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This article examines distance and similarity measures in multidimensional fuzzy sets, which

are essential in decision-making and aggregation across various fields. It defines the axioms for
multidimensional distance measures and introduces a framework for normalized distance and
similarity measures within a suitable fuzzy space. The concept of complement-invariant proximity
measures is also discussed. The paper further explores the relationship between distance and
similarity, linking them with multidimensional entropy. It presents o -distance, o-similarity, and o
-entropy measures that balance values between fuzzy sets and their complements. Finally, two
decision-making problems are analyzed, with a comparative study showing the proposed model’s
advantage over existing approaches.
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Fuzzy sets are playing an important part in the growing field of general systems research because of their capacity
to describe systems with imprecise components and linkages, which is a feature of many biological and social
systems. Most decision-making circumstances, particularly group and multi-criteria scenarios, assign a unique
membership value to each element and are difficult due to the inherent ambiguities of the circumstances. One
solution to this is to replace the unique membership value with a collection of membership values, as is done in
interval-valued fuzzy sets!, hesitant fuzzy sets>®, m-polar fuzzy sets?, and n-dimensional fuzzy sets®. Another
approach is to replace the single membership function with more than one function, as in intuitionistic fuzzy
sets®” and picture fuzzy sets®. Although certain variations of fuzzy sets such as m-polar, intuitionistic, and n-
dimensional models, offer extended flexibility, they often fail to assign membership values precisely based on
the unique characteristics of each attribute under study. Likewise, interval-valued and hesitant fuzzy sets present
operational complexities that hinder real-world implementation.

Two intriguing fuzzy models are the m-polar fuzzy sets* and the n-dimensional fuzzy sets®, where each set
can independently assign a positive integer representing the number of membership values that an element
can assume. However, these models restrict the modification of individual element dimensions according to
contextual requirements. This limitation inspired the emergence of multidimensional fuzzy sets (MDFS)’, a
modified form of fuzzy sets that allows each element to have an independent number of membership values.
In MDEFS, each element can be represented with as many values as needed based on its inherent uncertainty,
unlike in m-dimensional or m-polar fuzzy sets where all elements are treated equally. Consequently, MDFS
provides flexibility by enabling unique and independent dimensional assignments to each element, making it
more suitable for modeling heterogeneous real-world data.

The concept of MDFS was introduced and discussed by Annaxsuel and Palmeira’ using a partially ordered
set Zoo([0,1]). Each element can be assigned a specific dimension, offering individualized representation
without restricting available knowledge. Compared with other generalized fuzzy models such as type-2 fuzzy
sets!?, genuine sets'!, intuitionistic fuzzy sets'?, and interval-valued fuzzy sets"!'>, MDFS is more efficient for
practical problems because of its simplicity and adaptability. Several applications highlight its usefulness—
for instance, an interviewer grading candidates under uncertain judgment, or multiple doctors diagnosing a
patient with different conditions-where MDFS can naturally accommodate variable uncertainty levels. Further
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developments such as multidimensional complements, t-norms, and t-conorms, and properties like De Morgan’s
laws have been explored in'*.

To analyze differences, similarities, and uncertainty among fuzzy structures, key measures such as distance,
similarity, and entropy are essential. A fuzzy distance measure quantifies the dissimilarity between fuzzy
sets and was formally established by Liu'®. Its complementary notion, the similarity measure, introduced by
Wang'®, quantifies resemblance between fuzzy data. These concepts have since been extended to multiple fuzzy
environments, including bipolar and intuitionistic fuzzy sets'”!®. Such measures are widely applied in decision-
making, pattern recognition, image processing, and medical diagnostics!®!2°. Therefore, defining and analyzing
distance and similarity measures for MDEFS is crucial for addressing complex, real-world problems effectively.

Recent research further strengthens this direction. Khan et al.2! proposed an infrared-visible image fusion
approach combining knowledge measures for intuitionistic fuzzy sets with the Swin Transformer, while Kumar
et al?? introduced circular intuitionistic fuzzy preference relations for group decision-making. Chen et al.?
developed an intuitionistic fuzzy set-guided fast fusion transformer, and Zhao et al.?* proposed a lightweight
infrared-visible image fusion model via adaptive DenseNet. Additionally, Li et al.>* designed new distance and
similarity measures for picture fuzzy sets, and Radhakrishnan?® established o-entropy and o-similarity for multi-
set structures. These works reveal a growing integration of fuzzy measures with computational intelligence,
underscoring the need to extend such methodologies to the multidimensional fuzzy framework.

Motivation

Traditional probability theory has long been used to model uncertainty; however, Zadeh’s introduction of
fuzziness provided an alternative and more flexible framework. Measuring fuzziness—through entropy, distance,
and similarity-remains vital for evaluating uncertainty within fuzzy systems. Entropy quantifies fuzziness within
a fuzzy set, as initially formalized by De Luca and Termini using Shannon’s entropy?’. Subsequent developments
include Ebanks’ five fundamental properties for fuzzy entropy?®, Kaufmann’s distance-based approach?, Yager’s
negation-based interpretation®’, and Liu’s sigma measures'. Despite this rich literature, the study of entropy
and similarity measures in the multidimensional fuzzy context remains underexplored. Given that MDFS can
represent real-world data more accurately by assigning independent membership values to elements, exploring
its associated entropy and similarity measures is essential to close this research gap.

Contributions

This paper extends the notions of distance, similarity, and entropy to multidimensional fuzzy sets (MDFS).
It establishes relationships among these measures through theoretical analysis and illustrative examples.
Specifically, Section 2 provides essential preliminaries, while Section 3 defines multidimensional distance
measures, similarity measures, proximity distances, perfect measures, and linear forms, introducing the concept
of crisp approximation using distance measures and o-based extensions. Section 4 discusses multidimensional
entropy, perfect entropy, and o-entropy. In Section 5, two decision-making applications based on distance and
entropy are presented, followed by a comparative study in Section 6 with other fuzzy structures. Overall, the
proposed framework contributes to a unified and flexible foundation for analyzing and applying fuzzy measures
in multidimensional settings, enhancing both theoretical depth and practical usability.

Distance measures on fuzzy sets

In this section, we concisely review the formal articulation of distance measures on Fuzzy Sets and their
multidimensional extensions. These measures quantify the dissimilarity between fuzzy sets, providing a
numerical representation of differences in the data. The basic notations and properties of fuzzy sets follow the

standard framework given in'>.

Fuzzy sets and distance measures
Let .Z(Y') denote the class of all fuzzy sets of Y, and Z(Y') the class of all crisp sets of Y. Following the
formulations in'?, we consider .% as a subclass of .7 () satisfying the usual closure properties.

A fuzzy distance measure d : .#? — RT is defined according to the axioms established by Xuecheng'®,
ensuring reflexivity, symmetry, and consistency with complement and subset relations.

Common examples include the Hamming and Euclidean distances, widely used for quantifying dissimilarity:

n

du(B,F) =Y |B(z:) = F(z:)|,  de(B,F) = |> (E(z:) - F(x:)).

i=1
Normalized variants of these measures are often employed to keep values within [0, 1]%.

Similarity and entropy measures
Analogous to distance measures, similarity measures § : .#2 — RT are defined by a corresponding set of
axioms'. For continuous fuzzy sets, the parametric similarity measure

1/p

8,(A,B) =1— (/O |A(z) — B(w)|pdx>

provides a flexible method of quantifying resemblance between fuzzy sets.
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A fundamental relationship between normalized distance and similarity measures is given by the theorem
n'S, stating that if d is a normalized distance measure, then § = 1 — d is a normalized similarity measure, and
vice versa.

Further, o-similarity measures and entropy functions on fuzzy sets are defined in'’, establishing their core
properties and interrelations. An example entropy on . (Y) is given by

- —KZ () I B (o) + (1~ B(ye)) In(1 — E(wi))],

which satisfies the entropy axioms outlined therein.

Discussion

These foundational definitions of fuzzy distance, similarity, and entropy measures'*>?° form the basis for their
multidimensional generalizations. Their normalized and parameterized versions facilitate consistent comparison
and interpretation in both low- and high-dimensional fuzzy environments.

Multidimensional fuzzy sets
Definition 1 ° Let U be a non empty set and given r : U — N. We define the set:

M={ (i@, 1P W) |y e U}

where p', : U — [0, 1] satisfies puhy(y) < - < /f(y)(y) foralli =1,...,7(y) and for each y € U. Then the

set M is called a multidimensional fuzzy set on U.
The 5" membership degree of the element y with respect to the set M is given by p M( ).

Let, Zoo ( ) U Tn ( )Where I,L([O,l]) z{(yl,...,yn)e[0,1]’L}y1§y2§~- Syn}

Hence if M 1s a  multidimensional fuzzy set on U, then for each yeU:

(@), 38 ) € T (10,11) € 2w ([0,1)

Thus any MDFs M on U can be treated as a function from U to Zo ([0, 1]).

Let WW| denote the natural number n € N such that W € Z,,(]0, 1]) called cardinality of W. For a given
W € Zoo ([0, 1]) the i*" component will be denoted by w; , i < |W|.

Let /w/n denote the element of Zo. ([0, 1]) which has w in all of their n components, w € [0, 1].

Letl = {/1/m,m € N},0 = {/0/m,m € N}, 1isan arbitrary element of 1 and 0 is an arbitrary element
of 0. _

Let 1 = {u: U — Zo([0,1]) : Vy € U, u(y) = /0.5/m,m € N} and % denotes an arbitrary element of

SE

There are many partial orders available if the elements of Z ([0, 1]) have the same dimension. But we use a
natural partial order on Zoo ([0, 1]) given by:

W< V& W|=|V|=nand

W <P V where V <L W is the product order on Z,, ([0, 1]), n € N.

Also, if M1 and M are two MDFs we say that M C Mo if M1 (y) <oo M (y) for everyy.

Standard t-norm and t-conorm for MDFs are defined in'%, using two functions, F; and F% as:

If F1(V, W) = k then:
min(V, W) = (v1 A wi,v2 Awa, ...,k A Wk)
where v; = w; = 1Vi > k, and
If F2(V, W) =l then:
max(V, W) = (Un—(1—1) V Win—(1—1)> Vn—(1=2) ¥ Wim—(1=2)> " *»Vn V Wm)
where vp—; = Wm—; =0Vi > n and j > m.

Now the standard multidimensional complement is given by:

Cs(a17a25"' 7an):(1ia"vlian—1a”' 7170‘1)

Additional investigations of multidimensional fuzzy sets, particularly concerning multidimensional t-norms,
t-conorms, and complements, are documented in!%. An innovative rough approximation technique for
multidimensional fuzzy sets by integrating rough sets and multidimensional fuzzy sets is presented in®'. Further
extended to Categorical accommodation of various notions in generalized multidimensional fuzzy sets®.
Throughout the remainder of our analysis, we exclusively rely on the intersection, union, and complement
operations mentioned above.

Distance and similarity measures of multidimensional fuzzy sets

Distance and similarity measures are fundamental components across various generalized set theories,
underpinning applications in decision-making, pattern recognition, and aggregation. Their development reflects
the ongoing refinement of quantitative methodologies in fuzzy and multidimensional environments!>*.
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Definition 2 Consider a nonempty set U, and let IF denote the collection of all multidimensional fuzzy sets over
U. Within this framework, let D C F consist of multidimensional fuzzy sets D such that D(y) € Tor D(y) € 0
for every y € U. Define F C T to satisfy:

(i) closure under finite unions and complements,
(i) 3+ CF,
(i) DC F.

Distance measure of multidimensional fuzzy sets
Multidimensional fuzzy sets represent a generalized framework that extends traditional fuzzy set theory.
Correspondingly, their distance measures generalize classical and intuitionistic fuzzy distances such as the
Hamming and Euclidean metrics®.

An intuitionistic fuzzy set J in a set Y is defined as:

J={{y, ns(y)vs(y) ly €Y},

where j17(y) and v (y) denote membership and non-membership degrees, satisfying 0 < ps(y) + vs(y) < 1,

and 7 (y) = 1 — ps(y) — vs(y).
For two intuitionistic fuzzy sets £ and F on Y = {y1, ..., yn}, the Hamming distance is defined as:

dws(E, F)

l\JM—l

Z (11 (90) = 1 ()] + o () = 0 (90)| + I (9:) = 7 ()]
and the square of the Euclidean distance is given by:
2 2 2
ews(E, F)? =3 Z { pE(ys) — pr(y:)” + (we(y:) —vr(y:)” + (me(yi) — 7r(y:)) } .
The axioms governing multidimensional distance measures, adapted from!®, ensure properties such as symmetry,

reflexivity, maximal separation between complements, and consistency with set inclusion.

Definition 3 A multidimensional distance measure on F is a function 6 : F x F — [0, co) satisfying:

(1) 8(G, H) = 6(H, C)

(D2)  4(G,G)=0forallG e F

(D3) 6(D,D°) > 6(G,H) forall G,H € F and VD € D whenever:
G ()| = [H{y)| = [D(3)| vy

(D4) ForG,H,E € F:if GC H C E,thendé(G, H) < 6(G, E) and
§(H,E) < (G, E)

Example 1 Discrete distance: Define (G, H) = 0if G = H, and 1 otherwise. Clearly, ¢ satisfies all the axioms
of a distance measure on ..

The above axiomatic structure provides a consistent mathematical foundation for comparing multidimensional
fuzzy sets, ensuring both interpretability and generality across diverse fuzzy frameworks.

Identification of elements in Z, ([0, 1]) as infinite sequences

To present pertinent examples of multidimensional distance measures, it is imperative to establish an association
between the elements of Zo ([0, 1]) and a space where the cardinality of elements does not influence but imparts
a distinctive structure to each element.

Definition 4 Let Zoo ([0, 1]) denote the set comprising all sequences with elements from [0,1] and possessing
only finitely many nonzero terms. Consider ) = (y1, ..., Yn) € Zoo ([0, 1]). We establish the identification of
with an element of Z ([0, 1]), denoted as ), represented by Y = (0, ..., 0, y1, .., yn, 0, 0, ...), where there are
precisely n — 1 zeros preceding y1. For any multidimensional fuzzy set A, we denote its corresponding sequen-
tial multidimensional fuzzy set as A, where A(y) = A(y).

It is imperative to emphasize that the equivalence between two sets, V and W, within Z ([0, 1]), is contingent
upon the equivalence of their respective closures V and W. In other words, V = W ifand only if V = W, where
both V and W belong to the set Zo ([0, 1]).

Considering the above conditions, we define the following distance measures:
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Examples

® Euclidean Distance: Consider U = {y1, Y2, -+, Ym } and let A and B be two multidimensional fuzzy sets
over U. Let A, B denote the corresponding sequential multidimensional fuzzy sets with A(y) = (A1 (y),
As(y),...) and B(y) = (B1(y), B2(y), ...). Then, we define the Euclidean distance d¢° (A, B) as:

1

dF(A,B) = f: <§ Aily;) — Bi(y;) 2)

j=1 \ i=1
It is noteworthy that the convergence of the infinite summation in the expression is assured by the finite
nature of the nonzero terms constituting the sum.

@ Hamming Distance: The Himming distance 5 (A, B) is given by:

(AB) =) <Z [ Aiy) — Bilwy) )

® The p'" Distance: The p'" distance 0;° (A, B) is defined as:

53°(A, B) i:: (i (‘ Bi(yy)

]
—
D=
\—/

where p > 1.

@ Supremum Distance: The supremum distance §5° (A, B) is expressed as:

6 (A, B) = sup {Z |Aw) - Butw)| v e U}

® Integral Distance: Assuming A; and B; are continuous functions for all i, the integral distance 67° (A, B) is

defined as:
y Y E U}

It is noteworthy that among the array of distance measures mentioned earlier, with the exception of the
discrete distance measure, none exhibit bounded characteristics. Yet, in practical applications, the imposition of
boundedness proves indispensable. Consequently, we delineate a tailored space for multidimensional fuzzy sets,
characterized by the following specifications.

57°(A, B) = sup { /U | Ai) - Bitw)

Definition 5 Let U be a nonempty set and n € N. IF,, denotes the collection of all multidimensional fuzzy sets
over U such that:

AEeF, = Ay U ([0,1]) VyeU

It is evident that I, encompasses a broader concept than traditional n-dimensional fuzzy sets, and in most real-
life scenarios, a suitable value of n can be determined such that the cardinality of membership values is less than
or equal to it.

Definition 6 Let D,, denote a subset of IF;, comprising multidimensional fuzzy sets D with membership values
D(y) € 1 or D(y) € 0 for each y in U. Furthermore, let F,, be a subset of F,, possessing the following proper-
ties:

(i) closed under finite union and complements
(i) if A € Fy, such that A(y) = /0.5/m for some m(1 < m < n) and for all y, then A € F,,, and
(iii) D, C Fn.

Theorem 1 When restricting 6, > and 65° from F to F,, both measures are bounded.
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Proof It is evident that if

U’ = m, then §,° is bounded by m(2n — 1), given that there are m elements in U

and each element can contribute to the first 2n — 1 positions with non-zero membership values. Similarly, 65°
is bounded by (2n — 1).0

Similarity measure of multidimensional fuzzy sets

A crucial tool in analyzing multidimensional fuzzy sets is the similarity measure, which provides insights into
the degree of resemblance between two such sets. Complementary to distance measures, similarity measures
elucidate the likeness between sets and exhibit a close interrelation with them. The second axiom in our
framework underscores the absence of similarity between a set D and its complement D¢ within the domain
D. Fundamentally, it aligns with our intuitive expectation that a multidimensional fuzzy set should exhibit
maximum similarity with itself, a notion encapsulated by axiom S3. Additionally, axiom S$4 ensures the principle
of monotonicity, akin to its counterpart in distance measures.

Definition 7 A multidimensional similarity measure on F is a function § : F x F — [0, co) satisfying the
following four axioms:

(S1) &(G,H) =¢&(H,G)
(S2) &(D,D°) <¢(G,H) VYG,H € FandVD € D whenever

6| = )| = | D] foraly

6| = W] =|Ew

forall y

(S4) IfG,H,E € Fand G C H C E, then
¢(G,H) > ¢(G,E)and¢(H,E) > (G, E)

It is imperative to acknowledge that akin to distance measures, the boundedness of similarity measures cannot
be assumed. As such, to ensure suitability for practical applications, we constrain similarity measures to operate
within the realm of F,.

Henceforth, we direct our focus exclusively towards normalized distance and similarity measures, achieved
by dividing the bounded measures by their respective maximum values. Under this normalization scheme, the
ensuing theorem stands:

Theorem 2 Let ¢ be a distance measure, then £ = 1 — ¢ is a similarity measure.

Proof This result directly follows from the definitions of distance and similarity measures. (J

Theorem 3 If § is a distance measure, then £ = ﬁ is a similarity measure.

The subsequent definition encapsulates the desired properties of distance and similarity measures, elucidating
essential relationships connecting them.

Definition 8 A distance measure is deemed perfect if (D, D¢) = 1 for all D € D,,, while a similarity measure
is considered perfectif £(D, D) = 0and £(G,G) = 1 forall D € D,, and G € F,.

Theorem 4 Let § and £ denote distance and similarity measures, respectively, such that 6 = 1 — &. Then, ¢ is
perfect if and only if £ is perfect.

Proof The proof is straightforward and thus omitted. (]

A proximity measure is a specialized form of measure that remains invariant under complements, defined as
follows:

Definition 9 A distance (similarity) measure is termed a proximity measure if §(G, H) = 6(G°, H®) (conse-
quently, §(G, H) = £(G°, H?)) holds for VG, H € F.

Theorem 5 Let ¢ be a distance measure. Then:

0(G,H) + 6(G°, H®)

5(G,H) = 5
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is a proximity distance measure.

Proof To demonstrate that & isa distance measure, it suffices to establish the axioms of the distance measure,
denoted by D1, D2, D3 and D4

For D; and Do, it is evident that S(G, H) = S(GC, H¢). To show that 5 satisfies D3, consider E,F € Fand

D € Dsuch that |E(y)| = |F(y)| = ‘D(y) for every y:
0(G,H)+6(G°, H?)
- 2
=4(G, H)
For D4, suppose G C H C E = E° C H® C G°. Thus, 6(G, H) < 6(E,G) and §(H, E°) < 6(E°,G°),
implying 0(G, H) < (G, E). Since:

5(G. ) = 5(G, H) +25(GC,HC)
< I(E,Q) +26(EC,GC)
=4(G,E)

Similarly, it can be shown that 6(H, E) < §(G, E). O
Theorem 6 §(G, H) = min{6(G, H), 5(G°, H®)} also constitutes a proximity measure.
Example 2 The p™* distance d,, serves as a proximity measure. For instance, if:
Gy) = (G1 (y)s ey Gn(y)) and
(y)) ,  then

)= (i
(1 C(y)s 1 — iy )) and
0=

1= Hu(y), o 1 — Hi(y ))
Thus, (i a,(y) = ]T.f,(y) p) = <§_C: éf(y) — ﬁf(y)'p> Vy indicating 0, (G, H) = 6,(G°, H®)

Definition 10 Let G, H, and % € F such that |G

W] =|rw)] -

)

for some m € N. Then, G and H are considered a similar pair if £(G, 3) = £(H, 3).

for every y, where g(y) = /0.5/m

It is evident that when £ serves as a proximity measure, the sets G and its complement G are similar pair.
Extending this notion, we rigorously establish the ensuing theorem.

Theorem 7 If £ is a proximity similarity measure, then G and H are a similar pair if and only if G° and H* are
also a similar pair.

Proof Assume £ is a proximity measure. If G and H form a similar pair with respect to &, then

(o) =e(ng) = (3.0) =<(z )

since £ is a proximity measure.
Hence, G and H° also constitute a similar pair. The converse follows similarly. [J

Definition 11 Let  be a distance measure in 7. A multidimensional fuzzy set G € F is said to be linear if it
satisfies the equation §(G, G°) = §(G, %) +4(G°, %), where |G(y) %(y)

ear, then 9 is termed a linear distance measure.

forall y. If every G' € F is lin-

The Hamming distance measure ¢;° is an instance of a linear distance measure.
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It is discernible that if § represents a proximity linear distance measure, then for every A € F,
§(G,G°) = 26(G, 3). The interplay between linear distance measures and multidimensional entropy will be

thoroughly investigated in the forthcoming discourse.

While fuzzy sets offer a refined approach to data representation, the process of defuzzification is equally crucial
for decision-making. Distance measures play a pivotal role in determining the optimal crisp approximation of a
multidimensional set. Hence, we define the crisp approximation of A € F using ¢ as follows:

Definition 12 Let G € F. A multidimensional fuzzy set D € D is termed a crisp approximation of G with
respect to § if §(G, D) = min{d(G, D') | D’ € D}.

Consider 6,° as the p'" distance measure. There exist cases where G € F does not possess a unique crisp

approximation. For instance, consider U = {1, z2} and let n = 2. Define a 2-dimensional fuzzy set on U as
follows:

1 2 1 3
o) = (55) ad G =(77)
Now, define D’ and D" € D as:

Dl(yl) = (070)7 Dl(yQ) = (17 1)
D"(y1) = (L,1),  D"(y2) = (0,0)

Then, §(G, D) = §(G, D") and D’ and D" are evidently crisp approximations of A.

Theorem 8 Let G,%\ € F such that G(y) <o %\(y) or g(y) < G(y) for each y, with strict inequality hold-

ing for every y. Then, G possesses a unique crisp approximation with D, respect to 6,°, satisfying the property

D(y)‘ = ‘G(y)‘ for every y.

Proof Define D € D as follows:

[ Jo/n i G(y) < /i/n
D(y) = { /1/n it /%% <o G(y)

Clearly, 6(G, D) = min{6(G,D’), D’ € D}.
Suppose, for contradiction, that there exists D’ € D such that §(G,D) = §(G,D’) and D # D', yet

D) =|ew
Then, there exists y € U such that D(y) # D’(y). Without loss of generality, assume:

for every y.

Gly) <o /3/n = Dly) = /0/n
= D'(y)=/1/n

Thus, if G(y) = (G1, ..., Gr), then:

(ler) < (&h-r)
Z ai*O‘ < Z a; — 1
i=1 i=1

Similarly, a lower summation value is obtained for D(y) and G(y) compared to D’(y) and G(y) whenever
D(y) # D’'(y). Hence, §(G, D) < 6(G, D"), which is a contradiction. (]

o-distance measure

The o-distance measure and o-similarity measure are specialized metrics distributing distance or similarity
equally between multidimensional fuzzy sets and their complements. Subsequently, we introduce o-entropy
measures, which distribute the entropy among each Mprs and crisp MDEs. It will be demonstrated that o
-distance measures and o-similarity measures yield o-entropy measures.

Definition 13 A multidimensional distance measure is termed a o-distance measure if it satisfies
0(G,H)=6(GND,HN D)+ 6(GND° HNDC) for every G,H € F and for every D € D whenever

6| = || = [p)| foran.

Theorem 9 The p*"* distance measure d0,° is a o-measure.
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Proof Let G, H € F and D € D be arbitrary, with ‘G(y)‘ = ’H(y)‘ = ‘D(y) for all y. Select y € U and,

= G(y)nD() = /0/n
without loss of generality, assume that D(y) = /0/n. g((;j)) Q gC(EJy)) z é? (/y I; and
H(y)nD(y) = H(y)

Therefore, the contribution of y to the sum of d;° (G, H) remains unchanged when partitioning the sum into
dyY’ (G N D¢ H N D), while the contribution to d,;°(G N D, H N D) becomes zero. Thus, the separation of
the sum preserves its value, yielding the desired result. (J

Theorem 10 The supremum distance measure d5° is not a o-measure.

Proof LetU = {y1,¥2},and G, H € F be such that:
G(y1) = (0.3,0.6) G(y2) = (0.4,0.7)
H(y1) = (0.4,0.6) H(y2) = (0.5,0.8)
Define D € D as:

D(y:) = (0,0) and D(y2) = (1,1)
Then,  §°(G,H) = 0.2

6 (GND,HND)+§(GND°,HN D) =0.3
Consequently, 65° does not satisfy the o-measure property. [J

Theorem 11 If § is a proximity distance measure, then § is a o-distance measure if and only if
0(G,H) =6(G°UD°, H°UD®) + 6(G°U D, H° U D°) for all G, H € F and for every D € D whenever

6| = || = D) forally.

Proof The proof follows straightforwardly since the standard t-norm, standard t-conorm, and the standard
complement satisfy De Morgan’s laws. Utilizing De Morgan’s law and the proximity property of J, we have
0(GND,HND)+§(GND°,HN D) =§G°UD,HUD)+ 6(G°U D¢, H° U D°). Thus, the remain-
der of the result follows directly. (]

o-similarity measure
A multidimensional similarity measure £ is defined as a o-similarity measure if it adheres to the following
definition:

Definition 14 For every pair of fuzzy sets G and H belonging to the set of fuzzy sets 7, and for every D belong-
ing to the set of multidimensional sets I, the equality (G, H) = §(GND,H U D) + (G N D HUD)

G| = |Hw| = |pw)

holds whenever for all y.

Theorem 12 Let £ is a perfect similarity measure. Then, £ is a o-similarity measure if and only if it satisfies the
equation (G, H) = £(GND,H U D) + &G U D, HN D) for every pair of fuzzy sets G and H in F, and

for every D in D, provided that ‘G(y)‘ = ‘H(y)’ = ’D(y) for all y.

Proof We demonstrate the sufficiency part; the necessity part follows a similar argument.

Suppose (G, H) = £(GN D, HU D) +£(G U D, HN D) for every pair of fuzzy sets G and H in F,
6w =) = [ forait . Then,

and for every D in I, provided that

E&GND°HUD)=¢(GND“ND,HUDUD)+
+£¢(GND°)UD,(HUD)N D)
=¢(D', D)+ &G U D, HN D)

where D' is an element of D defined by D’(y) = /0/n for some n, and ’D'(y)’ = ’D(y)‘ for every y.
Consequently, £(D’, D') = 0, and thus:
E(GUD,HND®) =¢GN DS, HUD)

which proves the result.

Scientific Reports | (2026) 16:3525 | https://doi.org/10.1038/s41598-025-33430-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

O

Theorem 13 Let § and & be the perfect distance measure and perfect similarity measure, respectively, such that
6 =1 — & Then, § is a o-distance measure if and only if £ is a o-similarity measure.

Proof Let usassume 6 to be a o-distance measure, and denote £ = 1 — 6. We aim to demonstrate that £ qualifies
as a o-similarity measure.

Consider two fuzzy sets G, H € F, along with a set D € D such that

Gw)| = [Hw)| = [Pw)| hotds for
all y. Then, we have:

EGND,HUD®)=1-6(GND,HUD")
:1—6(GmDmD7(HuDC)mD>—
—6(GmDmD°,(HuDC)mDC)
=1-46(GND,HND) - 4§D, D°

where D’(y) = /0/n for all y and for some n with ’D'(y)‘ = ’D(y)

for every y. Similarly, we obtain:
& GUD,HND®) =1-6(D,D")—§(GN D, HN D)

Combining both equations, then we derive:
EGND,HUDY+E&GND°, HUD) =
—9_ (5([)', D) + §(D, D/))—

— (6(GmD7HmD)+6(GmDC7HmD°)>

However, it holds that:

1

6(D/7 D/(;)
§(D'ND,D*N D)+ 6D ND°, DN D
§(D', D)+ 6(D’', D°)

From which, we can deduce:
E&GND,HUD)+&GND°,HUD) =
—1- (6(GﬂD,HﬁD)+6(GﬂDc,HﬂDc))
=1-46(G,H)=¢&(G,H)

Hence, £ qualifies as a o-similarity measure. Similarly, it can be shown that if £ is a o-similarity measure, then
6 = 1 — £ constitutes a o-distance measure. []

It is noteworthy that the theorem presented above elucidates scenarios wherein o-similarity measures emanate
from o-distance measures. This observation underscores a fundamental relationship between these two measures
within the framework of multidimensional fuzzy set theory.

Entropy of multidimensional fuzzy sets

The entropy component of the proposed framework can be further enriched by integrating the recent
developments on entropy measures for specialized fuzzy structures. In particular, the construction methods
for entropy measures of circular intuitionistic fuzzy sets provide valuable insights into designing entropy
functions that preserve rotational invariance, complement symmetry, and information consistency under
uncertainty*’. These methods highlight systematic ways to construct entropy measures that align with the
axioms of fuzzy uncertainty quantification. Incorporating such approaches within the multidimensional fuzzy
set (MDEFS) framework can further strengthen the theoretical foundation of o-entropy measures and enhance
their applicability in real-world decision-making and aggregation scenarios. Thus, future work may extend
the proposed model by drawing from these circular entropy construction strategies to generalize entropy
computations over multidimensional domains.

Definition 15 An entropy on F is a function e: F — [0, co) which satisfies the following axioms:

(E1) ¢(D)=0,¥D €D
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(E2) e(g) > ¢(G) whenever ‘G(y)‘ =
(E3) ¢(G°) = ¢(G), VG inF

fw|wmcer

(E4) LetG, H € F be such that H(y) <o G(y) < g(y)
rg( ) <o G(y) <o H(y) for everyy, then
€(H) < €(G)

Example 3 Let U = {y1, y2, ...ym } and let G € F. Define S : Zo. ([0, 1]) — [0, c0) by:

S(Gi1,...Gn [ZGln -‘,—Z (1—Gy)ln( 1_@.)}

Then ¢(G) = Z S(G(yj;)) is an entropy on F.
Jj=

0 if Gi(y) <05
1 if Gi(y) > 05

€ (G) =1 — (G, G) represents an entropy measure, where § denotes a perfect distance measure.

Example4 Given G € F, define G € F such that G(y) = (g1, ...gn) with g; = { Then

Example 5 For G € F, ¢°(G) =1 — §(G, G°) defines an entropy measure, where ¢ is a perfect distance
measure.

Similar to distance and similarity measures, multidimensional entropy measures may not necessarily be
bounded. For instance, consider Example 3.

Definition 16 A multidimensional entropy is termed perfectif €(3) = 1 for every = € F.

The subsequent theorem establishes a significant relationship among entropy, similarity measure, and distance
measure:

Theorem 14 If s is a perfect similarity measure, then €(G) = £(G, G°) represents a perfect entropy. Moreover,
if  is a perfect distance measure, then ¢(G) = 1 — 6(G, G°) signifies a perfect entropy.

Proof The proof immediately follows from the definitions. (]

Definition 17 LetJ be a distance measure and € be an entropy measure. We say that € is symmetric with respect
to § if, forany G, H, 3 € F with ‘G( )| = ‘H(y)’ = ’%(y) rfor all y, the condition 6(G, 1 (y)) = 6(H, 1 (y))

leads to €(G) = e(H).

Theorem 15 Let § be a perfect linear proximity distance measure. Then, the entropy measure generated by ¢ is
symmetric with respect to 4.

Proof Suppose 6(G, %) = 6(H, 3). Consequently, we have §(G°, 1) = 6(H°,g). Now, summing up these

equations yields:
1 .1 1 .1
(6. (3) +8(e (3) =8 (3)) + o ()
which simplifies to §(G, G) = §(H, H¢). This further leads to 1 — 6(G,G°) =1 — 6(H, H®), and thus,
€(G) = €(H). Consequently, € is symmetric with respect to §. [J

o-entropy measure
Definition 18 An entropy function e is termed a o-entropy measure if it satisfies the condition:

e(G) =e(GND)+e(GN D)

for each G € F and D € D whenever for all y.

G| = |pw)

Definition 19 A subset E C F is considered a comparable class if it adheres to the following criteria:

(i) Forevery G, H € E, either G(y) <oo H(y) or H(y) <oc G(y).
(i) DCE.
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closed under finite union and complement.

(i) Eisc
icE

(iv)

Theorem 16 Let E be a comparable class. Then, an entropy function € defined on E is a o-entropy measure if
and only if it satisfies the equation:

€e(G)+e(H)=e(GUH)+€e(GNH) VG,H € E
Proof Let G,H € Eand K = {y € U : H(y) <o G(y)}. Define D € ID as follows:

i ifyek
D(y)_{ 0 ifyé¢K

Assume that € is a o entropy then:

e(GUH)ze((GUH)ﬁD) +e((GUH)ﬂD°)
— «(GND)+e(HND)

and
(G H) = e((GﬂH) mD) +e<(GﬁH) mDC)
= e(HﬂD) +6(G0DC)
Hence,

e(GUH)+e(GNH) = ( (GND) +eGmD))+(e(HOD)+e(HmD°))
e(G) +e(H)

Now assume that, €(G) + ¢(H) =e(GUH) +e(GNH) VG,H€E
Then,

€(G) = ¢(G) + ¢(D)
=¢e(GND)+¢eGUD)

:e(GﬂD)—Fe((GﬂDC)UD)

:e(GmD)+(e(Gmm+e(D)—e((GmD°)mD))
= «(GND)+e(GN DY)

O

Theorem 17 If { is a o-similarity measure, then the entropy function defined by ¢(G) = £(G, G°) is a o-en-
tropy measure.

Proof Consider G € F and D € D then we have;

e(GﬂD)—l—e(GﬂDc):£<GOD,(GHD)“) +£(GHDC,(G0D°)C)
=¢(GND,G°UD")+£(GND°,G°UD)
:g(GvGC)
=¢(G)

Decision making-methods

Multidimensional fuzzy sets have extensive applications across various domains, including decision-making,
pattern recognition, and granular computing, providing robust solutions to real-world challenges. Here, we
present a methodological framework employing multidimensional distance measures for decision-making in
practical scenarios.
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Method 1: Decision-making using the weighted euclidean distance measure
In many decision-making scenarios, the evaluation of alternatives depends on multiple qualitative and
quantitative attributes, each varying in significance. Typically, these attributes are bounded by a lower threshold
¢ and an upper threshold 7, representing the limits of suitability. Since not all attributes contribute equally to the
final decision, a weighted approach becomes essential.

Integrating this approach with the MDFS framework enables a robust and structured mechanism for handling
complex problems involving multidimensional membership information within the range [, 7]. The following
algorithm formalizes the process.

Require: U: Universe of discourse; {ai,as,...,a,}: Attributes; ¢: Lower bound; n:
Upper bound.
Ensure: Entropy of each element in U for precision evaluation.
1: Initialize U = {x1, 22, ..., xm } and attributes {a1, as, ..., an}.
2: Construct a table of attributes, each with lower bound (, upper bound 7, and
associated preference weight.

3: for j =1 tom do

4 Compute weighted Euclidean distance from lower bounds: 05°(z;,1).
5: Compute weighted Euclidean distance from upper bounds: 65°(x;, u).
6: Determine the distance ratio: r = 05°(z;,1)/05°(x;, u).

7. end for

8: Compute the entropy of each element to assess precision.

9: return r

Algorithm 1. Evaluating Precision with MDEFS

This method provides a systematic and interpretable framework for decision analysis under multidimensional
uncertainty. By incorporating attribute weights and boundary constraints, decision-makers can obtain more
reliable and context-aware results suited to practical applications. The overall workflow of the proposed method
is depicted in Fig. 1.

Start

3

List out objects and their attributes
under study and fix the desired lower
and upper bounds for the attributes

&

Construct n-dimensional fuzzy sets
to denote the quantity of attributes

I

Find the weighted hamming distance from
lower and upper bounds of attribute level

!

Use the entropy mea-
sure to validate the
precision of comparison

2

Decision

Fig. 1. Flowchart for evaluating precision with MDFS.
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ai (a2 (a3 |aq | as
¢(1) |04 |04 |05 |04 |05

n(u) |06 (0.7 |08 |06 |07

w; 0.6 |07 |08 |07 |08

Table 1. Range of attributes.

aj az |(ag |aag |as
P; [0.50 |Nil |0.60 | 0.50 | Nil

P> | Nil |0.60 | 0.60 | 0.50 | 0.60

Ps |Nil |Nil |0.70 | 0.55 | 0.65

Table 2. Assessment table of participants’ attributes.

a; |C

a1 | 050
as | 0.55
as | 0.65
as | 050
as | 0.60

Table 3. Centre of boundary.

Hllustrative example
Consider a scenario where student participants P1, P», and P3 are evaluated based on multiple attributes (e.g.,
subject knowledge across disciplines) through interviews. Let a1, a2, ..., as denote the evaluated attributes. Table
1 specifies the attribute ranges, lower and upper bounds (¢, 77), and their respective weights (w;) on a 0-1 scale.
The corresponding participant attribute values are shown in Table 2. Attributes outside the specified bounds
can be directly classified; hence, only bounded cases are considered, with ‘Nil’ indicating missing attributes.
The participant data are represented as multidimensional fuzzy sets:
P : (0.50q,,0.504,,0.60,;)
P : (0.504,,0.604,,0.604;,0.60,5 )

P : (0.554,,0.6545,0.70,5)

The computed distances are:
865°(Py,u) = 0.8831, 05°(Py,1) = 0.1449,
357 (P2, 1) = 0.2258, 65° (P2, u) = 0.5196,
85°(Ps,1) = 0.2564, 65°(Ps,u) = 0.7554.

Hence, the ratio values are:

71 =0.1640, 75 =0.4345, 73 = 0.3394,

implying the attribute quality ranking P1 < P3 < P».

Entropy-based precision evaluation identifies data fuzziness levels. Participants whose membership values
are closer to 0.5 relative to the center boundary (C) exhibit greater uncertainty (see Table 3).

Entropy results:

e(P1) =0.1845, €(P,) = 0.4950, €(Ps) = 0.2516.

Thus, P exhibits the least fuzziness and P» the highest, indicating that while P has strong attributes, the
decision reliability is higher for P1, whose membership values are closer to mid-boundaries.
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Start
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List out the important symptoms of dis-
ease with its upper bounds and weights

+

Construct MDF'S to record the mea-
surements obtained after the test

4

For each patient, obtain the
weighted Euclidean distance
measure from the upper bound

4

Compare the distances
to find the order of seri-
ousness each patient has

82

Decision

Fig. 2. Flowchart for Disease Severity Assessment.

Symptom (s;) | Ci wy
s1 (0.30,0.35,0.40) 0.50
o (0.40,0.44,0.47,0.50) | 0.60
s3 (0.40, 0.47) 0.70
S4 (0.30,0.33,0.35) 0.80
S5 (0.40,0.46,0.48,0.49) | 0.80

Table 4. Symptoms and their Upper Bounds.

Method 2: decision-making using weighted euclidean distance for disease severity
assessment

In clinical decision-making, patients afflicted with a disease D may exhibit symptoms of varying intensity. Since
the significance of each symptom differs, a weighted distance measure provides a more balanced assessment of
disease severity. The following algorithm formalizes the approach.

Require: n: Number of symptoms; {si,s2,...,s,}: Symptom names; {C1,...,(n}:
Upper bounds; {w1, ..., w, }: Weights; m: Number of patients; { Py, ..., P, }: Patient
data.

Ensure: {di,ds,...,d, }: Weighted Euclidean distance measures.

1: Initialize {d1,da, ..., dm}.

2: Construct a table of symptoms with corresponding weights and upper bounds.
3: for j =1 tom do

4: Retrieve symptom values for P;.

5: Compute weighted Euclidean distance from ¢;.

6: Accumulate squared differences, weighted by w;.

7 Compute dj = Zz wi(sij — C,)Z

8: end for

9: Sort {di,ds,...,d,} in ascending order.

10: return {dy,ds,...,dm}.

Algorithm 2. Disease Severity Assessment
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The corresponding algorithmic workflow is shown in Fig. 2.

Note: The numerical examples presented below are illustrative and not derived from empirical clinical data.
Actual parameter values may vary depending on real-world datasets and experimental validation.

Table 4 lists the considered symptoms s;, their upper bounds (;, and associated weights. The patient symptom
profiles are given as:

Py : ((0.50,0.55,0.57)s,, (0.60, 0.66).s, (0.60,0.67)ss ),
P ((0.50,0.55)s,, (0.60,0.68,0.69) 4, (0.70,0.75,0.78).,, (0.70)s,),
Ps : ((0.60,0.67,0.70).,, (0.60, 0.59) 4, (0.70, 0.80) 5 ).

The computed distances are:

55°(Py,¢) = 0.2828,  65°(Py, () = 0.4669, 65°(Ps, () = 0.3987.

Thus, the order of disease severity is P1 < P3 < P», corresponding to increasing distance from the upper
bounds.

Sensitive analysis

The results in Table 5 indicate that the proposed MDFS-based decision model is highly robust to changes in
the weight vector. Even under substantial perturbations—such as over-weighting a single criterion or applying
random variations of up to £20%-the ranking structure remains effectively unchanged, with P; consistently
emerging as the top alternative and only minor, non-critical fluctuations observed between P, and Ps. This
stability demonstrates that the model does not exhibit excessive sensitivity to subjective weight adjustments,
reinforcing its reliability for decision-making scenarios.

Computational considerations: cost and implementation notes

From a computational standpoint, both algorithms proposed in this work have tractable complexity when
applied to finite multidimensional fuzzy sets. Let m denote the number of elements, n the number of attributes,
and d; the length of the finite membership tuple associated with element x;.

@ Algorithm 1 (Evaluating Precision with MDEFS): Each element requires two weighted Euclidean distance
computations with respect to the lower and upper bounds, resulting in an overall time complexity

o) (i d]) ~ O(md)

Entropy computation has the same order, and memory usage is O (Z; dj) .

@ Algorithm 2 (Disease Severity Assessment): For m entities each characterized by n attributes, the weighted
Euclidean distance evaluation requires O(mn) operations, and the subsequent sorting step adds O(m log m)
time.

The examples presented in this paper are intentionally small and illustrative, as the purpose is to validate
theoretical properties rather than to perform empirical benchmarking. Nonetheless, these analyses show that
the procedures scale linearly in the number of elements and attributes, confirming their suitability for moderate
problem sizes.

Practical implementation aspects include efficient handling of variable-length membership tuples (ragged-
array storage), numerically stable weighted distance computation (use of fused multiply-add operations), and
careful parameter normalization. For larger datasets, vectorized computation and parallel processing can further
improve performance, and these optimizations will be explored in future applied work.

Weight configuration Modified weights (Example) | Ranking order

Baseline (Equal) [0.33,0.33, 0.34] Py < P3 < Py
Case 1 (High w1) [0.5,0.25, 0.25] Py < Py < P3
Case 2 (High w2) [0.2,0.5,0.3] P; < P3 < Py
Case 3 (High w3s) [0.3,0.2,0.5] P < P3 < P>
Case 4 (Random Perturbation +20%) | [0.27, 0.36, 0.37] P, < P3 < Py

Table 5. Sensitivity analysis of the proposed MDFS-based decision model under varying weights.
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Comparative analysis with existing models

Multi-Criteria Decision-Making (MCDM) frameworks play a vital role in diverse domains such as medical
diagnosis, image processing, and engineering design. However, one of the persistent challenges in these systems
is the precise assignment of membership values to each attribute. Classical models like the Weighted Sum
Model (WSM), Weighted Product Model (WPM), Analytic Hierarchy Process (AHP), and Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS)*>*¢ often encounter ambiguity and inconsistency during
this phase.

The proposed Multidimensional Fuzzy Set (MDFS) model addresses this limitation by allowing each
attribute to hold multiple membership values, representing its various aspects and interdependencies. This
multidimensional structure enhances expressiveness, preserves data richness, and ensures that uncertainty is
modeled more comprehensively.

To demonstrate the superiority of MDEFS, this section presents an extended comparison with several existing
fuzzy models.

Comparison with intuitionistic fuzzy sets (IFS)

Intuitionistic Fuzzy Sets (IFS), introduced by Atanassov, extend classical fuzzy sets by associating each element
with both membership and non-membership degrees. The hesitation degree, 7(x) = 1 — u(x) — v(x), captures
the uncertainty or incompleteness of information.

In the present study, the dataset representing participants’ performances was converted into IFS form as
shown in Table 6. Here, ;(P;) and v(P;) represent the degree of positive and negative contributions of
participant P;, respectively.

The Euclidean distance measure between each participant’s IFS and the ideal IFS Ip; = {(0.72,0)} was
computed as:

errs(Ip,, In) = \/(,U(Pz) — 0,72)22—1— (v(P) — 0)2.

The resulting distances indicate the ranking P1 < P3 < P, aligning with the MDFS-based findings. However, it
is evident that MDFS yields a larger spread in ranking scores, demonstrating enhanced discriminatory capability
and sensitivity to subtle variations among alternatives.

Advantages over IFS are:

® MDFS eliminates the constraint pu(x) + v(z) < 1, thereby permitting multidimensional membership eval-
uation.

@ It supports variable cardinality for each attribute, capturing overlapping or dependent evaluations.

® It retains richer informational content without normalization-induced loss.

Comparison with fuzzy soft sets (FSS)
Fuzzy Soft Sets (FSS)?”*® are powerful tools for handling parameterized uncertainty. Each element in an FSS is
defined with respect to a parameter set, allowing attribute-specific flexibility.

In the current context, each participant P; corresponds to a parameter influencing a universal set
U = {s1,s2,...,55}. The fuzzy soft sets (F, A) and (G, A) represent observed and ideal data distributions,
respectively. The normalized Euclidean metric distance between (F, A) and (G, A) was calculated as:

3

5 1/2
d>((F, A), (G, A)) = %5 (ZZ |P(P;)(s;) — G(P»(sj)F) :

i=1 j=1

The obtained weighted distance d3 ((F, A), (G, A)) = 0.0450 verifies the order P; < P3 < P>, consistent
with the MDFS model.
Advantages over FSS are :

% MDFS captures multi-level uncertainty for each attribute rather than single scalar mappings.

% The FSS framework requires normalization to compare fuzzy sets, while MDES inherently preserves scale
independence.

% Attribute interrelations can be represented within MDEFS, improving contextual coherence.

Participant | Membership (1) | Non-membership () | Indeterminacy ()

P 0.226 0.300 0.474
Py 0.346 0.120 0.534
Ps 0.293 0.260 0.447

Table 6. IFS-based representation of participant performance.
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Comparison with n-dimensional fuzzy sets
n-Dimensional Fuzzy Sets extend the traditional model by assigning an n-tuple of membership values to each
element. This provides limited multi-attribute flexibility but is constrained by a fixed dimension.

In the applied example, the dataset was reduced to three dimensions due to structural limitations, yielding:

P, :(0.5,0.6,0.6), P, :(0.7,0.6,0.7), Ps:(0.6,0.6,0.7).

After computing distances, the ranking order shifted to P1 < P» < P, indicating sensitivity to dimensional
truncation.
Advantages over n-Dimensional Fuzzy Sets are :

7% MDESs is not restricted by a predefined dimension #; it adapts dynamically to the structure of the dataset.
% Data loss due to dimensional reduction is eliminated, ensuring integrity and robustness.
% Enhanced flexibility allows different attributes to have different numbers of membership values.

Comparison with other advanced fuzzy models

Recent extensions of fuzzy theory-such as Pythagorean, q-Rung Orthopair, Picture, and Hesitant Fuzzy Sets—aim
to increase expressiveness in uncertainty representation. Despite these advances, they still rely on rigid structural
constraints between membership and non-membership functions (e.g., n? 4+ v? < 1), limiting scalability.
The proposed MDEFS framework generalizes these models by allowing independent and multidimensional
membership representations. This improves the adaptability across diverse applications, particularly where
information from multiple evaluators or features must be integrated.

Table 7 presents a comparative summary of major fuzzy set models, highlighting their membership
structures, dimensional flexibility, information retention, and computational complexity. Classical, Intuitionistic,
Pythagorean, and q-Rung Orthopair fuzzy sets differ primarily in their numerical constraints on membership and
non-membership functions, offering increasing expressive power at the expense of higher complexity. Picture
fuzzy sets enrich the representation by incorporating neutral judgments, whereas Hesitant fuzzy sets allow
multiple possible membership values, providing a very rich but computationally intensive framework. Fuzzy
Soft Sets and n-Dimensional Fuzzy Sets introduce parameterization and structured multidimensionality, though
typically with fixed dimensional configurations. In contrast, the proposed MDFS model offers variable-size
membership tuples, enabling full dimensional flexibility and complete information retention while maintaining
scalability. This positions MDFS as a unifying and extensible framework capable of capturing diverse uncertainty
structures more efficiently than existing models.

Summary and discussion

The comparative analysis clearly demonstrates that while models like IFS and FSS provide fundamental
frameworks for handling uncertainty, they suffer from dimensional rigidity and information loss during
transformation. MDFS overcomes these issues by:

@ Supporting arbitrary membership cardinalities for different attributes;
@ Preserving full data dimensionality without requiring normalization;
® Achieving more discriminative ranking results due to higher sensitivity to attribute variations.

Thus, MDFS offers a generalized, scalable, and information-preserving decision-making framework that
subsumes several classical and modern fuzzy set models as its special cases.

Validation analysis and comparative assessment of advantages and disadvantages
To ensure the robustness and effectiveness of the proposed Multidimensional Fuzzy Set (MDES) framework,
a detailed validation was performed based on three essential criteria: consistency, stability, and information
preservation. Table 8 summarizes the validation outcomes in comparison with existing fuzzy-based decision-
making models.

Model Membership Dimensional | Information | Complexity
Classical fuzzy set w(x) Fixed (1D) Partial Low
Intuitionistic fuzzy set pu(z), v(z)withp +v < 1 Moderate Partial Moderate
Pythagorean fuzzy set w4+ < Moderate Enhanced Moderate
q-Rung Ortho-pair fuzzy set | u? +v? < 1 High High High
Picture fuzzy set u, v, T (positive, negative, neutral) Moderate Context-rich | High
Hesitant fuzzy set Set of possible () values High Very Rich High

Fuzzy soft set Parameterized () for each attribute High Moderate Moderate
n-Dimensional Fuzzy Set n-tuple (p11, 2, ., fn) Fixed n Partial Moderate
MDFS (Proposed) Variable-size membership tuples (441, ft2, - - -, ptx) | Fully Flexible | Complete Scalable

Table 7. Comparative overview of fuzzy set models.
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Model

Consistency validation

Stability assessment

Information preservation

Intuitionistic Fuzzy Set
(IFS)

Maintains consistent ranking in low-dimensional data;
limited discrimination in higher complexity.

Moderately stable but sensitive to small
changes in hesitation degree.

Partial information retention; potential data
loss in aggregation.

Fuzzy Soft Set (FSS)

Ranking consistency depends on parameter weighting; prone
to bias in attribute correlation.

Stable for discrete datasets; unstable in
continuous data representation.

Medium information retention; parameter
dependency may distort outcomes.

n-Dimensional Fuzzy Set

Consistent for pre-defined dimensional data; lacks
adaptability in varying structures.

High stability for fixed dimensions;
sensitive to missing attributes.

Good information retention but may lose
fine-grained attribute details.

Pythagorean & q-Rung
Fuzzy Sets

Provides extended membership flexibility; reliable
consistency under uncertainty.

Stable under moderate perturbations;
computationally intensive.

High information preservation but limited
interpretability.

Multidimensional Fuzzy
Set (MDES) (Proposed)

Shows superior ranking consistency across all data types and
dimensions.

Highly stable under perturbations;
robust against noise and uncertainty.

Excellent information preservation; retains
full multidimensional attribute relationships.

Table 8. Validation analysis of MDFS and existing fuzzy-based models.

Model

Advantages Disadvantages

Intuitionistic Fuzzy Set (IFS)

1. Limited expressiveness for multidimensional
uncertainty.
2. Sensitive to membership normalization and weighting.

1. Captures hesitation through dual membership and non-membership functions.
2. Easy interpretation and efficient for simple decision cases.

Fuzzy Soft Set (FSS)

1. Weak correlation handling among parameters.
2. Performance drops for high-dimensional or
continuous data.

—

. Flexible parameterized representation.
Efficient for qualitative decision scenarios.

N

n-Dimensional Fuzzy Set

. Suitable for structured multidimensional data.
Provides good mathematical tractability.

1. Dimensional rigidity; requires pre-definition of n.
2. Lacks adaptability and computational scalability.

N =

Pythagorean & q-Rung
Fuzzy Sets

Broader membership representation range.
Useful in high-uncertainty domains.

1. High computational cost
2. Limited interpretability for non-expert users.

N =

Multidimensional Fuzzy Set
(MDES) (Proposed)

—

. Dynamically scalable dimensional structure.
Superior discrimination, consistency, and information preservation.
. Integrates entropy, similarity, and distance-based reasoning seamlessly.

1. Computationally demanding for large-scale datasets
2. Requires parameter optimization for interpretability.

W

Table 9. Advantages and disadvantages of fuzzy-based decision-making models.

The comparative analysis of fuzzy-based decision-making models highlights how each framework offers
distinct advantages while presenting inherent limitations. Intuitionistic and Fuzzy Soft Sets provide enhanced
representational richness but face constraints when handling multidimensional or highly correlated data. The n-
Dimensional Fuzzy Set model offers mathematical clarity butlacks flexibility due to its fixed dimensional structure.
Pythagorean and q-Rung Fuzzy Sets extend the expressive range of membership modeling, though at the cost of
increased computational demand. In contrast, the proposed MDEFS framework overcomes these limitations by
enabling dynamically scalable dimensionality, preserving information integrity, and accommodating complex,
structured uncertainty with significantly improved adaptability and interpretability. A detailed juxtaposition and
analysis of the advantages and disadvantages of fuzzy-based decision-making models is presented in Table 9.

The validation analysis confirms that the MDFS framework consistently outperforms existing models in
stability, ranking accuracy, and information fidelity. Unlike classical fuzzy approaches that rely on fixed or
parameter-dependent dimensions, MDFS dynamically adapts to data complexity, preserving the integrity of
multidimensional relationships. Although the computational demand increases with data size, the proposed
model’s robustness and adaptability make it highly suitable for real-world applications such as complex decision-
making, medical diagnosis, and multi-criteria optimization. Future improvements should focus on optimizing
computational efficiency and developing automated parameter-tuning strategies to further enhance scalability.

Conclusions and future works

This study expands the notion of multidimensional fuzzy sets by introducing specialized metrics tailored to
their representation, including multidimensional distance measurements, similarity measures, entropy, and
crisp approximation techniques. The MDFs offers a precise and robust representation of data by addressing each
element individually. However, practical problem-solving with MDFs requires a thorough understanding of the
data it represents, prompting an exploration of essential MDFs measures and their characteristics, along with
fundamental theorems relating to these metrics. Crisp approximation, facilitated through distance measures,
proves valuable for problem-solving within the MDEs framework. Case study analysis highlights the importance
of selecting appropriate distance measures for optimal problem-solving. The comparison section underscores
the advantages of MDESs in data presentation, emphasizing the need to select the most suitable data presentation
method for addressing complex problems. While multidimensional fuzzy sets (MDFS) provide flexible
and precise data representation, they face several limitations. The approach involves higher computational
complexity, making large-scale applications challenging. Results are sensitive to parameter choices, which can
affect accuracy and consistency. Practical usability is limited for non-expert users due to the complexity of
measures like distance, similarity, and entropy. Additionally, empirical validation is still insufficient, and existing
tools may struggle with highly intricate or dynamic real-world scenarios. Simplification and optimization are
needed to enhance accessibility, efficiency, and broader applicability.

Scientific Reports |

(2026) 16:3525

| https://doi.org/10.1038/s41598-025-33430-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

To further advance this research area, several future works are proposed. These include delving into more
complex measures, optimizing computational efficiency, conducting robustness and sensitivity analyses,
extending applicability to dynamic environments, fostering interdisciplinary collaboration, refining theoretical
analyses, and developing user-friendly software tools. Applying these measures to real-world domains and
integrating them into decision-making systems are also highlighted. To be more specific and particular,
multidimensional fuzzy sets and distance measures offer a straightforward method for representing real-world
data, there exist intricate scenarios beyond current tool capabilities. Recently, MDEs distance measures were
utilized to create a hybrid framework known as the Multidimensional measure space, which addresses harder
challenges. Future work aims to study continuous functions in multidimensional measure space and investigate
distance-based rough approximation methods for MDEs. By pursuing these avenues, researchers aim to enhance
the effectiveness and theoretical understanding of distance and similarity measures for multidimensional fuzzy
sets, opening up new avenues for applications and advancements in the field. The study presents a generalized
and flexible framework for defining distance, similarity, and entropy measures in multidimensional fuzzy
sets (MDEFS), offering significant advantages over existing fuzzy structures. It enables variable-dimensional
membership representation, ensuring better modeling of real-world uncertainty and improved decision-
making accuracy. The introduction of normalized, proximity, and o-measures strengthens consistency and
complement invariance, while establishing theoretical links between distance, similarity, and entropy enhances
interpretability. However, the approach involves higher computational complexity and sensitivity to parameter
choices, which may limit large-scale applications. Additionally, further empirical validation and simplification
are needed to enhance practical usability and understanding among non-expert users.
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