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Addressing uncertainties on the demand side caused by electricity price fluctuations during integrated 
energy system (IES) dispatch, modeling biases resulting from static assumptions about equipment 
energy efficiency, and cost redundancy issues stemming from unreasonable seasonal allocation 
of carbon quotas, this study constructs an electricity PDR economic dispatch optimization model 
incorporating dynamic energy efficiency and dynamic carbon trading. It proposes a “distributed 
robust optimization (DRO)-model predictive control (MPC)” collaborative framework and a tiered 
dynamic carbon quota allocation strategy accounting for seasonal output and efficiency variations of 
equipment, tailored to match carbon emission characteristics across different seasons. At the demand 
response level, an electricity price elasticity coefficient matrix is introduced to quantify the impact 
of real-time price fluctuations on load, integrating it into the MPC model to resolve the time-scale 
mismatch between day-ahead and intraday scheduling. Simulation results demonstrate: The coupled 
dynamic energy efficiency and carbon trading model reduces total system costs by 13.07% and carbon 
trading costs by 11.57% compared to the conventional approach. Regarding tracking error, the 
combination of rolling optimization and feedback correction improves tracking accuracy by 14.66% 
and 6.13% compared to cases without feedback correction and rolling optimization, respectively, while 
reducing total costs by 4.36% compared to the case without rolling optimization. This study provides a 
scientifically feasible optimization solution for low-carbon economic dispatch of IES under uncertainty.

Keywords  Integrated energy system, Distributed robust optimization, Model predictive control, Dynamic 
carbon trading, Electricity price-based demand response

Serving as the foundational infrastructure of the energy internet, the integrated energy system (IES) has attracted 
attention due to its strengths in enabling multi-energy coupling, offering high flexibility, and facilitating the 
integration of renewable energy1. In 2024, China’s total electricity consumption hit 9,852.1 billion kWh, which 
was nearly five times the figure recorded in 20002. However, the continuous growth in electricity demand has 
driven a relentless increase in power generation, resulting in substantial carbon emissions and posing severe 
challenges to the stability and security of power systems. Against this backdrop, IES has emerged as a critical 
solution due to its ability to coordinate multiple loads including heat, gas, electricity, and hydrogen3. Yet, IES 
involves multi-energy flow coupling and exhibits high complexity, making the optimization of its scheduling a 
key focus in current power system research.

To ensure IES stability, numerous studies have proposed corresponding optimization models from different 
dimensions. Reference4 introduced a differentiated dynamic pricing demand response model based on a user 
satisfaction function. This model accounts for the distinct electricity consumption characteristics and price 
elasticity of commercial and residential electricity consumers (EC), coupling user demand with electricity prices. 
It effectively reduced peak power demand, lowering peak demand for commercial and residential ECs by 4.99% 
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and 9.99%, respectively. Reference5 proposes a risk-free arbitrage-aware electricity pricing model combined with 
robust optimization (RO) to enhance pricing scientificity. Reference6 employs real-time price forecasting to 
reduce peak-to-valley differences in load curves, lowering user electricity bills by 17.5%. Reference7 introduced a 
three-stage robust optimization to address uncertainties in renewable generation and load forecasting, enabling 
system stability under extreme conditions while maintaining emissions within target ranges. However, it did not 
address intraday scheduling. A dynamic optimal scheduling approach with multi-timescale combining RO with 
MPC-driven rolling optimization was proposed in Reference8, aiming to tackle the mismatch between the time 
horizons of thermal loads and electrical loads.

AI models have also emerged as a hot research topic in recent studies on IES robustness optimization. 
For example, Reference9 proposed a topology-aware multi-task reinforcement learning approach based on 
soft modularization to address load restoration challenges in IES following extreme events, fully leveraging 
the flexibility of multi-energy microgrids (MEMGs). However, it did not account for the dynamic coupling 
between source-load forecasting and scheduling, relying instead on predefined fault scenarios. Consequently, 
its ability to generalize to unseen uncertainties remains limited. Reference10 constructs a Transformer-LSTM 
hybrid forecasting model, integrating Gaussian process regression to achieve multi-step interval forecasting for 
random variables; Through a synchronous training mechanism, it couples the double-delay deep deterministic 
policy gradient algorithm to form an integrated “prediction-scheduling” framework. This addresses nonlinear 
coupling and source-load uncertainty in IES scheduling, enhancing scheduling optimization performance. 
However, research on carbon chains is lacking, and carbon costs have not been incorporated into the study 
scope. Refernece11 integrates carbon capture, power-to-gas (P2G), and carbon trading mechanisms; proposes 
a two-stage learning-based robust optimization approach. By learning and calibrating the shape of ellipsoidal 
uncertainty sets, it ensures statistical feasibility, yet lacks sufficient refinement in the coordinated scheduling of 
multi-energy coupled equipment.

Electricity price-based demand response (EPDR), a crucial tool in IES scheduling, relies heavily on the accuracy 
of electricity price signals12. Although related electricity price forecasting models have matured and EPDR-based 
optimization has achieved positive results, research on system stability optimization models considering the 
impact of real-time electricity price fluctuations on user demand response remains scarce. Concurrently, with 
the widespread adoption of renewable energy sources, the hourly-level electricity price fluctuations caused by 
their variability, as an uncertainty factor affecting system stability, have also received limited in-depth discussion 
in the literature. Furthermore, simple day-ahead DRO models show limited effectiveness in optimizing load 
fluctuations caused by intraday price fluctuations. Therefore, there is an urgent need for a collaborative model 
that integrates intraday optimization scheduling with day-ahead robust optimization to enhance the system’s 
overall resilience against load fluctuation uncertainties induced by electricity prices.

With the advancement of global low-carbon economic strategies, carbon costs are increasingly internalized 
as critical constraints in IES operations. Beyond optimizing system volatility uncertainties, the coupling design 
between carbon trading and IES systems has emerged as a new research focus. Reference13 proposed a seasonal 
carbon trading model that reduced system carbon emissions by 2.54% while lowering operational costs by 22.58%, 
but it did not address coupling with actual equipment conditions. Reference14 addressed a dynamic carbon 
quota model, reducing carbon emission costs by 9%, but failed to integrate seasonal variations. Reference15 
constructed a two-stage planning model for an electricity-gas coupled integrated energy system (EGC-IES), 
incorporating carbon capture equipment into power plants to transform them into carbon-capturing facilities. 
Although low-carbon economic dispatch models have reached relative maturity, significant deficiencies persist 
in carbon trading model development. Reference16 only considered the impact of dynamic energy efficiency 
models on equipment and stepwise carbon quotas, failing to effectively couple stepwise carbon trading models 
with dynamic energy efficiency models. Reference17 optimized the cascading economic dispatch of a park’s 
integrated energy system through a dynamic energy efficiency model, reducing daily operating costs by 17.04%. 
However, it employed an annual average carbon quota allocation method, overlooking significant seasonal 
variations in annual carbon emissions and equipment output. Such an allocation not only deviates from reality 
but also increases the system’s carbon trading costs, as noted in Reference18. However, taking gas-fired units as 
an example, summer electricity loads are approximately 1.4 times higher than winter loads19. In actual operation, 
summer carbon emission intensity of equipment is more than 1.22 times that of winter20. Applying a uniform 
quota allocation method to each quarter’s carbon allowances would significantly increase carbon trading costs.

In addition, traditional IES systems set equipment efficiency to a fixed value, as described in references21 
and22. However, when considering other relevant costs such as system gas procurement expenses, variations in 
equipment efficiency due to load differences across different time periods within a day can lead to estimation 
errors in gas procurement costs, operating expenses, and other related costs when using fixed energy efficiency 
calculations.

Based on the literature review, current IES system optimization scheduling research exhibits numerous 
shortcomings. To address these limitations, this paper constructs an IES optimization model that 
comprehensively considers real-time electricity price fluctuations, integrates a tiered carbon trading strategy 
with seasonal dynamic equipment output, and incorporates a dynamic equipment energy efficiency model. The 
model’s effectiveness in engineering practice is validated through computational examples. To clearly present the 
research work, the Table 1 (TOU represents time-of-use) is provided for reference.

In summary, the main contributions of this paper can be summarized as follows:

•	 A multi-energy flow coupling model integrating load-side demand response through electricity pricing and 
source-side equipment load dynamic energy efficiency has been established. This model overcomes the lim-
itations of traditional IES models, which neglect the impact of load fluctuations on energy efficiency and 
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treat electricity prices as constants, significantly enhancing the accuracy of multi-energy flow collaborative 
optimization.

•	 By integrating real-time electricity prices with user load and renewable energy output, a real-time pricing 
calculation method was proposed. This approach simultaneously accounts for renewable energy generation 
and user-side demand response, effectively enhancing renewable energy absorption rates.

•	 A cascading dynamic carbon trading mechanism considering equipment’s dynamic energy efficiency and car-
bon emissions is proposed. This mechanism enables dynamic allocation of carbon quotas and demonstrates 
its effectiveness in reducing carbon trading costs within low-carbon economic dispatch.

•	 A novel two-stage DRO-MPC collaborative optimization framework based on price elasticity and incorporat-
ing electricity price fluctuations is proposed. This framework optimizes load uncertainty on the demand side 
caused by electricity price fluctuations, mitigates the time scale mismatch between day-ahead optimization 
and load demand forecasting, and enhances the system’s robustness against risks.

IES modeling
Figure 1 shows the IES structure utilized in this paper and will be further delineated in the ensuant sections. Four 
forms of energy are integrated the system to meet energy demands under different scenarios, they are electricity, 
heat, gas, and hydrogen.

Energy conversion equipment modeling
EL and MR modeling

	





1P EL
H,t = ηpro

H,tP in
EL,t

P in,min
EL,t ≤ P in

EL,t ≤ P in,max
EL,t

∆P min
e,EL ≤ P in

EL,t+1 − P in
EL,t ≤ ∆P max

e,EL

� (1)

Fig. 1.  Structure of IES.

 

Reference P2G CCS

Dynamic
carbon trade
model

Dynamic
efficiency
model

Fluctuation of
electricity
price EPDR

Optimal
method

Combination of
day-ahead
and Intraday

4 × × × × ✓ Real time Conventional ×
5 ✓ × × × ✓ Real time RO ×
7 × ✓ × × ✓ Real time DRO ×
8 × ✓ × × × TOU DRO-MPC ✓
13 ✓ × ✓ × ✓ × Conventional ×
14 ✓ ✓ × × ✓ TOU Conventional ×
16 ✓ ✓ ✓ × ✓ × Conventional ×
This article ✓ ✓ ✓ ✓ ✓ Real Time DRO-MPC ✓

Table 1.  Comparison of related studies with this research.
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


1P pro
ng,t = ηpro

MRP MR
H,t

P MR,min
H,t ≤ P MR

H,t ≤ P MR,max
H,t

∆P min
e,MR ≤ P MR

H,t+1 − P MR
H,t ≤ ∆P max

e,MR

� (2)

where, P pro
ng,t and P EL

H,t  represents the output power of MR and EL respectively; ηpro
MR and ηpro

H,t  donates the energy 
efficiency of MR and EL at time t, respectively.

HFC modeling
The hydrogen energy can be converted into electric and heat energy by HFC. The model is outlined below:

	




PHFC,e,t = ηe
HFCPH2,HFC,t

PHFC,h,t = ηh
HFCPH2,HFC,t

P min
H2,HFC ≤ PH2,HFC,t ≤ P max

H2,HFC

∆P min
H2,HFC ≤ PH2,HFC,t+1 − PH2,HFC,t ≤ ∆P max

H2,HFC

κmin
HFC ≤ PHFC,h,t

PHFC,e,t
≤ κmax

HFC, when PHFC,e,t ̸= 0

� (3)

where, PHFC,e,t and PHFC,h,t donates the electrical power and thermal power output of HFC respectively; 
ηe
HFC and ηh

HFC represents the electrical and thermal efficiency of HFC; κmax
HFC and κmax

HFC donates the upper and 
lower limit heat-to-electric ratio of HFC respectively.

GB and GT modeling
The model of GB and GT can be expressed as follows:

	




PY,t = ηY,tP
in
Y,t

P in,min
Y,t ≤ P in

Y,t ≤ P in,max
Y,t

∆P in,min
Y ≤ P in

Y,t+1 − P in
Y,t ≤ ∆P in,max

Y

� (4)

where, Y stands for the GB or GT; ηY,t represents the energy efficiency of device Y at time t; PY,t is the output 
power of device Y at time t; P in

Y,t represents the natural gas energy input to the device Y; ∆P in,max
Y  and ∆P in,min

Y  
donates the upper and lower limit of ramp-rate respectively.

Dynamic efficiency model (DEM)
To enhance the accuracy of the model constructed in this paper, the IES model developed here treats equipment 
efficiency not as a constant value but as a dynamic value dependent on equipment load. Based on equipment 
load, the efficiency model can be established as follows:

	




1ηpro
H,t =

n∑
i=0

αEL,i

(
PEL,in,t

PELN

)i

ηGB,k,t =
n∑

i=0

αGB,i

(
PGB,t

PGBN

)i

ηGT,k,t =
n∑

i=0

αGT,i

(
PGT,t

PGTN

)i

ηe
HFC,t =

n∑
i=0

αHFC,e,i

(
PHFC,e,t

PHFC,e,N

)i

ηh
HFC,t =

n∑
i=0

αHFC,h,i

(
PHFC,h,t

PHFC,h,N

)i

� (5)

where, αY,i represents the i-th order fitting factor of the efficiency function polynomial for device Y; PY,N 
indicates the rated output power of device Y.

Energy storage equipment modelling
Considering that energy storage devices such as batteries, hydrogen storage tanks, gas storage tanks, and heat-
sensitive tubes operate on similar principles, modeling is performed using batteries as an example, with other 
devices following analogous approaches:
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


1Se,t+1 = (1 − τes)Se,t + ηes,chrPes,chr,t − Pes,dis,t

ηes,dis

Se,0 = Se,T

Se,min ≤ Se,t ≤ Se,max

Ues,chr,tPes,chr,min ≤ Pes,chr,t ≤ Ues,chr,tPes,chr,max

Ues,dis,tPes,dis,min ≤ Pes,dis,t ≤ Ues,dis,tPes,dis,max

Ues,dis,t + Ues,chr,t ≤ 1
Ues,dis,t, Ues,chr,t ∈ {0, 1}

� (6)

where, τes represents self-energizing rate of the device; ηes,chr and ηes,dis donates the charge and discharge 
efficiency of the device respectively; Ues,chr,t and Ues,dis,t represents the charging and discharging flag bit of 
the device.

Renewable energy equipment modelling
In this paper, wind energy and solar energy are selected as the renewable energy sources. wind power go 
conversion process via wind turbines (WT) and solar power go conversion via photovoltaic (PV) devices. Thus, 
the output power of renewable energy devices in the IES can be outlined in the following way:

	 Pres,t = Pwind,t + Ppv,t� (7)

where, Pres,t, Pwind,t, and Ppv,t represent the output power of the renewable energy system, WT, and PV power 
generation equipment, respectively.

Price-driven demand response (PDR)
This paper introduces a price elasticity coefficient matrix to describe PDR, quantifying the impact of electricity 
prices on system load-side stability. The expression for the price elasticity coefficient matrix is:

	

E =




ϵ11 ϵ12 · · · ϵ1n

ϵ21 ϵ22 · · · ϵ2n

...
...

. . .
...

ϵn1 ϵn2 · · · ϵnn


� (8)

where the price elasticity coefficient ϵi,j  is expressed as:

	
ϵi,j = ∆Qi

PDR

Qi
PDR,b

·
λbuy,j

ele,fix

∆λbuy,j
ele

=
Qi

PDR − Qi
PDR,b

Qi
PDR,b

·
λbuy,j

ele,fix

λbuy,j
ele,float − λbuy,j

ele,fix

� (9)

where Qi
PDR,b represents the benchmark of user’s electrical demand; and Qi

PDR donates the real value of user’s 
electrical demand; λbuy,j

ele,fix is the TOU electricity price at time j; λbuy,j
ele,float represents the real time value when 

considering the PDR model.
The real-time electricity price calculation formula considering renewable energy output and load fluctuations 

is:

	




λbuy,j
ele,float = λbuy,j

ele,fix

(
1 + δt

ele
)

δt
ele = ∆Qi

PDR

Qi
PDR,b

· Pres,t

P N
res

� (10)

where: 1, 2, 3…n represent the first, second, third…nth time periods, respectively. From the above formulation, 
the price-demand load response model is derived:

	




Q1
PDR

Q2
PDR
...

Qn
PDR


 =




Q1
PDR,b

Q2
PDR,b

...
Qn

PDR,b


 +




Q1
PDR,b 0 · · · 0

0 Q2
PDR,b · · · 0

...
...

. . .
...

0 0 · · · Qn
PDR,b


 E

[
∆λ

buy,1
ele

λ
buy,1
ele,fix

∆λ
buy,2
ele

λ
buy,2
ele,fix

· · · ∆λ
buy,n
ele

λ
buy,n
ele,fix

]T

� (11)

Carbon trading cost modelling
Since different equipment exhibits varying energy efficiency across seasons, changes in energy efficiency often 
imply shifts in carbon emissions. To minimize carbon trading costs, this study proposes a dual-tiered dynamic 
carbon trading cost optimization model that integrates dynamic equipment energy efficiency with seasonal 
carbon trading patterns.

The specific calculation for the amount of CO2 captured by the carbon capture and storage equipment(CCS) 
is:
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



P CCS,t
w = P I,t

w + P D,t
w + P B,t

w

mw,t = εtξwP CCS,t
w

φtotal
w,t = φStore

w,t + κCCSξwmw,t

0 ≤ κCCS ≤ 1
0 ≤ φtotal

w,t ≤ µκCCSξwP max
w

P B,t
w = νφtotal

w,t

� (12)

where, P CCS,t
w  donates total output power of CCS unit at time t; P I,t

w  represents the net output power of CCS 
unit at time t; P D,t

w  stands for the fixed energy consumption CCS unit at time t and P B,t
w  means operating 

energy consumption of CCS unit at time t respectively; w donates the device number index of CCS; κCCS, εt, ξw  
µ represents carbon capture coefficient, actual carbon emission coefficient, flue gas diversion ratio, maximum 
operating coefficient of regeneration tower and compressor of CCS unit respectively; ν donates the power 
consumed by the CCS to capture a unit amount of CO2; φw,t stands for the total volume of CO2 captured by 
CCS at time t, while mw,t donates the total volume of CO2 produced by the CCS unit at time t; φStore

w,t  represents 
the quantity of CO2 to be captured by the solution reservoir; P max

w  the maximum output of the generator set.
When the equipment uses CO2 to produce methane, it consumes a portion of the CO2. Therefore, the 

equipment’s CO2 emissions are:

	




Et
MR =

NMR∑
j=1

P pro
ng,t

Gcalor
ng

Et
MR ≤

capture∑
w=1

φtotal
w,t

EG
act,t =

Nψ∑
w=1

τact
ψ Pw,t

EGas
act,t = τact

Gas

Nload∑
n=1

P load
Gas,n

� (13)

where, EG
act,t, EGas

act,t donates the carbon emmision of generator set and gasload respectively; τact
ψ , τact

Gas 
represents the corresponding coefficients of each unit.

The system’s carbon allowance Eq,t can be calculated using the following Eq. (14):

	
Eq,t =

Nψ∑
w=1

τallo
ψ Pw,t + τallo

Gas

Nload∑
n=1

P load
Gas,n� (14)

The system’s net carbon emissions equal actual carbon emissions minus the carbon allowance, i.e.:

	
Enet = EGas

act,t + EG
act,t + ζpower

carbonQr
PDR,b −

capture∑
w=1

φtotal
w,t −

NMR∑
j=1

nbuy,t
j,CO2

+ ζpower
carbon∆Qt

PDR − Eq,t� (15)

where, ζpower
carbon donates the CO2emmitted per unit of electricity consumed by user.

The quarterly base carbon allowance coefficient τallo
ψ,base for gas-fired power generation equipment is 

determined by the equipment’s output:

	
τallo

ψ,base =
Eseason

q∑N

n=1

∑T

t=1 Pn,t
� (16)

During actual operation, equipment energy efficiency varies by season. Therefore, the dynamic energy efficiency 
carbon quota coefficient model is:

	 τallo
ψ = λseason,allo

i τallo,base
ψ � (17)

The formula for calculating λseason
i  using the equipment’s dynamic energy efficiency model is shown as Eq. (18):

	
λseason

i = ηD
i

ηseason
i

� (18)

where ηD
i  donates the average dynamic efficiency of each season, ηseason

i  donates the rated efficiency of the 
device.

Scientific Reports |         (2026) 16:1350 6| https://doi.org/10.1038/s41598-025-33497-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Considering the seasonal nature of carbon emissions, carbon quotas are allocated according to different 
seasons as Eq. (19):

	




Emax
season = kseasonEmax

∑
kseason = 1

season = {spring, summer, autumn, winter}

� (19)

The carbon quotas for each quarter are:

	 Eseason
q = kseasonEyear

q � (20)

Constraints
The constraints for IES primarily include: equipment power balance, equipment output constraints, equipment 
ramping constraints, and curtailment ratio constraints for renewable energy equipment. Their specific forms are: 

	(1)	 Power balance:

•	 Electrical power balance:

	




P buy
ele,t + Pwind,t + Pvc,t + P ele

es,dis,t + PHFC,e,t +
NGT∑
k=1

PGT,k,t = PEL,in,t + PWCC,t + PLCC,t + Qt
PDR

∆t
+ P ele

es,chr,t + P CCS,t
w

Qt
PDR = Qt

PDR,b + ∆Qt
PDR

� (21)

	 where: PWCC,t and PLCC,t represent curtailed wind power and curtailed solar power, respectively.

•	 Thermal power balance:

	

NGB∑
k=1

PGB,k,t + PHFC,h,t + P heat
es,dis,t = P load

heat,t + P heat
es,chr,t� (22)

	 where P load
heat,t is the heatload of the system at time t.

•	 Hydrogen power balance:

	 P EL
H,t + PHs,chr,t = PHs,dis,t + PH2,HFC,t + P MR

H,t � (23)

•	 Gas balance:

	 P pro
ng,t + Pgs,chr,t + nbuy

ng,t · Gcalor
ng = Pgs,dis,t + P in

GB,t + P in
GT,t + P t

gasload� (24)

	(2)	 Power purchase constraint: 

	




P buy
ele,min ≤ P buy

ele,t ≤ P buy
ele,max

∆Pgrid,down ≤ P buy,t
ele,float − P buy,t−1

ele,float ≤ ∆Pgrid,up

0 ≤ PEL,in ≤ PELN

0 ≤ P discharge
HFC,t ≤ P discharge

HFC,t,max

� (25)

	(3)	 Energy storage constraints Constraints related to energy storage equipments include natural gas storage, 
hydrogen storage, and thermal power storage. They are detailed in section “Energy storage equipment mod-
elling” on energy storage modeling and will not be repeated here.

	(4)	 Gas purchase constraints The quantity of natural gas purchased during the period from 0 to T, nbuy
ng , can be 

expressed as Reference23 mentioned: 

	





nbuy
ng = max

{
0,

T∑
t=0

(∑NGB
k=1

PGB,k,t

ηGB,k,t
+

∑NGT
k=1

PGT,k,t

ηGT,k,t

Gcalor
ng

−
P pro

ng,t

Gcalor
ng

− Sng,t−1

Gcalor
ng

)
· ∆t

}

0 ≤ nbuy
ng,t ≤ Sng,max

Gcalor
ng

� (26)

	(5)	 Output constraints of renewable energy equipment: 
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



P min
wind,t ≤ Pwind,t ≤ P max

wind,t

P min
vc,t ≤ Pvc,t ≤ P max

vc,t

∆P min
wind,t ≤ Pwind,t − Pwind,t−1 ≤ ∆P max

wind,t

∆P min
vc,t ≤ Pvc,t − Pvc,t−1 ≤ ∆P max

vc,t

� (27)

	(6)	 Constraint of the renewable energy curtailment ratio: 

	 PWCC,t + PLCC,t ≤ εc · (Pwind,t + Pvc,t)� (28)

	 Considering the varying power generation of clean energy across different time periods, εc is set as two seg-
ments: daytime (7:00-18:00) and nighttime (18:00-7:00), i.e.: 

	
εc =

{
εc1, t ∈ (7 : 00 − 18 : 00)
εc2, t ∈ (18 : 00 − 7 : 00) � (29)

	 where: εc represents the curtailment ratio.

Cost calculation
The total cost of IES can be devided into several parts listed below: 

	(1)	 Carbon trade costs: When actual carbon emissions of IES surpass its assigned quota, the IES is obligated 
to buy carbon credits. Aiming at reducing the harm to the environment, tiered carbon trading model is 
adopted. The model is detailed as follows: 

	

ctrade
carbon =





αEnet, Enet ≤ γ

αγ + (1 + β)α(Enet − γ), γ < Enet ≤ 2γ

(2 + β)αγ + (1 + 2β)α(Enet − 2γ), 2γ < Enet ≤ 3γ

(3 + 3β)αγ + (1 + 3β)α(Enet − 3γ), 3γ < Enet ≤ 4γ

(4 + 6β)αγ + (1 + 4β)α(Enet − 4γ), 4γ < Enet

� (30)

	(2)	 Gas procurement costs: 

	




Cbuy
gas = Cbuy

ng + Cbuy
CO2

Cbuy
ng =

T∑
t=0

λbuy
ng nbuy

ng,t

Cbuy
CO2

=
T∑

t=0

λbuy
CO2

nbuy
CO2,t

� (31)

	 where: λbuy
ng  and λbuy

CO2
 represent the unit prices for purchasing the corresponding gas; Cbuy

ng  and Cbuy
CO2

 denote 
the costs for purchasing the corresponding gas; Cbuy

gas  indicates the total gas procurement cost.

	(3)	 Electricity Purchase Cost: 

	
Cbuy

ele =
T∑

t=0

(
λbuy

ele,fixP buy
ele,fix + λbuy

ele,floatP
buy
ele,float

)
� (32)

	(4)	 Operation cost The operational costs of each piece of equipment are calculated using its energy parameters 
and corresponding coefficients. In the context of energy generation devices, this energy is referred to as the 
output power. In the context of gas-electricity conversion systems, it signifies the aggregate energy input 
derived from all devices that are connected to the system. With regard to energy storage devices, this term 
denotes the energy released by the storage system. The comprehensive expression is as Eq. (33): 

	
Cope =

T∑
t=1

N∑
i=1

ciEi,t� (33)
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	 where: ci represents the operating cost coefficient for device i, and Ei,t denotes the total energy released by the 
device.

	(5)	 Wind curtailment cost (WCC) and solar light curtailment cost (LCC): 

	





CWCC =
T∑

t=0

λWCCPWCC,t

CLCC =
T∑

t=0

λLCCPLCC,t

� (34)

	 where λWCC and λLCC denote the WCC and LCC coefficients, respectively; CWCC and CLCC denote the 
WCC and LCC, respectively.

	(6)	 Energy storage cost: As electrical, heat, gas, and hydrogen storage devices feature a comparable model struc-
ture, the example provided below will utilize battery modeling for demonstration purposes: 

	
Ces,ele =

T∑
t=1

λesSe,t� (35)

	 Where: λes denotes the cost per unit of power stored by the energy storage device.

	(7)	 Costs of CCS operation: 

	
CCCS =

T∑
t=0

(
aCCSP CCS,t

w + bCCS
)

� (36)

	 where: aCCS represent the linear term coefficient and bCCS donates the constant term of the CCS equipment 
cost. Through the discussion above, the total cost of the system Ctotal is outlined: 

	 Ctotal = Ctrade
carbon + Cbuy

gas + Cbuy
ele + Cope + CWCC + CLCC + CCCS + Ces� (37)

Day-ahead DRO for electricity PDR
Scenario acquisition
Before conducting DRO, the acquisition of data relies on scenario generation. In this paper, uncertainty scenarios 
are consist of the PV, WT and fluctuations of diverse form of energy demands. This article adopts a data-driven 
DRO model, where a simplified data source is required. The target is realised using latin hypercube sampling 
(LHS), and k-means clustering to determine the optimal number of representative scenarios and the final set. 
Before clustering, the elbow method is needed to find out the best k value to be applied to the clustering.

The framework of data-driven DRO
Based on the features of different devices, all discrete variables (including determined quantities and flag 
variables representing device operational states) are defined as the first-stage decision variable x. All remaining 
uncertain continuous variables serve as the second-stage decision variable y. Based on the variables discussed 
above, the objective function are outlined as follows:

	




min
x

{
F1(x) + max

pk∈Ω

{
K∑

k=1

pkg(x, ξk)

}}

s.t.

{
A(x) ≤ 0{

g(x, ξk) = minyk∈Y(x,ξk) {F2(x, ξk, yk)}
s.t. B(x, ξk, yk) ≤ 0

� (38)

where, K represents the quantity of discrete scenarios; T denotes the total number of time periods in the current 
day; F1(x) denotes the objective function for the first stage; pk  represents the probability distribution value for 
the scenario k; Ω denotes the feasible region for scenario probability distributions under the comprehensive 
norm constraint; g(x, ξk) defines the inner minimization problem; ξk  corresponds to the discrete scenario k; 
Y(x, ξk) indicates the feasible region for yk  given a set of (x, ξk); yk represents the variable for the second stage 
under the scenario k; A(x) constitutes the constraint related solely to first-stage variables; F2(x, ξk, yk) serves 
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as the objective function for the second stage; B(x, ξk, yk) reflects the second-stage constraint accounting for 
uncertain information.

In the formula, min
x

 ensures reasonable and conservative first-stage decisions to guarantee model availability 

under worst-case scenarios; the intermediate layer max
pk∈Ω

 ensures the model can identify the probability 

distribution of worst-case scenarios from fuzzy sets Ω; the inner layer min
yk∈Y

 ensures optimal second-stage 
scheduling for equipment during the two-stage decision process and minimizes the total cost of IES under all 
possible scenarios.

In the model, it is imperative that both the ∞-norm and the 1-norm are incorporated with a view to 
minimizing the discrepancy between the real distribution and the initial distribution pk , which is generated 
through history data. The fuzzy set Ω is as follows:

	

Ω =




{pk}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pk ≥ 0, k = 1, . . . , K
K∑

k=1

pk = 1

K∑
k=1

|pk − p0
k| ≤ θ1

max
1≤k≤K

|pk − p0
k| ≤ θ∞

K∑
k=1

pk · Qk,t
PDR ∈ [µQ,t − δQ,t, µQ,t + δQ,t]





� (39)

where, p0
k  denotes the initial scenario probability distribution value; θ1 and θ∞ donate the maximum probability 

deviation constraints which correspond to the 1-norm constraint and ∞-norm constraint, respectively. Where 
pk  obeys the confidence level below:

	




Pr

{
K∑

k=1

|pk − p0
k| ≤ θ1

}
≥ 1 − 2Ke−2Mθ1/K

Pr
{

max
1≤k≤K

|pk − p0
k| ≤ θ∞

}
≥ 1 − 2Ke−2Mθ∞

� (40)

Setting the right-hand side of the above equation equal to the confidence levels α1 and α∞ yields:

	




θ1 = K
2M

ln 2K
1 − α1

θ∞ = 1
2M

ln 2K
1 − α∞

� (41)

The objective function for the first stage is:

	




F1(x) = Cbuy
ele,fix + Ces

Cbuy
ele,fix =

T∑
t=1

λbuy
ele,fixP buy

ele,fix

� (42)

	
s.t.

{
Equation 6
Equation 25 � (43)

The objective function for the second stage is:

	





F2(x, ξk, yk) = Cbuy
ele,float + CCCS + Cope + CWCC + CLCC + Cbuy

gas + Ctrade
carbon

Cbuy
ele,float =

T∑
t=1

λbuy
ele,floatP

buy
ele,float

� (44)

	
s.t.

{
Equation 1 to Equation 5
Equation 11
Equation 22 and Equation 26

� (45)
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Intraday MPC
Although day-ahead robust optimization effectively enhances system stability, uncertainty in electricity 
price fluctuations persists, typically occurring at the intraday level. This necessitates addressing the temporal 
mismatch between day-ahead robust optimization and intraday forecasting. Accordingly, this paper proposes an 
intraday MPC optimization approach to resolve the temporal discrepancy between day-ahead optimization and 
electricity price responsiveness.

During the intraday MPC scheduling phase, the first step is to obtain the electricity prices and load parameters 
for each time period with the data derived from the optimized results of DRO. In the MPC prediction process, 
user loads are forecast using these parameters, ensuring robustness while maintaining prediction accuracy. 
Based on the definition of price elasticity coefficients, i.e., the price elasticity matrix:

	
∆Qt

PDR =
n∑

j=1

ϵt,j ·
λbuy,j

ele,fix − λbuy,j
ele,float

λbuy,j
ele,fix

· Qt
PDR,b� (46)

where, n denotes the number of time periods affected by electricity prices.
Rewritten in state equation form:

	
Qt

PDR,pred = Qt
PDR,b +

n∑
j=1

ϵt,j · Qt
PDR,b ·

λbuy,j
ele,float − λbuy,j

ele,fix

λbuy,j
ele,fix

� (47)

where, Qt
PDR,pred represents the rolling optimization forecast value.

Rolling optimization
The objective function for rolling optimization is:

	
min

λ
buy,t:t+H
ele,float

H∑
k=0

[
Ctotal + ρ · ∆λ

buy,t+k|t
ele

]
� (48)

	

s.t.




λbuy,t
ele, float, min ≤ λbuy,t

ele, float, pred ≤ λbuy,t
ele, float, max(

λbuy,t
ele, float

)∗ − δfloat
λ,t ≤ λbuy,t

ele, float, pred ≤
(
λbuy,t

ele, float

)∗ + δfloat
λ(

Qt
PDR

)∗ − δt
PDR ≤ Qt

PDR, pred ≤
(
Qt

PDR

)∗ + δt
PDR

� (49)

where, ρ represents the electricity price penalty coefficient; x signifies the optimal solution for variable x obtained 
through DRO; δfloat

λ,t  represents the allowable electricity price forecast fluctuation during MPC; δt
PDR denotes 

the allowable user load fluctuation during MPC.

Feedback correction
In practical implementations of MPC, discrepancies can arise between the outcomes of rolling optimization and 
the system situation in reality due to model mismatch and prediction errors. To alleviate these inconsistencies, 
a dynamic feedback correction mechanism based on electrical price elastic coefficient is incorporated. The 
deviation between actual and predicted demand is calculated as:

	 ∆Qt
PDR, err = Qt

PDR − Qt
PDR, pred� (50)

where, ∆Qt
PDR, err represents the error between actual user electricity consumption and the model prediction.

The price elasticity response coefficient is corrected using ∆Qt
PDR,pred:

	
ϵnew

t,j = ϵold
t,j + ω · ∆Qt

PDR, err
λbuy,j

ele, fix

Qt
PDR, b ·

(
λbuy,j

ele, float − λbuy,j
ele, fix

) � (51)

	 s.t. ϵmin
t,j ≤ ϵnew

t,j ≤ ϵmax
t,j � (52)

where, ϵnew
t,j  is the corrected electricity price elasticity coefficient; ϵold

t,j  represents the elasticity coefficient before 
correction; and ω denotes a weighting factor between 0 and 1, used to adjust the correction intensity of the 
elasticity coefficient based on prediction errors. Its value will be determined during the simulation process.

Substitute the corrected price elasticity coefficient into the model for a new round of prediction, thereby 
completing the feedback correction of the price elasticity coefficient:

	
Qt+1

PDR, pred = Qt+1
PDR, b +

n∑
j=1

ϵnew
t,j · Qt+1

PDR, b ·
λbuy,j

ele, float − λbuy,j
ele, fix

λbuy,j
ele, fix

� (53)
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Solution method of model
DRO solution method
To address the DRO problem proposed in this paper, the C&CG method is employed. Through iteration, this 
method transforms the complex min-max-min problem in the DRO model into a series of alternately solved 
subproblems within the main problem domain, featuring clearer structures that facilitate computational 
processing. Furthermore, this algorithm does not rely on exhaustively enumerating all possible worst-case 
scenarios to derive the fuzzy sets required for DRO. Instead, during each iteration, the subproblem identifies 
the worst-case scenario under the current solution of the main problem and dynamically incorporates it into 
the main problem. This approach significantly reduces computational effort. By progressively tightening upper 
and lower bounds, overall convergence is ensured, ultimately yielding robust scheduling results. Therefore, 
decomposing the original problem into a main problem and subproblems for iterative solution is essential. The 
expressions for the main problem and subproblems are provided below:

	(1)	 MP In the scenario delineated by the probability distribution p, the primary objective is to identify the op-
timal solution that not only ensures system economic efficiency but also establishes a lower bound for the 
objective function: 

	
min

x,ξk∈Y (x,ξk)
{F1(x) + f1} � (54)

	

s.t.




f1 ≥
∑K

k=1 pm
k g(x, ξk)

A1(x) ≤ 0
A2(y) ≤ 0
A3(x, y) = 0

� (55)

	 where, m denotes the iteration count, and A1(x), A2(x), A3(x) are constraint functions associated with x and 
y, respectively.

	(2)	 SP In consideration of the first-stage variables (x)∗ of MP, the objective of SP is to ascertain the worst-case 
probability distribution within the context of real-time operation. Subsequently, SP returns this informa-
tion to the MP, thereby providing an upper limit for the objective function. 

	
f2 = max

pk∈Ω

{
K∑

k=1

pkg(x, ξk)

}
� (56)

	 where: 

	
g(x, ξk) = min

yk∈Y (x,ξk)
{F2(x, ξk, yk)}� (57)

	
s.t.

{
A1(x) ≤ 0
A2(y) ≤ 0
A3(x, y) = 0

� (58)

	(3)	 C&CG algorithm solution steps are as follows, as illustrated in Fig. 2

DRO-MPC solution method
Based on DRO-based solution combined with MPC solution methods, Fig. 3 shows the proposed DRO-MPC 
model solution method

:

Overall schematic diagram
To help readers gain a clearer understanding of the work presented in this paper, Fig. 4 illustrates the structural 
schematic diagram of the proposed architecture.

Simulation analysis
Simulation situation and parameters
A typical IES located in Nanchang City, Jiangxi Province, China serves as the case study to investigate the 
proposed scheduling optimization scheme. For carbon trading cost analysis, both full-year data and data from 
a single summer day are employed for comprehensive evaluation, while other models utilize data from a single 
summer day. Put into effect in MATLAB R2023b, the simulation makes use of the YALMIP toolbox and adopts 
CPLEX as its solver.

Tables 2, 3, 4, 5 and 6 shows parameters of the IES, and the TOU electricity prices are shown in Fig. 6 (right).
As what mentioned before, by using LHS, 1000 data was obtained. Subsequently, the elbow method 

determined the optimal number of clusters to be 8, as shown in Fig. 5. Figure 5a, b, and c illustrate the output 
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of wind power and solar power, and the electricity demand on the load side throughout a day, respectively. The 
distribution of probabilities for each scenario is shown in Table 7.

Through field research, actual electricity load baseline values were obtained. The electricity price elasticity 
coefficient matrix was calculated as follows, as shown in Fig.  6 (left).

Research on the effectiveness of PDR
Simulation analysis case design
To validate the specific effects of coupling the PDR model with the electricity price fluctuation calculation model 
that considering the output power of renewable energy equipment and load-side response, this study simulates 
the following scenarios under the framework of dynamic carbon trading, dynamic energy efficiency modeling, 
and DRO-MPC:

	(1)	 Scenario considering only TOU electricity pricing.
	(2)	 Scenario considering only TOU pricing and PDR.
	(3)	 Scenario considering only TOU pricing and the price fluctuation model.
	(4)	 Simultaneous consideration of TOU pricing, price volatility, and the PDR model.

Analysis of simulation results
Based on the experiment in section “Simulation analysis case design”, the abandoned power of renewable energy, 
the consumption rate of renewable energy and the electricity electricity purchasing cost cost are adopted as 
evaluation metrics. After simulation, the three metrics for the four scenarios are shown in Table 8.

As shown in the Table 8, scenario 2 exhibits the lowest electricity procurement costs, followed by scenario 
4. This is because both scenarios incorporate an electricity pricing-based demand response mechanism. Price 
signals serve as the core driver of this mechanism, which is designed to steer users toward adjusting how they 
consume electricity, thereby encouraging users to implement “peak shaving and valley filling” operations to 
some extent. This, in turn, helps achieve the goal of minimizing electricity procurement costs.

Fig. 2.  C&CG algorithm flowchart.
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A detailed analysis of the data reveals that the lower cost in scenario 2 stems from the following: during peak 
periods, increased user consumption triggers the price linkage mechanism of the PDR, causing the variable 
portion of the electricity price to rise accordingly. This results in peak-period prices being higher than the 
base rate. During off-peak hours, reduced electricity demand causes the variable price component to decrease, 
potentially even resulting in negative adjustments, leading to slightly lower off-peak rates compared to the base 
rate. However, since peak-hour consumption volumes far exceed off-peak levels, overall electricity procurement 
costs only show a marginal increase.

Simultaneously, electricity procurement cost of scenario 4 increases by only 0.12% compared to scenario 2, 
yet it boosts the renewable energy absorption rate by approximately 0.4%. Moreover, this increase in absorption 
rate will continue to expand as renewable energy output within the IES grows. In large-scale IES scenarios, 
the effect of increasing renewable energy absorption rates becomes more pronounced. This demonstrates that 
the fluctuating electricity pricing calculation method proposed in this paper possesses certain advantages in 
promoting renewable energy absorption, thereby contributing to the low-carbon development of IES to a certain 
extent.

Effectiveness analysis of dynamic carbon trading model and dynamic energy efficiency 
model
Simulation analysis case design
While keeping other modeling components unchanged, simulations were conducted for the following four 
scenarios using a summer day as the study case:

Scenario 1: Annual average carbon quota + dynamic energy efficiency
Scenario 2: Annual average carbon quota + fixed energy efficiency
Scenario 3: Dynamic carbon quota + dynamic energy efficiency
Scenario 4: Dynamic carbon quota + fixed energy efficiency

Analysis of simulation results
Hourly values for various costs under each scenario are shown in Fig. 7.

The costs for each scenario are shown in Table 9.
Compared to the scenario with annual average carbon quota + fixed energy efficiency, the dynamic and 

annual carbon trading cost reductions for the remaining three scenarios are shown in Table 10.

Fig. 3.  DRO-MPC rolling optimization flowchart.
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Parameter
Value
(kW) Parameter Value Parameter

Value
(kW/h) Parameter Value

Pin,min/max EL,t 0/500 Pmin/max Hf,HFC 0/300 ∆Pmr,min/max 0/10 cact
MR/tactMR 2.55/550

Pmin/max wind,t 0/80 Plt,min/max 0/300 ∆Pel,min/max 0/10 k
min/max
HFC 0.65/1.2

Pbuy el,min/max 0/800 P
min/max
vct 0/100 ∆PGB,min/max 0/50 εc1/εc2 0.031/0.049

P
min/max
MR 150/400 ∆Pgrid,down/up -150/150 ∆Pmr,min/max 0/70 NMR/Ncapture 5/5

P
min/max
GB,k,t 100/300 ∆Pmr,max 0/15 ∆Pwind,max 0/12 NW/Nload 4/5

Table 3.  Constraint parameters for each device.

 

Device Rated value (kW) Fitting values of each order

HFC (thermal) 350 αHFC,h,0 = 0.70, αHFC,h,1 = 0.11, αHFC,h,2 = 0.04

HFC (electrical) 250 αHFC,e,0 = 0.51, αHFC,e,1 = 0.21, αHFC,e,2 = 0.03

EL 450 αEL,0 = 0.6425, αEL,1 = 0.2276, αEL,2 = 0.0799

GT 360 αGT,0 = 0.35, αGT,1 = 0.17, αGT,2 = 0.089, αGT,3 = 0.02

GB 270 αGB,0 = 0.67, αGB,1 = 0.128, αGB,2 = 0.02

Table 2.  Device rated values and fitting values.

 

Fig. 4.  DRO-MPC rolling optimization flowchart.
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Figure 7 illustrates the primary components of hourly total costs across four scenarios. Subfigure (a) exhibits 
a steeper peak, while subfigure (c) shows a relatively flatter peak. This demonstrates that employing a dynamic 
carbon trading model effectively optimizes the system’s cost structure, mitigates peak-valley effects, and reduces 
overall system costs. Comparing Subfigures a and b, the fixed energy efficiency model exacerbates peak-valley 
cost differences while effectively reducing overall costs, particularly during peak electricity consumption 
periods. The dynamic energy efficiency model demonstrates a more pronounced cost-reduction effect. This 
occurs because during peak electricity consumption, equipment operates at higher efficiency, reducing costs 
associated with purchasing electricity, gas, and carbon credits. Simultaneously, based on the dynamic carbon 
quota calculation formula, the system acquires more carbon quotas, ultimately lowering total system costs and 
effectively mitigating peak-valley effects.

Scenario 1 2 3 4 5 6 7 8

Probability 0.148 0.096 0.150 0.127 0.111 0.132 0.108 0.128

Table 7.  Probability distributions for each scenario.

 

Fig. 5.  Cluster diagram of wind power output, solar power output and user load.

 

Parameter Value Parameter Value

cCT/cGB/cHFC 0.026/0.021/0.076 λes/λhs/λls/λgs 1.2/150/60/3

λWCC/λLCC 0.37/0.59 accs/bccs 0.055/30

λng/λCO2 0.074/0.0035 (¥/mol) Gcalor
ng 892.2 (kJ/mol)

Table 6.  Other constants.

 

Parameter Value Parameter Value Parameter Value Parameter Value

ζpower 616 (g CO2/kWh) α 250 Eyear
g 8.1 × 105 (t) β 0.25

ζcarbon 106 (t) γ 2000 ξw 0.14 εi 0.61

Table 5.  Parameters for carbon trading models.

 

Parameter (kW) Value Parameter Value Parameter (kW) Value

Pes/hs/ls/gs,dis,min 0 ηes,chr/dis 0.95 Pes/hs/ls/gs,dis,max 500

Pes/hs/ls/gs,chr,min 0 ηhs,chr/dis 0.95 Se,min/max, Sh,min/max 200/1000

Pes/hs/ls/gs,chr,max 300 ηls,chr/dis 2/5/1/1 (×10−3) SH,min/max, Sg,min/max 200/1000

Table 4.  Constraint parameters for energy storage device.
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Fig. 7.  Hourly values of various costs under four scenarios.

 

Evaluation index Situation 1 Situation 2 Situation 3 Situation 4

Abandoned power of
renewable energy 162.53 160.42 159.37 156.20

The consumption rate
of renewable energy 84.6% 84.8% 84.9% 85.2%

Electricity purchasing
cost 8,013 7,973 8,083 7,983

Table 8.  Relevant evaluation indicators under four scenarios.

 

Fig. 6.  User electricity load baseline values and electricity price elasticity coefficient matrix.
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As shown in Table 9, using this case study (a summer day) as an example, the proposed dynamic energy 
efficiency model combined with the dynamic carbon trading model significantly optimizes the system’s total 
cost. Compared to the traditional annual average carbon quota model with a fixed energy efficiency model, this 
model reduces the system’s total cost from 393,617 yuan to 342,145 yuan, and carbon trading costs from 248,340 
yuan to 219,607 yuan. This represents a 13.07% reduction in total costs and an 11.57% decrease in carbon trading 
costs, fully validating the superior cost control capabilities of this coupled model. This is primarily because 
traditional annual average carbon quotas overlook seasonal emission imbalances, while fixed energy efficiency 
fails to account for dynamic operational conditions, often leading to redundant carbon costs or energy efficiency 
waste. In contrast, the dynamic energy efficiency model in this paper adapts in real-time to fluctuations in system 
operating states, while the dynamic carbon trading model aligns with seasonal carbon emission characteristics 
and equipment energy efficiency profiles across different time periods, enabling dynamic quota adjustments.

Further analysis of the optimization contributions from each model component reveals that compared 
to standalone approaches like “annual average carbon trading model + dynamic energy efficiency model” or 
“dynamic carbon trading model + fixed energy efficiency model”. The coupled model achieves cost reductions of 
1.13% and 7.02%, respectively. This result indicates synergistic optimization between the “operating condition 
adaptability” of dynamic energy efficiency and the “emission period adaptability” of dynamic carbon trading. 
Their integration overcomes the limitations of single-model optimization, achieving a coupled optimization 
effect where “1+1>2” and providing a more comprehensive solution for system cost control.

As shown in Fig.  8, during IES operation, equipment efficiency varies with load changes rather than 
remaining constant. Therefore, establishing dynamic energy efficiency models for equipment is essential. 
Dynamic models more accurately describe IES equipment performance, enabling subsequent modeling—such 
as gas and electricity procurement—to better align with engineering realities and achieve greater precision, 
holding significant importance for practical applications.

Analysis of data from Table 10 reveals significant variations in carbon trading cost reduction rates across 
seasons among different models. These differences correlate with how well each model integrates dynamic energy 
efficiency with seasonal carbon quota characteristics. When considering only dynamic energy efficiency models, 
annual fixed carbon quota limit adaptation to seasonal equipment operation patterns, resulting in low reduction 
rates throughout the four seasons - averaging just 1.03% annually. When only the dynamic carbon trading model 
is applied, although dynamic carbon quotas are considered, the fixed energy efficiency assumption deviates 

Model Season
Carbon trading
cost reduction

Annual carbon
trading cost
reduction

Dynamic efficiency
+
annual average
carbon quota

Spring 1.06%

1.03%
Summer 1.13%

Autumn 1.01%

Winter 0.91%

Fixed efficiency
+
dynamic carbon quota

Spring 6.87%

6.44%
Summer 7.02%

Autumn 6.69%

Winter 5.17%

Dynamic efficiency
+
dynamic carbon quota

Spring 11.31%

10.92%
Summer 11.83%

Autumn 11.19%

Winter 9.36%

Table 10.  Carbon trading cost reduction data.

 

Types of
costs

Total
cost

Operation
cost

Electricity
purchasing
cost

Gas
purchasing
cost

Carbon
trade cost

Dynamic efficiency
+
annual average carbon quota

365,826 3,127 7,160 108,277 245,534

Fixed efficiency
+
annual average carbon quota

393,617 3,240 8,481 126,045 248,340

Dynamic efficiency
+
dynamic carbon quota

342,145 3,510 7,983 110,683 219,607

Fixed efficiency
+
dynamic carbon quota

368,442 3,288 8,536 125,271 230,913

Table 9.  Total costs by category across four scenarios.
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from reality. Reduction rates are relatively high in spring, summer, and autumn. However, the winter reduction 
rate decreases due to more pronounced deviations between equipment winter operation characteristics and 
fixed energy efficiency assumptions, resulting in an annual average of approximately 6.44%. In contrast, the 
combined dynamic energy efficiency and dynamic carbon allowance approach fully aligns with equipment 
high-efficiency operation and flexible carbon allocation during spring, summer, and autumn. Although winter 
reduction rates are slightly lower due to seasonal energy efficiency variations in some equipment, overall high 
seasonal reduction levels are achieved, with an annual average of 10.92%. This highlights the adaptive advantage 
of synergistic dynamic energy efficiency and dynamic carbon allowances in optimizing carbon trading costs 
across different seasons.

Simulation analysis of DRO model
To validate the effectiveness of the distributed price-responsive demand response and dynamic carbon trading 
model under the DRO framework, this study decomposes the model components using the weighting coefficient 
as an example. Each component is then validated through distinct case studies.

Evaluation of the DRO model
To testify the vital function of the DRO model, simulation experiments were conducted for stochastic 
optimization (SO), traditional robust optimization (RO), and DRO while keeping all other modeling aspects 
consistent. Six evaluation metrics were derived and compared: total system cost, electricity procurement cost, 
natural gas procurement cost, the cost of carbon trade, the cost of system operation, and CCS operation cost.

Table 11 presents daily cost values in categories (in CNY) for four scenarios. Data from Table 12 indicate that 
the DRO model, which describes uncertainty using fuzzy sets to balance conservatism and feasibility, incurs 
total costs 0.19%, 4.03%, 7.66%, and 8.01% higher than the SO model in the four scenarios, respectively. This 
increase stems from the SO model’s reliance on deterministic probability distribution assumptions. This result 
demonstrates that the DRO model is more conservative than SO, overcoming SO’s heavy reliance on probability 
distributions. It better accounts for cost fluctuations under worst-case scenarios involving uncertain parameters, 
thereby enhancing the robustness of scheduling solutions.

Simultaneously, the total cost of the DRO model decreased by 4.6%, 4.7%, 2.8%, and 3.0% compared to 
traditional RO models. This indicates that while preserving its core robustness advantage (ensuring minimized 
worst-case costs), DRO effectively reduces the conservative redundancy of traditional RO by dynamically 
optimizing the uncertainty set boundary. This significantly enhances the model’s economic efficiency, achieving 
the dual objectives of “controlling worst-case risks” and “optimizing overall dispatch costs.”

Simulation analysis under extreme conditions
To demonstrate the model’s effectiveness under extreme conditions, simulation analysis under such scenarios is 
conducted. To simulate real-world extremes, a scenario is defined where renewable energy output and load-side 
demand fluctuate by 50% and 30% respectively relative to historical averages over a continuous 10-hour period 
within a single day. Analysis focuses on two metrics under this scenario: total system cost and imbalance between 
supply and demand for SO, traditional RO, and DRO systems. Simulation results are as following Table 12.

As shown in Table 12, under the extreme conditions described earlier in this paper, the three optimization 
methods exhibit significant differences in cost and supply-demand balancing performance. Traditional SO relies 
on predefined probability distributions to optimize expected costs but lacks robustness against extreme scenarios 

Fig. 8.  Thermodynamic diagram of equipment efficiency over time for scenarios 1 and 3.
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not covered by the distribution, thus serving as the baseline for subsequent performance comparisons; RO designs 
solutions based on absolute boundaries of uncertainty parameters, maximally addressing extreme fluctuations: 
while increasing costs by 19.67% compared to SO, it reduces the supply-demand imbalance by 20.42%. However, 
its excessive coverage of extremely rare extreme values leads to significant conservative redundancy and higher 
system costs; The DRO approach adopted in this paper achieves a balance between risk and conservatism 
through an uncertain set of probability distributions: on one hand, by covering reasonable extreme scenarios 
rather than RO’s absolute boundaries, it reduces the supply-demand imbalance by 15.56% compared to SO 
while only increasing costs by 8.08% over SO, effectively mitigating SO’s mismatch risk in extreme scenarios; On 
the other hand, while DRO achieves a 6.11% lower reduction in supply-demand imbalance compared to RO, it 
reduces total system costs by 9.68%, eliminating the redundancy costs incurred by RO’s excessive conservatism.

Combining the findings of sections “Evaluation of the DRO model” and “Simulation analysis under extreme 
conditions”, the proposed DRO model demonstrates both scientific rigor and engineering practicality. It adheres 
to the core logic of DRO, controlling worst-case risks within reasonable uncertainty, while overcoming RO’s 
limitation of trading robustness for high costs. This achieves a balance between robustness and economy, avoids 
resource waste from redundant design, and provides a more practical optimization solution for efficient system 
operation under extreme conditions, which holds significant engineering significance.

Analysis of norm constraint parameters
For case 4, different confidence levels were assigned to α1 and α∞ within the robust optimization model. For 
comparison, simulations were conducted under three scenarios: constraining only α1, constraining only α∞, 
and simultaneously constraining both α1 and α∞. The total cost of each situation were derived and analyzed 
comparatively.

As shown in Fig. 9, increasing the values of relevant parameters progressively enhances the conservatism of 
the optimization model. A higher value of [the confidence parameter] signifies that the model places greater 
emphasis on addressing extreme scenarios throughout the optimization process. In such cases, the system 
develops and implements more prudent scheduling strategies to reduce potential risks. However, such a 
conservative strategy results in higher consumption of redundant resources, ultimately driving up the system’s 
operational costs. This clearly demonstrates the unavoidable trade-off that exists between risk prevention and 
cost escalation.

Method

SO RO DRO

Total cost (CNY) 412,789 493,977 446,144

Imbalance between supply
and demand per day (kW) 2737 2178 2311

Table 12.  Cost and imbalance comparison.

 

Scenario

1 2 3 4

Total
cost

SO 341,487 363,487 336,524 335,572

RO 360,853 396,948 372,882 373,614

DRO 342,145 378,151 362,312 362,451

Operation
cost

SO 33,47 6,288 3,978 3,986

RO 36,16 8,295 4,058 4,041

DRO 35,10 7,119 3,503 3,596

Electricity
purchasing
cost

SO 7,930 9,245 8,107 8,055

RO 10,054 13,085 11,043 10,057

DRO 7,983 8,047 7,691 7,716

Gas
purchasing
cost

SO 105,083 116,142 104,710 106,270

RO 115,472 125,985 116,483 116,480

DRO 110,683 154,064 113,664 113,646

Carbon
trade cost

SO 218,175 225,350 209,830 209,343

RO 222,795 239,962 233,267 234,652

DRO 219,607 196,350 225,207 233,819

Carbon
capture and
storage cost

SO 5,418 3,240 7,447 5,440

RO 6,048 6,928 6,050 6,048

DRO 0 6,455 9,806 1,288

Table 11.  Comparison of costs across three optimization methods.
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Comparing scenarios with single-norm constraints versus combined-norm constraints reveals consistent 
trends: combined-norm constraints typically achieve more effective cost reduction than single-norm constraints. 
For instance, under the scenario α∞ = 0.95 , the cost with a single-norm constraint is 355,843 yuan, whereas 
the combined-norm constraint reduces it to 347,212 yuan, which means a decrease of approximately 2.43%. 
This result demonstrates that combined norm constraints are capable of effectively alleviating the cost escalation 
triggered by conservative optimization, all the while safeguarding system stability. Consequently, they achieve 
higher levels of economic efficiency and scheduling flexibility, demonstrating significant advantages when 
applied as constraints in DRO.

Intraday DRO-MPC two-stage forecasting model evaluation
Sources of forecast data
Just as with day-ahead scheduling, intraday scheduling faces uncertainty primarily from variations in renewable 
energy generation and different types of energy loads. Therefore, this research introduces a 5% random error 
into the day-ahead forecast data, which is used to mimic the intraday fluctuations of both renewable energy and 
load. The MPC forecast data source is illustrated in Fig.  10.

Determination of the electricity price penalty coefficient
During the modeling process, the electricity price penalty coefficient remains undetermined. To identify the 
optimal coefficient, sensitivity analysis simulations were conducted by varying within the range [0, 0.8] with 
increments of 0.05. The total cost and electricity price fluctuation optimization results under different values 
were compared. The final optimal value of was selected as the coefficient that minimizes total cost while keeping 
electricity price fluctuation within an acceptable range (≤10%). The trends of total cost and daily electricity price 
fluctuation total value with respect to the electricity price penalty coefficient are shown in Fig. 11.

As shown in the Fig. 11, when ρ = 0.3, both total cost and electricity price fluctuation reach their minimum 
values. Therefore, all simulations in this paper adopt ρ = 0.3 as the value of the electricity price penalty 
coefficient.

DRO-MPC scheduling cases and reference metric settings
Three comparative cases were established for this study. The computational duration, total cost, and tracking error 
were simulated as comparison metrics across these cases. The tracking error is the integral of the discrepancy 
between the result of rolling optimization and the actual situation in the corresponding time interval, quantifing 
the tracking effectiveness of MPC. Specifically shown as follows:

	
δtrace =

ˆ T

0

N∑
i=1

∣∣∣∆Q
buy,t+k|t
PDR

∣∣∣ dt� (59)

•	 Case 1: Uses the DRO-MPC model without feedback correction
•	 Case 2: MPC model with feedback calibration, but without DRO

Fig. 9.  Comparison of total costs under different norm constraints.
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•	 Case 3: DRO-MPC model with feedback correction

The results are as following Table 13.
The comparison between tracking results and reference values for each case is shown in Fig.  12.
As indicated by the data in Table 13, case 2 exhibits the lowest cost and highest economic efficiency. This 

is attributed to the model’s higher optimization freedom combined with feedback correction, which enables 
real-time optimization of prediction strategies to minimize total costs. Compared to case 2, case 1 lacks a 
feedback correction mechanism, resulting in poorer adaptability to actual conditions and higher total costs. Case 
3 employs DRO to handle extreme conditions, incorporating redundant costs into the total cost calculation, 
making it the most expensive model. However, this trade-off between increased total cost and computational 

Fig. 11.  Relationship between total cost and electricity price fluctuation with electricity price penalty 
coefficient.

 

Fig. 10.  DRO-MPC forecast data source.
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time yields enhanced system robustness, as detailed in section “Comparison of DRO-MPC and MPC under 
extreme conditions”.

Regarding tracking accuracy, case 2 exhibits the smallest tracking error. Compared to case 2, case 3’s tracking 
error increases by approximately 5.22%. This occurs because in the DRO-MPC model, the MPC prediction 
must be based on the DRO optimization results, which partially sacrifices tracking optimality and consequently 
reduces tracking accuracy. Compared to case 2, case 1 exhibits the lowest tracking accuracy, showing a significant 
increase relative to both case 2 and case 3. This is because case 1 does not employ a feedback correction 
mechanism, resulting in insufficient system tracking capability for actual conditions and ultimately increasing 
the tracking error.

Figure 12 illustrates the hourly comparison of predicted and reference values across the three cases. The figure 
clearly shows that without feedback correction, the error between predicted and reference values is substantial. 
When using MPC optimization alone, the system exhibits low conservatism and significant fluctuations. In 
contrast, DRO-MPC optimization maintains tracking accuracy without significant degradation, while markedly 
improving system conservatism and reducing fluctuations

Comparison of DRO-MPC and MPC under extreme conditions
Since DRO primarily minimizes losses under worst-case scenarios, simulations of the system under extreme 
conditions are conducted to validate the proposed DRO-MPC model. These extreme conditions mirror those 
described in section “Simulation analysis under extreme conditions” of this paper. Comparisons are made across 
five metrics: total cost, renewable energy absorption rate, tracking accuracy, load curtailment rate, and computer 
data processing time.

As shown in Tables  13 and    14, when fluctuations in load, photovoltaic and wind power output, are all 
significant, the DRO-MPC model still maintains high prediction accuracy. Its tracking error increases from 
38.965 to 40.133, representing a mere 3.0% rise. In contrast, when using only the MPC model, the tracking error 
increased from 37.032 to 46.641, a substantial rise of 20.6%. This highlights that traditional MPC optimization 
suffers from significant prediction errors under high system uncertainty, indicating very low robustness. The 
DRO-MPC model, however, effectively enhances the robustness of MPC.

Comparing data on total cost, renewable energy absorption rate, and electricity load reduction rate reveals 
that under extreme conditions, the DRO-MPC model’s high robustness resulted in smaller increases for all 
three metrics compared to using MPC alone. Correlating this with relevant data from Tables  13 and  14, it 

Fig. 12.  Predicted value and reference values for three scenarios.

 

Case 1 Case 2 Case 3

Average solving
time (second) 162.3 39.2 192.4

Model time scale (hour) 1 1 1

Total cost (CNY) 324,217 295,126 329,121

Average tracking error
per hour (kW) 45.660 37.032 38.965

Table 13.  Relevant metrics for three typical cases.
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demonstrates that the DRO-MPC model effectively enhances the system’s ability to manage risks under extreme 
conditions, safeguards user electricity demand during such events, and reduces power outage occurrences.

Meanwhile, in terms of computational time, the DRO-MPC model took 196.4 seconds to compute, with 
conventional forecasting operating at a 1-hour time scale. This demonstrates that although DRO-MPC exhibits 
a significant increase in computational time compared to MPC, it remains capable of meeting forecasting time 
scale requirements in engineering applications. It effectively extends the robustness enhancement of DRO 
from the day-ahead scale to the intraday scale, mitigating the time scale mismatch issue in DRO’s intraday 
optimization.

Disscusion
This study constructs an IES economic dispatch optimization model for electricity pricing-based demand 
response, incorporating dynamic energy efficiency and dynamic carbon trading. It proposes a two-stage 
collaborative optimization framework: “Day-ahead DRO – Intraday MPC.” Simulation results demonstrate 
that this framework achieves significant improvements in system economics, robustness, and low-carbon 
performance. This section provides an in-depth interpretation of the above results and discusses them within a 
broader academic context.

Theoretical and practical significance of the research
Theoretically, the proposed “dynamic energy efficiency-dynamic carbon quota” coupling mechanism establishes 
a new paradigm for low-carbon scheduling modeling in IES, emphasizing that carbon cost optimization 
should not be decoupled from the physical operational state of system equipment. Concurrently, the DRO-
MPC framework offers a versatile modeling and solution approach for addressing multi-timescale uncertainty 
optimization problems.

At the practical level, this research provides IES operators with scheduling tools that balance economic 
efficiency and robustness. The dynamic carbon trading model assists enterprises in more precise cost budgeting 
and trading decisions within carbon markets. Meanwhile, the price-elasticity-based MPC rolling optimization 
strategy offers theoretical foundations and technical support for designing more flexible real-time electricity 
pricing products for electricity retailers or aggregators.

Research limitations and future directions
Despite the achievements outlined above, this study retains several limitations that also point to directions for 
future research.

Research limitations

•	 Simplified Modeling of Renewable Generation and Load Uncertainty: The uncertainty modeling focuses on 
short-term, hourly fluctuations of wind and photovoltaic output and load demand derived from historical 
data. It does not incorporate the impacts of extreme weather events, long-term climate variability, or the spa-
tiotemporal correlations between different renewable sources and load nodes. The initial probability distribu-
tions for the DRO model are constructed from historical data, which may not fully capture future uncertainty 
patterns.

•	 Static Approximation of Behavioral Response: Although the electricity price elasticity matrix incorporates 
a feedback correction mechanism, its initial values are derived from historical data fitting. The correction 
weight ω is manually set. This approach does not fully capture the potential dynamic evolution of user re-
sponse behavior driven by long-term learning effects, seasonal habits, or sudden changes in policy or market 
structure.

•	 Assumption of a Perfectly Competitive Carbon Market: The dynamic carbon trading model operates under 
the assumption of a perfectly competitive carbon market with fixed price tiers. It does not account for po-
tential carbon price volatility induced by policy shocks, market speculation, or strategic bidding behaviors of 
large market participants, which could significantly impact operational costs.

•	 Computational Burden for Large-Scale Systems: Solving the proposed DRO-MPC framework relies on it-
erative algorithms like C&CG. While tractable for the case study presented, computational efficiency may 
become a bottleneck for very large-scale IES with hundreds of units or when applied to shorter, real-time 
dispatch cycles requiring solutions within minutes.

Future outlook
To address the aforementioned research gaps, future studies of the model could focus on the following areas:

DRO-MPC MPC

Total cost (CNY) 406,127 436,798

Renewable energy consumption rate 87.3% 77.2%

Reduction rate of electrical load 0.15% 4.3%

Average resolution time (seconds) 196.4 42.3

Average tracking error per hour (kW) 40.133 46.614

Table 14.  Comparison of DRO-MPC model and MPC model under extreme conditions.
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•	 Develop coupled models integrating numerical weather prediction, artificial intelligence algorithms, and re-
newable energy output forecasting to enhance the climate adaptability of dispatch strategies and improve 
prediction accuracy.

•	 Employing online learning methods like reinforcement learning to establish adaptive mechanisms for updat-
ing elasticity coefficients.

•	 Incorporate carbon price uncertainty into the fuzzy set of DRO to develop more robust carbon market mod-
els, and further explore cross-regional carbon trading and coordinated dispatch mechanisms under multi-re-
gional IES alliances.

•	 Future research may explore developing distributed optimization algorithms, deep learning proxy models, or 
leveraging hardware acceleration technologies to enhance the model’s real-time application potential.

•	 Extend the current single-node IES model to multi-regional interconnected systems, investigate cross-re-
gional energy exchange and carbon quota trading mechanisms, and further enhance overall system economic 
efficiency and low-carbon performance.

•	 In future research, incorporating incentive-based demand response (IDR) could further enhance the system’s 
peak shaving and valley filling capabilities. For instance, integrating IDR with PDR to develop a hybrid de-
mand response model warrants further investigation.

Conclusion
This paper conducts systematic research on three core issues in IES economic dispatch: electricity price 
fluctuations, dynamic characteristics of equipment energy efficiency, and dynamic carbon trading. The main 
conclusions are as follows:

•	 The effectiveness of the multi-timescale collaborative optimization framework. A two-stage DRO-MPC col-
laborative optimization strategy is proposed: The day-ahead stage employs data-driven DRO, incorporating 
∞-norm and 1-norm constraints to model price and load uncertainties, addressing the limited adaptability 
of traditional SO to extreme scenarios. The intraday MPC stage integrates MPC with an electricity price elas-
ticity coefficient matrix to construct state equations. It dynamically adjusts electricity prices through rolling 
optimization and employs a feedback correction mechanism to update elasticity coefficients in real time. This 
two-stage strategy embeds DRO robustness into MPC optimization, satisfying both the intraday forecasting 
time scale requirements and enhancing the robustness of the prediction model. Under extreme conditions of 
50% renewable output fluctuation and 30% load fluctuation, tracking error increases by only 3.0%. Compared 
to traditional MPC models, load curtailment rate decreases by 4.15%, while renewable energy absorption rate 
increases by 10.1%.

•	 Synergistic Benefits of Dynamic energy efficiency and Dynamic Carbon Trading. A polynomial relationship 
model linking equipment load factor and energy efficiency replaces the traditional fixed-efficiency model, 
making system modeling more aligned with engineering realities. Concurrently, this paper proposes a sea-
sonal-based tiered carbon quota allocation mechanism. Combined with dynamic energy efficiency correc-
tion factors, this enables carbon quotas to adjust dynamically based on actual equipment output and energy 
efficiency. This model dynamically adjusts quotas for units with higher summer carbon intensity based on 
equipment output and the proportion of seasonal emissions relative to annual emissions. It reduces the cost 
of carbon trade in summer by 10.7% and annual costs of IES by 9.89%, representing a 2.88% greater reduction 
in summer costs compared to13. Compared to the fixed quota plus annual average quota model, the dynamic 
efficiency plus dynamic quota coupling model reduces total system costs by 13.07%. This finding serves to 
substantiate the assertion that dynamic carbon trading models are instrumental in reducing carbon emissions 
and costs, while concurrently demonstrating the synergistic effect of the “dynamic efficiency-seasonal quota” 
coupling mechanism.

•	 Effectiveness of real-time electricity pricing models considering load and renewable energy output. The im-
pact of TOU electricity prices was quantified using an elasticity coefficient matrix. Renewable energy output 
and load fluctuations were incorporated into the real-time electricity price calculation model. Feedback cor-
rection was employed to integrate electricity price elasticity coefficients into MPC forecasting, enhancing 
the accuracy of intraday load fluctuation tracking. Case studies demonstrate that incorporating load and 
renewable energy output into the real-time electricity price fluctuation model increases peak-hour electricity 
procurement costs by only 0.12%, while boosting renewable energy absorption rates by 0.4%.

Data availability
The datasets generated and analysed during the current study are not publicly available due some of the data in 
the paper were obtained from a certain comprehensive energy system in Nanchang. The person in charge of that 
system requested us to keep the data confidential, but are available from the corresponding author on reasonable 
request. To contact the corresponding author, please send an email to yangxiaohui@ncu.edu.cn.
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