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This work proposes a bio-inspired approach for decentralized coordination in multi-robot systems, 
applied to a simulated port scenario. The methodology integrates the Robot Operating System (ROS) 
with the Stage simulator, enabling modeling of a port environment with three autonomous robots, 
each capable of navigation and obstacle avoidance. The main contribution is a connectivity module 
inspired by Physarum polycephalum, which manages the mesh network and allows decentralized 
task sharing whenever connections exist. The algorithm adapts continuously to robot movement and 
environmental changes, ensuring efficient communication when possible and autonomous operation 
when disconnected. Experiments confirmed that robots relying only on local perception can form and 
maintain a functional network. Results showed connections established in less than two seconds on 
average and reconfigured almost instantly after fault, demonstrating resilience. New robots were 
integrated in only 0.092 seconds on average, validating scalability. A comparison between scenarios 
with and without communication revealed a 17.87% efficiency improvement, reducing execution time 
from 621 to 510 seconds thanks to dynamic load balancing. In summary, the study demonstrates the 
feasibility of a bio-inspired solution for decentralized coordination in multi-robot systems, capable of 
generating efficient, resilient, and adaptable communication networks, essential for cooperation in 
real-world environments. A demonstration video is available at https://youtu.be/ZGPswbfeRKA.
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Multi-robot systems (MRS) have become a practical option for complex logistics scenarios such as ports, 
factories, and distribution centers, where fleets of mobile robots must coordinate navigation, task allocation, and 
resource sharing under uncertainty and frequent topology changes1,2. However, the simultaneous operation of 
multiple robots in dynamic environments imposes challenges of communication and coordination, especially 
without centralized infrastructure. In these settings, communication is often intermittent due to occlusions, 
interference, and mobility. In port contexts, the adaptive formation of networks and the decentralized sharing of 
information are critical to ensure cooperation and overall system performance.

Traditional network protocols, such MANET protocols (AODV and OLSR) provide proven routing 
mechanisms, yet their control overhead and route maintenance degrade under high mobility and rapidly 
changing link quality, limiting their effectiveness for tightly coupled robot coordination3. Bio-inspired strategies 
(ACO and PSO) have improved coverage and energy efficiency in MRS, but typically rely on sensitive parameter 
tuning or continuous traffic to sustain performance4.

In this scenario, Physarum polycephalum emerges as a promising alternative. This unicellular organism 
forms robust and adaptive transport networks from local stimuli, reinforcing useful connections and retracting 
little-used routes5. Such properties make it suitable for multi-robot systems, where topology changes rapidly and 
there is no time or resources to maintain global routing information. Recent computational models show that 
simple sensing–movement–deposition rules can generate stable and resilient emergent networks6.

Despite these advances, few studies have directly applied the emergent behavior of Physarum polycephalum 
to the communication of mobile robots, considering real metrics such as signal strength (RSSI) or link stability. 
This work leverages these principles for communication maintenance by using Physarum-inspired local rules to 
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infer, strengthen, or prune robot-to-robot links based on signal quality and stability, thus enabling decentralized 
task sharing only when links are truly viable.

In summary, this work moves beyond establishing connectivity to demonstrating how bio-inspired 
mechanisms can optimize decentralized coordination. The main contributions of this study are threefold:

•	 A Physarum-inspired Connectivity Layer: We propose a decentralized mechanism that uses local trail rein-
forcement to filter stable communication links. By prioritizing reinforced paths, this layer acts as a topology 
control mechanism that mitigates the complexity of traditional flooding-based discovery, enabling scalable 
task sharing.

•	 Resilient Mesh Formation: We demonstrate that the algorithm supports instantaneous reconnection and 
rapid scalability, confirming its robustness for dynamic environments without central oversight.

•	 Efficiency in Task Allocation: We provide quantitative evidence that coupling this bio-inspired layer with a 
decentralized task-sharing protocol reduces the total execution time compared to isolated operation, validat-
ing the approach for practical logistics scenarios.

Although this work does not directly implement or integrate existing MANET protocols, the proposed Physarum-
inspired connectivity mechanism can conceptually operate as a complementary layer to these frameworks. By 
providing locally inferred link stability and dynamic neighbor weighting, it could inform routing decisions or 
QoS configurations in traditional robotic communication stacks, suggesting a promising direction for future 
integration.

Related work
Recent advances in decentralized coordination of MRS have demonstrated robust solutions in dynamic 
scenarios, highlighting distributed task allocation algorithms, consensus mechanisms, and fault-tolerant 
strategies. However, most of these studies assume stable communication as a premise, leaving open the issue of 
adaptive connectivity maintenance.

Decentralized coordination has proven feasible even under adverse conditions, leveraging distributed 
consensus, resilience, and scalability. For example7, proposed MURD-TAP, based on ADMM consensus, 
achieving optimal task allocation without a central controller, but requiring topological stability for convergence. 
In8, a dynamic strategy was introduced that considers robot capacity and energy, adapting to load variations, 
though still presupposing continuous connectivity. Meanwhile9, proposed fault-tolerant coordination, enabling 
isolated robots to operate autonomously, while10 introduced CoLoSSI, which maintains incremental allocation 
even under temporary network fragmentation. Systematic reviews such as11 confirm these advances but 
emphasize that adaptive communication remains underexplored.

In the bio-inspired field, several works explore properties such as self-organization, resilience, and 
cooperation. Among the most applied models are ACO algorithms12,13, PSO14,15, Firefly16,17, and ABC18, 
achieving improvements in coverage, energy efficiency, and collision avoidance. Other proposals, such as19, draw 
inspiration from bacterial colonies for collective gas mapping, reinforcing the potential of nature as a source of 
distributed strategies. Within this spectrum, Physarum polycephalum has stood out since the seminal model 
of20, with applications in route planning21,22 showing gains in trajectory smoothness and energy efficiency.

Unlike the aforementioned approaches, which often rely on precise parameter tuning, continuous message 
exchange, or centralized supervision for convergence, these strategies still exhibit limitations when applied to 
highly dynamic environments. Consensus-based models, although mathematically elegant, depend on persistent 
connectivity to ensure stability; swarm-based methods such as ACO and PSO can adapt to local changes but 
tend to generate redundant traffic and are sensitive to communication noise; and hybrid optimization algorithms 
frequently increase computational cost, reducing real-time applicability. In contrast, Physarum polycephalum 
naturally balances exploration and exploitation through local reinforcement and retraction mechanisms, 
maintaining global coherence without requiring centralized coordination or continuous information exchange.

Therefore, the main advantage of adopting a Physarum-inspired model lies in its intrinsic adaptability and 
simplicity. The organism’s behavior demonstrates that complex network structures can emerge from minimal 
local rules, allowing the system to reorganize autonomously in response to environmental and topological 
changes. This feature directly addresses the limitations observed in previous methods, providing a biologically 
grounded mechanism for maintaining connectivity and coordination in mobile multi-robot systems operating 
under unstable communication conditions.

Beyond bio-inspired coordination algorithms, several communication paradigms from other domains 
have been adapted to robotic systems, such as Vehicular Ad Hoc Networks (VANETs), Internet of Things 
(IoT) architectures, and Wireless Sensor Networks (WSNs)23–25. Although these frameworks provide valuable 
insights into distributed communication, they typically assume stable connectivity, hierarchical organization, or 
periodic route maintenance. Such assumptions become limiting in highly dynamic multi-robot environments. 
In contrast, the Physarum-inspired approach proposed in this work establishes and maintains connectivity 
solely through local interactions and environmental feedback, eliminating the need for global synchronization 
or centralized control. This emergent mechanism directly addresses the limitations observed in these traditional 
models, offering a lightweight and self-organizing alternative suitable for mobile robotic networks.

Physarum-inspired algorithm
The proposed system was developed with the objective of simulating a logistics operation environment with 
multiple autonomous mobile robots, integrating container pickup and delivery tasks. The system architecture 
was designed to be decentralized, modular, and bio-inspired, allowing each robot to operate autonomously while 
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exchanging information only with nearby robots, through a connectivity network based on the behavior of 
Physarum polycephalum. The general architecture of the system can be seen in Fig. 1.

In this architecture, each robot operates independently, receiving its tasks through a ROS topic, locally 
managing its task queue, and executing control commands to move to the container pickup and delivery 
points. However, through the algorithm inspired by Physarum polycephalum, it is possible to detect network 
connections based on signal intensity between robots. When such a connection is established between two 
robots, mutual task sharing and updating of their respective local management lists occur, promoting more 
robust decentralized coordination.

Bio-inspired connectivity layer
In its individual operation, each robot applied to this architecture was designed to function completely 
autonomously, without relying on a central server or external supervisor. Upon receiving a new task, the robot 
inserts it into its local task queue, which operates as a priority list based solely on arrival order.

Task management is performed locally. The robot continuously evaluates its task list and selects the next 
action based on its current state, if it is not executing another task, it retrieves the next available one. Once the 
active task is defined, the motion planning module employs autonomous navigation algorithms to generate 
the route to the corresponding pickup or delivery point. For this purpose, the ROS move_base package is 
used, integrating global planning algorithms, such as Dijkstra, with local planners and obstacle avoidance 
mechanisms, enabling the robot to autonomously navigate the environment. During this process, the robot also 
relies on onboard sensor data, such as Light Detection and Ranging (LiDAR), to update the local map and detect 
dynamic obstacles. This allows dynamic adjustments to the planned route, avoiding collisions and ensuring safe 
navigation even in dynamic or partially unknown environments.

However, although the robots are capable of operating independently, the proposed architecture introduces a 
mechanism of connection and cooperation among the robots that is based on bio-inspired principles, specifically 
on the behavior of Physarum Polycephalum. In this context, the algorithm inspired by Physarum Polycephalum 
is used to simulate the formation of network connections between robots based on signal intensity. Each robot 
periodically emits a signal that is interpreted as a food source for the Physarum Polycephalum. Each robot 
executes the algorithm based on Physarum Polycephalum, which explores the environment in search of a food 
source, in this case, the signal of other robots. When the signal is found, the trail is reinforced and a connection 
is established. A representation of this process can be observed in Fig. 2.

From that moment on, the connected robots initiate an information exchange protocol. One of the main 
objectives of this exchange is the sharing and synchronization of task lists. Each robot compares its local list 
with that of the other, removing duplications, redistributing tasks in a balanced way, and updating the status of 
the shared tasks. This decentralized synchronization allows the system as a whole to behave more efficiently and 
adaptively, especially in situations where the workload is unbalanced among robots.

In summary, the proposed architecture enables each robot to fully function as an autonomous unit, while 
simultaneously fostering the emergence of coordinated collective behaviors through a network layer inspired by 
biological systems.

The proposal of this work stems from the observation of the remarkable adaptive and optimization capabilities 
demonstrated by Physarum Polycephalum, capable of solving complex problems in a decentralized manner. 
Classical and recent studies have shown that this organism can find shortest paths in mazes, connect multiple 
food sources efficiently, and reorganize its tubular networks in the face of environmental changes5,26.

Computational model of the physarum polycephalum
Inspired by the properties of Physarum Polycephalum, a decentralized connectivity algorithm was developed 
that computationally simulates the behavior of Physarum Polycephalum to establish connection routes between 
mobile robots in a simulated environment. The algorithm operates through an agent-based approach, in which 

Fig. 1.  Example of the system architecture.
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each agent represents a discrete portion of the organism’s living mass. These agents interact locally with the 
environment, perceive stimuli (such as chemical trails and food), move adaptively, and reinforce paths, allowing 
the emergence of a network of connections among nearby robots, even in scenarios with limited or intermittent 
communication.

The similarity between the computational model and the biological organism can be observed in several 
fundamental parallels: the cytoplasmic flow of Physarum Polycephalum, characterized by pulsatile movements 
that distribute the cytoplasm, is represented by discrete mobile agents that move continuously, simulating 
the cell’s internal transport, chemical sensing, through which the organism detects gradients of nutrients or 
repellents, is translated into virtual sensors that allow agents to perceive local values of food, trail, and mass, tube 
reinforcement, associated with the thickening of frequently traversed regions, corresponds to trail deposition 
that strengthens commonly used paths, the retraction of inactive regions, which in the organism results in 
metabolically inert areas, is modeled by the death of agents that enter a hibernation state, and finally, adaptive 
expansion, observed in the organism’s growth front, is simulated by the selective reproduction of agents at the 
edges of the mass, especially in regions of high activity.

Each agent is defined by a set of attributes that regulate its local dynamics:

•	 (x, y): continuous coordinates on the map.
•	 θ: direction of movement (heading), in radians.
•	 s: internal strength or energy, representing its vitality.
•	 r: role in the system, which can be explorer or follower.
•	 thunger: time since the last feeding.

The behavior of the agent is defined by its role: explorers perform more stochastic movements and long-range 
sensing, promoting the discovery of new paths, while followers reinforce known regions. At each iteration, the 
position (x, y) is updated according to Equation 1, where v is the constant scalar velocity and θt is the orientation 
angle at instant t, adjusted according to the stimuli perceived. This adjustment is performed by incremental 
rotations (left, right, or maintaining the current direction), based on assigned scores, so that the trajectory 
emerges from the continuous interaction with the environment.

	

xt+1 = xt + v · cos(θt)
yt+1 = yt + v · sin(θt)

� (1)

Where xt and yt represent the current position of the agent along the horizontal and vertical axes, respectively; 
xt+1 and yt+1 denote the updated coordinates after one iteration; v is the step size or constant velocity that defines 
the distance traveled per time step; and θt corresponds to the current orientation angle of the agent, measured 
in radians relative to the horizontal axis. The trigonometric components cos(θt) and sin(θt) determine the 
displacement in the x and y directions, respectively, ensuring that the agent moves a fixed distance v per iteration 
in the direction defined by its current orientation.

Environmental perception is carried out in three directions (δ ∈ {0, +α, −α}) corresponding to the front, 
left, and right sensors, located at a distance d (Equation 2). Explorers use a larger d, while followers apply a 

Fig. 2.  Execution of the Physarum Polycephalum algorithm by robot 2.
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reduced radius. In each direction, the values of mass (M), trail (T), and food (F) are obtained and weighted to 
generate an attractiveness score (Equation 3).

	 (x′, y′) = (x + d · cos(θ + δ), y + d · sin(θ + δ)) � (2)

	 scorei =wM · Mi + wT · Ti + wF · Fi � (3)

Where (x′, y′) represents the coordinates of the sampling point used by the agent to sense the environment; 
(x, y) denotes the current position of the agent; d is the sensor offset distance from the agent’s center; θ is the 
current orientation of the agent; and δ is the angular offset that defines the direction of each sensor (left, forward, 
or right). This formulation allows each agent to probe the surrounding environment at three distinct angles 
relative to its orientation.

In Equation 3, scorei represents the activation level or attraction score for sensor i, computed as a weighted 
sum of three environmental fields: Mi corresponds to the local mass map, Ti to the trail intensity, and Fi to the 
food concentration detected at the sampling point. The parameters wM , wT , and wF  are weighting coefficients 
that control the relative influence of each field on the agent’s decision-making process.

After moving, the agent deposits an amount of trail (D), dependent on food, the existing trail, and a minimum 
base (Equation 4). In addition, it contributes to the continuous mass map M(x, y), whose Gaussian smoothing 
(Equation 5) simulates the diffusion of cytoplasm in Physarum Polycephalum, highlighting regions of greater 
activity and growth fronts.

	 D =β · F + γ · T + ε � (4)

	 Msmooth =Gσ ∗ M � (5)

Where D represents the total amount of trail deposited by an agent at each iteration; F is the food field intensity 
at the agent’s current position; T is the local trail intensity previously accumulated in the environment; and ε is 
a constant term representing the agent’s basal deposition rate. The parameters β and γ are weighting coefficients 
that control the influence of the food and existing trail fields, respectively, on the total deposition amount. 
This formulation reinforces trail accumulation in regions where both food and pheromone intensity are high, 
mimicking the adaptive reinforcement observed in the real *Physarum polycephalum* organism.

In Equation 5, Msmooth denotes the smoothed version of the mass or trail map M, obtained by convolving it 
with a Gaussian kernel Gσ  of standard deviation σ. The operator ∗ represents the convolution, which attenuates 
noise and preserves the main structural features of the network. This smoothing process approximates the 
continuous diffusion behavior of the slime mold, facilitating the visualization and analysis of the emergent 
patterns formed during the simulation.

The agent’s internal strength s decreases when no stimuli are found, according to Equation 6. If the hunger 
time exceeds the threshold τh, it enters hibernation, representing local retraction. Reproduction, in turn, occurs 
selectively at the edges of the living mass, identified by morphological operations on Msmooth. If the agent has 
minimum strength, it can generate descendants with probability prep, transferring part of its energy and small 
variations in position and angle (Equation 7). This decentralized mechanism promotes adaptive expansion and 
mass redistribution of the system.

	 st+1 = max(st − δ, smin) � (6)

	 P(reproduction) =prep, if (x, y) ∈ active frontier � (7)

Where st represents the current activity or energy level of an agent at time step t; st+1 is the updated value after 
the reduction process; δ is the decay rate that determines how much the activity decreases per iteration; and 
smin is the minimum threshold value below which the agent cannot further reduce its state. This rule models 
the natural attenuation of agent activity in regions that are no longer reinforced, encouraging the contraction of 
inactive areas of the network over time.

In Equation 7, P(reproduction) denotes the probability that a new agent is created at the current position, 
defined as a constant reproduction probability prep applied only when the agent is located within the active 
frontier. This condition restricts reproduction to the expanding edges of the Physarum network, allowing growth 
to occur selectively in regions with ongoing exploratory activity, and preventing uncontrolled proliferation in 
saturated areas of the environment.

From the collective behavior of the agents, a network of stable trails emerges that connects the robots present 
in the environment. Figure 3 presents the visual evolution of this network over time, highlighting the system’s 
adaptation to the positions of the robots (red points on the map) and to the spatial distribution of stimuli.

Emergent network formation and routing
Throughout the simulation, the movement of agents generates reinforced trails that, once stabilized, form an 
emergent high-conductivity network between the robots. To identify useful connections, the system selects 
points of higher trail intensity near each robot and applies a routing algorithm on the stabilized map. Thus, 
unlike traditional methods that depend on message exchange, the connections are implicitly inferred by the 
accumulated intensity of the explored paths, allowing each robot to locally determine its best physical links.

This process applies a routing algorithm on the stabilized map, identifying least-cost routes between the 
robots. The cost is defined from the trail map T(x, y), converted into a cost map C(x, y) by Equation 8, where 
reinforced trails correspond to lower traversal costs.
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	 C(x, y) = max(T ) − T (x, y) + ε� (8)

Where C(x, y) represents the local cost of traversal at position (x, y), computed as the inverse of the trail intensity 
to promote path selection along the most reinforced regions of the map. T(x, y) denotes the trail intensity at the 
corresponding position, and max(T ) is the maximum trail value in the entire map, used for normalization. 
The constant ε is a small positive offset that prevents division by zero or null cost values. In this formulation, 
higher trail intensities result in lower traversal costs, guiding the emergent network to favor routes with stronger 
reinforcement and more stable connectivity.

The function is applied between two points considering weights given by C(x,  y), resulting in a path of 
minimum accumulated cost. The average trail intensity along this path, calculated by Equation 9, defines the 
quality of the connection, with the one of highest value being selected as dominant.

	
T̄path = 1

N

∑
(xi,yi)∈path

T (xi, yi)� (9)

Where T̄path represents the average trail intensity along a specific path connecting two points of interest; 
T (xi, yi) is the trail intensity at each discrete coordinate (xi, yi) belonging to the selected path; and N is the 
total number of sampled points along that path. This metric provides a quantitative measure of the overall 
reinforcement accumulated along a route, allowing comparison between different candidate paths in terms of 
their stability and strength within the emergent Physarum network.

In this way, the communication network is formed autonomously, locally, and in a biologically plausible 
manner, continuously adapting to environmental conditions and task dynamics. Scientific references support 
the biological plausibility of the decisions implemented26,27. The result is an emergent network formation system 
that can be applied to connectivity, routing, and coordination problems in decentralized multi-robot systems.

Beyond the biological plausibility, the proposed mechanism offers a significant advantage in terms of 
communication complexity. In traditional flooding-based MANET protocols, route discovery often involves 
broadcasting messages to all neighbors, leading to a message complexity of O(N2) in the worst case, where N 
is the number of nodes. In contrast, the Physarum-inspired layer operates locally to filter the network topology 
based on the cost map C(x, y). By restricting active data exchange (task sharing) only to the reinforced trails, 
which represent a sparse subset of the available physical links, the algorithm limits the effective node degree to a 
smaller average k (where k ≪ N ). Consequently, the communication overhead for task synchronization scales 
linearly, approximately O(k · N), ensuring scalability and minimizing bandwidth usage even as the number of 
robots increases. This implies that the computational effort of the Physarum algorithm directly translates into 
reduced network traffic, preventing the ‘broadcast storm’ problem typical in dense robotic networks.

Simulation environment
To evaluate the functioning of the proposed algorithm, a simulation environment was developed that represents 
a logistics space of a port shared by multiple autonomous mobile robots, subject to operational constraints and 
signal interference. This environment was implemented using the Stage platform, integrated with ROS. Stage was 
chosen primarily for its computational efficiency and deterministic behavior, which are essential for studying 
decentralized coordination and network formation under controlled conditions. Unlike other simulators, Stage 
provides a lightweight 2D environment that allows precise control over spatial configuration and experiment 
repeatability, without the complexity of a full physical simulation. In Fig.  4, the proposed scenario can be 
visualized.

The mobile robots, represented in green, blue, and red, move through the environment performing logistics 
tasks and using routing strategies inspired by Physarum Polycephalum, adapting to the spatial distribution of 
containers and to changes in available routes. In this context, the containers play a dual role: they act as loads to 
be handled and also as physical obstacles that interfere with robot connectivity, simulating signal blocking and 
attenuation, a common phenomenon in real port operations. Figure 5 presents the container unloading process 
carried out in the simulation of a port terminal.

Specifically, information exchange between two robots is only allowed when the algorithm based on 
Physarum Polycephalum identifies that there is an active connection between them, evidenced by the formation 
of a reinforced trail in the environment. When such a connection is detected, a ROS topic is temporarily used 

Fig. 3.  Visual evolution of the physarum network.
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to enable information sharing between the connected robots. Outside these detected connectivity moments, the 
robots operate in isolation, without direct message exchange.

Experiments and evaluation
The experimental evaluation aimed to systematically verify the performance and feasibility of the connectivity 
algorithm inspired by Physarum Polycephalum applied to decentralized coordination of mobile robots. Four 
complementary experiments were conducted, designed to analyze different aspects of the system in a simulated 
logistics environment, integrating autonomous navigation, selective information exchange, and task distribution.

Experiment 1 – evaluation of the Physarum polycephalum network: connectivity
The first validation carried out was the network connectivity assessment, that is, the ability of the robots to 
establish connections in order to achieve global connectivity among all robots. The hypothesis tested considers 
that robots, using only local perception, would be able to detect the presence of other robots and progressively 
form connections until all are interconnected through a decentralized mesh. For this evaluation, five distinct 

Fig. 5.  Container unloading process simulated in this work.

 

Fig. 4.  Structure of the simulated port scenario.
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scenarios were defined, with different initial robot positions on the map. In each scenario, the robots were 
positioned in regions where mutual detection was possible, respecting the signal range limits of each robot. Each 
scenario was repeated five times, totaling 25 independent runs.

Table 1 presents a summary of the results obtained, with the pairs of connected robots and the respective 
average connection times per scenario. It is observed that, in all tests performed, the three robots were able to 
establish a connection within up to two seconds after the start of the simulation. The overall average connection 
times remained close to 1 second, with expected variations related to small differences at the beginning of 
interaction and the local perception of the agents.

In decentralized mobile robot logistics systems, the decision and connection time between units must be 
significantly lower than the physical travel time or the execution time of transport tasks. Since the robots in this 
simulation take longer to complete a pickup or delivery task, a connection time of 1 to 2 seconds is sufficient 
for the communication mesh to stabilize and for task exchange to occur before any critical movement decision.

Topological consistency was also observed: the connection pairs repeated across the runs of the same 
scenario, indicating stability in the organization of the network.

The results obtained confirm that the proposed algorithm is capable of establishing connections efficiently 
and in a decentralized manner, even in different spatial configurations.

This experiment demonstrated, with quantitative evidence (average connection times around 1 second, 
variations between scenarios, and repeatability in 25 runs) and qualitative evidence (topological consistency 
of established connections, absence of connectivity fault, and progressive mesh formation in all runs), that the 
proposed algorithm is capable of establishing networks with full connectivity, acceptable response time, and 
stable topology.

Experiment 2 – Evaluation of the Physarum polycephalum network: robustness
This stage of the experimental evaluation focused on analyzing the robustness of the connectivity algorithm 
in the face of robots fault in the network. In mobile robotics systems, the ability of the system to reconfigure 
and maintain communication is crucial to ensure the continuity of logistical operations. The objective of this 
experiment was to verify whether the removal of a central robot, which served as a connection link for other 
robots, would result in a new direct connection between the remaining robots without the need for external 
intervention. A representation of the experiment can be observed in Fig. 6

For this test, a specific scenario was designed where one robot acted as a common connection point between 
two others.

The experiment was conducted in three controlled stages: 

	1.	 Initial Network Formation: The three robots were positioned, ensuring that the signal range of each was 
sufficient so that all could connect. The simulation was started, and the connectivity algorithm inspired by 
Physarum Polycephalum was activated so that the mesh network could stabilize. Initial connection data and 
formation time were recorded, in the same way as in Experiment 1.

	2.	 Central Robot Removal: After the network was fully formed and stable, the central robot (or “pivot” robot) 
was removed from the simulation. This removal simulated an abrupt robot failure, such as battery loss or a 
mechanical problem.

	3.	 Reconnection Analysis: The simulation continued so that the two remaining robots could react to the loss 
of the central robot. The analysis focused on two aspects: the ability of the remaining robots to detect the 
absence of their previous partner and, more importantly, the formation of a new direct connection between 
them. The time required for this reconnection to occur was recorded from the moment of the central robot’s 
removal.

Scenario Robot | Position Connected Robot Average Time (s)

1

robot_0 (2.0, −0.4) robot_1 0.86

robot_1 (−2.2, −0.4) robot_2 1.28

robot_2 (0.0, 2.8) robot_1 1.29

2

robot_0 (0.0, −3.1) robot_1 1.29

robot_1 (−2.2, −0.4) robot_2 1.10

robot_2 (0.0, 2.8) robot_1 0.91

3

robot_0 (0.0, −3.1) robot_1 0.86

robot_1 (2.4, −3.2) robot_2 1.09

robot_2 (1.6, −0.4) robot_0 1.23

4

robot_0 (0.0, −3.1) robot_1 1.46

robot_1 (2.4, −3.2) robot_0 0.83

robot_2 (0.0, 2.8) robot_0 1.07

5

robot_0 (4.5, −5.8) robot_2 0.98

robot_1 (2.4, −3.2) robot_2 0.91

robot_2 (6.5, −3.1) robot_0 0.72

Table 1.  Summary of connectivity results per scenario (average of 5 runs).
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For greater stability and consistency of results, this scenario was repeated 9 times, with the same robot 
configuration repeated every 3 runs but in different positions on the map. The results are presented in Table 
2. The results compiled in Table 2 demonstrate the consistency of the algorithm in restoring connectivity. In 
all 9 runs, reconnection was successful, with an average time of 0.001 seconds, a value that amounts to an 
instantaneous reconnection. This result confirms the robustness of the model in robots fault scenarios.

The extremely low reconnection time can be explained by the nature of the linear network topology used in 
these tests. Since the remaining robots were already within each other’s signal range, the removal of the central 
robot did not require a search and discovery process for a new partner. Instead, the fault of the central robot 
was immediately perceived, and the direct connection between the robots was established instantly, as they were 
already detecting each other in their field of view. In essence, the algorithm did not need to “search” for a new 
connection, it simply activated a potential connection that already existed. This consistency in results suggests 
that the algorithm is reliable in reconfiguring the communication mesh.

Experiment 3 – Evaluation of the Physarum polycephalum network: adaptability
This experimental stage focused on the adaptability of the algorithm to include new robot in an already 
established communication mesh. In dynamic logistics environments, the entry of new robots into the operating 
area is a common event, and their ability to autonomously integrate into the network is fundamental for the 
scalability and efficiency of the system. A representation of the experiment can be observed in Figure 7

The experiment was divided into two stages: 

	1.	 Initial Network Formation: Two robots (r1 and r2) were positioned to establish a direct connection and 
form the base of the network. The simulation was started and the connection was monitored until it was fully 
stabilized.

	2.	 Inclusion of a New Robot: After the initial network was stable, a third robot (r0) was introduced into the 
signal field of one of the already connected robots. The analysis focused on the time the new robot took to 
detect the network and establish its first connection, integrating into the mesh.

This scenario was repeated 5 times, with the third robot being introduced in different positions, to verify whether 
connection performance varied with distance or initial position. Table 3 presents the preliminary results obtained 
for this experiment, highlighting the agility of the algorithm in incorporating a new robot.

Run Initial Connection Central Robot Removed Reconnection Time (s) New Connection

1 r1-r0-r2 robot_0 0.001 r1 ↔ r2

2 r0-r1-r2 robot_1 0.001 r0 ↔ r2

3 r0-r2-r1 robot_2 0.001 r0 ↔ r1

4 r1-r0-r2 robot_0 0.001 r1 ↔ r2

5 r0-r1-r2 robot_1 0.001 r0 ↔ r2

6 r0-r2-r1 robot_2 0.001 r0 ↔ r1

7 r1-r0-r2 robot_0 0.001 r1 ↔ r2

8 r0-r1-r2 robot_1 0.001 r0 ↔ r2

9 r0-r2-r1 robot_2 0.001 r0 ↔ r1

Average 0.001

Table 2.  Robustness experiment results.

 

Fig. 6.  Mesh network reconnection scenario.
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Analyzing the data from Table 3, the results consistently demonstrate the agility and efficiency of the 
connectivity algorithm in integrating new robots into the mesh network, with an average connection time of 
0.092 seconds. This result is significant and highlights a crucial point of the algorithm inspired by Physarum 
Polycephalum: its capacity for expansion and scalability. The rapid incorporation of a new robot into the network, 
without disturbing the existing connection, is evidence that the model can adapt to dynamic environments 
where robots enter and leave the operating area.

Experiment 4 - task distribution
This experiment had as its main objective to verify the practical impact of the bio-inspired connectivity algorithm 
on the feasibility of a decentralized coordination system. For this purpose, a simulated scenario was used that 
integrates autonomous robot navigation with the distribution of logistical tasks. The focus was to quantify the 
performance improvement obtained when robots are able to efficiently exchange information through the 
Physarum Polycephalum network.

For this experiment, two test scenarios were created, identical in all parameters except for the presence of the 
connectivity algorithm and information exchange.

The task distribution scenario without communication served as the control group. In this scenario, the 
robots operated completely in isolation, without any type of communication between them. Task distribution 
occurred in a simplified manner: tasks were assigned to each robot in a fixed and sequential way before the start 
of the simulation. Upon completing a task, each robot processed the next one from its own local queue. The 
absence of information exchange prevented the robots from having knowledge about each other’s workload or 
about the location of tasks that could be redistributed. Consequently, there was no possibility of load balancing. 
The system’s performance was evaluated based on the total time required to complete all tasks and on the analysis 
of each robot’s workload, which was expected to be uneven.

To establish a clear comparison baseline, the experimental scenario was executed five times. In each repetition, 
a total of 15 tasks was distributed intentionally unevenly among the three robots, simulating a scenario of non-
optimized task allocation. This strategy aimed to create a workload imbalance, resulting in idle moments for 
some robots while others were still processing their tasks. The collected data detail the completion time of each 
robot and the total execution time of the simulation, which corresponds to the time required for the most 

Run Initial Network Robot Added Connection Time (s)

1 r1 ↔ r2 r0 0.10

2 r1 ↔ r2 r0 0.08

3 r1 ↔ r2 r0 0.09

4 r0 ↔ r1 r2 0.10

5 r0 ↔ r1 r2 0.09

6 r0 ↔ r1 r2 0.09

7 r0 ↔ r2 r1 0.10

8 r0 ↔ r2 r1 0.09

9 r0 ↔ r2 r1 0.09

Average 0.092

Table 3.  Adaptability experiment results.

 

Fig. 7.  Scenario of a robot connecting to an existing mesh network.
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overloaded robot to complete its last task. Table 4 summarizes these results. The average total execution time was 
estimated from the highest time recorded by a robot in each run. Thus, it is considered that the total time is only 
reached when all tasks have been completed.

With this, the same tests were applied, but now using information exchange between the robots through 
the connection established by the algorithm inspired by Physarum Polycephalum during operation. The 
mesh network formed by the Physarum Polycephalum algorithm was used so that the robots could share, in 
a decentralized manner, data about their current workload and task locations. Upon connecting, the robots 
exchanged messages that enabled task sharing. Table 5 presents the results obtained from task execution in a 
scenario with sharing.

From the perspective of a single robot, each connection event triggers a short data-exchange phase. The 
robots broadcast a summary of their local task lists, including task identifiers, status (pending, executing, or 
completed), and timestamps of the last update. Upon reception, each robot compares the received entries with 
its own queue: duplicated tasks are removed, outdated entries are updated, and new tasks are appended if not 
already assigned. This lightweight reconciliation uses the latest timestamp as the tie-breaker, ensuring that the 
most recent information prevails. When disconnection occurs, each robot continues executing its current queue 
independently, keeping local logs of all task state transitions. When future reconnections take place (even with 
different neighbors), this history allows robots to re-synchronize and avoid redundant execution. Although 
simplified, this local timestamp-based mechanism prevents inconsistencies and redundant task assignments 
under temporary network fragmentation.

The analysis of the results from both test scenarios allows for a direct comparison of the impact of the 
connectivity algorithm on efficiency and load balancing. While Scenario 1 (without connectivity) established 
the baseline for a simplified system, Scenario 2 (with the Physarum Polycephalum-inspired algorithm) 
demonstrated how decentralized information exchange can optimize operation. In Scenario 1, the average total 
execution time was 621 seconds. This result was expected, as the system depended on the most overloaded 
robot to complete its tasks, while the other robots could remain idle. In Scenario 2, the average total execution 
time was reduced to 510 seconds. This reduction of 111 seconds represents an improvement of approximately 
17.87% in the overall efficiency of the system. The decrease in total execution time validates the hypothesis that 
the connectivity established by the Physarum Polycephalum-inspired algorithm is sufficient to enable efficient 
information exchange, resulting in superior performance. In addition to the improvement in total time, the 
analysis of the individual completion times of each robot reveals the success of the algorithm in load balancing.

Conclusion
The present work had as its main objective to demonstrate the feasibility and performance of a decentralized 
coordination solution for multi-robot systems, inspired by the self-organization of Physarum polycephalum. 

Run

Number of 
Tasks

Robot 
Completion 
Time (s)

r0 r1 r2 r0 r1 r2

1 7 5 3 531 434 484

2 4 5 6 503 531 524

3 5 5 5 459 438 474

4 2 3 10 513 484 501

5 6 6 3 381 397 402

Average Total 
Execution Time 
(s)

510

Table 5.  Scenario 2 results: task distribution with communication.

 

Run

Number of 
Tasks

Robot 
Completion 
Time (s)

r0 r1 r2 r0 r1 r2

1 7 5 3 685 436 258

2 4 5 6 572 600 674

3 5 5 5 477 381 409

4 2 3 10 213 324 690

5 6 6 3 579 511 252

Average Total 
Execution Time 
(s)

621

Table 4.  Scenario 1 results: task distribution without communication.
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The proposal was based on an architecture that allows robots to form and maintain a dynamic communication 
network, adapting to topological changes and system fault. From the experiments conducted in a simulated 
environment, it was possible to address the central research questions, proving the effectiveness and potential 
of the approach.

The hypothesis that robots, operating with purely local perception, would be capable of forming a functional 
mesh network and achieving global connectivity was validated. The experimental results showed that the 
proposed algorithm is responsive, establishing connections in an average time of less than two seconds. This 
agility is crucial in dynamic environments, where the rapid formation of the communication network is a 
prerequisite for cooperation.

The robustness of the network in the face of fault, another fundamental question, was also confirmed. The 
experiments demonstrated the ability of the network to reconfigure almost instantly after the removal of a central 
robot. This behavior highlights the resilience of the algorithm, ensuring the continuity of operation even in the 
face of sudden agent losses, an indispensable attribute for autonomous systems in real contexts.

The adaptability of the algorithm was evidenced through experiments, which showed the network’s ability 
to absorb new robots quickly and efficiently, with an average connection time of 0.092 seconds. This finding 
validates the scalability potential of the solution, suggesting that the model can expand to include new robots 
without compromising the stability or performance of the existing communication mesh.

Finally, the hypothesis that the established connectivity would be sufficient to enable load balancing and 
improve system efficiency was proven through the proposed experiments. The comparison between scenarios 
with and without communication showed a substantial improvement in total execution time, from 621 to 510 
seconds, representing a 17.87% efficiency gain. The detailed analysis revealed that this improvement is a direct 
result of dynamic load balancing, which transformed the unequal performance of robots into a more uniform 
cooperative effort. The apparent increase in the individual times of some robots actually reflects the transfer of 
tasks from overloaded agents to idle ones, optimizing the overall system performance.

In conclusion, the results obtained in this work solidify the proposal of a bio-inspired solution as a viable 
and robust alternative for decentralized coordination in multi-robot systems. The algorithm proved capable of 
generating efficient, resilient, and adaptable connectivity networks, which serve as the basis for information 
exchange and cooperation among agents.

Future work
Future research directions include expanding the scalability analysis to scenarios with a larger number of robots 
and validating the proposed approach in a physical environment to demonstrate its applicability under real 
operating conditions.

Future studies may also explore the integration of the Physarum-inspired connectivity layer with established 
communication frameworks such as MANET. While not implemented in the current study, this conceptual 
alignment opens the possibility of using the emergent link-weighting process to enhance routing efficiency and 
quality-of-service adaptation in robotic networks.

In addition, future research should include a systematic analysis of communication complexity and scalability. 
While this work focused on validating connectivity and decentralized coordination through simulation, the 
behavior of the proposed mechanism under real-world communication constraints, such as signal interference, 
latency variability, and hardware limitations, remains to be investigated. Evaluating how message exchange 
scales with the number of robots, link density, and environmental factors will provide valuable insights into 
potential latency, bandwidth usage, and performance bottlenecks in larger and more realistic robotic networks.

Data availability
The data are available in the manuscript or on GitHub: https://github.com/mdieisson/Physarum_ws
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