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Optimized economic scheduling
of demand response in integrated
energy systems considering
dynamic energy efficiency and
dynamic carbon trading

Haoyu Mao%*, Qiyue Deng**, Zihao Zhang>* & Xiaohui Yang'***

Addressing uncertainties on the demand side caused by electricity price fluctuations during integrated
energy system (IES) dispatch, modeling biases resulting from static assumptions about equipment
energy efficiency, and cost redundancy issues stemming from unreasonable seasonal allocation

of carbon quotas, this study constructs an electricity PDR economic dispatch optimization model
incorporating dynamic energy efficiency and dynamic carbon trading. It proposes a “distributed

robust optimization (DRO)-model predictive control (MPC)” collaborative framework and a tiered
dynamic carbon quota allocation strategy accounting for seasonal output and efficiency variations of
equipment, tailored to match carbon emission characteristics across different seasons. At the demand
response level, an electricity price elasticity coefficient matrix is introduced to quantify the impact

of real-time price fluctuations on load, integrating it into the MPC model to resolve the time-scale
mismatch between day-ahead and intraday scheduling. Simulation results demonstrate: The coupled
dynamic energy efficiency and carbon trading model reduces total system costs by 13.07% and carbon
trading costs by 11.57% compared to the conventional approach. Regarding tracking error, the
combination of rolling optimization and feedback correction improves tracking accuracy by 14.66%
and 6.13% compared to cases without feedback correction and rolling optimization, respectively, while
reducing total costs by 4.36% compared to the case without rolling optimization. This study provides a
scientifically feasible optimization solution for low-carbon economic dispatch of IES under uncertainty.

Keywords Integrated energy system, Distributed robust optimization, Model predictive control, Dynamic
carbon trading, Electricity price-based demand response

Serving as the foundational infrastructure of the energy internet, the integrated energy system (IES) has attracted
attention due to its strengths in enabling multi-energy coupling, offering high flexibility, and facilitating the
integration of renewable energy!. In 2024, China’s total electricity consumption hit 9,852.1 billion kWh, which
was nearly five times the figure recorded in 2000%. However, the continuous growth in electricity demand has
driven a relentless increase in power generation, resulting in substantial carbon emissions and posing severe
challenges to the stability and security of power systems. Against this backdrop, IES has emerged as a critical
solution due to its ability to coordinate multiple loads including heat, gas, electricity, and hydrogen®. Yet, IES
involves multi-energy flow coupling and exhibits high complexity, making the optimization of its scheduling a
key focus in current power system research.

To ensure IES stability, numerous studies have proposed corresponding optimization models from different
dimensions. Reference* introduced a differentiated dynamic pricing demand response model based on a user
satisfaction function. This model accounts for the distinct electricity consumption characteristics and price
elasticity of commercial and residential electricity consumers (EC), coupling user demand with electricity prices.
It effectively reduced peak power demand, lowering peak demand for commercial and residential ECs by 4.99%
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and 9.99%, respectively. Reference® proposes a risk-free arbitrage-aware electricity pricing model combined with
robust optimization (RO) to enhance pricing scientificity. Reference® employs real-time price forecasting to
reduce peak-to-valley differences in load curves, lowering user electricity bills by 17.5%. Reference’ introduced a
three-stage robust optimization to address uncertainties in renewable generation and load forecasting, enabling
system stability under extreme conditions while maintaining emissions within target ranges. However, it did not
address intraday scheduling. A dynamic optimal scheduling approach with multi-timescale combining RO with
MPC-driven rolling optimization was proposed in Reference®, aiming to tackle the mismatch between the time
horizons of thermal loads and electrical loads.

Al models have also emerged as a hot research topic in recent studies on IES robustness optimization.
For example, Reference’ proposed a topology-aware multi-task reinforcement learning approach based on
soft modularization to address load restoration challenges in IES following extreme events, fully leveraging
the flexibility of multi-energy microgrids (MEMGs). However, it did not account for the dynamic coupling
between source-load forecasting and scheduling, relying instead on predefined fault scenarios. Consequently,
its ability to generalize to unseen uncertainties remains limited. Reference!® constructs a Transformer-LSTM
hybrid forecasting model, integrating Gaussian process regression to achieve multi-step interval forecasting for
random variables; Through a synchronous training mechanism, it couples the double-delay deep deterministic
policy gradient algorithm to form an integrated “prediction-scheduling” framework. This addresses nonlinear
coupling and source-load uncertainty in IES scheduling, enhancing scheduling optimization performance.
However, research on carbon chains is lacking, and carbon costs have not been incorporated into the study
scope. Refernece!! integrates carbon capture, power-to-gas (P2G), and carbon trading mechanisms; proposes
a two-stage learning-based robust optimization approach. By learning and calibrating the shape of ellipsoidal
uncertainty sets, it ensures statistical feasibility, yet lacks sufficient refinement in the coordinated scheduling of
multi-energy coupled equipment.

Electricity price-based demand response (EPDR), a crucial toolin IES scheduling, relies heavily on the accuracy
of electricity price signals'2. Although related electricity price forecasting models have matured and EPDR-based
optimization has achieved positive results, research on system stability optimization models considering the
impact of real-time electricity price fluctuations on user demand response remains scarce. Concurrently, with
the widespread adoption of renewable energy sources, the hourly-level electricity price fluctuations caused by
their variability, as an uncertainty factor affecting system stability, have also received limited in-depth discussion
in the literature. Furthermore, simple day-ahead DRO models show limited effectiveness in optimizing load
fluctuations caused by intraday price fluctuations. Therefore, there is an urgent need for a collaborative model
that integrates intraday optimization scheduling with day-ahead robust optimization to enhance the system’s
overall resilience against load fluctuation uncertainties induced by electricity prices.

With the advancement of global low-carbon economic strategies, carbon costs are increasingly internalized
as critical constraints in IES operations. Beyond optimizing system volatility uncertainties, the coupling design
between carbon trading and IES systems has emerged as a new research focus. Reference!® proposed a seasonal
carbon trading model that reduced system carbon emissions by 2.54% while lowering operational costs by 22.58%,
but it did not address coupling with actual equipment conditions. Reference!* addressed a dynamic carbon
quota model, reducing carbon emission costs by 9%, but failed to integrate seasonal variations. Reference'
constructed a two-stage planning model for an electricity-gas coupled integrated energy system (EGC-IES),
incorporating carbon capture equipment into power plants to transform them into carbon-capturing facilities.
Although low-carbon economic dispatch models have reached relative maturity, significant deficiencies persist
in carbon trading model development. Reference!® only considered the impact of dynamic energy efficiency
models on equipment and stepwise carbon quotas, failing to effectively couple stepwise carbon trading models
with dynamic energy efficiency models. Reference!” optimized the cascading economic dispatch of a park’s
integrated energy system through a dynamic energy efficiency model, reducing daily operating costs by 17.04%.
However, it employed an annual average carbon quota allocation method, overlooking significant seasonal
variations in annual carbon emissions and equipment output. Such an allocation not only deviates from reality
but also increases the system’s carbon trading costs, as noted in Reference!®. However, taking gas-fired units as
an example, summer electricity loads are approximately 1.4 times higher than winter loads'. In actual operation,
summer carbon emission intensity of equipment is more than 1.22 times that of winter?. Applying a uniform
quota allocation method to each quarter’s carbon allowances would significantly increase carbon trading costs.

In addition, traditional IES systems set equipment efficiency to a fixed value, as described in references?!
and?2. However, when considering other relevant costs such as system gas procurement expenses, variations in
equipment efficiency due to load differences across different time periods within a day can lead to estimation
errors in gas procurement costs, operating expenses, and other related costs when using fixed energy efficiency
calculations.

Based on the literature review, current IES system optimization scheduling research exhibits numerous
shortcomings. To address these limitations, this paper constructs an IES optimization model that
comprehensively considers real-time electricity price fluctuations, integrates a tiered carbon trading strategy
with seasonal dynamic equipment output, and incorporates a dynamic equipment energy efficiency model. The
model’s effectiveness in engineering practice is validated through computational examples. To clearly present the
research work, the Table 1 (TOU represents time-of-use) is provided for reference.

In summary, the main contributions of this paper can be summarized as follows:

o A multi-energy flow coupling model integrating load-side demand response through electricity pricing and
source-side equipment load dynamic energy efficiency has been established. This model overcomes the lim-
itations of traditional IES models, which neglect the impact of load fluctuations on energy efficiency and
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Dynamic Dynamic | Fluctuation of Combination of
carbon trade | efficiency | electricity Optimal day-ahead
Reference | P2G | CCS | model model price EPDR method and Intraday
4 X X X X v Real time | Conventional | x
5 v X X X v Real time | RO X
7 X v X X v Real time | DRO X
8 X v x x x TOU DRO-MPC |
13 v X v X v X Conventional | x
1" v v X X v TOU Conventional | x
16 v v v X v X Conventional | x
This article | v v v v Real Time | DRO-MPC v

Table 1. Comparison of related studies with this research.
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Fig. 1. Structure of IES.

treat electricity prices as constants, significantly enhancing the accuracy of multi-energy flow collaborative
optimization.

« By integrating real-time electricity prices with user load and renewable energy output, a real-time pricing
calculation method was proposed. This approach simultaneously accounts for renewable energy generation
and user-side demand response, effectively enhancing renewable energy absorption rates.

« A cascading dynamic carbon trading mechanism considering equipment’s dynamic energy efficiency and car-
bon emissions is proposed. This mechanism enables dynamic allocation of carbon quotas and demonstrates
its effectiveness in reducing carbon trading costs within low-carbon economic dispatch.

« A novel two-stage DRO-MPC collaborative optimization framework based on price elasticity and incorporat-
ing electricity price fluctuations is proposed. This framework optimizes load uncertainty on the demand side
caused by electricity price fluctuations, mitigates the time scale mismatch between day-ahead optimization
and load demand forecasting, and enhances the system’s robustness against risks.

IES modeling
Figure 1 shows the IES structure utilized in this paper and will be further delineated in the ensuant sections. Four
forms of energy are integrated the system to meet energy demands under different scenarios, they are electricity,

heat, gas, and hydrogen.
Energy conversion equipment modeling
EL and MR modeling
EL i
1Py = Uﬁiipﬁli,t
P < PR, < PR 1)
AP < Pty — Poby < APIED
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pro __ pro I\/IR
1P+ = nurPa,
PI\/IR ,min < PI\/IR < PMR,max (2)
min IVIR max
APRiR < Pt — < AP MR

pro

where, PE2, and Py} represents the output power of MR and EL respectively; ni and nj}
efficiency of MR and EL at time t, respectively.

pro

'+ donates the energy

HFC modeling

The hydrogen energy can be converted into electric and heat energy by HFC. The model is outlined below:
Purc,e,t = nurcPu,,Hro;

Purc,n, = ﬁI}tiPHQ,HFC ¢

mln max
Py, urc < Puyurc,t < P, nrc

()

mln max
AP, urc < PHy HFC,t41 — Pry HFC,: < Ho, HFC
Prarc,n,e
mln max
kurc < 5—— < kuarc, when Parget 7 0
Purc,e,t

where, Parc,e,: and Purc,n,: donates the electrical power and thermal power output of HFC respectively;
Narc and N represents the electrical and thermal efficiency of HFC; kiype and ki donates the upper and
lower limit heat-to-electric ratio of HFC respectively.

GB and GT modeling
The model of GB and GT can be expressed as follows:

Py = ny,tP‘;ifr,‘z

P}ijj;min S P}l/{]t S P)i/rjzmax (4)
where, Y stands for the GB or GT; 7y, represents the energy efficiency of device Y at time t; Py, is the output
power of device Y at time £; PiZ, represents the natural gas energy input to the device Y; APy and A Py
donates the upper and lower limit of ramp-rate respectively.
Dynamic efficiency model (DEM)
To enhance the accuracy of the model constructed in this paper, the IES model developed here treats equipment

efficiency not as a constant value but as a dynamic value dependent on equipment load. Based on equipment
load, the efficiency model can be established as follows:

ro EL,in,t
i z (*)
Prrn
P
7GB,k,t = QGB,i | 5——
PaeN
GT,t
NGT,kt = E aGT,i ( ) (5)
Par~
i
e PHFC,e,t
THFC,t = QHFC,e,i | 5
: Pyrc,e,N
=0
n 7
h Prarcn,t
THFC,t = QHFCh,i | 5
— Purcon,N

where, ay,; represents the i-th order fitting factor of the efficiency function polynomial for device Y; Py n
indicates the rated output power of device Y.

Energy storage equipment modelling

Considering that energy storage devices such as batteries, hydrogen storage tanks, gas storage tanks, and heat-
sensitive tubes operate on similar principles, modeling is performed using batteries as an example, with other
devices following analogous approaches:
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Pes dis,t
]-Se,t+1 = (]- - Tes)se,t + ncs,chrPcs,chr,t -

Se,() = Se,T
Se,min S Se,t S Se,max
ch,chr,tpcs,chr,min S Pcs,chr,t S ch,chr,tpcs,chr,max

Nes,dis

Ues,dis,tPes,dis,min S Pes,dis,t S Ues,dis,tpes,dis,max
Ues,dis,t + Ues,chr,t S 1
Ues,dis,t, Ues,chr,t € {07 1}

where, Tes represents self-energizing rate of the device; 7es,chr and 7es,ais donates the charge and discharge
efficiency of the device respectively; Uecs,chr,t and Ues,ais,: represents the charging and discharging flag bit of
the device.

Renewable energy equipment modelling

In this paper, wind energy and solar energy are selected as the renewable energy sources. wind power go
conversion process via wind turbines (WT) and solar power go conversion via photovoltaic (PV) devices. Thus,
the output power of renewable energy devices in the IES can be outlined in the following way:

Pres,t = Pwind,t + va,t (7)

where, Pres,t, Pwind,t> and Ppy ¢ represent the output power of the renewable energy system, W'T, and PV power
generation equipment, respectively.

Price-driven demand response (PDR)
This paper introduces a price elasticity coeflicient matrix to describe PDR, quantifying the impact of electricity
prices on system load-side stability. The expression for the price elasticity coefficient matrix is:

€11 €12 e €1n
€21 €22 e €2n

E=] . . . (8)
€nl €n2 e €nn

where the price elasticity coefficient ¢, ; is expressed as:

i buy,j % i buy,j
i
S AQbpr  Adlefix _ Qppr — @pDR,b ele,fix ©)
“1 T i ’ buy,j 7 " ybuy,j buy,j
QPDR’b AAele QPDRb Aele?ﬂoat - )\ele,ﬁx

where Q%DR’b represents the benchmark of user’s electrical demand; and QbLpr donates the real value of user’s

electrical demand; A7 is the TOU electricity price at time j; A3’ . represents the real time value when

considering the PDR model.
The real-time electricity price calculation formula considering renewable energy output and load fluctuations
is:

/\buy,j _ )\buy,j (1 +6§1c>

ele,float ele,fix
i
5t _ ACQPDR Pres,t (10)
ele —

i " TpN
QPDR,b Pres

where: 1, 2, 3...n represent the first, second, third...nth time periods, respectively. From the above formulation,
the price-demand load response model is derived:

1 1 1
QQPDR Ql;DR,b QpbpR,b ) 0 T 0
QPDR QPDR, " 0 QPDR b N 0 AxPuy.1 Abuy.2 ANPUY
_ ) + 4 E ele ele R ele (11)
. = . . . . . \puy, T /\buy.2 Ahuy,n
: : : : .. : ele,fix ele,fix ele, fix
n n n

QPDR QPDR,b 0 0 U QPDR,b

Carbon trading cost modelling
Since different equipment exhibits varying energy efficiency across seasons, changes in energy efficiency often
imply shifts in carbon emissions. To minimize carbon trading costs, this study proposes a dual-tiered dynamic
carbon trading cost optimization model that integrates dynamic equipment energy efficiency with seasonal
carbon trading patterns.

The specific calculation for the amount of CO2 captured by the carbon capture and storage equipment(CCS)
is:
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CCS,t I,t D,t B,t

P’LU = P1L' + PT_U + PT_U
CCS,t

Maw,t = €t§wpw

total ___Store
Pt = Puwt T KocsEwMw,t (12)
0<kces <1

total max

0< Pt < NHCCwaPw

B,t __ total
Pw - w,t

where, PSSt donates total output power of CCS unit at time t; PL* represents the net output power of CCS
unit at time t; P, stands for the fixed energy consumption CCS unit at time t and PJ’* means operating
energy consumption of CCS unit at time t respectively; w donates the device number index of CCS; kccs, €t, w
1 represents carbon capture coefficient, actual carbon emission coeflicient, flue gas diversion ratio, maximum
operating coeflicient of regeneration tower and compressor of CCS unit respectively; v donates the power
consumed by the CCS to capture a unit amount of COz; ¢.,,; stands for the total volume of CO> captured by
CCS at time t, while 17.,,+ donates the total volume of COx produced by the CCS unit at time t; 5" represents
the quantity of CO2 to be captured by the solution reservoir; P,,"** the maximum output of the generator set.

When the equipment uses CO2 to produce methane, it consumes a portion of the CO2. Therefore, the
equipment’s CO2 emissions are:

NMR  ppro
ng,t

G%aglor

t
EMR =
j=1
capture
t total
Eyg < g Pw,t
w=1

Ny
G act
Eact,t = E Pw,t

Nload

EGas __ _act load
act,t — TGas Gas n

(13)

t t
where, Ezg:t,b Edct ¢+ donates the carbon emmision of generator set and gasload respectively; 75", &5,

represents the correspondlng coeflicients of each unit.
The system’s carbon allowance E,; can be calculated using the following Eq. (14):

Ny Nioaa

11 11 load
Eqo= ) 78" Pu+ 782 Z P&, (14)

w=1

The system’s net carbon emissions equal actual carbon emissions minus the carbon allowance, i.e.:

capture NMR
_ Gas G power r total buy,t powcr t
Enet = Eacet + Fact,t + Coarbon @PDR,b — E E "o, 1 Coarbon AQPDR — Eqt (15)
w=1

where, (POV"

earbon donates the COzemmitted per unit of electr1c1ty consumed by user.
The quarterly base carbon allowance coefficient Tw 1o <o for gas-fired power generation equipment is
determined by the equipment’s output:
Eseason
11
Ti,t?ase = (16)

N T
Zn:l Zt:l Pt

During actual operation, equipment energy efficiency varies by season. Therefore, the dynamic energy efficiency
carbon quota coefficient model is:

11 season,allo _allo,bas
T,’i o — )\iea O OT¢ O,base (17)
The formula for calculating A;***°" using the equipment’s dynamic energy efficiency model is shown as Eq. (18):
D
season __ i
AZ nseason (18)

where 777 donates the average dynamic efficiency of each season, 75°**°® donates the rated efficiency of the
device.
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Considering the seasonal nature of carbon emissions, carbon quotas are allocated according to different
seasons as Eq. (19):

max max
Eseason = Kscason &

D Keoason = 1 (19)

season = {spring, summer, autumn, winter }

The carbon quotas for each quarter are:
ECSICESOD — kseasonE()l/Ca[‘ (20)
Constraints

The constraints for IES primarily include: equipment power balance, equipment output constraints, equipment
ramping constraints, and curtailment ratio constraints for renewable energy equipment. Their specific forms are:

(1) Power balance:

« Electrical power balance:

Nt
Pcli:yt + Puind,t + Pucyt + Pottiier + Parc,e,t + Z Par gt = PeL,int + Pwee,t + Pucet +
k=1

Qbpr ele cCs, ¢
P P, ’
At + Pes,chr,t + Py 1)

Q;DR = Q;DR,b + AQZPDR
where: Pwcc,: and Prcc,: represent curtailed wind power and curtailed solar power, respectively.

o Thermal power balance:

Ngs
Z heat load heat
PGB,k,t + PHFC,h,t + Pesc,gis,z = Phce)Zt,t + Pesc,:hr,t (22)
k=1
where P}l,‘;:‘at is the heatload of the system at time ¢.

« Hydrogen power balance:

EL MR
PH,t + PHs,chr,t - PHsydis,t + PHQ,HFC,t + PH,z (23)
o Gas balance:
pro buy calor __ in in t
Png,t + Pgs,chr,t + Mgyt Gng - Pgs,dis,t + PGB,t + PGT,t + Pgasload (24)

(2) Power purchase constraint:

Pbuy < Pbuy < Pbuy

ele,;min — * ele,t — © ele,max
. buy,t buy,t—1 .
APgrld,down S Pele,fioat - Pele,doat S APEUCLUP

(25)
0 < Pgr,in < PELN

discharge discharge
0 S PHI;C,t S PHFC,t,max
(3) Energy storage constraints Constraints related to energy storage equipments include natural gas storage,
hydrogen storage, and thermal power storage. They are detailed in section “Energy storage equipment mod-
elling” on energy storage modeling and will not be repeated here.
(4) Gas purchase constraints The quantity of natural gas purchased during the period from 0 to T, n52Y, can be

expressed as Reference?* mentioned:
T NGB PGBkt Ngt PoT.k.t prro
buy 0 k=1 nGB,k,t k=1 7nGT .kt ‘gt Sng,t—l At
Mng™ = Max ’ Gcalor Gcalor Gcalor
n,
o g ng ng (26)

(5) Output constraints of renewable energy equipment:
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min max
Pvc,t S Pvc,t S Pvc,t

min max
Pyind,t < Pwind,t < Pyind,t

) (27)
APZat < Puind,t — Pwina,t—1 < APGRA
AP\T?? S Pvc,t - Pvc,tfl S A \I/I(:ifx
(6) Constraint of the renewable energy curtailment ratio:
Pwcce,t + Puee,t < €c - (Pwind,t + Poc,t) (28)

Considering the varying power generation of clean energy across different time periods, . is set as two seg-
ments: daytime (7:00-18:00) and nighttime (18:00-7:00), i.e.:

66:{ a1, te(7:00—18:00) (29)

£ea, te€(18:00—7:00)

where: . represents the curtailment ratio.

Cost calculation
The total cost of IES can be devided into several parts listed below:

(1) Carbon trade costs: When actual carbon emissions of IES surpass its assigned quota, the IES is obligated
to buy carbon credits. Aiming at reducing the harm to the environment, tiered carbon trading model is
adopted. The model is detailed as follows:

aEnet, FEher < Y
ay+ (14 B)a(Enet —7), ¥ < Enet < 27
cémbon = § (2+ Bay + (1 +2B)a(Bnet — 27), 27 < Enet < 37 (30)
B+38)ay+ (1 +38)a(Enet — 37), 37 < Fnet < 4y
(4+68)ary + (1 +48)a(Enet — 47), 47 < Fnet

(2) Gas procurement costs:
b b b
Og:sy = Cng Y + CVCuOyz

T
buy __ § buy buy
Cng - )‘ng nng,t
t=0
T

buy _ buy _buy
0002 = E )‘COQTLCOQ,t

t=0

where: AD%Y and )\g‘gz represent the unit prices for purchasing the corresponding gas; CheY and Cé'& denote

the costs for purchasing the corresponding gas; Cyey indicates the total gas procurement cost.

(3) Electricity Purchase Cost:

T
Cbuy _ Z ()\buy Pbuy + Abuy Pbuy ) (32)

ele ele,fix™ ele,fix ele,float ™ ele,float
t=0

(4) Operation cost The operational costs of each piece of equipment are calculated using its energy parameters
and corresponding coefficients. In the context of energy generation devices, this energy is referred to as the
output power. In the context of gas-electricity conversion systems, it signifies the aggregate energy input
derived from all devices that are connected to the system. With regard to energy storage devices, this term
denotes the energy released by the storage system. The comprehensive expression is as Eq. (33):

N

T
Cope = Z Z CiEi,t (33)
t=1

i=1
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where: ¢; represents the operating cost coefficient for device i, and Ej,; denotes the total energy released by the
device.

(5) Wind curtailment cost (WCC) and solar light curtailment cost (LCC):

T
wce
C = E AwccPwacc,t

t=0

T
LCC
C = E ArccPrca,e

t=0

(34)

where Awcc and Arcc denote the WCC and LCC coeflicients, respectively; CWVCC and C¥CC denote the
WCC and LCC, respectively.

(6) Energy storage cost: As electrical, heat, gas, and hydrogen storage devices feature a comparable model struc-
ture, the example provided below will utilize battery modeling for demonstration purposes:

T
Ces,ele = Z Aesse,t (35)
t=1

Where: s denotes the cost per unit of power stored by the energy storage device.

(7) Costs of CCS operation:

T
Cco% = Z (aces Py %" + beos) (36)

t=0

where: accs represent the linear term coefficient and bccs donates the constant term of the CCS equipment
cost. Through the discussion above, the total cost of the system Ciotal is outlined:

Chotal = CLEe 4+ OO 4 OO 4 Cope + OV OV 4 0 4 ¢y (37)

ele

Day-ahead DRO for electricity PDR

Scenario acquisition

Before conducting DRO, the acquisition of data relies on scenario generation. In this paper, uncertainty scenarios
are consist of the PV, WT and fluctuations of diverse form of energy demands. This article adopts a data-driven
DRO model, where a simplified data source is required. The target is realised using latin hypercube sampling
(LHS), and k-means clustering to determine the optimal number of representative scenarios and the final set.
Before clustering, the elbow method is needed to find out the best k value to be applied to the clustering.

The framework of data-driven DRO

Based on the features of different devices, all discrete variables (including determined quantities and flag
variables representing device operational states) are defined as the first-stage decision variable . All remaining
uncertain continuous variables serve as the second-stage decision variable y. Based on the variables discussed
above, the objective function are outlined as follows:

K
min Fi(x)+ ;Isg)é Zpkg($7£k)
k=1 (38)
A(z) <0
s.t. g(x, &) = miny, ev(a.gp) {F2(2, &k, yr)}t
s.t. B(x, &k, yk) <0

where, K represents the quantity of discrete scenarios; T denotes the total number of time periods in the current
day; F'1 () denotes the objective function for the first stage; pi, represents the probability distribution value for
the scenario k; Q2 denotes the feasible region for scenario probability distributions under the comprehensive
norm constraint; g(, £x) defines the inner minimization problem; &;, corresponds to the discrete scenario k;
Y (x, £ indicates the feasible region for yj, given a set of (x, £x ); Y represents the variable for the second stage
under the scenario k; A(x) constitutes the constraint related solely to first-stage variables; Fa(x, £, yx) serves
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as the objective function for the second stage; B(x, £k, yx ) reflects the second-stage constraint accounting for
uncertain information.

In the formula, min ensures reasonable and conservative first-stage decisions to guarantee model availability
x

under worst-case scenarios; the intermediate layer max ensures the model can identify the probability
PLEN

distribution of worst-case scenarios from fuzzy sets €); the inner layer min ensures optimal second-stage

€y
scheduling for equipment during the two-stage decision process and miniglll’;izes the total cost of IES under all
possible scenarios.

In the model, it is imperative that both the co-norm and the 1-norm are incorporated with a view to
minimizing the discrepancy between the real distribution and the initial distribution pg, which is generated
through history data. The fuzzy set €2 is as follows:

>0 k=1,... K

K
Zpk =1
k=1

K

max |px — pp| < Ooo
1<k<K

K

Zpk - Qrpr € [Hae — 80,6, ha.e + 5q.]
k=1

where, pj) denotes the initial scenario probability distribution value; 61 and 0o, donate the maximum probability
deviation constraints which correspond to the 1-norm constraint and co-norm constraint, respectively. Where
pr. obeys the confidence level below:

K
> e =PRI <01 p > 1 - 2Ke MK
k=1 (40)

Pr{ max |pr — pi| < foo } > 1 — 2Ke 2M0e
1<k<K

Setting the right-hand side of the above equation equal to the confidence levels a1 and a yields:

K 2K
01 =—1
PToM T - @)
oo — Lo 2K
T2M 1 -ae
The objective function for the first stage is:
Fi(@) = Cl + Cos
T
(42)
bu bu bu
Cele?,ﬁx = Z AeleyﬁxPele};ix
t=1
Equation 6
8-t { Equation 25 (43)
The objective function for the second stage is:
Fo(@, &k, Yr) = Conoa + C° 4 Cope + CVOC + CHC + ORI + CENGL
(44)

T
buy buy buy
clc float — clc Jfoat clc float

Equation 1 to Equation 5
s.t. Equation 11 (45)
Equation 22 and Equation 26
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Intraday MPC

Although day-ahead robust optimization effectively enhances system stability, uncertainty in electricity
price fluctuations persists, typically occurring at the intraday level. This necessitates addressing the temporal
mismatch between day-ahead robust optimization and intraday forecasting. Accordingly, this paper proposes an
intraday MPC optimization approach to resolve the temporal discrepancy between day-ahead optimization and
electricity price responsiveness.

During the intraday MPC scheduling phase, the first step is to obtain the electricity prices and load parameters
for each time period with the data derived from the optimized results of DRO. In the MPC prediction process,
user loads are forecast using these parameters, ensuring robustness while maintaining prediction accuracy.
Based on the definition of price elasticity coefficients, i.e., the price elasticity matrix:

n )\buy,j _ AbuYsj
t ele,fix ele,float t
AQppr = E €t,j — wg  QPDR,b (46)
j=1 ele,fix

where, n denotes the number of time periods affected by electricity prices.
Rewritten in state equation form:

n )\buy,j _ )\buy,j
t t t ele,float ele,fix
QPDR,pred = @PDR,b + E €,j - QprpRp — T NCE - (47)
j=1 ele,fix

where, QtpDR,pred represents the rolling optimization forecast value.

Rolling optimization
The objective function for rolling optimization is:

H
. buy,t+k|t
min S [Ctml 4 pe AN } (48)
Abuy,t:tﬁ»H
ele,float k=0
buy,t buy,t buy,t
)\ele, float, mil] S )\ele, float, pred S )\ele7 float, max .
buy,t _ sfloat buy,t buy,t ) float
s.t. (Aele, ﬂoat) 6%1‘/ < Aele, float, pred < (Aele, float + 6>\ (49)

(Q?DR)* — 6ppr < QPDR, prea < (Q%DR)* + 6bpr

where, p represents the electricity price penalty coefficient; « signifies the optimal solution for variable x obtained
through DRO; 65" represents the allowable electricity price forecast fluctuation during MPC; §hp denotes
the allowable user load fluctuation during MPC.

Feedback correction

In practical implementations of MPC, discrepancies can arise between the outcomes of rolling optimization and
the system situation in reality due to model mismatch and prediction errors. To alleviate these inconsistencies,
a dynamic feedback correction mechanism based on electrical price elastic coefficient is incorporated. The
deviation between actual and predicted demand is calculated as:

AQ;DR, err = QPDR — Q;DR, pred (50)

where, AQbpR, o tepresents the error between actual user electricity consumption and the model prediction.
The price elasticity response coeflicient is corrected using AQEDR,pred:

A\Puyg
new __ old t ele, fix
€5 =€, +w- AQPDR, err Z ) (}\buy,j g ) (51)
PDR, b ele, float ele, fix
min new max
st.oer; <€ <€y (52)

where, €/%" is the corrected electricity price elasticity coefficient; €' represents the elasticity coefficient before

correction; and w denotes a weighting factor between 0 and 1, used to adjust the correction intensity of the
elasticity coeflicient based on prediction errors. Its value will be determined during the simulation process.

Substitute the corrected price elasticity coefficient into the model for a new round of prediction, thereby
completing the feedback correction of the price elasticity coefficient:

: A s — AL
t+1 t+1 t+1 ele, float ele, fix
QPDR, prea = CpDR, b T Z €ty QpDR, b \Puv (53)
j=1 ele, fix
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Solution method of model

DRO solution method

To address the DRO problem proposed in this paper, the C&CG method is employed. Through iteration, this
method transforms the complex min-max-min problem in the DRO model into a series of alternately solved
subproblems within the main problem domain, featuring clearer structures that facilitate computational
processing. Furthermore, this algorithm does not rely on exhaustively enumerating all possible worst-case
scenarios to derive the fuzzy sets required for DRO. Instead, during each iteration, the subproblem identifies
the worst-case scenario under the current solution of the main problem and dynamically incorporates it into
the main problem. This approach significantly reduces computational effort. By progressively tightening upper
and lower bounds, overall convergence is ensured, ultimately yielding robust scheduling results. Therefore,
decomposing the original problem into a main problem and subproblems for iterative solution is essential. The
expressions for the main problem and subproblems are provided below:

(1) MP In the scenario delineated by the probability distribution p, the primary objective is to identify the op-
timal solution that not only ensures system economic efficiency but also establishes a lower bound for the
objective function:

i F f
@€ gxlvl&,sk){ 1(@) +h} (54)

i‘lx % )Zg:ol pZLg(m, sk)
r
A3 (:I}, y) =0

where, m denotes the iteration count, and A1 (x), A2(x), As(x) are constraint functions associated with  and
Y, respectively.

(2) SP In consideration of the first-stage variables (z)* of MP, the objective of SP is to ascertain the worst-case
probability distribution within the context of real-time operation. Subsequently, SP returns this informa-
tion to the MP, thereby providing an upper limit for the objective function.

K
fo= ;22)5% {kZpkg(iE’ €k)} (56)
=1

where:

gz, &) = ykerg(igm{Fz(w, ks yr) (57)
A1(:13) S 0
st.9 Az(y) <0 (58)
Az(z,y) =0

(3) C&CQG algorithm solution steps are as follows, as illustrated in Fig. 2

DRO-MPC solution method
Based on DRO-based solution combined with MPC solution methods, Fig. 3 shows the proposed DRO-MPC
model solution method

Overall schematic diagram
To help readers gain a clearer understanding of the work presented in this paper, Fig. 4 illustrates the structural
schematic diagram of the proposed architecture.

Simulation analysis
Simulation situation and parameters
A typical IES located in Nanchang City, Jiangxi Province, China serves as the case study to investigate the
proposed scheduling optimization scheme. For carbon trading cost analysis, both full-year data and data from
a single summer day are employed for comprehensive evaluation, while other models utilize data from a single
summer day. Put into effect in MATLAB R2023b, the simulation makes use of the YALMIP toolbox and adopts
CPLEX as its solver.
Tables 2, 3, 4, 5 and 6 shows parameters of the IES, and the TOU electricity prices are shown in Fig. 6 (right).
As what mentioned before, by using LHS, 1000 data was obtained. Subsequently, the elbow method
determined the optimal number of clusters to be 8, as shown in Fig. 5. Figure 5a, b, and c illustrate the output
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4
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Solve the corresponding S P

* NO

Obtain the probability Pjf and f2(z*) at the worst situation
Update upper bound : UB <+ min{ UB, fa(z*)}

UB =lBr<slet

Return =*

Fig. 2. C&CQG algorithm flowchart.

of wind power and solar power, and the electricity demand on the load side throughout a day, respectively. The
distribution of probabilities for each scenario is shown in Table 7.

Through field research, actual electricity load baseline values were obtained. The electricity price elasticity
coefficient matrix was calculated as follows, as shown in Fig. 6 (left).

Research on the effectiveness of PDR

Simulation analysis case design

To validate the specific effects of coupling the PDR model with the electricity price fluctuation calculation model
that considering the output power of renewable energy equipment and load-side response, this study simulates
the following scenarios under the framework of dynamic carbon trading, dynamic energy efficiency modeling,
and DRO-MPC:

(1) Scenario considering only TOU electricity pricing.

(2) Scenario considering only TOU pricing and PDR.

(3) Scenario considering only TOU pricing and the price fluctuation model.

(4) Simultaneous consideration of TOU pricing, price volatility, and the PDR model.

Analysis of simulation results
Based on the experiment in section “Simulation analysis case design’, the abandoned power of renewable energy,
the consumption rate of renewable energy and the electricity electricity purchasing cost cost are adopted as
evaluation metrics. After simulation, the three metrics for the four scenarios are shown in Table 8.

As shown in the Table 8, scenario 2 exhibits the lowest electricity procurement costs, followed by scenario
4. This is because both scenarios incorporate an electricity pricing-based demand response mechanism. Price
signals serve as the core driver of this mechanism, which is designed to steer users toward adjusting how they
consume electricity, thereby encouraging users to implement “peak shaving and valley filling” operations to
some extent. This, in turn, helps achieve the goal of minimizing electricity procurement costs.
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Fig. 3. DRO-MPC rolling optimization flowchart.

A detailed analysis of the data reveals that the lower cost in scenario 2 stems from the following: during peak
periods, increased user consumption triggers the price linkage mechanism of the PDR, causing the variable
portion of the electricity price to rise accordingly. This results in peak-period prices being higher than the
base rate. During off-peak hours, reduced electricity demand causes the variable price component to decrease,
potentially even resulting in negative adjustments, leading to slightly lower off-peak rates compared to the base
rate. However, since peak-hour consumption volumes far exceed oft-peak levels, overall electricity procurement
costs only show a marginal increase.

Simultaneously, electricity procurement cost of scenario 4 increases by only 0.12% compared to scenario 2,
yet it boosts the renewable energy absorption rate by approximately 0.4%. Moreover, this increase in absorption
rate will continue to expand as renewable energy output within the IES grows. In large-scale IES scenarios,
the effect of increasing renewable energy absorption rates becomes more pronounced. This demonstrates that
the fluctuating electricity pricing calculation method proposed in this paper possesses certain advantages in
promoting renewable energy absorption, thereby contributing to the low-carbon development of IES to a certain
extent.

Effectiveness analysis of dynamic carbon trading model and dynamic energy efficiency
model
Simulation analysis case design
While keeping other modeling components unchanged, simulations were conducted for the following four
scenarios using a summer day as the study case:

Scenario 1: Annual average carbon quota + dynamic energy efficiency

Scenario 2: Annual average carbon quota + fixed energy efficiency

Scenario 3: Dynamic carbon quota + dynamic energy efficiency

Scenario 4: Dynamic carbon quota + fixed energy efficiency

Analysis of simulation results
Hourly values for various costs under each scenario are shown in Fig. 7.

The costs for each scenario are shown in Table 9.

Compared to the scenario with annual average carbon quota + fixed energy efficiency, the dynamic and
annual carbon trading cost reductions for the remaining three scenarios are shown in Table 10.
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Fig. 4. DRO-MPC rolling optimization flowchart.

HFC (thermal) | 350

anrc,h,0 = 0.70, aurc,n,1 = 0.11, aprc,n,2 = 0.04

HFC (electrical) | 250

aHFC,e,0 = 0.51, agrc,e,1 = 0.21, anrc,e,2 = 0.03

EL 450 agp,0 = 0.6425, agr,1 = 0.2276, agr,2 = 0.0799
GT 360 agTt,0 = 0.35,agT,1 = 0.17, agT,2 = 0.089, agT,3 = 0.02
GB 270 agp,0 = 0.67, agp,1 = 0.128, agp,2 = 0.02

Table 2. Device rated values and fitting values.

Pin,min/max ELt |0/500 | Pmin/max Hyppc | 0300 | APppmin/max | 010 | 35k /6355 2.55/550
Prin/max wind,t | 0/80 Pitmin/max 0300 | APelmin/max [ 0/10 | kin/mex 0.65/1.2
Pouy el,min/max | 0/800 Pf;i“/ max 0/100 APGEB min/max | 0/50 €c1/Ec2 0.031/0.049
Pﬁg/ max 150/400 | APgrid,down /up -150/150 | APy min/max | 0/70 Nur/Neapture | 5/5
P‘gg‘?ﬁ,‘f‘""‘ 100/300 | A Py max 0/15 APyind, max 0/12 Nw /Nioad 4/5
Table 3. Constraint parameters for each device.
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Parameter (kW) Value | Parameter | Value Parameter (kW) Value
Pes/hs/1s/gs,dis,min | 0 TNes,chr/dis | 0.95 Pes /hs/1s/gs,dis,max 500

Pes /hs/1s/gs,chr,min | 0 Ths,chr/dis | 0.95 Semin/maxs Shmin/max | 200/1000
Pes/hs/1s/gs,chr,max [ 300 | Ms,chr/dis | 2/5/1/1 (x10™3) | SH,min/max> Sg,min/max | 200/1000

Table 4. Constraint parameters for energy storage device.

Parameter | Value Parameter | Value | Parameter | Value Parameter | Value
Cpower 616 (g CO2/kWh) « 250 Egcar 8.1 x 10° )| 8 0.25
Cearbon | 10° (t) v 2000 | &y 0.14 £ 0.61

Table 5. Parameters for carbon trading models.

Parameter Value Parameter Value

ccr/caB/cHFC | 0.026/0.021/0.076 Xes/Ans/Als/Ags | 1.2/150/60/3

Awce/ALcc 0.37/0.59 Gces /beces 0.055/30

Ang/Aco2 0.074/0.0035 (¥/mol) | GEa°r 892.2 (kJ/mol)

Table 6. Other constants.

(a) Wind power cluster (b) PV power cluster

(c) Load cluster

o B 900. 9901
5382 \
50.0310 /‘ (
B | 79. 1506 \ | 821.0337
Y 38.5238 | .% 74 | ; -
e 2 v/ N
3 27.0166 x 59.3629 oy, . / Scenario 8 N 41.0773
< - 5 7
15. 5094 / T 39.5753 g \ Scenario 7 g 3
! Scenario 8 £ ‘ Ny / scer 5 & Séenario 8
00:00 / Scenario 7 & 19-7876 4 ) Ay cenario © 661.1209 Scenario 7
: 3 ./ Scenario 6 0l Ry Scenario 5 / scenario 6
06:00 ™\ [ Scenario 5 I~ Scenario 4 581.1645 J/ / Scenario 5
X . 00:00 § = f
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o Scenario 1 Timesn 1800 Scenario 1 18:00 ~ Scenario 1

Time/h

Fig. 5. Cluster diagram of wind power output, solar power output and user load.

Scenario 1 2 3 4 5 6 7 8
Probability | 0.148 | 0.096 | 0.150 | 0.127 | 0.111 | 0.132 | 0.108 | 0.128

Table 7. Probability distributions for each scenario.

Figure 7 illustrates the primary components of hourly total costs across four scenarios. Subfigure (a) exhibits
a steeper peak, while subfigure (c) shows a relatively flatter peak. This demonstrates that employing a dynamic
carbon trading model effectively optimizes the system’s cost structure, mitigates peak-valley effects, and reduces
overall system costs. Comparing Subfigures a and b, the fixed energy efficiency model exacerbates peak-valley
cost differences while effectively reducing overall costs, particularly during peak electricity consumption
periods. The dynamic energy efficiency model demonstrates a more pronounced cost-reduction effect. This
occurs because during peak electricity consumption, equipment operates at higher efficiency, reducing costs
associated with purchasing electricity, gas, and carbon credits. Simultaneously, based on the dynamic carbon

quota calculation formula, the system acquires more carbon quotas, ultimately lowering total system costs and
effectively mitigating peak-valley effects.
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Fig. 6. User electricity load baseline values and electricity price elasticity coefficient matrix.

Abandoned power of | ¢, 53 160.42 159.37 156.20
renewable energy

The consumption rate | g co, 84.8% 84.9% 85.2%
of renewable energy

Electricity purchasing | g 3 7,973 8,083 7,983

Table 8. Relevant evaluation indicators under four scenarios.
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Fig. 7. Hourly values of various costs under four scenarios.
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Electricity | Gas
Types of Total Operation | purchasing | purchasing | Carbon
costs cost cost cost cost trade cost

Dynamic efficiency
+ 365,826 | 3,127 7,160 108,277 245,534
annual average carbon quota

Fixed efficiency
+ 393,617 | 3,240 8,481 126,045 248,340
annual average carbon quota

Dynamic efficiency
+ 342,145 | 3,510 7,983 110,683 219,607
dynamic carbon quota

Fixed efficiency
+ 368,442 | 3,288 8,536 125,271 230,913
dynamic carbon quota

Table 9. Total costs by category across four scenarios.

Annual carbon
Carbon trading | trading cost

Model Season | cost reduction | reduction

Spring 1.06%
Dynamic efficiency
+ Summer | 1.13%

1.03%

annual average Autumn | 1.01%
carbon quota

Winter | 0.91%

Spring 6.87%
Fixed efficiency Summer | 7.02%
. 6.44%
dynamic carbon quota | Autumn | 6.69%

Winter | 5.17%

Spring 11.31%
Dynamic efficiency Summer | 11.83%
N 10.92%
dynamic carbon quota | Autumn | 11.19%

Winter | 9.36%

Table 10. Carbon trading cost reduction data.

As shown in Table 9, using this case study (a summer day) as an example, the proposed dynamic energy
efficiency model combined with the dynamic carbon trading model significantly optimizes the system’s total
cost. Compared to the traditional annual average carbon quota model with a fixed energy efficiency model, this
model reduces the system’s total cost from 393,617 yuan to 342,145 yuan, and carbon trading costs from 248,340
yuan to 219,607 yuan. This represents a 13.07% reduction in total costs and an 11.57% decrease in carbon trading
costs, fully validating the superior cost control capabilities of this coupled model. This is primarily because
traditional annual average carbon quotas overlook seasonal emission imbalances, while fixed energy efficiency
fails to account for dynamic operational conditions, often leading to redundant carbon costs or energy efficiency
waste. In contrast, the dynamic energy efficiency model in this paper adapts in real-time to fluctuations in system
operating states, while the dynamic carbon trading model aligns with seasonal carbon emission characteristics
and equipment energy efficiency profiles across different time periods, enabling dynamic quota adjustments.

Further analysis of the optimization contributions from each model component reveals that compared
to standalone approaches like “annual average carbon trading model + dynamic energy efficiency model” or
“dynamic carbon trading model + fixed energy efficiency model”. The coupled model achieves cost reductions of
1.13% and 7.02%, respectively. This result indicates synergistic optimization between the “operating condition
adaptability” of dynamic energy efficiency and the “emission period adaptability” of dynamic carbon trading.
Their integration overcomes the limitations of single-model optimization, achieving a coupled optimization
effect where “1+1>2” and providing a more comprehensive solution for system cost control.

As shown in Fig. 8, during IES operation, equipment efficiency varies with load changes rather than
remaining constant. Therefore, establishing dynamic energy efficiency models for equipment is essential.
Dynamic models more accurately describe IES equipment performance, enabling subsequent modeling—such
as gas and electricity procurement—to better align with engineering realities and achieve greater precision,
holding significant importance for practical applications.

Analysis of data from Table 10 reveals significant variations in carbon trading cost reduction rates across
seasons among different models. These differences correlate with how well each model integrates dynamic energy
efficiency with seasonal carbon quota characteristics. When considering only dynamic energy efficiency models,
annual fixed carbon quota limit adaptation to seasonal equipment operation patterns, resulting in low reduction
rates throughout the four seasons - averaging just 1.03% annually. When only the dynamic carbon trading model
is applied, although dynamic carbon quotas are considered, the fixed energy efficiency assumption deviates
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Fig. 8. Thermodynamic diagram of equipment efficiency over time for scenarios 1 and 3.

from reality. Reduction rates are relatively high in spring, summer, and autumn. However, the winter reduction
rate decreases due to more pronounced deviations between equipment winter operation characteristics and
fixed energy efficiency assumptions, resulting in an annual average of approximately 6.44%. In contrast, the
combined dynamic energy efficiency and dynamic carbon allowance approach fully aligns with equipment
high-efficiency operation and flexible carbon allocation during spring, summer, and autumn. Although winter
reduction rates are slightly lower due to seasonal energy efficiency variations in some equipment, overall high
seasonal reduction levels are achieved, with an annual average of 10.92%. This highlights the adaptive advantage
of synergistic dynamic energy efficiency and dynamic carbon allowances in optimizing carbon trading costs
across different seasons.

Simulation analysis of DRO model

To validate the effectiveness of the distributed price-responsive demand response and dynamic carbon trading
model under the DRO framework, this study decomposes the model components using the weighting coefficient
as an example. Each component is then validated through distinct case studies.

Evaluation of the DRO model

To testify the vital function of the DRO model, simulation experiments were conducted for stochastic
optimization (SO), traditional robust optimization (RO), and DRO while keeping all other modeling aspects
consistent. Six evaluation metrics were derived and compared: total system cost, electricity procurement cost,
natural gas procurement cost, the cost of carbon trade, the cost of system operation, and CCS operation cost.

Table 11 presents daily cost values in categories (in CNY) for four scenarios. Data from Table 12 indicate that
the DRO model, which describes uncertainty using fuzzy sets to balance conservatism and feasibility, incurs
total costs 0.19%, 4.03%, 7.66%, and 8.01% higher than the SO model in the four scenarios, respectively. This
increase stems from the SO model’s reliance on deterministic probability distribution assumptions. This result
demonstrates that the DRO model is more conservative than SO, overcoming SO’s heavy reliance on probability
distributions. It better accounts for cost fluctuations under worst-case scenarios involving uncertain parameters,
thereby enhancing the robustness of scheduling solutions.

Simultaneously, the total cost of the DRO model decreased by 4.6%, 4.7%, 2.8%, and 3.0% compared to
traditional RO models. This indicates that while preserving its core robustness advantage (ensuring minimized
worst-case costs), DRO effectively reduces the conservative redundancy of traditional RO by dynamically
optimizing the uncertainty set boundary. This significantly enhances the model’s economic efficiency, achieving
the dual objectives of “controlling worst-case risks” and “optimizing overall dispatch costs”

Simulation analysis under extreme conditions
To demonstrate the model’s effectiveness under extreme conditions, simulation analysis under such scenarios is
conducted. To simulate real-world extremes, a scenario is defined where renewable energy output and load-side
demand fluctuate by 50% and 30% respectively relative to historical averages over a continuous 10-hour period
within a single day. Analysis focuses on two metrics under this scenario: total system cost and imbalance between
supply and demand for SO, traditional RO, and DRO systems. Simulation results are as following Table 12.

As shown in Table 12, under the extreme conditions described earlier in this paper, the three optimization
methods exhibit significant differences in cost and supply-demand balancing performance. Traditional SO relies
on predefined probability distributions to optimize expected costs but lacks robustness against extreme scenarios

Scientific Reports |

(2026) 16:1350 | https://doi.org/10.1038/s41598-025-33497-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Scenario
1 2 3 4
NeJ 341,487 | 363,487 | 336,524 | 335,572

CT(‘)’:;‘I RO | 360,853 | 396,948 | 372,882 | 373,614
DRO | 342,145 | 378,151 | 362,312 | 362,451
SO [3347 |6288 |3978 |3,986
S}:fraﬁ"n RO 3616 |8295 |4058 |4,041
DRO [3510 |7,119 [3,503 |3,59
Blectricity |50 | 7930 | 9245|8107 | 8055

purchasing RO 10,054 13,085 11,043 10,057
cost DRO [7,983 |8047 |7,691 |7.716

Gas SO | 105,083 | 116,142 | 104,710 | 106,270
purchasing RO 115,472 | 125,985 | 116,483 | 116,480
cost DRO | 110,683 | 154,064 | 113,664 | 113,646
SO 218,175 | 225,350 | 209,830 | 209,343

Carbon RO | 222,795 | 239,962 | 233,267 | 234,652
trade cost
DRO | 219,607 | 196,350 | 225,207 | 233,819
SO |5418 [3240 |7,447 5440
Carbon

capture and | RO 6,048 6,928 6,050 6,048
storage cost 'hpo |0 6455 | 9,806 |1,288

Table 11. Comparison of costs across three optimization methods.

Method
SO RO DRO
Total cost (CNY) 412,789 | 493,977 | 446,144

Imbalance between supply

and demand per day (kW) 2737 2178 231

Table 12. Cost and imbalance comparison.

not covered by the distribution, thus serving as the baseline for subsequent performance comparisons; RO designs
solutions based on absolute boundaries of uncertainty parameters, maximally addressing extreme fluctuations:
while increasing costs by 19.67% compared to SO, it reduces the supply-demand imbalance by 20.42%. However,
its excessive coverage of extremely rare extreme values leads to significant conservative redundancy and higher
system costs; The DRO approach adopted in this paper achieves a balance between risk and conservatism
through an uncertain set of probability distributions: on one hand, by covering reasonable extreme scenarios
rather than RO’ absolute boundaries, it reduces the supply-demand imbalance by 15.56% compared to SO
while only increasing costs by 8.08% over SO, effectively mitigating SO’s mismatch risk in extreme scenarios; On
the other hand, while DRO achieves a 6.11% lower reduction in supply-demand imbalance compared to RO, it
reduces total system costs by 9.68%, eliminating the redundancy costs incurred by RO’s excessive conservatism.

Combining the findings of sections “Evaluation of the DRO model” and “Simulation analysis under extreme
conditions”, the proposed DRO model demonstrates both scientific rigor and engineering practicality. It adheres
to the core logic of DRO, controlling worst-case risks within reasonable uncertainty, while overcoming RO’s
limitation of trading robustness for high costs. This achieves a balance between robustness and economy, avoids
resource waste from redundant design, and provides a more practical optimization solution for efficient system
operation under extreme conditions, which holds significant engineering significance.

Analysis of norm constraint parameters

For case 4, different confidence levels were assigned to o1 and aeo within the robust optimization model. For
comparison, simulations were conducted under three scenarios: constraining only a1, constraining only cve,
and simultaneously constraining both o1 and a. The total cost of each situation were derived and analyzed
comparatively.

As shown in Fig. 9, increasing the values of relevant parameters progressively enhances the conservatism of
the optimization model. A higher value of [the confidence parameter] signifies that the model places greater
emphasis on addressing extreme scenarios throughout the optimization process. In such cases, the system
develops and implements more prudent scheduling strategies to reduce potential risks. However, such a
conservative strategy results in higher consumption of redundant resources, ultimately driving up the system’s
operational costs. This clearly demonstrates the unavoidable trade-off that exists between risk prevention and
cost escalation.
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Fig. 9. Comparison of total costs under different norm constraints.

Comparing scenarios with single-norm constraints versus combined-norm constraints reveals consistent
trends: combined-norm constraints typically achieve more effective cost reduction than single-norm constraints.
For instance, under the scenario aco = 0.95, the cost with a single-norm constraint is 355,843 yuan, whereas
the combined-norm constraint reduces it to 347,212 yuan, which means a decrease of approximately 2.43%.
This result demonstrates that combined norm constraints are capable of effectively alleviating the cost escalation
triggered by conservative optimization, all the while safeguarding system stability. Consequently, they achieve
higher levels of economic efficiency and scheduling flexibility, demonstrating significant advantages when
applied as constraints in DRO.

Intraday DRO-MPC two-stage forecasting model evaluation

Sources of forecast data

Just as with day-ahead scheduling, intraday scheduling faces uncertainty primarily from variations in renewable
energy generation and different types of energy loads. Therefore, this research introduces a 5% random error
into the day-ahead forecast data, which is used to mimic the intraday fluctuations of both renewable energy and
load. The MPC forecast data source is illustrated in Fig. 10.

Determination of the electricity price penalty coefficient
During the modeling process, the electricity price penalty coefficient remains undetermined. To identify the
optimal coeflicient, sensitivity analysis simulations were conducted by varying within the range [0, 0.8] with
increments of 0.05. The total cost and electricity price fluctuation optimization results under different values
were compared. The final optimal value of was selected as the coeflicient that minimizes total cost while keeping
electricity price fluctuation within an acceptable range (<10%). The trends of total cost and daily electricity price
fluctuation total value with respect to the electricity price penalty coefficient are shown in Fig. 11.

As shown in the Fig. 11, when p = 0.3, both total cost and electricity price fluctuation reach their minimum
values. Therefore, all simulations in this paper adopt p = 0.3 as the value of the electricity price penalty
coefficient.

DRO-MPC scheduling cases and reference metric settings

Three comparative cases were established for this study. The computational duration, total cost, and tracking error
were simulated as comparison metrics across these cases. The tracking error is the integral of the discrepancy
between the result of rolling optimization and the actual situation in the corresponding time interval, quantifing
the tracking effectiveness of MPC. Specifically shown as follows:

T N

§ buy,t+k|t

6trace :/ ‘AQPDR !
0 i=1

» Case 1: Uses the DRO-MPC model without feedback correction
o Case 2: MPC model with feedback calibration, but without DRO

dt (59)
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Fig. 11. Relationship between total cost and electricity price fluctuation with electricity price penalty
coefficient.

» Case 3: DRO-MPC model with feedback correction

The results are as following Table 13.

The comparison between tracking results and reference values for each case is shown in Fig. 12.

As indicated by the data in Table 13, case 2 exhibits the lowest cost and highest economic efficiency. This
is attributed to the model’s higher optimization freedom combined with feedback correction, which enables
real-time optimization of prediction strategies to minimize total costs. Compared to case 2, case 1 lacks a
feedback correction mechanism, resulting in poorer adaptability to actual conditions and higher total costs. Case
3 employs DRO to handle extreme conditions, incorporating redundant costs into the total cost calculation,
making it the most expensive model. However, this trade-off between increased total cost and computational

Scientific Reports | (2026) 16:1350 | https://doi.org/10.1038/s41598-025-33497-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1000

800

600

Electrical load/kW

400

200

Casel |Case2 |Case3

Average solving

time (second) 162.3 39.2 192.4

—_
—

Model time scale (hour) 1
Total cost (CNY) 324,217 | 295,126 | 329,121

Average tracking error

per hour (kW) 45.660 | 37.032 | 38.965

Table 13. Relevant metrics for three typical cases.
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Fig. 12. Predicted value and reference values for three scenarios.

time yields enhanced system robustness, as detailed in section “Comparison of DRO-MPC and MPC under
extreme conditions”.

Regarding tracking accuracy, case 2 exhibits the smallest tracking error. Compared to case 2, case 3’s tracking
error increases by approximately 5.22%. This occurs because in the DRO-MPC model, the MPC prediction
must be based on the DRO optimization results, which partially sacrifices tracking optimality and consequently
reduces tracking accuracy. Compared to case 2, case 1 exhibits the lowest tracking accuracy, showing a significant
increase relative to both case 2 and case 3. This is because case 1 does not employ a feedback correction
mechanism, resulting in insufficient system tracking capability for actual conditions and ultimately increasing
the tracking error.

Figure 12 illustrates the hourly comparison of predicted and reference values across the three cases. The figure
clearly shows that without feedback correction, the error between predicted and reference values is substantial.
When using MPC optimization alone, the system exhibits low conservatism and significant fluctuations. In
contrast, DRO-MPC optimization maintains tracking accuracy without significant degradation, while markedly
improving system conservatism and reducing fluctuations

Comparison of DRO-MPC and MPC under extreme conditions

Since DRO primarily minimizes losses under worst-case scenarios, simulations of the system under extreme
conditions are conducted to validate the proposed DRO-MPC model. These extreme conditions mirror those
described in section “Simulation analysis under extreme conditions” of this paper. Comparisons are made across
five metrics: total cost, renewable energy absorption rate, tracking accuracy, load curtailment rate, and computer
data processing time.

As shown in Tables 13 and 14, when fluctuations in load, photovoltaic and wind power output, are all
significant, the DRO-MPC model still maintains high prediction accuracy. Its tracking error increases from
38.965 to 40.133, representing a mere 3.0% rise. In contrast, when using only the MPC model, the tracking error
increased from 37.032 to 46.641, a substantial rise of 20.6%. This highlights that traditional MPC optimization
suffers from significant prediction errors under high system uncertainty, indicating very low robustness. The
DRO-MPC model, however, effectively enhances the robustness of MPC.

Comparing data on total cost, renewable energy absorption rate, and electricity load reduction rate reveals
that under extreme conditions, the DRO-MPC model’s high robustness resulted in smaller increases for all
three metrics compared to using MPC alone. Correlating this with relevant data from Tables 13 and 14, it
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DRO-MPC | MPC
Total cost (CNY) 406,127 436,798
Renewable energy consumption rate | 87.3% 77.2%
Reduction rate of electrical load 0.15% 4.3%
Average resolution time (seconds) 196.4 423
Average tracking error per hour (kW) | 40.133 46.614

Table 14. Comparison of DRO-MPC model and MPC model under extreme conditions.

demonstrates that the DRO-MPC model effectively enhances the system’s ability to manage risks under extreme
conditions, safeguards user electricity demand during such events, and reduces power outage occurrences.

Meanwhile, in terms of computational time, the DRO-MPC model took 196.4 seconds to compute, with
conventional forecasting operating at a 1-hour time scale. This demonstrates that although DRO-MPC exhibits
a significant increase in computational time compared to MPC, it remains capable of meeting forecasting time
scale requirements in engineering applications. It effectively extends the robustness enhancement of DRO
from the day-ahead scale to the intraday scale, mitigating the time scale mismatch issue in DRO’s intraday
optimization.

Disscusion

This study constructs an IES economic dispatch optimization model for electricity pricing-based demand
response, incorporating dynamic energy efficiency and dynamic carbon trading. It proposes a two-stage
collaborative optimization framework: “Day-ahead DRO - Intraday MPC” Simulation results demonstrate
that this framework achieves significant improvements in system economics, robustness, and low-carbon
performance. This section provides an in-depth interpretation of the above results and discusses them within a
broader academic context.

Theoretical and practical significance of the research

Theoretically, the proposed “dynamic energy efficiency-dynamic carbon quota” coupling mechanism establishes
a new paradigm for low-carbon scheduling modeling in IES, emphasizing that carbon cost optimization
should not be decoupled from the physical operational state of system equipment. Concurrently, the DRO-
MPC framework offers a versatile modeling and solution approach for addressing multi-timescale uncertainty
optimization problems.

At the practical level, this research provides IES operators with scheduling tools that balance economic
efficiency and robustness. The dynamic carbon trading model assists enterprises in more precise cost budgeting
and trading decisions within carbon markets. Meanwhile, the price-elasticity-based MPC rolling optimization
strategy offers theoretical foundations and technical support for designing more flexible real-time electricity
pricing products for electricity retailers or aggregators.

Research limitations and future directions
Despite the achievements outlined above, this study retains several limitations that also point to directions for
future research.

Research limitations

« Simplified Modeling of Renewable Generation and Load Uncertainty: The uncertainty modeling focuses on
short-term, hourly fluctuations of wind and photovoltaic output and load demand derived from historical
data. It does not incorporate the impacts of extreme weather events, long-term climate variability, or the spa-
tiotemporal correlations between different renewable sources and load nodes. The initial probability distribu-
tions for the DRO model are constructed from historical data, which may not fully capture future uncertainty
patterns.

o Static Approximation of Behavioral Response: Although the electricity price elasticity matrix incorporates
a feedback correction mechanism, its initial values are derived from historical data fitting. The correction
weight w is manually set. This approach does not fully capture the potential dynamic evolution of user re-
sponse behavior driven by long-term learning effects, seasonal habits, or sudden changes in policy or market
structure.

o Assumption of a Perfectly Competitive Carbon Market: The dynamic carbon trading model operates under
the assumption of a perfectly competitive carbon market with fixed price tiers. It does not account for po-
tential carbon price volatility induced by policy shocks, market speculation, or strategic bidding behaviors of
large market participants, which could significantly impact operational costs.

« Computational Burden for Large-Scale Systems: Solving the proposed DRO-MPC framework relies on it-
erative algorithms like C&CG. While tractable for the case study presented, computational efficiency may
become a bottleneck for very large-scale IES with hundreds of units or when applied to shorter, real-time
dispatch cycles requiring solutions within minutes.

Future outlook
To address the aforementioned research gaps, future studies of the model could focus on the following areas:
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« Develop coupled models integrating numerical weather prediction, artificial intelligence algorithms, and re-
newable energy output forecasting to enhance the climate adaptability of dispatch strategies and improve
prediction accuracy.

« Employing online learning methods like reinforcement learning to establish adaptive mechanisms for updat-
ing elasticity coefficients.

o Incorporate carbon price uncertainty into the fuzzy set of DRO to develop more robust carbon market mod-
els, and further explore cross-regional carbon trading and coordinated dispatch mechanisms under multi-re-
gional IES alliances.

« Future research may explore developing distributed optimization algorithms, deep learning proxy models, or
leveraging hardware acceleration technologies to enhance the model’s real-time application potential.

« Extend the current single-node IES model to multi-regional interconnected systems, investigate cross-re-
gional energy exchange and carbon quota trading mechanisms, and further enhance overall system economic
efficiency and low-carbon performance.

« In future research, incorporating incentive-based demand response (IDR) could further enhance the system’s
peak shaving and valley filling capabilities. For instance, integrating IDR with PDR to develop a hybrid de-
mand response model warrants further investigation.

Conclusion

This paper conducts systematic research on three core issues in IES economic dispatch: electricity price
fluctuations, dynamic characteristics of equipment energy efficiency, and dynamic carbon trading. The main
conclusions are as follows:

o The effectiveness of the multi-timescale collaborative optimization framework. A two-stage DRO-MPC col-
laborative optimization strategy is proposed: The day-ahead stage employs data-driven DRO, incorporating
oo-norm and 1-norm constraints to model price and load uncertainties, addressing the limited adaptability
of traditional SO to extreme scenarios. The intraday MPC stage integrates MPC with an electricity price elas-
ticity coefficient matrix to construct state equations. It dynamically adjusts electricity prices through rolling
optimization and employs a feedback correction mechanism to update elasticity coefficients in real time. This
two-stage strategy embeds DRO robustness into MPC optimization, satisfying both the intraday forecasting
time scale requirements and enhancing the robustness of the prediction model. Under extreme conditions of
50% renewable output fluctuation and 30% load fluctuation, tracking error increases by only 3.0%. Compared
to traditional MPC models, load curtailment rate decreases by 4.15%, while renewable energy absorption rate
increases by 10.1%.

« Synergistic Benefits of Dynamic energy efficiency and Dynamic Carbon Trading. A polynomial relationship
model linking equipment load factor and energy efficiency replaces the traditional fixed-efficiency model,
making system modeling more aligned with engineering realities. Concurrently, this paper proposes a sea-
sonal-based tiered carbon quota allocation mechanism. Combined with dynamic energy efficiency correc-
tion factors, this enables carbon quotas to adjust dynamically based on actual equipment output and energy
efficiency. This model dynamically adjusts quotas for units with higher summer carbon intensity based on
equipment output and the proportion of seasonal emissions relative to annual emissions. It reduces the cost
of carbon trade in summer by 10.7% and annual costs of IES by 9.89%, representing a 2.88% greater reduction
in summer costs compared to'>. Compared to the fixed quota plus annual average quota model, the dynamic
efficiency plus dynamic quota coupling model reduces total system costs by 13.07%. This finding serves to
substantiate the assertion that dynamic carbon trading models are instrumental in reducing carbon emissions
and costs, while concurrently demonstrating the synergistic effect of the “dynamic efficiency-seasonal quota”
coupling mechanism.

« Effectiveness of real-time electricity pricing models considering load and renewable energy output. The im-
pact of TOU electricity prices was quantified using an elasticity coefficient matrix. Renewable energy output
and load fluctuations were incorporated into the real-time electricity price calculation model. Feedback cor-
rection was employed to integrate electricity price elasticity coefficients into MPC forecasting, enhancing
the accuracy of intraday load fluctuation tracking. Case studies demonstrate that incorporating load and
renewable energy output into the real-time electricity price fluctuation model increases peak-hour electricity
procurement costs by only 0.12%, while boosting renewable energy absorption rates by 0.4%.

Data availability

The datasets generated and analysed during the current study are not publicly available due some of the data in
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system requested us to keep the data confidential, but are available from the corresponding author on reasonable
request. To contact the corresponding author, please send an email to yangxiaohui@ncu.edu.cn.

Received: 28 September 2025; Accepted: 19 December 2025
Published online: 12 January 2026

References
1. Sigin, Z. et al. Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and
profit allocation. Appl. Energy 321, 119202. https://doi.org/10.1016/j.apenergy.2022.119202 (2022).
2. Institute, C. E. P. P. E. Chinese power system transformation report. https://www.nea.gov.cn (2025).
3. Liu, Z. et al. Multi-time scale operation optimization for a near-zero energy community energy system combined with electricity-
heat-hydrogen storage. Apply Energy 291, 130397. https://doi.org/10.1016/j.energy.2024.13039 (2024).

Scientific Reports |

(2026) 16:1350 | https://doi.org/10.1038/s41598-025-33497-3 nature portfolio


https://doi.org/10.1016/j.apenergy.2022.119202
https://www.nea.gov.cn
https://doi.org/10.1016/j.energy.2024.13039
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Wen, L. et al. Co-optimization of system configurations and energy scheduling of multiple community integrated energy systems

to improve photovoltaic self-consumption. IEEE Trans. Eng. Manage. 71, 1439-1451. https://doi.org/10.1109/TEM.2022.3158390
(2024).

. Wu, ], Chen, R., Qu, H. et al. Robust optimization method for integrated energy system considering uncertain electricity price. In

2024 4th International Conference on Electronics, Circuits and Information Engineering (ECIE) 308-312 (IEEE, 2024). https://doi.o
rg/10.1109/ECIE61885.2024.10627463.

. Wang, Z. & Paranjape, R. Optimal residential demand response for multiple heterogeneous homes with real-time price prediction

in a multiagent framework. IEEE Trans. Smart Grid 8, 1173-1184. https://doi.org/10.1109/TSG.2015.2479557 (2017).

. Li, L, Yuan, Z. & Li, J. Three-stage stochastic robust day-ahead optimization of hydrogen-containing integrated energy system

considering source-load multiple uncertainties. Power System Technol. 2025, 256. https://doi.org/10.13335/j.1000-3673.pst.2025.0
327 (2025).

. Yang, X. et al. An optimized scheduling strategy combining robust optimization and rolling optimization to solve the uncertainty

of res-cchp mg. Renew. Energy 211, 307-325. https://doi.org/10.1016/j.renene.2023.04.103 (2023).

. Wang, Y., Qiu, D., Sun, X,, Bie, Z. & Strbac, G. Coordinating multi-energy microgrids for integrated energy system resilience: a

multi-task learning approach. IEEE Trans. Sustain. Energy 15, 920-937 (2024).

Zhang, L., He, Y., Wu, H. & Hatziargyriou, N. D. An optimal scheduling framework for integrated energy systems using deep
reinforcement learning and deep learning prediction models. IEEE Trans. Smart Grid 16, 46204634 (2025).

Yang, Y., Shi, ., Wang, D., Wu, C. & Han, Z. Net-zero scheduling of multi-energy building energy systems: a learning-based robust
optimization approach with statistical guarantees. IEEE Trans. Sustain. Energy 15, 2675-2689 (2024).

Mo, J. et al. Review of demand response-based optimal scheduling of electric and thermal integrated energy systems. Adv. Eng. Sci.
57, 296-307. https://doi.org/10.15961/j.jsuese.202300187 (2025).

Yan, N. et al. Low-carbon economic dispatch method for integrated energy system considering seasonal carbon flow dynamic
balance. IEEE Trans. Sustain. Energy 14, 576-586. https://doi.org/10.1109/TSTE.2022.3220797 (2023).

Xiongg, J. et al. Consider flexible carbon capture power plants with dynamic carbon quotas—a low-carbon economic scheduling
for generalized energy storage systems. Acta Energiae Solaris Sin. 46, 696-705. https://doi.org/10.19912/j.0254-0096.tynxb.2024-0
062 (2024).

Xuan, A, Shen, X., Guo, Q. & Sun, H. Two-stage planning for electricity-gas coupled integrated energy system with carbon capture,
utilization, and storage considering carbon tax and price uncertainties. IEEE Trans. Power Syst. 38, 2553-2565. https://doi.org/10.
1109/TPWRS.2022.3189273 (2023).

Wei, Z. et al. Low-carbon economic scheduling for integrated energy system based on dynamic hydrogen doping strategy. Power
Syst. Technol. 48, 3155-3164. https://doi.org/10.13335/j.1000-3673.pst.2023.2180 (2022).

Deng, J. et al. Study on cascade optimization operation of park-level integrated energy system considering dynamic energy
efficiency mode. Power Syst. Technol. 46, 1027-1038. https://doi.org/10.13335/j.1000-3673.pst.2021.0484 (2022).

Li, W, Kang, J., Sun, H. & Pang, G. Impact of carbon abatement policies on cross-border supply chain remanufacturing: the role of
import quotas. IEEE Trans. Eng. Manage. 72, 1281-1296. https://doi.org/10.1109/TEM.2025.3555392 (2025).

Taneja, J., Katz, R. & Culler, D. Defining cps challenges in a sustainable electricity grid. In 2012 IEEE/ACM Third International
Conference on Cyber-Physical Systems 119-128 (2012). https://doi.org/10.1109/ICCPS.2012.20.

Hans, M., Hikmawati, E. & Surendro, K. Predictive analytics model for optimizing carbon footprint from students” learning
activities in computer science-related majors. IEEE Access 11, 114976-114991. https://doi.org/10.1109/ACCESS.2023.3324725
(2023).

Fu, Y. et al. Effects of uncertainties on the capacity and operation of an integrated energy system. Sustain. Energy Technol. Assess.
48, 101625. https://doi.org/10.1016/j.seta.2021.101625 (2021).

Ma, W, Fang, S. & Liu, G. Demand response performance and uncertainty: a systematic literature review. Energy 141, 1439-1455.
https://doi.org/10.1016/j.energy.2017.11.081 (2017).

Cui, Y., Zeng, P. & Zhong, W. Low-carbon economic dispatch of electro-gas-thermal integrated energy system based on oxy-
combustion technology. Proc. Chin. Soc. Electr. Eng. 41, 592-607. https://doi.org/10.13334/j.0258-8013.pcsee.191708 (2021).

Author contributions

H. M. is responsible for conceptualization, methodology,proofreading, writing-reviewing and software; Q. D. is
responsible for data curation, writing original draft preparation; Z. Z. is responsible for investigation and sim-
ulation; X. Y. is responsible for visualization, supervision and validation. All authors reviewed the manuscript.

Funding

This research received no external funding.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports |

(2026) 16:1350

| https://doi.org/10.1038/s41598-025-33497-3 nature portfolio


https://doi.org/10.1109/TEM.2022.3158390
https://doi.org/10.1109/ECIE61885.2024.10627463
https://doi.org/10.1109/ECIE61885.2024.10627463
https://doi.org/10.1109/TSG.2015.2479557
https://doi.org/10.13335/j.1000-3673.pst.2025.0327
https://doi.org/10.13335/j.1000-3673.pst.2025.0327
https://doi.org/10.1016/j.renene.2023.04.103
https://doi.org/10.15961/j.jsuese.202300187
https://doi.org/10.1109/TSTE.2022.3220797
https://doi.org/10.19912/j.0254-0096.tynxb.2024-0062
https://doi.org/10.19912/j.0254-0096.tynxb.2024-0062
https://doi.org/10.1109/TPWRS.2022.3189273
https://doi.org/10.1109/TPWRS.2022.3189273
https://doi.org/10.13335/j.1000-3673.pst.2023.2180
https://doi.org/10.13335/j.1000-3673.pst.2021.0484
https://doi.org/10.1109/TEM.2025.3555392
https://doi.org/10.1109/ICCPS.2012.20
https://doi.org/10.1109/ACCESS.2023.3324725
https://doi.org/10.1016/j.seta.2021.101625
https://doi.org/10.1016/j.energy.2017.11.081
https://doi.org/10.13334/j.0258-8013.pcsee.191708
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports|  (2026) 16:1350 | https://doi.org/10.1038/s41598-025-33497-3 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Optimized economic scheduling of demand response in integrated energy systems considering dynamic energy efficiency and dynamic carbon trading
	﻿IES modeling
	﻿Energy conversion equipment modeling
	﻿EL and MR modeling
	﻿HFC modeling
	﻿GB and GT modeling


	﻿Dynamic efficiency model (DEM)
	﻿﻿Energy storage equipment modelling
	﻿Renewable energy equipment modelling
	﻿Price-driven demand response (PDR)
	﻿Carbon trading cost modelling
	﻿Constraints
	﻿Cost calculation
	﻿Day-ahead DRO for electricity PDR
	﻿Scenario acquisition
	﻿The framework of data-driven DRO

	﻿Intraday MPC
	﻿Rolling optimization
	﻿Feedback correction
	﻿Solution method of model
	﻿DRO solution method
	﻿DRO-MPC solution method
	﻿Overall schematic diagram


	﻿Simulation analysis
	﻿Simulation situation and parameters
	﻿Research on the effectiveness of PDR
	﻿﻿Simulation analysis case design
	﻿Analysis of simulation results


	﻿Effectiveness analysis of dynamic carbon trading model and dynamic energy efficiency model
	﻿Simulation analysis case design



