaching behavior attributable to regional cultural differences. The Guangzhou campus achieved a cross-
school cooperation intensity of 5.12, confirming the optimization effect of the geographic impedance factor. 
Furthermore, a positive correlation was found between the mean emotional entropy and the number of words in 
the text (Pearson r = 0.87, p < 0.01). This suggests that the spectral clustering algorithm effectively quantifies the 
quality of teacher-student interaction. A comparative experiment was conducted between Fed CL-STGDM and 
other models such as Fed Avg and GraphSAGE. All the models were implemented utilising PyTorch, operating 
in a hardware environment of NVIDIA A100 (8 x GPU), with a batch size of 64.

Following thorough research, it has been observed that the Fed CL-STGDM significantly surpasses others 
in terms of indicators such as RMSE and the F1 score. This confirms the collaborative benefits of the space-time 
graph diffusion model and federated contrastive learning. Figure 7 demonstrates that the space-time prediction 
sensitivity reaches an impressive 82.4%, suggesting that the ASTA module has superior capability to capture 
mutation events compared to ST-GCN. Conversely, the AHP grey correlation method performs poorly due to its 
lack of ability to model dynamic correlations, thereby underscoring the necessity for deep learning models. The 
baseline model parameter table is included for reference, as shown in Table 8.

In the cross-university verification experiment, the research team categorized 30 universities into three 
distinct groups based on student enrollment: small (< 5k), medium-sized (5k−10k), and large (> 10k). These 
institutions were spread across four major regions: North China, East China, South China, and Southwest China. 
Additionally, the study differentiated between comprehensive, normal, and science and engineering educational 
focuses. Employing a stratified sampling approach, three institutions from each subcategory were randomly 
chosen to form an independent test set. Subsequent evaluations were multi-dimensional, with model parameters 
remaining unchanged. As detailed in Table 9, for medium-sized normal universities in South China, the model’s 
MAE was notably lower at 2.31 ± 0.09 (n = 15,200) compared to 3.12 ± 0.14 (n = 23,400) for large polytechnic 
universities in Southwest China. This disparity is significantly associated with the regional cultural impedance 
factors distribution in Table 9, as evidenced by a Pearson correlation coefficient of r = 0.83 (p < 0.001). Notably, 

Campus sample size
Video duration
(hours)

Number of words in 
the text
(10000)

Mean space-time 
curvature

Mean emotional 
entropy

Mean 
intensity of 
inter school 
cooperation

Beijing - A 15,320 1,250 ± 85 48.2 ± 3.1 0.127 ± 0.021 1.34 ± 0.18 4.28 ± 0.51

Shanghai-B 12,750 980 ± 62 36.7 ± 2.8 0.154 ± 0.019 1.67 ± 0.23 3.79 ± 0.46

Guangzhou - C 18,460 1,680 ± 112 52.9 ± 4.2 0.092 ± 0.015 1.22 ± 0.15 5.12 ± 0.63

Chengdu - D 9,870 720 ± 45 28.5 ± 2.1 0.183 ± 0.024 1.89 ± 0.31 3.12 ± 0.38

Wuhan - E 14,220 1,150 ± 75 41.3 ± 3.5 0.143 ± 0.018 1.53 ± 0.21 4.03 ± 0.49

Xi’an F 11,380 890 ± 55 32.8 ± 2.9 0.116 ± 0.016 1.41 ± 0.19 4.95 ± 0.58

Table 7.  Statistical characteristics of CSED−24 cross school ideological and political dataset.

 

Privacy budget (ε) 1.0 1.5 2.0 2.5

Parameter encryption time 1,320 ± 85 1,150 ± 75 980 ± 62 890 ± 55

Model accuracy loss 5.8 ± 0.4 4.3 ± 0.3 2.1 ± 0.2 1.5 ± 0.1

PLR 0.08 ± 0.01 0.12 ± 0.02 0.18 ± 0.03 0.25 ± 0.04

Adversarial robustness 76.2 ± 1.8 82.4 ± 1.5 79.6 ± 1.8 73.5 ± 2.1

Gradient noise standard deviation 0.12 ± 0.02 0.15 ± 0.03 0.18 ± 0.02 0.22 ± 0.04

Rényi divergence (α=5, δ=1e−5) 1.28 ± 0.05 1.05 ± 0.04 0.89 ± 0.03 0.75 ± 0.02

Federated aggregation weight variance (× 10 ⁻ ²) 3.15 ± 0.21 2.87 ± 0.18 2.15 ± 0.15 1.98 ± 0.12

Local model KL divergence 0.85 ± 0.03 0.78 ± 0.04 0.69 ± 0.05 0.61 ± 0.06

Federated Aggregation Consistency 88.3 ± 1.2 92.1 ± 0.9 89.7 ± 1.1 85.4 ± 1.5

Table 6.  Performance test of privacy protection Layer.
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for institutions with a student body of less than 3k, the model reduced the spatio-temporal prediction error’s 
fluctuation range by 29%. This was achieved by dynamically adjusting the diffusion coefficient λ in Eq.  10, 
shifting from a baseline of 0.8 to 1.2, underscoring the efficacy of the parameter dynamic adaptation mechanism.

Experimental results
Based on the CSED−24 dataset, compare Fed CL-STGDM with Fed Avg, Graph SAGE and other models, 
evaluate RMSE/MAE for regression tasks, and use F1 score for classification tasks. The specific results are shown 
in Table 10.

The research data was analyzed using the two-sample t-test (α=0.05) to ascertain the significance of the 
model differences. The Mean Absolute Error (MAE) between Fed CL-STGDM and ST-GCN was found to 
be t = 2.15(p = 0.032), and t = 1.24(p = 0.216) when compared with ST-Meta. In instances where p < 0.05, the 
null hypothesis is rejected, indicating a statistically significant improvement. The Fed CL-STGDM model 
demonstrated statistically significant improvements over several baselines. Specifically, it achieved an 18.7% 
reduction in MAE (95% CI: 15.2%−22.1%) and 17.3% increase in F1-score (95% CI: 14.5%−20.1%) compared to 
Fed Avg (both p < 0.001). However, its performance advantage over the ST-Meta model, while favorable (MAE 

School type Comprehensive category Teacher education Science and engineering Comprehensive category Teacher education

Region North South Southwest East North

Student size Large Medium Large Small Medium

MAE 2.45 ± 0.10 2.31 ± 0.09 3.12 ± 0.14 2.78 ± 0.12 2.53 ± 0.11

F1-score 0.901 ± 0.018 0.912 ± 0.016 0.832 ± 0.021 0.885 ± 0.019 0.894 ± 0.017

R² 0.862 ± 0.017 0.878 ± 0.015 0.798 ± 0.020 0.841 ± 0.018 0.853 ± 0.016

Cultural impedance factor 0.127 ± 0.021 0.092 ± 0.015 0.183 ± 0.024 0.154 ± 0.019 0.143 ± 0.018

λ 0.78–1.05 0.82–1.18 1.05–1.32 0.95–1.25 0.88–1.12

Table 9.  Comparison of Cross-school generalization Performance.

 

Model Key parameter configuration Optimizer Learning rate Batch size Regularization coefficient Epochs

Fed CL-STGDM λ=0.8,K = 3,Ψ_dim = 64,β=0.7 Adam 3e−4 64 L2 = 1e−5 100

FedAvg LSTM_h = 128, agg_freq = 2 h SGD 0.01 32 None 100

FedProx µ=0.1, LSTM_h = 128 SGD 0.008 32 L2 = 5e−4 100

GraphSAGE GAT_heads = 4, hop = 2 Adam 1e−3 64 Dropout = 0.3 200

GAT-ST The space-time core = 3 × 3, and the attention head = 8 RMSprop 2e−4 32 L1 = 1e−4 150

ST-GCN Cheb_k = 3, time window = 24 h Adam 5e−4 48 L2 = 1e−4 150

ST-Meta Meta_lr = 0.001, hidden layer = 256 Adam 1e−3 64 None 200

Table 8.  Add the baseline model parameter table.

 

Fig. 7.  Comparison of experimental results.
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reduction of 4.9%), was not statistically significant (p = 0.216), suggesting comparable performance in certain 
scenarios. This validates the synergistic advantage of the space-time graph diffusion model combined with 
federated contrastive learning. The sensitivity achieved for space-time prediction was 82.4%, marking a 3.5% 
improvement over ST-GCN. This suggests that the ASTA module possesses superior capability in capturing 
mutation events. Furthermore, the sentiment classification accuracy was reported at 89.3%, illustrating the 
precise quantification of teacher-student interaction quality through deep spectral clustering.

Through extended baseline comparison experiments with FedGraphNN, Spatio-Temporal Diffusion Model 
(ST-DiffNet) and Multimodal Fusion Model (MSF-Transformer) systems, this study validates the comprehensive 
advantages of the Fed CL-STGDM framework. Fed CL-STGDM achieves an optimal balance of prediction 
accuracy, privacy protection and computational efficiency (see Supplementary Material) to achieve an optimal 
balance, fully demonstrating its sophistication and usefulness as a cross-institutional educational assessment 
framework.

Through ablation experiments, as shown in Fig. 8, removing the ASTA module resulted in an 8.8% decrease 
in space-time prediction sensitivity and a 17.8% increase in RMSE, verifying the critical role of the space-time 
attention mechanism in dynamic association modeling. Removing Fed CL contrastive learning reduces the 
consistency of federated aggregation to 88.7%, indicating that cross-school knowledge alignment strategies are 
indispensable. Replacing STG-DM with regular GCN resulted in a 3.5% decrease in F1 score, demonstrating the 
advantage of thermodynamic diffusion equations in modeling heterogeneous data.

In the data robustness test, the research team constructed a sequence of decreasing training data volumes 
through stratified random sampling, maintaining the size of the test set unchanged. As shown in the extended 
data in Table 11, when the amount of training data decreased to 30%, the MAE of Fed CL-STGDM rose from 
the baseline 2.54 to 2.89 (Δ=13.8%), and the R² value remained at 0.812 ± 0.021, which was significantly better 
than the MAE increase of Fed Avg, which reached 28.3%. The calculation of model data scarcity sensitivity 
SSI shows that the SSI of Fed CL-STGDM is 0.15, which shows stronger robustness than ST-GCN (SSI = 0.22) 
and GraphSAGE (SSI = 0.27). This advantage stems from the knowledge transfer efficiency of the contrastive 

Fig. 8.  Comparison of ablation experiments.

 

Model MAE RMSE R² F1 AUC PLR t p

Fed CL-STGDM 2.54 ± 0.12 3.21 ± 0.15 0.872 ± 0.018 0.893 ± 0.021 0.921 ± 0.015 0.12 ± 0.02 - -

FedAvg 3.28 ± 0.18 4.12 ± 0.23 0.712 ± 0.025 0.761 ± 0.018 0.803 ± 0.021 0.13 ± 0.03 8.92 < 0.001

FedProx 3.15 ± 0.16 3.98 ± 0.21 0.735 ± 0.022 0.782 ± 0.017 0.832 ± 0.019 0.35 ± 0.04 6.45 < 0.001

GraphSAGE 3.05 ± 0.15 3.89 ± 0.19 0.754 ± 0.020 0.802 ± 0.019 0.845 ± 0.017 0.33 ± 0.03 5.31 < 0.001

GAT-ST 2.89 ± 0.14 3.65 ± 0.17 0.798 ± 0.018 0.831 ± 0.016 0.872 ± 0.014 0.28 ± 0.03 3.78 0.002

ST-GCN 2.78 ± 0.13 3.45 ± 0.17 0.823 ± 0.017 0.845 ± 0.020 0.891 ± 0.013 0.26 ± 0.02 2.15 0.032

ST-Meta 2.67 ± 0.13 3.32 ± 0.16 0.845 ± 0.015 0.862 ± 0.017 0.903 ± 0.012 0.31 ± 0.03 1.24 0.216

AHP-Grey 4.15 ± 0.22 5.23 ± 0.28 0.532 ± 0.032 0.682 ± 0.015 0.701 ± 0.025 0.29 ± 0.02 12.07 < 0.001

FedGraphNN 2.81 ± 0.14 3.59 ± 0.18 0.835 ± 0.019 0.861 ± 0.020 0.898 ± 0.016 0.14 ± 0.02 - -

ST-DiffNet 2.69 ± 0.13 3.41 ± 0.16 0.851 ± 0.017 0.872 ± 0.019 0.908 ± 0.014 0.25 ± 0.03 - -

MSF-Transformer 2.87 ± 0.15 3.67 ± 0.19 0.825 ± 0.021 0.854 ± 0.022 0.885 ± 0.018 0.19 ± 0.03 - -

Table 10.  Experimental results of model performance Comparison.
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learning mechanism in Formula 18. It can still maintain the cross-school feature alignment degree of 0.78 ± 0.03 
at 50% of the data volume, enabling the model to effectively capture the common laws of educational behavior 
dissemination in a limited sample.

The study tested the model accuracy loss, privacy leakage risk, and adversarial robustness under different 
privacy budgets ε, and the specific results are shown in Table 12.

When ε=1.5, the model experiences an accuracy loss of 4.3%, a privacy leakage risk of 0.12, and achieves 
an adversarial robustness of 82.4%. These results confirm the optimality of the Fed CL framework in balancing 
privacy and utility. The consistency of federated aggregation is 92.1%, suggesting that dynamic weight aggregation 
effectively mitigates the impact of non-IID data distribution. However, when ε=2.5, the privacy leakage risk 
(PLR) rises to 0.25, with adversarial robustness diminishing to 73.5%. This underscores that overly lax privacy 
constraints can jeopardize model security. Theoretical analyses demonstrate that the Chebyshev convolution of 
STG-DM (Eq. 11) significantly reduces the complexity of spatio-temporal modeling, shifting it from O(N²) in 
ST-GCN to O(K|E|). Given N = 10⁵ nodes and |E|=2.3 × 10⁶ edges, the FLOPs for a single iteration drop from 
4.7 × 10¹² to 8.9 × 10¹¹. In the realm of federated communication optimization, the Stiefel manifold aggregation 
(Eq.  20) employs rank constraints to compress parameter transfer amounts by 38%, thereby shortening the 
communication time per round from 980ms to 620ms in a 30-client scenario (Table 5). Real-time verification 
confirms that the hypergraph diffusion module (Eq. 6) sustains an O(N) complexity at a scale of 100,000 nodes, 
incurring an inference delay of a mere 18ms. This represents a 2.3-fold acceleration relative to the O(N²) 
complexity of GraphSAGE (Table 4 depicts the comparison of new complexity levels). With respect to resource 
consumption, training the complete model required 2.4 h per epoch and utilized 10.5GB of memory, marking a 
41% reduction in video memory compared to ST-GCN.

The experimental design incorporates four groups to compare federated aggregation frequencies, including a 
fixed frequency (30 min/2 hours/6 hours) and an adaptive strategy. As illustrated in Table 13, the use of adaptive 
aggregation maintains an F1-score of 0.891 ± 0.021 while significantly decreasing the model’s response delay from 
1850 ± 95ms in the high-frequency group to 1320 ± 85ms. This adaptive approach also reduces communication 
overhead by 41.2%. A Pareto frontier analysis suggests that the optimal equilibrium point is achieved when 
α=0.18 and ε=1.5. At this point, the privacy leakage risk PLR is 0.12 ± 0.02 and the resource utilization rate is 
94.7 ± 0.9%, marking a 23.8% improvement over the fixed-frequency strategy. This optimization can be attributed 
to the dynamic contribution calculation mechanism in Eq.  19, which allows for the adaptive adjustment of 
the parameter transfer amount based on the model’s convergence degree. Consequently, the communication 
frequency in the later stages of training is automatically reduced from 3.2 times per hour to 1.5 times per hour.

The parameter adjustment experiment demonstrated that an increase in α from 0.1 to 0.3 led to a rise in 
the consistency MC of the federated model from 0.82 ± 0.04 to 0.91 ± 0.03, with a sensitivity ΔMC/Δα of 0.32. 
However, when the privacy budget ε ranged between 1.0 and 2.5, the PLR sensitivity was a mere 0.12. The heat 
map analysis, presented in Table  14, indicates that the optimal parameter combination is α=0.18 and ε=1.5. 
At these values, the F1-score and delay achieved were 0.893 and 1320ms, respectively. The verification of the 
two-stage adjustment strategy revealed that α=0.25 was initially used to hasten convergence, resulting in a 37% 
increase in F1 during the initial five rounds of training. Subsequently, α was reduced to 0.15 for stable training, 
leading to a 58% decrease in parameter divergence during the final ten rounds. Overall, this strategy enhanced 
training efficiency by 29%.

ε
Model accuracy 
loss PLR

Adversarial 
robustness

Federated 
Aggregation 
Consistency σ

Parameter 
sensitivity

Robustness decay 
rate

Information 
entropy

1 5.8 ± 0.4 0.08 ± 0.01 76.2 ± 1.8 88.3 ± 1.2 0.14 ± 0.02 0.78 ± 0.03 12.3 ± 1.2 3.45 ± 0.15

1.5 4.3 ± 0.3 0.12 ± 0.02 82.4 ± 1.5 92.1 ± 0.9 0.17 ± 0.03 0.82 ± 0.04 8.7 ± 0.9 4.12 ± 0.18

2 2.1 ± 0.2 0.18 ± 0.03 79.6 ± 1.8 89.7 ± 1.1 0.21 ± 0.02 0.75 ± 0.05 15.6 ± 1.5 5.03 ± 0.22

2.5 1.5 ± 0.1 0.25 ± 0.04 73.5 ± 2.1 85.4 ± 1.5 0.25 ± 0.03 0.69 ± 0.06 21.4 ± 2.1 5.87 ± 0.25

Table 12.  Privacy utility balance Analysis.

 

Training data 100% 80% 50% 30%

Fed CL-STGDM_MAE 2.54 ± 0.12 2.67 ± 0.13 2.89 ± 0.15 3.15 ± 0.17

FedAvg_MAE 3.28 ± 0.18 3.56 ± 0.20 4.02 ± 0.23 4.41 ± 0.25

R² 1 0.94 ± 0.02 0.86 ± 0.03 0.76 ± 0.04

F1 0 0.05 ± 0.01 0.12 ± 0.02 0.21 ± 0.03

SSI 0.15 0.16 0.18 0.2

FAD 0.85 ± 0.02 0.82 ± 0.03 0.78 ± 0.03 0.72 ± 0.04

σ 0.17 ± 0.03 0.19 ± 0.02 0.22 ± 0.03 0.25 ± 0.04

Table 11.  Impact of data Scarcity.
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To verify the ‘lightweight’ feature, Table 15 compares the computational cost of Fed CL-STGDM with the 
benchmark model. The model is evaluated on the CSED−24 test set (10,000 samples) using a single A100 GPU. 
The experimental results are shown in Table 15.

As shown in Table 15, this model achieves the lowest prediction error (MAE: 2.54) and the fastest inference 
speed (18ms) with 8.7  M parameter amount and 3.5GB video memory footprint. Compared with baseline 
models such as ST-GCN, the accuracy advantage is maintained with 41% less parameters, 35% less GPU memory 
and 28% higher inference latency. This data fully validates the claim of ‘lightweight system’ and shows that the 
framework successfully achieves a better ‘efficiency-accuracy’ trade-off through structural optimisation rather 
than simply scaling up the model, providing key evidence of its utility in resource-sensitive large-scale real-time 
deployment scenarios.

Application and verification
In order to reduce the obstacle of model complexity to the decision-making of education managers, the system 
is designed with a multi-level visual decision support interface. For example, in the application scenario of 
‘Beijing-Tianjin-Hebei University Union’, the system presents the high-dimensional spatial and temporal 
features of STG-DM output through Spatio-Temporal Heatmap and Radar Chart. Educational administrators 
can use the heatmap to quickly identify the efficient periods of teaching behaviour, and use the radar chart to 
compare the performance of different campuses in terms of key indicators such as the frequency of teacher-
student interactions, the adoption rate of the curriculum, the intensity of cross-campus collaboration, etc. 
The heatmap can also be used as a basis for comparing the performance of different campuses. “The system 
also provides dynamic strategy recommendations. In addition, the system also provides a dynamic strategy 
recommendation module, which automatically pushes out specific interventions such as ‘suggest cross-campus 
teaching experience exchange meetings’ if the ‘emotional entropy’ of a campus is detected to be persistently 
higher than the threshold.

Within the empirical framework of the Beijing-Tianjin-Hebei University Alliance, this study compares 
University A in Beijing, which employs an experience-driven approach, with University D in Chengdu, which 
adopts a data-driven strategy. University A has traditionally depended on expert experience to determine 
assessment indicators. From 2018 to 2021, it used the student-teacher ratio (1:18) and the number of courses 
as its primary assessment parameters. Despite a 23% increase in resource investment (from 12  million to 
14.8 million yuan) following a curriculum reform in 2021, student satisfaction declined by 12%, highlighting 
the limited adaptability of static indicators to regional cultural variations. Conversely, University D in Chengdu 

Model
Parameters
(M)

Inference Latency
(ms)

GPU Memory
(GB)

FLOPs
(G) MAE

Fed CL-STGDM 8.7 18 ± 3 3.5 ± 0.2 12.3 2.54

ST-GCN 14.8 25 ± 4 5.6 ± 0.3 18.9 2.78

GraphSAGE 5.2 42 ± 6* 2.8 ± 0.2 8.5 3.05

GAT-ST 12.1 31 ± 5 4.9 ± 0.3 16.1 2.89

ST-Meta 15.3 28 ± 4 5.1 ± 0.3 20.5 2.67

Table 15.  Computational efficiency and model complexity Benchmark.

 

α ε=1 (F1-score/Delay ms) ε=1.5 (F1-score/Delay ms) ε=2 (F1-score/Delay ms) ε=2.5 (F1-score/Delay ms)

0.1 0.832/1450 0.841/1380 0.853/1320 0.862/1280

0.18 0.865/1390 0.893/1320 0.882/1260 0.871/1210

0.25 0.891/1520 0.902/1480 0.895/1420 0.884/1360

0.3 0.878/1670 0.887/1590 0.879/1510 0.865/1440

Table 14.  Parameter heat map data matrix.

 

Aggregation strategy 30 min 2 h 6 h adaptive

F1-score 0.902 ± 0.020 0.887 ± 0.022 0.862 ± 0.025 0.891 ± 0.021

Response delay 1850 ± 95 1550 ± 82 1220 ± 65 1320 ± 85

Traffic Volume 3.2 ± 0.3 2.1 ± 0.2 1.5 ± 0.1 1.8 ± 0.2

Model Consistency 0.88 ± 0.03 0.85 ± 0.04 0.79 ± 0.05 0.92 ± 0.02

Resource utilization rate (%) 85.4 ± 1.5 89.7 ± 1.1 92.3 ± 0.9 94.7 ± 0.9

α sensitivity 0.28 0.25 0.21 0.32

ε sensitivity 0.15 0.13 0.11 0.12

Table 13.  Comparison of adaptive aggregation Strategies.
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implemented the Fed CL-STGDM system in 2022. Utilizing a spatio-temporal heat map, the system identified 
14:00–16:00 each day as an inefficient period for teacher-student interaction. The school subsequently adjusted 
its course schedule to coincide with this high-frequency interaction window in the mornings. By 2023, student 
participation at University D had increased by 18%, and the frequency of cross-school resource sharing had 
reached 53.8 times per month (95% CI: 50.1–57.5), representing a significant increase from the baseline 
period, demonstrating the substantial benefits of data-driven decision-making. The comparison between the 
two universities reveals that the traditional, experience-driven model often encounters the dilemma of “high 
investment and low returns” in dynamic educational contexts. In contrast, the data-driven approach, utilizing 
hypergraph diffusion rates and federated knowledge distillation, effectively captures multimodal synergy effects 
and fosters innovation in the assessment paradigm.

Utilizing School D in Chengdu as a case study, the STG-DM model quantifies the synergistic effect of the 
“teacher-student-management” triad via Eq. 6. The hypergraph diffusion rate witnessed a significant increase 
from 3.12 ± 0.38 in 2022 to 5.12 ± 0.63 in 2023, thereby optimizing resource allocation during the traditionally 
inefficient midday period. The weight assigned to the regional cultural factor of this school was dynamically 
adjusted to 0.18 via federated comparative learning. In contrast, the weight of Beijing School A under the 
isolated model remained mere 0.05, leading to an unsuccessful cross-school strategy adaptation. The federated 
aggregation strategy effectively reduced the parameter divergence from 5.6 × 10⁻² in the conventional Fed Avg 
to 2.87 × 10⁻² via Stiefel manifold projection, thereby facilitating efficient knowledge transfer across schools. 
This mechanism’s effectiveness was reinforced within the Beijing-Tianjin-Hebei Alliance: When School B in 
Shijiazhuang integrated the high-quality video teaching plan from School A in Beijing and dynamically adapted 
it with the cultural resistance factor (0.15), the student satisfaction rate surged from 68% to 87% post federal 
optimization, as illustrated in Table 16. This underscores the significance of data-driven parameter interpretability 
in fostering cross-regional collaboration.

Figure 9 reveals the difference in model fitness in different regional extensions, in which the model convergence 
period in South China (e.g., Guangzhou, with a factor of 0.092), which has a lower cultural resistance factor, 
is only 12.7 days, which is 43% faster than that in Southwest China (e.g., Chengdu, with a factor of 0.183), 
which has a higher cultural resistance factor. This significant efficiency difference strongly suggests a negative 
correlation between the regional cultural resistance factor and the speed of model convergence.

To quantitatively verify this observation, we calculated the Pearson correlation coefficients between the 
cultural resistance factor and the corresponding convergence period for the six regions. The results of the 
analyses show a strong negative correlation (r =−0.89, p < 0.02). This means that the higher the cultural resistance 
factor, the longer it takes for the model to reach convergence. There is a clear mechanistic explanation for this 
finding: higher cultural resistance factors (e.g. 0.183 in Chengdu) reflect the fact that educational behaviors in 
the region are more frequently subject to dynamic policy interventions, resulting in a more noisy and uncertain 
local data distribution. In a federated learning framework, this directly translates into greater client drift, which 
in turn requires more communication rounds to coordinate model updates on different clients, and ultimately 
manifests itself in longer convergence times. On the contrary, regions with low cultural resistance factors 
like Guangzhou, where the data distribution is relatively stable, have a smoother and more efficient federated 
optimisation process.

This analysis not only confirms the effectiveness of the cultural resistance factor as a quantitative indicator 
of regional heterogeneity, but also provides a key basis for predicting and optimizing cross-regional federated 
learning deployments in practice: for regions with high resistance factors, more aggressive client regularization 
or dynamically weighted aggregation strategies may be required to alleviate convergence bottlenecks.

These strategies encompassed federated aggregation frequency, privacy budget ε (as delineated in Eq. 12), and 
resource scheduling cycle. The experimental duration spanned three months, during which data was collected 
from 500 courses across 20 universities. The findings of this research are presented in Table 17.

The data suggests that the adaptive aggregation strategy model yields the highest level of accuracy; however, it 
presents a response delay of 2150 ms. This necessitates a balance between real-time performance and precision. 
The low-frequency aggregation poses the least risk for privacy leakage, yet it offers a resource utilization rate 

Month Course adoption rate Model accuracy Student participation rate Resource sharing frequency Teacher satisfaction

1 78.7 ± 2.9 0.893 ± 0.021 89.3 ± 1.5 34.7 ± 2.5 90.3 ± 1.2

2 80.2 ± 2.4 0.887 ± 0.019 90.5 ± 1.3 38.1 ± 3.0 91.2 ± 0.8

3 82.5 ± 1.9 0.875 ± 0.018 92.1 ± 1.1 45.6 ± 2.8 93.0 ± 0.7

4 85.1 ± 1.7 0.869 ± 0.017 93.8 ± 0.9 53.2 ± 3.1 94.1 ± 0.6

5 84.3 ± 1.8 0.862 ± 0.020 91.7 ± 1.4 49.8 ± 2.9 90.5 ± 1.0

6 83.6 ± 2.0 0.858 ± 0.019 90.2 ± 1.6 47.3 ± 3.3 89.7 ± 1.3

7 81.9 ± 2.2 0.851 ± 0.021 88.9 ± 1.7 43.5 ± 2.7 88.4 ± 1.5

8 82.7 ± 2.1 0.847 ± 0.020 89.5 ± 1.4 44.2 ± 3.0 89.1 ± 1.2

9 84.0 ± 1.9 0.839 ± 0.018 90.8 ± 1.2 48.7 ± 2.8 90.3 ± 1.0

10 85.6 ± 1.6 0.832 ± 0.017 92.3 ± 1.0 52.4 ± 3.2 92.7 ± 0.9

11 86.2 ± 1.5 0.826 ± 0.016 93.1 ± 0.8 54.9 ± 2.9 93.5 ± 0.7

12 84.8 ± 1.7 0.818 ± 0.019 91.4 ± 1.1 50.3 ± 3.1 91.8 ± 1.1

Table 16.  Long term deployment effect tracking of the Beijing Tianjin Hebei university Alliance.
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of only 78.9%, suggesting the need for dynamic adjustments to the federated aggregation frequency. The fixed 
privacy budget (ε=1.5) effectively balances resource utilization (88.2%) with model accuracy (0.848), making it 
optimal for long-term deployment.

Within the context of user behavior analysis, Fig. 10 demonstrates that the frequency of teaching reflection 
has a strong positive correlation with model accuracy. This confirms the beneficial influence of real-time warning 
modules on teaching optimization. Conversely, the number of resource searches exhibits a negative correlation 
with response latency. This suggests an area for system improvement in terms of caching strategy. Furthermore, 
the initiation of cross-school collaborations shows a positive correlation with resource consumption. 
Consequently, it is imperative to strike a balance between the advantages of collaboration and the additional 
hardware load induced.

Discussion
The cross-school education assessment system proposed in this study, which is based on the spatio-temporal 
graph diffusion model (STG-DM) and federated contrastive learning (Fed CL), has yielded significant results 
in terms of data privacy protection, dynamic spatio-temporal modeling, and model generalization capabilities. 
Firstly, from a theoretical innovation standpoint, the STG-DM enables high-precision modeling of the spatio-
temporal evolution of educational behavior via thermodynamically driven diffusion equations and adaptive 
spatio-temporal attention mechanisms. This approach effectively addresses the issue of local overfitting caused 
by the failure of dynamic association modeling in traditional methods in data silo scenarios, thereby reducing 
the mean absolute error (MAE) by 18.7%. Secondly, the Fed CL framework adeptly mitigates the model 
generalization bottleneck induced by data silos across multiple schools through the utilization of dynamic 
weight aggregation and local knowledge distillation strategies. In cross-domain testing, it enhances the global 
evaluation accuracy by 12.5% and stringently controls the privacy leakage risk (ε) within 1.5, thereby achieving 
a balanced optimization of privacy protection and model performance.

Policy type F1 score Resource utilization rate PLR Optimization suggestion adoption rate Response delay

High frequency aggregation (every 30 min) 0.875 ± 0.018 92.3 ± 1.2 0.15 ± 0.02 89.7 ± 1.1 1,850 ± 95

Mid frequency aggregation (every 2 h) 0.862 ± 0.020 85.4 ± 1.5 0.12 ± 0.02 82.4 ± 1.8 1,550 ± 75

Low frequency aggregation (every 6 h) 0.841 ± 0.022 78.9 ± 1.8 0.09 ± 0.01 76.2 ± 2.1 1,220 ± 65

Adaptive Aggregation (Eq. 17) 0.893 ± 0.021 94.7 ± 0.9 0.18 ± 0.03 92.1 ± 0.9 2,150 ± 105

Fixed privacy budget (ε=1.5) 0.848 ± 0.019 88.2 ± 1.3 0.12 ± 0.02 85.3 ± 1.4 1,780 ± 85

Table 17.  Comparison of the effectiveness of dynamic adjustment Strategies.

 

Fig. 9.  Multi Region Expansion Verification.
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This study pioneers the application of thermodynamic diffusion principles to education spatio-temporal 
modeling, culminating in the development of a lightweight evaluation system with independent intellectual 
property rights. This novel system facilitates real-time spatio-temporal analysis of 100,000 nodes, offering a 
comprehensive visualization of educational outcomes via a multi-scale visualization engine. When contrasted 
with traditional federated learning frameworks, our dynamic aggregation strategy enhances model training 
efficiency by approximately 40%, demonstrating stable convergence characteristics even under extreme data 
distribution scenarios. Furthermore, the privacy protection layer strategically combines Rényi differential 
privacy and gradient truncation technology. This ensures strict adherence to privacy budget constraints while 
maintaining an acceptable level of model utility loss.

From an operational standpoint, the implementation at Chengdu D School illustrates that the data-driven 
evaluation model can expedite the decision-making process from a traditionally experience-driven six months 
to a real-time response, with a system warning delay of less than two seconds and a strategy iteration cycle of 
seven days. Following the implementation of the Fed CL-STGDM system, a correlative improvement of 37% in 
evaluation accuracy was observed at Chengdu D School. While this substantial gain is temporally associated 
with the system’s deployment and aligns with its intended functionality, we acknowledge that the observational 
nature of this case study limits definitive causal attribution. To strengthen the validity of this finding, future work 
should employ controlled A/B testing. However, the initial resistance to change observed at Beijing University 
A underscores the necessity for a transitional framework that combines both data and experience in decision-
making. This approach entails first fine-tuning the weights of experience-based metrics using data during the 
preliminary stages, and then gradually shifting towards fully data-driven decision-making through federated 
collaboration in subsequent phases. A pilot study conducted at Shijiazhuang University B using this hybrid model 
yielded promising results, with the model’s accuracy reaching 82.1%, marking a 19.5% improvement over purely 
experience-based models. It is important to address the methodological context of this real-world verification. 
The deployment of the Fed CL-STGDM system across the university alliance was a strategic decision, precluding 
the establishment of a randomized control group for a classical A/B test. Consequently, the performance 
comparisons presented here are primarily observational. To mitigate the inherent limitations of this design 
and bolster the claim of the system’s effectiveness, we pursued two strategies: First, we compared the trajectory 
of Chengdu D School against the static. experience-driven approach of Beijing A School, demonstrating a 
significant performance gap that emerged concurrently with our system’s adoption. Second, and more critically, 
the internal ablation studies and controlled laboratory experiments on the CSED−24 dataset provide robust, 
controlled evidence for the mechanistic superiority of the Fed CL-STGDM framework. The strong performance 
observed in the field study is consistent with these controlled experimental results, suggesting that the observed 
improvements are likely driven by the implemented system.

Despite the high technical complexity of STG-DM and FedCL framework, the system has effectively 
transformed from ‘technical indicators’ to ‘management insights’ through multi-level visualisation and 
semantic transformation mechanisms. For example, in Chengdu, School D, the system identified ‘2−4pm as 
an inefficient time for interaction’ and quickly adjusted the course schedule to increase student engagement 
by 18%. This shows that by providing an intuitive, actionable feedback interface, education administrators can 
make efficient decisions without having to deeply understand the mechanics of the model. In the future, we will 

Fig. 10.  User Behavior and System Efficiency.
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further introduce interpretable AI techniques, such as feature importance attribution, to enhance the trust and 
acceptance of the model output on the management side.

Although the STG-DM with FedCL framework proposed in this study performs well in cross-school 
educational assessment, it still has several limitations. First, the model is highly dependent on high-quality 
multimodal data. In the data collection stage, if the video quality is low, the text sentiment labelling is inconsistent 
or the administrative records are missing, it will directly affect the accuracy of spatio-temporal alignment and 
feature fusion. For example, in some school districts with weak facilities, the insufficient video frame rate leads 
to a decrease in the confidence level of behaviour recognition, which in turn affects the computational stability of 
the hypergraph diffusion rate. Second, the model complexity is high and the deployment cost is significant. Both 
the fourth-order tensor convolution in STG-DM and the multi-round federation aggregation in FedCL place 
high demands on computational and communication resources. Although we reduce some of the overheads 
through Stiefel stream projection and attention compression, the real-time performance of the system may 
still be affected in resource-constrained environments (e.g., small and medium-sized institutions). Third, the 
quantification of cultural impedance factors still relies on the weighting of historical policy data, which fails to 
fully capture dynamic socio-cultural changes. For example, the adaptive ability of the model still lags behind 
in sudden policy adjustments or cross-regional cooperation. In addition, although the federal comparative 
learning mitigates some of the biases through knowledge distillation in the face of extreme non-independently 
identically distributed (non-IID) data, it still fails to fundamentally solve the problem of inconsistent model 
convergence. Finally, although the interpretability of the system is enhanced by heat maps and radar diagrams, 
there is still a ‘black box’ concern in the semantic transformation of high-dimensional spatial and temporal 
features to management decisions. Interpretable AI techniques (e.g., attention visualisation, feature attribution) 
will be introduced in the future to enhance decision transparency and user trust.

Conclusion
This paper proposes a cross-school educational evaluation system based on spatio-temporal graph diffusion 
models and federated contrastive learning. Its core contributions include: constructing an evaluation framework 
that balances data privacy and model performance, enabling cross-school collaboration under controllable 
privacy risks (ε < 1.5); Significantly enhancing predictive capability through dynamic spatio-temporal 
modelling, reducing prediction error by 18.7% and improving evaluation accuracy by 12.5% in heterogeneous 
data environments; Achieving lightweight system deployment with sub−2-second response latency, shortening 
decision cycles from months to near real-time. Moving forward, we shall pursue continuous optimisation across 
four dimensions: Enhancing cross-cultural adaptability by integrating social dynamics and meta-learning 
mechanisms; Deepening blockchain integration to establish traceable evaluation chains and smart contract 
incentive frameworks; Advancing model compression to achieve over 40% parameter reduction with no more 
than 3% performance degradation; Improving system interpretability by synthesising techniques such as SHAP 
and LIME to generate actionable management insights. These efforts will propel educational assessment towards 
greater security, efficiency, and transparency.

Data availability
The data are available from the corresponding author on reasonable request.
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