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This article examines distance and similarity measures in multidimensional fuzzy sets, which 
are essential in decision-making and aggregation across various fields. It defines the axioms for 
multidimensional distance measures and introduces a framework for normalized distance and 
similarity measures within a suitable fuzzy space. The concept of complement-invariant proximity 
measures is also discussed. The paper further explores the relationship between distance and 
similarity, linking them with multidimensional entropy. It presents σ-distance, σ-similarity, and σ
-entropy measures that balance values between fuzzy sets and their complements. Finally, two 
decision-making problems are analyzed, with a comparative study showing the proposed model’s 
advantage over existing approaches.
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Fuzzy sets are playing an important part in the growing field of general systems research because of their capacity 
to describe systems with imprecise components and linkages, which is a feature of many biological and social 
systems. Most decision-making circumstances, particularly group and multi-criteria scenarios, assign a unique 
membership value to each element and are difficult due to the inherent ambiguities of the circumstances. One 
solution to this is to replace the unique membership value with a collection of membership values, as is done in 
interval-valued fuzzy sets1, hesitant fuzzy sets2,3, m-polar fuzzy sets4, and n-dimensional fuzzy sets5. Another 
approach is to replace the single membership function with more than one function, as in intuitionistic fuzzy 
sets6,7 and picture fuzzy sets8. Although certain variations of fuzzy sets such as m-polar, intuitionistic, and n-
dimensional models, offer extended flexibility, they often fail to assign membership values precisely based on 
the unique characteristics of each attribute under study. Likewise, interval-valued and hesitant fuzzy sets present 
operational complexities that hinder real-world implementation.

Two intriguing fuzzy models are the m-polar fuzzy sets4 and the n-dimensional fuzzy sets5, where each set 
can independently assign a positive integer representing the number of membership values that an element 
can assume. However, these models restrict the modification of individual element dimensions according to 
contextual requirements. This limitation inspired the emergence of multidimensional fuzzy sets (MDFS)9, a 
modified form of fuzzy sets that allows each element to have an independent number of membership values. 
In MDFS, each element can be represented with as many values as needed based on its inherent uncertainty, 
unlike in m-dimensional or m-polar fuzzy sets where all elements are treated equally. Consequently, MDFS 
provides flexibility by enabling unique and independent dimensional assignments to each element, making it 
more suitable for modeling heterogeneous real-world data.

The concept of MDFS was introduced and discussed by Annaxsuel and Palmeira9 using a partially ordered 
set I∞([0, 1]). Each element can be assigned a specific dimension, offering individualized representation 
without restricting available knowledge. Compared with other generalized fuzzy models such as type-2 fuzzy 
sets10, genuine sets11, intuitionistic fuzzy sets12, and interval-valued fuzzy sets1,13, MDFS is more efficient for 
practical problems because of its simplicity and adaptability. Several applications highlight its usefulness–
for instance, an interviewer grading candidates under uncertain judgment, or multiple doctors diagnosing a 
patient with different conditions–where MDFS can naturally accommodate variable uncertainty levels. Further 
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developments such as multidimensional complements, t-norms, and t-conorms, and properties like De Morgan’s 
laws have been explored in14.

To analyze differences, similarities, and uncertainty among fuzzy structures, key measures such as distance, 
similarity, and entropy are essential. A fuzzy distance measure quantifies the dissimilarity between fuzzy 
sets and was formally established by Liu15. Its complementary notion, the similarity measure, introduced by 
Wang16, quantifies resemblance between fuzzy data. These concepts have since been extended to multiple fuzzy 
environments, including bipolar and intuitionistic fuzzy sets17,18. Such measures are widely applied in decision-
making, pattern recognition, image processing, and medical diagnostics16,19,20. Therefore, defining and analyzing 
distance and similarity measures for MDFS is crucial for addressing complex, real-world problems effectively.

Recent research further strengthens this direction. Khan et al.21 proposed an infrared–visible image fusion 
approach combining knowledge measures for intuitionistic fuzzy sets with the Swin Transformer, while Kumar 
et al.22 introduced circular intuitionistic fuzzy preference relations for group decision-making. Chen et al.23 
developed an intuitionistic fuzzy set-guided fast fusion transformer, and Zhao et al.24 proposed a lightweight 
infrared–visible image fusion model via adaptive DenseNet. Additionally, Li et al.25 designed new distance and 
similarity measures for picture fuzzy sets, and Radhakrishnan26 established σ-entropy and σ-similarity for multi-
set structures. These works reveal a growing integration of fuzzy measures with computational intelligence, 
underscoring the need to extend such methodologies to the multidimensional fuzzy framework.

Motivation
Traditional probability theory has long been used to model uncertainty; however, Zadeh’s introduction of 
fuzziness provided an alternative and more flexible framework. Measuring fuzziness–through entropy, distance, 
and similarity–remains vital for evaluating uncertainty within fuzzy systems. Entropy quantifies fuzziness within 
a fuzzy set, as initially formalized by De Luca and Termini using Shannon’s entropy27. Subsequent developments 
include Ebanks’ five fundamental properties for fuzzy entropy28, Kaufmann’s distance-based approach29, Yager’s 
negation-based interpretation30, and Liu’s sigma measures15. Despite this rich literature, the study of entropy 
and similarity measures in the multidimensional fuzzy context remains underexplored. Given that MDFS can 
represent real-world data more accurately by assigning independent membership values to elements, exploring 
its associated entropy and similarity measures is essential to close this research gap.

Contributions
This paper extends the notions of distance, similarity, and entropy to multidimensional fuzzy sets (MDFS). 
It establishes relationships among these measures through theoretical analysis and illustrative examples. 
Specifically, Section 2 provides essential preliminaries, while Section 3 defines multidimensional distance 
measures, similarity measures, proximity distances, perfect measures, and linear forms, introducing the concept 
of crisp approximation using distance measures and σ-based extensions. Section 4 discusses multidimensional 
entropy, perfect entropy, and σ-entropy. In Section 5, two decision-making applications based on distance and 
entropy are presented, followed by a comparative study in Section 6 with other fuzzy structures. Overall, the 
proposed framework contributes to a unified and flexible foundation for analyzing and applying fuzzy measures 
in multidimensional settings, enhancing both theoretical depth and practical usability.

Distance measures on fuzzy sets
In this section, we concisely review the formal articulation of distance measures on Fuzzy Sets and their 
multidimensional extensions. These measures quantify the dissimilarity between fuzzy sets, providing a 
numerical representation of differences in the data. The basic notations and properties of fuzzy sets follow the 
standard framework given in15.

Fuzzy sets and distance measures
Let F (Y ) denote the class of all fuzzy sets of Y, and P(Y ) the class of all crisp sets of Y. Following the 
formulations in15, we consider F  as a subclass of F (Y ) satisfying the usual closure properties.

A fuzzy distance measure d̂ : F 2 → R+ is defined according to the axioms established by Xuecheng15, 
ensuring reflexivity, symmetry, and consistency with complement and subset relations.

Common examples include the Hamming and Euclidean distances, widely used for quantifying dissimilarity:

	

d̂H(E, F ) =
n∑

i=1

|E(xi) − F (xi)|, d̂E(E, F ) =

√√√√
n∑

i=1

(E(xi) − F (xi))2.

Normalized variants of these measures are often employed to keep values within [0, 1]20.

Similarity and entropy measures
Analogous to distance measures, similarity measures ŝ : F 2 → R+ are defined by a corresponding set of 
axioms15. For continuous fuzzy sets, the parametric similarity measure

	
ŝp(A, B) = 1 −

(ˆ 1

0
|A(x) − B(x)|pdx

)1/p

provides a flexible method of quantifying resemblance between fuzzy sets.
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A fundamental relationship between normalized distance and similarity measures is given by the theorem 
in15, stating that if d̂ is a normalized distance measure, then ŝ = 1 − d̂ is a normalized similarity measure, and 
vice versa.

Further, σ-similarity measures and entropy functions on fuzzy sets are defined in15, establishing their core 
properties and interrelations. An example entropy on F (Y ) is given by

	
ê1(E) = −K

n∑
i=1

[
E(yi) ln E(yi) + (1 − E(yi)) ln(1 − E(yi))

]
,

which satisfies the entropy axioms outlined therein.

Discussion
These foundational definitions of fuzzy distance, similarity, and entropy measures15,20 form the basis for their 
multidimensional generalizations. Their normalized and parameterized versions facilitate consistent comparison 
and interpretation in both low- and high-dimensional fuzzy environments.

Multidimensional fuzzy sets
Definition 1  9 Let U be a non empty set and given r : U → N. We define the set:

	
M =

{(
y, µ1

M(y), . . . , µ
r(y)
M (y)

)
| y ∈ U

}

where µi
M : U → [0, 1] satisfies µ1

M(y) ≤ · · · ≤ µ
r(y)
M (y) for all i = 1, . . . , r(y) and for each y ∈ U . Then the 

set M is called a multidimensional fuzzy set on U.
The jth membership degree of the element y with respect to the set M is given by µj

M(y).

Let, I∞

(
[0, 1]

)
=

∞∪
n=1

In

(
[0, 1]

)
 where, In

(
[0, 1]

)
=

{
(y1, . . . , yn) ∈ [0, 1]n

∣∣∣y1 ≤ y2 ≤ · · ·  ≤ yn

}

Hence if M is a multidimensional fuzzy set on U, then for each y ∈ U : (
µ1

M(y), . . . , µ
r(y)
M (y)

)
∈ Ir(y)

(
[0, 1]

)
⊆ I∞

(
[0, 1]

)

Thus any mdfs M on U can be treated as a function from U to I∞([0, 1]).
Let |W| denote the natural number n ∈ N such that W ∈ In([0, 1]) called cardinality of W . For a given 

W ∈ I∞([0, 1]) the ith component will be denoted by wi , i ≤ |W|.
Let /w/n denote the element of I∞([0, 1]) which has w in all of their n components, w ∈ [0, 1].
Let 1 = {/1/m, m ∈ N}, 0 = {/0/m, m ∈ N}, 1̇ is an arbitrary element of 1 and 0̇ is an arbitrary element 

of 0.
Let 1̂

2 = {µ : U → I∞([0, 1]) : ∀y ∈ U, µ(y) = /0.5/m, m ∈ N} and 1̂
2  denotes an arbitrary element of 

1̂
2 .

There are many partial orders available if the elements of I∞([0, 1]) have the same dimension. But we use a 
natural partial order on I∞([0, 1]) given by:

W ≤∞ V ⇔ |W| = |V| = n and
W ≤p

n V  where V ≤p
n W  is the product order on In([0, 1]), n ∈ N.

Also, if M1 and M2 are two mdfs we say that M1 ⊆ M2 if M1(y) ≤∞ M1(y) for every y.
Standard t-norm and t-conorm for mdfs are defined in14, using two functions, F1 and F2 as:

If F1(V, W) = k then:
      min(V, W) = (v1 ∧ w1, v2 ∧ w2, . . . , vk ∧ wk)
      where vi = wi = 1∀i > k, and
If F2(V, W) = l then :
      max(V, W) = (vn−(l−1) ∨ wm−(l−1), vn−(l−2) ∨ wm−(l−2), · · · , vn ∨ wm)
      where  vn−i = wm−j = 0∀i ≥ n and j ≥ m.

Now the standard multidimensional complement is given by:

	 Cs(a1, a2, · · · , an) = (1 − an, 1 − an−1, · · · , 1 − a1)

Additional investigations of multidimensional fuzzy sets, particularly concerning multidimensional t-norms, 
t-conorms, and complements, are documented in14. An innovative rough approximation technique for 
multidimensional fuzzy sets by integrating rough sets and multidimensional fuzzy sets is presented in31. Further 
extended to Categorical accommodation of various notions in generalized multidimensional fuzzy sets32. 
Throughout the remainder of our analysis, we exclusively rely on the intersection, union, and complement 
operations mentioned above.

Distance and similarity measures of multidimensional fuzzy sets
Distance and similarity measures are fundamental components across various generalized set theories, 
underpinning applications in decision-making, pattern recognition, and aggregation. Their development reflects 
the ongoing refinement of quantitative methodologies in fuzzy and multidimensional environments15,33.
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Definition 2  Consider a nonempty set U , and let F denote the collection of all multidimensional fuzzy sets over 
U . Within this framework, let D ⊂ F consist of multidimensional fuzzy sets D such that D(y) ∈ 1 or D(y) ∈ 0 
for every y ∈ U . Define F ⊆ F to satisfy: 

	 (i)	 closure under finite unions and complements,
	(ii)	 1̂

2 ⊆ F ,
	(iii)	 D ⊆ F .

Distance measure of multidimensional fuzzy sets
Multidimensional fuzzy sets represent a generalized framework that extends traditional fuzzy set theory. 
Correspondingly, their distance measures generalize classical and intuitionistic fuzzy distances such as the 
Hamming and Euclidean metrics33.

An intuitionistic fuzzy set J  in a set Y  is defined as:

	 J = {⟨y, µJ (y), vJ (y)⟩ | y ∈ Y } ,

where µJ (y) and vJ (y) denote membership and non-membership degrees, satisfying 0 ≤ µJ (y) + vJ (y) ≤ 1, 
and πJ (y) = 1 − µJ (y) − vJ (y).

For two intuitionistic fuzzy sets E and F  on Y = {y1, . . . , yn}, the Hamming distance is defined as:

	
difs(E, F ) = 1

2

n∑
i=1

[
|µE(yi) − µF (yi)| + |vE(yi) − vF (yi)| + |πE(yi) − πF (yi)|

]
,

and the square of the Euclidean distance is given by:

	
eifs(E, F )2 = 1

2

n∑
i=1

[
(µE(yi) − µF (yi))2 + (vE(yi) − vF (yi))2 + (πE(yi) − πF (yi))2

]
.

The axioms governing multidimensional distance measures, adapted from15, ensure properties such as symmetry, 
reflexivity, maximal separation between complements, and consistency with set inclusion.

Definition 3  A multidimensional distance measure on F  is a function δ : F × F → [0, ∞) satisfying: 

(D1)	 δ(G, H) = δ(H, G)
(D2)	 δ(G, G) = 0 for all G ∈ F
(D3)	 δ(D, Dc) ≥ δ(G, H) for all G, H ∈ F  and ∀D ∈ D whenever:
|G(y)| = |H(y)| = |D(y)| ∀y
(D4)	 For G, H, E ∈ F : if G ⊆ H ⊆ E, then δ(G, H) ≤ δ(G, E) and
δ(H, E) ≤ δ(G, E)

Example 1  Discrete distance: Define δ(G, H) = 0 if G = H , and 1 otherwise. Clearly, δ satisfies all the axioms 
of a distance measure on F .

The above axiomatic structure provides a consistent mathematical foundation for comparing multidimensional 
fuzzy sets, ensuring both interpretability and generality across diverse fuzzy frameworks.

Identification of elements in I∞([0, 1]) as infinite sequences
To present pertinent examples of multidimensional distance measures, it is imperative to establish an association 
between the elements of I∞([0, 1]) and a space where the cardinality of elements does not influence but imparts 
a distinctive structure to each element.

Definition 4  Let Ĩ∞([0, 1]) denote the set comprising all sequences with elements from [0,1] and possessing 
only finitely many nonzero terms. Consider Y = (y1, ..., yn) ∈ I∞([0, 1]). We establish the identification of Y  
with an element of Ĩ∞([0, 1]), denoted as Ỹ , represented by Ỹ = (0, ..., 0, y1, ..., yn, 0, 0, ...), where there are 
precisely n − 1 zeros preceding y1. For any multidimensional fuzzy set A, we denote its corresponding sequen-
tial multidimensional fuzzy set as Ã, where Ã(y) = Ã(y).

It is imperative to emphasize that the equivalence between two sets, V  and W , within I∞([0, 1]), is contingent 
upon the equivalence of their respective closures Ṽ  and W̃ . In other words, V = W  if and only if Ṽ = W̃ , where 
both V  and W  belong to the set I∞([0, 1]).

Considering the above conditions, we define the following distance measures:
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Examples

	➀	 Euclidean Distance: Consider U = {y1, y2, · · · , ym} and let A and B be two multidimensional fuzzy sets 
over U. Let Ã, B̃ denote the corresponding sequential multidimensional fuzzy sets with Ã(y) = (Ã1(y), 
Ã2(y), ...) and B̃(y) = (B̃1(y), B̃2(y), ...). Then, we define the Euclidean distance d∞

e (A, B) as:

d∞
e (A, B) =

m∑
j=1

(
∞∑

i=1

∣∣∣Ãi(yj) − B̃i(yj)
∣∣∣
2
) 1

2

It is noteworthy that the convergence of the infinite summation in the expression is assured by the finite 
nature of the nonzero terms constituting the sum.

	➁	 Hamming Distance: The Hamming distance δ∞
h (A, B) is given by: 

	
δ∞

h (A, B) =
m∑

j=1

(
∞∑

i=1

∣∣∣Ãi(yj) − B̃i(yj)
∣∣∣
)

	➂	 The pth Distance: The pth distance δ∞
p (A, B) is defined as: 

	
δ∞

p (A, B) =
m∑

j=1

(
∞∑

i=1

(∣∣∣Ãi(yj) − B̃i(yj)
∣∣∣
p) 1

p

)

	 where p ≥ 1.

	➃	 Supremum Distance: The supremum distance δ∞
s (A, B) is expressed as: 

	
δ∞

s (A, B) = sup

{
∞∑

i=1

∣∣∣Ãi(y) − B̃i(y)
∣∣∣ : y ∈ U

}

	➄	 Integral Distance: Assuming Ai and Bi are continuous functions for all i, the integral distance δ∞
I (A, B) is 

defined as: 

	
δ∞

I (A, B) = sup
{ˆ

U

∣∣∣Ãi(y) − B̃i(y)
∣∣∣dy : y ∈ U

}

 It is noteworthy that among the array of distance measures mentioned earlier, with the exception of the 
discrete distance measure, none exhibit bounded characteristics. Yet, in practical applications, the imposition of 
boundedness proves indispensable. Consequently, we delineate a tailored space for multidimensional fuzzy sets, 
characterized by the following specifications.

Definition 5  Let U be a nonempty set and n ∈ N. Fn denotes the collection of all multidimensional fuzzy sets 
over U such that:

	
A ∈ Fn =⇒ A(y) ∈

n∪
j=1

Ij([0, 1]) ∀y ∈ U

It is evident that Fn encompasses a broader concept than traditional n-dimensional fuzzy sets, and in most real-
life scenarios, a suitable value of n can be determined such that the cardinality of membership values is less than 
or equal to it.

Definition 6  Let Dn denote a subset of Fn comprising multidimensional fuzzy sets D with membership values 
D(y) ∈ 1 or D(y) ∈ 0 for each y in U. Furthermore, let Fn be a subset of Fn possessing the following proper-
ties: 

	 (i)	 closed under finite union and complements
	(ii)	 if A ∈ Fn such that A(y) = /0.5/m for some m(1 ≤ m ≤ n) and for all y, then A ∈ Fn, and
	(iii)	 Dn ⊆ Fn.

Theorem 1  When restricting δ∞
p  and δ∞

s  from F  to Fn, both measures are bounded.
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Proof  It is evident that if 
∣∣∣U

∣∣∣ = m, then δ∞
p  is bounded by m(2n − 1), given that there are m elements in U 

and each element can contribute to the first 2n − 1 positions with non-zero membership values. Similarly, δ∞
s  

is bounded by (2n − 1). □

Similarity measure of multidimensional fuzzy sets
A crucial tool in analyzing multidimensional fuzzy sets is the similarity measure, which provides insights into 
the degree of resemblance between two such sets. Complementary to distance measures, similarity measures 
elucidate the likeness between sets and exhibit a close interrelation with them. The second axiom in our 
framework underscores the absence of similarity between a set D and its complement Dc within the domain 
D. Fundamentally, it aligns with our intuitive expectation that a multidimensional fuzzy set should exhibit 
maximum similarity with itself, a notion encapsulated by axiom S3. Additionally, axiom S4 ensures the principle 
of monotonicity, akin to its counterpart in distance measures.

Definition 7  A multidimensional similarity measure on F  is a function ξ : F × F → [0, ∞) satisfying the 
following four axioms:

	(S1)	 ξ(G, H) = ξ(H, G)
	(S2)	 ξ(D, Dc) ≤ ξ(G, H) ∀G, H ∈ F  and ∀D ∈ D whenever

	
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y

∣∣∣ for all y

	(S3)	 ξ(G, G) ≥ ξ(H, E)∀G, H, E ∈ F  whenever

	
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣E(y)

∣∣∣ for all y

	(S4)	 If G, H, E ∈ F  and G ⊆ H ⊆ E, then

	ξ(G, H) ≥ ξ(G, E) and ξ(H, E) ≥ ξ(G, E)

It is imperative to acknowledge that akin to distance measures, the boundedness of similarity measures cannot 
be assumed. As such, to ensure suitability for practical applications, we constrain similarity measures to operate 
within the realm of Fn.

Henceforth, we direct our focus exclusively towards normalized distance and similarity measures, achieved 
by dividing the bounded measures by their respective maximum values. Under this normalization scheme, the 
ensuing theorem stands:

Theorem 2  Let δ be a distance measure, then ξ = 1 − δ is a similarity measure.

Proof  This result directly follows from the definitions of distance and similarity measures. □

Theorem 3  If δ is a distance measure, then ξ = 1
1+δ  is a similarity measure.

The subsequent definition encapsulates the desired properties of distance and similarity measures, elucidating 
essential relationships connecting them.

Definition 8  A distance measure is deemed perfect if δ(D, Dc) = 1 for all D ∈ Dn, while a similarity measure 
is considered perfect if ξ(D, Dc) = 0 and ξ(G, G) = 1 for all D ∈ Dn and G ∈ Fn.

Theorem 4  Let δ and ξ denote distance and similarity measures, respectively, such that δ = 1 − ξ. Then, δ is 
perfect if and only if ξ is perfect.

Proof  The proof is straightforward and thus omitted. □

A proximity measure is a specialized form of measure that remains invariant under complements, defined as 
follows:

Definition 9  A distance (similarity) measure is termed a proximity measure if δ(G, H) = δ(Gc, Hc) (conse-
quently, ξ(G, H) = ξ(Gc, Hc)) holds for ∀G, H ∈ F.

Theorem 5  Let δ be a distance measure. Then:

	
δ̂(G, H) = δ(G, H) + δ(Gc, Hc)

2
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is a proximity distance measure.

Proof  To demonstrate that δ̂ is a distance measure, it suffices to establish the axioms of the distance measure, 
denoted by D̂1, D̂2, D̂3 and D̂4

For D1 and D2, it is evident that δ̂(G, H) = δ̂(Gc, Hc). To show that δ̂ satisfies D̂3, consider E, F ∈ F and 

D ∈ D such that 
∣∣∣E(y)

∣∣∣ =
∣∣∣F (y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for every y:

	

δ̂(D, Dc) = δ(D, Dc) + δ(D, Dc)
2

≥ δ(G, H) + δ(Gc, Hc)
2

= δ̂(G, H)

For D4, suppose G ⊆ H ⊆ E ⇒ Ec ⊆ Hc ⊆ Gc. Thus, δ(G, H) ≤ δ(E, G) and δ(Hc, Ec) ≤ δ(Ec, Gc), 
implying δ̂(G, H) ≤ δ̂(G, E). Since:

	

δ̂(G, H) = δ(G, H) + δ(Gc, Hc)
2

≤ δ(E, G) + δ(Ec, Gc)
2

= δ̂(G, E)

Similarly, it can be shown that δ̂(H, E) ≤ δ̂(G, E). □

Theorem 6  δ̂(G, H) = min{δ(G, H), δ(Gc, Hc)} also constitutes a proximity measure.

Example 2  The pth distance δp serves as a proximity measure. For instance, if:

	

G(y) =
(

G1(y), ..., Gn(y)
)

and

H(y) =
(

H1(y), ..., Hm(y)
)

, then

Gc(y) =
(

1 − Gn(y), ..., 1 − G1(y)
)

and

Hc(y) =
(

1 − Hm(y), ..., 1 − H1(y)
)

Thus, 

(
∞∑

i=1

∣∣∣G̃i(y) − H̃i(y)
∣∣∣
p

) 1
p

=

(
∞∑

i=1

∣∣∣G̃c
i (y) − H̃c

i (y)
∣∣∣
p

) 1
p

∀y indicating δp(G, H) = δp(Gc, Hc)

Definition 10  Let G, H, and 1̂
2 ∈ F  such that 

∣∣∣G(y)
∣∣∣ =

∣∣∣H(y)
∣∣∣ =

∣∣∣( 1̂
2 (y)

∣∣∣ for every y, where 1̂
2 (y) = /0.5/m 

for some m ∈ N. Then, G and H are considered a similar pair if ξ(G, 1̂
2 ) = ξ(H, 1̂

2 ).

It is evident that when ξ serves as a proximity measure, the sets G and its complement Gc are similar pair. 
Extending this notion, we rigorously establish the ensuing theorem.

Theorem 7  If ξ is a proximity similarity measure, then G and H are a similar pair if and only if Gc and Hc are 
also a similar pair.

Proof  Assume ξ is a proximity measure. If G and H form a similar pair with respect to ξ, then

	
ξ
(

G,
1̂
2

)
= ξ

(
H,

1̂
2

)
⇒ ξ

( 1̂
2 , Gc

)
= ξ

( 1̂
2 , Hc

)

since ξ is a proximity measure.
Hence, Gc and Hc also constitute a similar pair. The converse follows similarly. □

Definition 11  Let δ be a distance measure in F . A multidimensional fuzzy set G ∈ F  is said to be linear if it 

satisfies the equation δ(G, Gc) = δ(G, 1̂
2 ) + δ(Gc, 1̂

2 ), where 
∣∣∣G(y)

∣∣∣ =
∣∣∣ 1̂

2 (y)
∣∣∣ for all y. If every G ∈ F  is lin-

ear, then δ is termed a linear distance measure.

The Hamming distance measure δ∞
h  is an instance of a linear distance measure.
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It is discernible that if δ represents a proximity linear distance measure, then for every A ∈ F , 
δ(G, Gc) = 2δ(G, 1̂

2 ). The interplay between linear distance measures and multidimensional entropy will be 
thoroughly investigated in the forthcoming discourse.

While fuzzy sets offer a refined approach to data representation, the process of defuzzification is equally crucial 
for decision-making. Distance measures play a pivotal role in determining the optimal crisp approximation of a 
multidimensional set. Hence, we define the crisp approximation of A ∈ F  using δ as follows:

Definition 12  Let G ∈ F . A multidimensional fuzzy set D ∈ D is termed a crisp approximation of G with 
respect to δ if δ(G, D) = min{δ(G, D′) | D′ ∈ D}.

Consider δ∞
p  as the pth distance measure. There exist cases where G ∈ F  does not possess a unique crisp 

approximation. For instance, consider U = {x1, x2} and let n = 2. Define a 2-dimensional fuzzy set on U as 
follows:

	
G(y1) =

(1
3 ,

2
3

)
and G(y2) =

(1
4 ,

3
4

)

Now, define D′ and D′′ ∈ D as:

	

D′(y1) = (0, 0), D′(y2) = (1, 1)
D′′(y1) = (1, 1), D′′(y2) = (0, 0)

Then, δ(G, D′) = δ(G, D′′) and D′ and D′′ are evidently crisp approximations of A.

Theorem 8  Let G, 1̂
2 ∈ F  such that G(y) ≤∞

1̂
2 (y) or 1̂

2 (y) ≤∞ G(y) for each y, with strict inequality hold-
ing for every y. Then, G possesses a unique crisp approximation with D, respect to δ∞

p , satisfying the property ∣∣∣D(y)
∣∣∣ =

∣∣∣G(y)
∣∣∣ for every y.

Proof  Define D ∈ D as follows:

	
D(y) =

{
/0/n if G(y) ≤∞ / 1

2 /n
/1/n if / 1

2 /n <∞ G(y)

Clearly, δ(G, D) = min{δ(G, D′), D′ ∈ D}.
Suppose, for contradiction, that there exists D′ ∈ D such that δ(G, D) = δ(G, D′) and D ̸= D′, yet ∣∣∣D′(y)

∣∣∣ =
∣∣∣G(y)

∣∣∣ for every y.

Then, there exists y ∈ U  such that D(y) ̸= D′(y). Without loss of generality, assume:

	

G(y) ≤∞ /
1
2/n =⇒ D(y) = /0/n

=⇒ D′(y) = /1/n

Thus, if G(y) = (G1, ..., Gn), then:

	

(
n∑

i=1

∣∣∣ai − 0
∣∣∣
p

) 1
p

<

(
n∑

i=1

∣∣∣ai − 1
∣∣∣
p

) 1
p

Similarly, a lower summation value is obtained for D(y) and G(y) compared to D′(y) and G(y) whenever 
D(y) ̸= D′(y). Hence, δ(G, D) < δ(G, D′), which is a contradiction. □

σ-distance measure
The σ-distance measure and σ-similarity measure are specialized metrics distributing distance or similarity 
equally between multidimensional fuzzy sets and their complements. Subsequently, we introduce σ-entropy 
measures, which distribute the entropy among each mdfs and crisp mdfs. It will be demonstrated that σ
-distance measures and σ-similarity measures yield σ-entropy measures.

Definition 13  A multidimensional distance measure is termed a σ-distance measure if it satisfies 
δ(G, H) = δ(G ∩ D, H ∩ D) + δ(G ∩ Dc, H ∩ Dc) for every G, H ∈ F  and for every D ∈ D whenever ∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for all y.

Theorem 9  The pth distance measure δ∞
p  is a σ-measure.
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Proof  Let G, H ∈ F  and D ∈ D be arbitrary, with 
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for all y. Select y ∈ U  and, 

without loss of generality, assume that D(y) = /0/n. 
=⇒ G(y) ∩ D(y) = /0/n

H(y) ∩ D(y) = /0/n
G(y) ∩ Dc(y) = G(y) and
H(y) ∩ Dc(y) = H(y)

Therefore, the contribution of y to the sum of d∞
p (G, H) remains unchanged when partitioning the sum into 

d∞
p (G ∩ Dc, H ∩ Dc), while the contribution to d∞

p (G ∩ D, H ∩ D) becomes zero. Thus, the separation of 
the sum preserves its value, yielding the desired result. □

Theorem 10  The supremum distance measure δ∞
s  is not a σ-measure.

Proof  Let U = {y1, y2}, and G, H ∈ F  be such that:

	

G(y1) = (0.3, 0.6) G(y2) = (0.4, 0.7)
H(y1) = (0.4, 0.6) H(y2) = (0.5, 0.8)

Define D ∈ D as:

	

D(y1) = (0, 0) and D(y2) = (1, 1)
Then, δ∞

s (G, H) = 0.2

	 δ∞
s (G ∩ D, H ∩ D) + δ(G ∩ Dc, H ∩ Dc) = 0.3

Consequently, δ∞
s  does not satisfy the σ-measure property. □

Theorem 11  If δ is a proximity distance measure, then δ is a σ-distance measure if and only if 
δ(G, H) = δ(Gc ∪ Dc, Hc ∪ Dc) + δ(Gc ∪ Dc, Hc ∪ Dc) for all G, H ∈ F  and for every D ∈ D whenever ∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for all y.

Proof  The proof follows straightforwardly since the standard t-norm, standard t-conorm, and the standard 
complement satisfy De Morgan’s laws. Utilizing De Morgan’s law and the proximity property of δ, we have 
δ(G ∩ D, H ∩ D) + δ(G ∩ Dc, H ∩ Dc) = δ(Gc ∪ D, H ∪ D) + δ(Gc ∪ Dc, Hc ∪ Dc). Thus, the remain-
der of the result follows directly. □

σ-similarity measure
A multidimensional similarity measure ξ is defined as a σ-similarity measure if it adheres to the following 
definition:

Definition 14  For every pair of fuzzy sets G and H  belonging to the set of fuzzy sets F , and for every D belong-
ing to the set of multidimensional sets D, the equality ξ(G, H) = ξ(G ∩ D, H ∪ Dc) + ξ(G ∩ Dc, H ∪ D) 

holds whenever 
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for all y.

Theorem 12  Let ξ is a perfect similarity measure. Then, ξ is a σ-similarity measure if and only if it satisfies the 
equation ξ(G, H) = ξ(G ∩ D, H ∪ Dc) + ξ(G ∪ D, H ∩ Dc) for every pair of fuzzy sets G and H  in F , and 

for every D in D, provided that 
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for all y.

Proof  We demonstrate the sufficiency part; the necessity part follows a similar argument.

Suppose ξ(G, H) = ξ(G ∩ D, H ∪ Dc) + ξ(G ∪ D, H ∩ Dc) for every pair of fuzzy sets G and H  in F , 

and for every D in D, provided that 
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for all y. Then,

	

ξ(G ∩ Dc, H ∪ D) = ξ(G ∩ Dc ∩ D, H ∪ D ∪ Dc)+
+ ξ((G ∩ Dc) ∪ D, (H ∪ D) ∩ Dc)

= ξ(D′, D′c) + ξ(G ∪ D, H ∩ Dc)

where D′ is an element of D defined by D′(y) = /0/n for some n, and 
∣∣∣D′(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for every y. 

Consequently, ξ(D′, D′c) = 0, and thus:

	 ξ(G ∪ D, H ∩ Dc) = ξ(G ∩ Dc, H ∪ D)

which proves the result.
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□

Theorem 13  Let δ and ξ be the perfect distance measure and perfect similarity measure, respectively, such that 
δ = 1 − ξ. Then, δ is a σ-distance measure if and only if ξ is a σ-similarity measure.

Proof  Let us assume δ to be a σ-distance measure, and denote ξ = 1 − δ. We aim to demonstrate that ξ qualifies 
as a σ-similarity measure.

Consider two fuzzy sets G, H ∈ F , along with a set D ∈ D such that 
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ holds for 

all y. Then, we have:

	

ξ(G ∩ D, H ∪ Dc) = 1 − δ(G ∩ D, H ∪ Dc)

= 1 − δ
(

G ∩ D ∩ D, (H ∪ Dc) ∩ D
)

−

− δ
(

G ∩ D ∩ Dc, (H ∪ Dc) ∩ Dc
)

= 1 − δ(G ∩ D, H ∩ D) − δ(D′, Dc)

where D′(y) = /0/n for all y and for some n with 
∣∣∣D′(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for every y. Similarly, we obtain:

	 ξ(G ∪ D, H ∩ Dc) = 1 − δ(D, D′) − δ(G ∩ Dc, H ∩ Dc)

Combining both equations, then we derive:

	

ξ(G ∩ D, H ∪ Dc) + ξ(G ∩ Dc, H ∪ D) =

= 2 −
(

δ(D′, Dc) + δ(D, D′)
)

−

−
(

δ(G ∩ D, H ∩ D) + δ(G ∩ Dc, H ∩ Dc)
)

However, it holds that:

	

1 = δ(D′, D′c)
= δ(D′ ∩ D, D′c ∩ D) + δ(D′ ∩ Dc, D′c ∩ Dc)
= δ(D′, D) + δ(D′, Dc)

From which, we can deduce:

	

ξ(G ∩ D, H ∪ Dc) + ξ(G ∩ Dc, H ∪ D) =

= 1 −
(

δ(G ∩ D, H ∩ D) + δ(G ∩ Dc, H ∩ Dc)
)

= 1 − δ(G, H) = ξ(G, H)

Hence, ξ qualifies as a σ-similarity measure. Similarly, it can be shown that if ξ is a σ-similarity measure, then 
δ = 1 − ξ constitutes a σ-distance measure. □
It is noteworthy that the theorem presented above elucidates scenarios wherein σ-similarity measures emanate 
from σ-distance measures. This observation underscores a fundamental relationship between these two measures 
within the framework of multidimensional fuzzy set theory.

Entropy of multidimensional fuzzy sets
The entropy component of the proposed framework can be further enriched by integrating the recent 
developments on entropy measures for specialized fuzzy structures. In particular, the construction methods 
for entropy measures of circular intuitionistic fuzzy sets provide valuable insights into designing entropy 
functions that preserve rotational invariance, complement symmetry, and information consistency under 
uncertainty34. These methods highlight systematic ways to construct entropy measures that align with the 
axioms of fuzzy uncertainty quantification. Incorporating such approaches within the multidimensional fuzzy 
set (MDFS) framework can further strengthen the theoretical foundation of σ-entropy measures and enhance 
their applicability in real-world decision-making and aggregation scenarios. Thus, future work may extend 
the proposed model by drawing from these circular entropy construction strategies to generalize entropy 
computations over multidimensional domains.

Definition 15  An entropy on F  is a function ϵ: F → [0, ∞) which satisfies the following axioms: 

	(E1)	 ϵ(D) = 0, ∀D ∈ D
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	(E2)	 ϵ( 1̂
2 ) ≥ ϵ(G) whenever 

∣∣∣G(y)
∣∣∣ =

∣∣∣ 1̂
2 (y)

∣∣∣∀y, G ∈ F
	(E3)	 ϵ(Gc) = ϵ(G), ∀G inF
	(E4)	 Let G, H ∈ F  be such that H(y) ≤∞ G(y) ≤∞

1̂
2 (y)

	or 1̂
2 (y) ≤∞ G(y) ≤∞ H(y) for every y, then

	ϵ(H) ≤ ϵ(G)

Example 3  Let U = {y1, y2, ...ym} and let G ∈ F . Define S : I∞([0, 1]) → [0, ∞) by:

	
S(G1, ...Gn) = −

[ n∑
i=1

Giln(Gi) +
n∑

i=1

(1 − Gi)ln(1 − Gi)
]

Then ϵ(G) =
m∑

j=1

S(G(yj)) is an entropy on F .

Example 4  Given G ∈ F , define Ĝ ∈ F  such that Ĝ(y) = (g1, ...gn) with gi =
{ 0 if Gi(y) ≤ 0.5

1 if Gi(y) > 0.5  Then 

ϵ∞(G) = 1 − δ(G, Ĝ) represents an entropy measure, where δ denotes a perfect distance measure.

Example 5  For G ∈ F , ϵ∞
c (G) = 1 − δ(G, Gc) defines an entropy measure, where δ is a perfect distance 

measure.

Similar to distance and similarity measures, multidimensional entropy measures may not necessarily be 
bounded. For instance, consider Example 3.

Definition 16  A multidimensional entropy is termed perfect if ϵ( 1̂
2 ) = 1 for every 1̂

2 ∈ F .

The subsequent theorem establishes a significant relationship among entropy, similarity measure, and distance 
measure:

Theorem 14  If s is a perfect similarity measure, then ϵ(G) = ξ(G, Gc) represents a perfect entropy. Moreover, 
if δ is a perfect distance measure, then ϵ(G) = 1 − δ(G, Gc) signifies a perfect entropy.

Proof  The proof immediately follows from the definitions. □

Definition 17  Let δ be a distance measure and ϵ be an entropy measure. We say that ϵ is symmetric with respect 
to δ if, for any G, H, 1̂

2 ∈ F  with 
∣∣∣G(y)

∣∣∣ =
∣∣∣H(y)

∣∣∣ =
∣∣∣ 1̂

2 (y)
∣∣∣ for all y, the condition δ(G, 1̂

2 (y)) = δ(H, 1̂
2 (y)) 

leads to ϵ(G) = ϵ(H).

Theorem 15  Let δ be a perfect linear proximity distance measure. Then, the entropy measure generated by δ is 
symmetric with respect to δ.

Proof  Suppose δ(G, 1̂
2 ) = δ(H, 1̂

2 ). Consequently, we have δ(Gc, 1̂
2 ) = δ(Hc, 1̂

2 ). Now, summing up these 
equations yields:

	
δ
(

G,
(1

2
))

+ δ
(

Gc,
(1

2
))

= δ
(

H,
(1

2
))

+ δ
(

Hc,
(1

2
))

which simplifies to δ(G, Gc) = δ(H, Hc). This further leads to 1 − δ(G, Gc) = 1 − δ(H, Hc), and thus, 
ϵ(G) = ϵ(H). Consequently, ϵ is symmetric with respect to δ. □

σ-entropy measure
Definition 18  An entropy function ϵ is termed a σ-entropy measure if it satisfies the condition:

	 ϵ(G) = ϵ(G ∩ D) + ϵ(G ∩ Dc)

for each G ∈ F  and D ∈ D whenever 
∣∣∣G(y)

∣∣∣ =
∣∣∣D(y)

∣∣∣ for all y.

Definition 19  A subset E ⊆ F  is considered a comparable class if it adheres to the following criteria: 

	 (i)	 For every G, H ∈ E, either G(y) ≤∞ H(y) or H(y) ≤∞ G(y).
	(ii)	 D ⊆ E.
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	(iii)	 E is closed under finite union and complement.
	(iv)	 1̂

2 ⊆ E.

Theorem 16  Let E be a comparable class. Then, an entropy function ϵ defined on E is a σ-entropy measure if 
and only if it satisfies the equation:

	 ϵ(G) + ϵ(H) = ϵ(G ∪ H) + ϵ(G ∩ H) ∀G, H ∈ E

Proof  Let G, H ∈ E and K = {y ∈ U : H(y) ≤∞ G(y)}. Define D ∈ D as follows:

	
D(y) =

{
1̇ if y ∈ K
0̇ if y /∈ K

Assume that ϵ is a σ entropy then:

	

ϵ(G ∪ H) = ϵ
(

(G ∪ H) ∩ D
)

+ ϵ
(

(G ∪ H) ∩ Dc
)

= ϵ(G ∩ D) + ϵ (H ∩ Dc)

and

	

ϵ(G ∩ H) = ϵ
(

(G ∩ H) ∩ D
)

+ ϵ
(

(G ∩ H) ∩ Dc
)

= ϵ
(

H ∩ D
)

+ ϵ
(

G ∩ Dc
)

Hence,

	

ϵ(G ∪ H) + ϵ(G ∩ H) =
(

ϵ(G ∩ D) + ϵ(G ∩ Dc)
)

+
(

ϵ(H ∩ D) + ϵ (H ∩ Dc)
)

= ϵ(G) + ϵ(H)

Now assume that, ϵ(G) + ϵ(H) = ϵ(G ∪ H) + ϵ(G ∩ H) ∀G, H ∈ E
Then,

	

ϵ(G) = ϵ(G) + ϵ(D)
= ϵ(G ∩ D) + ϵ(G ∪ D)

= ϵ(G ∩ D) + ϵ
(

(G ∩ Dc) ∪ D
)

= ϵ(G ∩ D) +
(

ϵ (G ∩ Dc) + ϵ(D) − ϵ ((G ∩ Dc) ∩ D)
)

= ϵ(G ∩ D) + ϵ (G ∩ Dc)

□

Theorem 17  If ξ is a σ-similarity measure, then the entropy function defined by ϵ(G) = ξ(G, Gc) is a σ-en-
tropy measure.

Proof  Consider G ∈ F  and D ∈ D then we have;

	

ϵ(G ∩ D) + ϵ (G ∩ Dc) = ξ
(

G ∩ D, (G ∩ D)c
)

+ ξ
(

G ∩ Dc, (G ∩ Dc)c
)

= ξ (G ∩ D, Gc ∪ Dc) + ξ (G ∩ Dc, Gc ∪ D)
= ξ (G, Gc)
= ϵ(G)

□

Decision making-methods
Multidimensional fuzzy sets have extensive applications across various domains, including decision-making, 
pattern recognition, and granular computing, providing robust solutions to real-world challenges. Here, we 
present a methodological framework employing multidimensional distance measures for decision-making in 
practical scenarios.
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Method 1: Decision-making using the weighted euclidean distance measure
In many decision-making scenarios, the evaluation of alternatives depends on multiple qualitative and 
quantitative attributes, each varying in significance. Typically, these attributes are bounded by a lower threshold 
ζ  and an upper threshold η, representing the limits of suitability. Since not all attributes contribute equally to the 
final decision, a weighted approach becomes essential.

Integrating this approach with the MDFS framework enables a robust and structured mechanism for handling 
complex problems involving multidimensional membership information within the range [ζ, η]. The following 
algorithm formalizes the process.

Algorithm 1.  Evaluating Precision with MDFS

This method provides a systematic and interpretable framework for decision analysis under multidimensional 
uncertainty. By incorporating attribute weights and boundary constraints, decision-makers can obtain more 
reliable and context-aware results suited to practical applications. The overall workflow of the proposed method 
is depicted in Fig. 1.

Start

List out objects and their attributes
under study and fix the desired lower
and upper bounds for the attributes

Construct n-dimensional fuzzy sets
to denote the quantity of attributes

Find the weighted hamming distance from
lower and upper bounds of attribute level

Use the entropy mea-
sure to validate the

precision of comparison

Decision

Fig. 1.  Flowchart for evaluating precision with MDFS.
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Illustrative example
Consider a scenario where student participants P1, P2, and P3 are evaluated based on multiple attributes (e.g., 
subject knowledge across disciplines) through interviews. Let a1, a2, ..., a5 denote the evaluated attributes. Table 
1 specifies the attribute ranges, lower and upper bounds (ζ , η), and their respective weights (wi) on a 0–1 scale.

The corresponding participant attribute values are shown in Table 2. Attributes outside the specified bounds 
can be directly classified; hence, only bounded cases are considered, with ‘Nil’ indicating missing attributes.

The participant data are represented as multidimensional fuzzy sets:

	

P1 : (0.50a1 , 0.50a4 , 0.60a3 )
P2 : (0.50a4 , 0.60a2 , 0.60a3 , 0.60a5 )
P3 : (0.55a4 , 0.65a5 , 0.70a3 )

The computed distances are:

	

δ∞
2 (P1, u) = 0.8831, δ∞

2 (P1, l) = 0.1449,

δ∞
2 (P2, l) = 0.2258, δ∞

2 (P2, u) = 0.5196,

δ∞
2 (P3, l) = 0.2564, δ∞

2 (P3, u) = 0.7554.

Hence, the ratio values are:

	 r1 = 0.1640, r2 = 0.4345, r3 = 0.3394,

implying the attribute quality ranking P1 < P3 < P2.
Entropy-based precision evaluation identifies data fuzziness levels. Participants whose membership values 

are closer to 0.5 relative to the center boundary (C) exhibit greater uncertainty (see Table 3).
Entropy results:

	 ϵ(P1) = 0.1845, ϵ(P2) = 0.4950, ϵ(P3) = 0.2516.

Thus, P1 exhibits the least fuzziness and P2 the highest, indicating that while P2 has strong attributes, the 
decision reliability is higher for P1, whose membership values are closer to mid-boundaries.

ai C

a1 0.50

a2 0.55

a3 0.65

a4 0.50

a5 0.60

Table 3.  Centre of boundary.

 

a1 a2 a3 a4 a5

P1 0.50 Nil 0.60 0.50 Nil

P2 Nil 0.60 0.60 0.50 0.60

P3 Nil Nil 0.70 0.55 0.65

Table 2.  Assessment table of participants’ attributes.

 

a1 a2 a3 a4 a5

ζ(l) 0.4 0.4 0.5 0.4 0.5

η(u) 0.6 0.7 0.8 0.6 0.7

wi 0.6 0.7 0.8 0.7 0.8

Table 1.  Range of attributes.
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Method 2: decision-making using weighted euclidean distance for disease severity 
assessment
In clinical decision-making, patients afflicted with a disease D may exhibit symptoms of varying intensity. Since 
the significance of each symptom differs, a weighted distance measure provides a more balanced assessment of 
disease severity. The following algorithm formalizes the approach.

Algorithm 2.  Disease Severity Assessment

Symptom (si) ζi wi

s1 (0.30,0.35,0.40) 0.50

s2 (0.40,0.44,0.47,0.50) 0.60

s3 (0.40, 0.47) 0.70

s4 (0.30,0.33,0.35) 0.80

s5 (0.40,0.46,0.48,0.49) 0.80

Table 4.  Symptoms and their Upper Bounds.

 

Start

List out the important symptoms of dis-
ease with its upper bounds and weights

Construct MDFS to record the mea-
surements obtained after the test

For each patient, obtain the
weighted Euclidean distance

measure from the upper bound

Compare the distances
to find the order of seri-
ousness each patient has

Decision

Fig. 2.  Flowchart for Disease Severity Assessment.
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The corresponding algorithmic workflow is shown in Fig. 2.
Note: The numerical examples presented below are illustrative and not derived from empirical clinical data. 

Actual parameter values may vary depending on real-world datasets and experimental validation.
Table 4 lists the considered symptoms si, their upper bounds ζi, and associated weights. The patient symptom 

profiles are given as:

	

P1 : ((0.50, 0.55, 0.57)s1 , (0.60, 0.66)s3 , (0.60, 0.67)s5 ),
P2 : ((0.50, 0.55)s5 , (0.60, 0.68, 0.69)s3 , (0.70, 0.75, 0.78)s2 , (0.70)s4 ),
P3 : ((0.60, 0.67, 0.70)s4 , (0.60, 0.59)s2 , (0.70, 0.80)s3 ).

The computed distances are:

	 δ∞
2 (P1, ζ) = 0.2828, δ∞

2 (P2, ζ) = 0.4669, δ∞
2 (P3, ζ) = 0.3987.

Thus, the order of disease severity is P1 < P3 < P2, corresponding to increasing distance from the upper 
bounds.

Sensitive analysis
The results in Table 5 indicate that the proposed MDFS-based decision model is highly robust to changes in 
the weight vector. Even under substantial perturbations–such as over-weighting a single criterion or applying 
random variations of up to ±20%–the ranking structure remains effectively unchanged, with P1 consistently 
emerging as the top alternative and only minor, non-critical fluctuations observed between P2 and P3. This 
stability demonstrates that the model does not exhibit excessive sensitivity to subjective weight adjustments, 
reinforcing its reliability for decision-making scenarios.

Computational considerations: cost and implementation notes
From a computational standpoint, both algorithms proposed in this work have tractable complexity when 
applied to finite multidimensional fuzzy sets. Let m denote the number of elements, n the number of attributes, 
and dj  the length of the finite membership tuple associated with element xj . 

	➀	 Algorithm 1 (Evaluating Precision with MDFS): Each element requires two weighted Euclidean distance 
computations with respect to the lower and upper bounds, resulting in an overall time complexity 

	
O

(
m∑

j=1

dj

)
≈ O(md̄)

	 Entropy computation has the same order, and memory usage is O
(∑

j
dj

)
.

	➁	 Algorithm 2 (Disease Severity Assessment): For m entities each characterized by n attributes, the weighted 
Euclidean distance evaluation requires O(mn) operations, and the subsequent sorting step adds O(m log m) 
time.

The examples presented in this paper are intentionally small and illustrative, as the purpose is to validate 
theoretical properties rather than to perform empirical benchmarking. Nonetheless, these analyses show that 
the procedures scale linearly in the number of elements and attributes, confirming their suitability for moderate 
problem sizes.

Practical implementation aspects include efficient handling of variable-length membership tuples (ragged-
array storage), numerically stable weighted distance computation (use of fused multiply–add operations), and 
careful parameter normalization. For larger datasets, vectorized computation and parallel processing can further 
improve performance, and these optimizations will be explored in future applied work.

Weight configuration Modified weights (Example) Ranking order

Baseline (Equal) [0.33, 0.33, 0.34] P1 < P3 < P2

Case 1 (High w1) [0.5, 0.25, 0.25] P1 < P2 < P3

Case 2 (High w2) [0.2, 0.5, 0.3] P1 < P3 < P2

Case 3 (High w3) [0.3, 0.2, 0.5] P1 < P3 < P2

Case 4 (Random Perturbation ±20%) [0.27, 0.36, 0.37] P1 < P3 < P2

Table 5.  Sensitivity analysis of the proposed MDFS-based decision model under varying weights.
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Comparative analysis with existing models
Multi-Criteria Decision-Making (MCDM) frameworks play a vital role in diverse domains such as medical 
diagnosis, image processing, and engineering design. However, one of the persistent challenges in these systems 
is the precise assignment of membership values to each attribute. Classical models like the Weighted Sum 
Model (WSM), Weighted Product Model (WPM), Analytic Hierarchy Process (AHP), and Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS)35,36 often encounter ambiguity and inconsistency during 
this phase.

The proposed Multidimensional Fuzzy Set (MDFS) model addresses this limitation by allowing each 
attribute to hold multiple membership values, representing its various aspects and interdependencies. This 
multidimensional structure enhances expressiveness, preserves data richness, and ensures that uncertainty is 
modeled more comprehensively.

To demonstrate the superiority of MDFS, this section presents an extended comparison with several existing 
fuzzy models.

Comparison with intuitionistic fuzzy sets (IFS)
Intuitionistic Fuzzy Sets (IFS), introduced by Atanassov, extend classical fuzzy sets by associating each element 
with both membership and non-membership degrees. The hesitation degree, π(x) = 1 − µ(x) − ν(x), captures 
the uncertainty or incompleteness of information.

In the present study, the dataset representing participants’ performances was converted into IFS form as 
shown in Table 6. Here, µ(Pi) and ν(Pi) represent the degree of positive and negative contributions of 
participant Pi, respectively.

The Euclidean distance measure between each participant’s IFS and the ideal IFS IM = {(0.72, 0)} was 
computed as:

	
eIF S(IPi , IM ) =

√
(µ(Pi) − 0.72)2 + (ν(Pi) − 0)2

2 .

The resulting distances indicate the ranking P1 < P3 < P2, aligning with the MDFS-based findings. However, it 
is evident that MDFS yields a larger spread in ranking scores, demonstrating enhanced discriminatory capability 
and sensitivity to subtle variations among alternatives.

Advantages over IFS are: 

	➀	 MDFS eliminates the constraint µ(x) + ν(x) ≤ 1, thereby permitting multidimensional membership eval-
uation.

	➁	 It supports variable cardinality for each attribute, capturing overlapping or dependent evaluations.
	➂	 It retains richer informational content without normalization-induced loss.

Comparison with fuzzy soft sets (FSS)
Fuzzy Soft Sets (FSS)37,38 are powerful tools for handling parameterized uncertainty. Each element in an FSS is 
defined with respect to a parameter set, allowing attribute-specific flexibility.

In the current context, each participant Pi corresponds to a parameter influencing a universal set 
U = {s1, s2, . . . , s5}. The fuzzy soft sets (F, A) and (G, A) represent observed and ideal data distributions, 
respectively. The normalized Euclidean metric distance between (F, A) and (G, A) was calculated as:

	
d2((F, A), (G, A)) = 1

15

(
3∑

i=1

5∑
j=1

|F (Pi)(sj) − G(Pi)(sj)|2
)1/2

.

The obtained weighted distance dw
2 ((F, A), (G, A)) = 0.0450 verifies the order P1 < P3 < P2, consistent 

with the MDFS model.
Advantages over FSS are : 

	✯	 MDFS captures multi-level uncertainty for each attribute rather than single scalar mappings.
	✯	 The FSS framework requires normalization to compare fuzzy sets, while MDFS inherently preserves scale 

independence.
	✯	 Attribute interrelations can be represented within MDFS, improving contextual coherence.

Participant Membership (µ) Non-membership (ν) Indeterminacy (π)

P1 0.226 0.300 0.474

P2 0.346 0.120 0.534

P3 0.293 0.260 0.447

Table 6.  IFS-based representation of participant performance.

 

Scientific Reports |         (2026) 16:3525 17| https://doi.org/10.1038/s41598-025-33430-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Comparison with n-dimensional fuzzy sets
n-Dimensional Fuzzy Sets extend the traditional model by assigning an n-tuple of membership values to each 
element. This provides limited multi-attribute flexibility but is constrained by a fixed dimension.

In the applied example, the dataset was reduced to three dimensions due to structural limitations, yielding:

	 P1 : (0.5, 0.6, 0.6), P2 : (0.7, 0.6, 0.7), P3 : (0.6, 0.6, 0.7).

After computing distances, the ranking order shifted to P1 < P2 < P3, indicating sensitivity to dimensional 
truncation.

Advantages over n-Dimensional Fuzzy Sets are : 

	✯	 mdfs is not restricted by a predefined dimension n; it adapts dynamically to the structure of the dataset.
	✯	 Data loss due to dimensional reduction is eliminated, ensuring integrity and robustness.
	✯	 Enhanced flexibility allows different attributes to have different numbers of membership values.

Comparison with other advanced fuzzy models
Recent extensions of fuzzy theory–such as Pythagorean, q-Rung Orthopair, Picture, and Hesitant Fuzzy Sets–aim 
to increase expressiveness in uncertainty representation. Despite these advances, they still rely on rigid structural 
constraints between membership and non-membership functions (e.g., µq + νq ≤ 1), limiting scalability. 
The proposed MDFS framework generalizes these models by allowing independent and multidimensional 
membership representations. This improves the adaptability across diverse applications, particularly where 
information from multiple evaluators or features must be integrated.

Table  7 presents a comparative summary of major fuzzy set models, highlighting their membership 
structures, dimensional flexibility, information retention, and computational complexity. Classical, Intuitionistic, 
Pythagorean, and q-Rung Orthopair fuzzy sets differ primarily in their numerical constraints on membership and 
non-membership functions, offering increasing expressive power at the expense of higher complexity. Picture 
fuzzy sets enrich the representation by incorporating neutral judgments, whereas Hesitant fuzzy sets allow 
multiple possible membership values, providing a very rich but computationally intensive framework. Fuzzy 
Soft Sets and n-Dimensional Fuzzy Sets introduce parameterization and structured multidimensionality, though 
typically with fixed dimensional configurations. In contrast, the proposed MDFS model offers variable-size 
membership tuples, enabling full dimensional flexibility and complete information retention while maintaining 
scalability. This positions MDFS as a unifying and extensible framework capable of capturing diverse uncertainty 
structures more efficiently than existing models.

Summary and discussion
The comparative analysis clearly demonstrates that while models like IFS and FSS provide fundamental 
frameworks for handling uncertainty, they suffer from dimensional rigidity and information loss during 
transformation. MDFS overcomes these issues by: 

	➀	 Supporting arbitrary membership cardinalities for different attributes;
	➁	 Preserving full data dimensionality without requiring normalization;
	➂	 Achieving more discriminative ranking results due to higher sensitivity to attribute variations.

Thus, MDFS offers a generalized, scalable, and information-preserving decision-making framework that 
subsumes several classical and modern fuzzy set models as its special cases.

Validation analysis and comparative assessment of advantages and disadvantages
To ensure the robustness and effectiveness of the proposed Multidimensional Fuzzy Set (MDFS) framework, 
a detailed validation was performed based on three essential criteria: consistency, stability, and information 
preservation. Table 8 summarizes the validation outcomes in comparison with existing fuzzy-based decision-
making models.

Model Membership Dimensional Information Complexity

Classical fuzzy set µ(x) Fixed (1D) Partial Low

Intuitionistic fuzzy set µ(x), ν(x) with µ + ν ≤ 1 Moderate Partial Moderate

Pythagorean fuzzy set µ2 + ν2 ≤ 1 Moderate Enhanced Moderate

q-Rung Ortho-pair fuzzy set µq + νq ≤ 1 High High High

Picture fuzzy set µ, ν, π (positive, negative, neutral) Moderate Context-rich High

Hesitant fuzzy set Set of possible µ(x) values High Very Rich High

Fuzzy soft set Parameterized µ(x) for each attribute High Moderate Moderate

n-Dimensional Fuzzy Set n-tuple (µ1, µ2, . . . , µn) Fixed n Partial Moderate

MDFS (Proposed) Variable-size membership tuples (µ1, µ2, . . . , µk) Fully Flexible Complete Scalable

Table 7.  Comparative overview of fuzzy set models.

 

Scientific Reports |         (2026) 16:3525 18| https://doi.org/10.1038/s41598-025-33430-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The comparative analysis of fuzzy-based decision-making models highlights how each framework offers 
distinct advantages while presenting inherent limitations. Intuitionistic and Fuzzy Soft Sets provide enhanced 
representational richness but face constraints when handling multidimensional or highly correlated data. The n-
Dimensional Fuzzy Set model offers mathematical clarity but lacks flexibility due to its fixed dimensional structure. 
Pythagorean and q-Rung Fuzzy Sets extend the expressive range of membership modeling, though at the cost of 
increased computational demand. In contrast, the proposed MDFS framework overcomes these limitations by 
enabling dynamically scalable dimensionality, preserving information integrity, and accommodating complex, 
structured uncertainty with significantly improved adaptability and interpretability. A detailed juxtaposition and 
analysis of the advantages and disadvantages of fuzzy-based decision-making models is presented in Table 9.

The validation analysis confirms that the MDFS framework consistently outperforms existing models in 
stability, ranking accuracy, and information fidelity. Unlike classical fuzzy approaches that rely on fixed or 
parameter-dependent dimensions, MDFS dynamically adapts to data complexity, preserving the integrity of 
multidimensional relationships. Although the computational demand increases with data size, the proposed 
model’s robustness and adaptability make it highly suitable for real-world applications such as complex decision-
making, medical diagnosis, and multi-criteria optimization. Future improvements should focus on optimizing 
computational efficiency and developing automated parameter-tuning strategies to further enhance scalability.

Conclusions and future works
This study expands the notion of multidimensional fuzzy sets by introducing specialized metrics tailored to 
their representation, including multidimensional distance measurements, similarity measures, entropy, and 
crisp approximation techniques. The mdfs offers a precise and robust representation of data by addressing each 
element individually. However, practical problem-solving with mdfs requires a thorough understanding of the 
data it represents, prompting an exploration of essential mdfs measures and their characteristics, along with 
fundamental theorems relating to these metrics. Crisp approximation, facilitated through distance measures, 
proves valuable for problem-solving within the mdfs framework. Case study analysis highlights the importance 
of selecting appropriate distance measures for optimal problem-solving. The comparison section underscores 
the advantages of mdfs in data presentation, emphasizing the need to select the most suitable data presentation 
method for addressing complex problems. While multidimensional fuzzy sets (MDFS) provide flexible 
and precise data representation, they face several limitations. The approach involves higher computational 
complexity, making large-scale applications challenging. Results are sensitive to parameter choices, which can 
affect accuracy and consistency. Practical usability is limited for non-expert users due to the complexity of 
measures like distance, similarity, and entropy. Additionally, empirical validation is still insufficient, and existing 
tools may struggle with highly intricate or dynamic real-world scenarios. Simplification and optimization are 
needed to enhance accessibility, efficiency, and broader applicability.

Model Advantages Disadvantages

Intuitionistic Fuzzy Set (IFS) 1. Captures hesitation through dual membership and non-membership functions.
2. Easy interpretation and efficient for simple decision cases.

1. Limited expressiveness for multidimensional 
uncertainty.
2. Sensitive to membership normalization and weighting.

Fuzzy Soft Set (FSS) 1. Flexible parameterized representation.
2. Efficient for qualitative decision scenarios.

1. Weak correlation handling among parameters.
2. Performance drops for high-dimensional or 
continuous data.

n-Dimensional Fuzzy Set 1. Suitable for structured multidimensional data.
2. Provides good mathematical tractability.

1. Dimensional rigidity; requires pre-definition of n.
2. Lacks adaptability and computational scalability.

Pythagorean & q-Rung 
Fuzzy Sets

1. Broader membership representation range.
2. Useful in high-uncertainty domains.

1. High computational cost
2. Limited interpretability for non-expert users.

Multidimensional Fuzzy Set 
(MDFS) (Proposed)

1. Dynamically scalable dimensional structure.
2. Superior discrimination, consistency, and information preservation.
3. Integrates entropy, similarity, and distance-based reasoning seamlessly.

1. Computationally demanding for large-scale datasets
2. Requires parameter optimization for interpretability.

Table 9.  Advantages and disadvantages of fuzzy-based decision-making models.

 

Model Consistency validation Stability assessment Information preservation

Intuitionistic Fuzzy Set 
(IFS)

Maintains consistent ranking in low-dimensional data; 
limited discrimination in higher complexity.

Moderately stable but sensitive to small 
changes in hesitation degree.

Partial information retention; potential data 
loss in aggregation.

Fuzzy Soft Set (FSS) Ranking consistency depends on parameter weighting; prone 
to bias in attribute correlation.

Stable for discrete datasets; unstable in 
continuous data representation.

Medium information retention; parameter 
dependency may distort outcomes.

n-Dimensional Fuzzy Set Consistent for pre-defined dimensional data; lacks 
adaptability in varying structures.

High stability for fixed dimensions; 
sensitive to missing attributes.

Good information retention but may lose 
fine-grained attribute details.

Pythagorean & q-Rung 
Fuzzy Sets

Provides extended membership flexibility; reliable 
consistency under uncertainty.

Stable under moderate perturbations; 
computationally intensive.

High information preservation but limited 
interpretability.

Multidimensional Fuzzy 
Set (MDFS) (Proposed)

Shows superior ranking consistency across all data types and 
dimensions.

Highly stable under perturbations; 
robust against noise and uncertainty.

Excellent information preservation; retains 
full multidimensional attribute relationships.

Table 8.  Validation analysis of MDFS and existing fuzzy-based models.
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To further advance this research area, several future works are proposed. These include delving into more 
complex measures, optimizing computational efficiency, conducting robustness and sensitivity analyses, 
extending applicability to dynamic environments, fostering interdisciplinary collaboration, refining theoretical 
analyses, and developing user-friendly software tools. Applying these measures to real-world domains and 
integrating them into decision-making systems are also highlighted. To be more specific and particular, 
multidimensional fuzzy sets and distance measures offer a straightforward method for representing real-world 
data, there exist intricate scenarios beyond current tool capabilities. Recently, mdfs distance measures were 
utilized to create a hybrid framework known as the Multidimensional measure space, which addresses harder 
challenges. Future work aims to study continuous functions in multidimensional measure space and investigate 
distance-based rough approximation methods for mdfs. By pursuing these avenues, researchers aim to enhance 
the effectiveness and theoretical understanding of distance and similarity measures for multidimensional fuzzy 
sets, opening up new avenues for applications and advancements in the field. The study presents a generalized 
and flexible framework for defining distance, similarity, and entropy measures in multidimensional fuzzy 
sets (MDFS), offering significant advantages over existing fuzzy structures. It enables variable-dimensional 
membership representation, ensuring better modeling of real-world uncertainty and improved decision-
making accuracy. The introduction of normalized, proximity, and σ-measures strengthens consistency and 
complement invariance, while establishing theoretical links between distance, similarity, and entropy enhances 
interpretability. However, the approach involves higher computational complexity and sensitivity to parameter 
choices, which may limit large-scale applications. Additionally, further empirical validation and simplification 
are needed to enhance practical usability and understanding among non-expert users.
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