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Presentation attacks pose a significant threat to face recognition systems, making face anti-spoofing 
(FAS) a critical security measure. However, many existing approaches suffer from inadequate 
exploitation of physical modality cues and rely on overly complex architectures, which hinder 
their deployment in practical applications. This paper introduces DAH-FAS, a Dynamically-Aware 
Heterogeneous Face Anti-Spoofing Network designed to mitigate the limitations of existing face 
anti-spoofing methods. To reinforce the RGB branch’s capacity for detailed feature extraction, we 
have designed a Variance-Adaptive Multi-Scale Residual Block (VA-MSRB). To improve the model’s 
perception of bio-thermal diffusion patterns, the BioThermal Enhancer (BTE) is integrated into the 
GhostNet backbone of the IR branch. On this basis, a Bidirectional Group Cross-Modal Attention 
(BGC-MA) mechanism is constructed between the IR and depth branches during the feature extraction 
stage, enabling cross-modal geometric feature alignment and enhancing the complementarity among 
features. We evaluate our method on the CASIA-SURF, CASIA-SURF CeFA, and WMCA datasets, and 
results demonstrate that the proposed approach achieves significant advantages in differentiating real 
from fake faces.

As face recognition technology progresses rapidly, its applications have become increasingly widespread in 
areas such as security surveillance, identity verification, and mobile payment. However, an increasing number 
of presentation attacks have been launched against face recognition systems. These span from basic 2D print/
replay attacks to advanced 3D spoofing methods like high-fidelity silicone masks and lifelike 3D head models. By 
mimicking facial texture, motion patterns, and 3D deformations, attackers continuously challenge the defensive 
boundaries of conventional detection algorithms. Such spoofing attacks pose serious threats to user privacy and 
financial security. To ensure dependable face recognition and counter potential attacks, face anti-spoofing (FAS) 
technologies serve as an essential safeguard to reinforce system integrity and trust.

In recent years, with the rising focus from researchers, various face anti-spoofing techniques have emerged, 
which are typically grouped into two overarching types: traditional machine learning approaches based on 
handcrafted features and modern methods driven by deep learning approaches.

Traditional machine learning approaches focus on designing features that capture inherent properties and 
texture information in images or videos, such as Local Binary Patterns (LBP)1 and Histogram of Oriented 
Gradient (HOG)2,3, which are often used in conjunction with traditional machine learning approaches such as 
Support Vector Machines (SVMs) for extracting and classifying features. Additionally, motion-based methods 
typically require users to perform a series of predefined actions–such as blinking, lip movement, or head 
rotation–to cooperate with the verification process. For instance, Pan et al.4,5 proposed using the entire blinking 
process as an indicator for liveness detection, while Kollreider et al.6 introduced a face anti-spoofing method by 
analyzing mouth movement. Although these traditional machine learning approaches achieved certain levels of 
success, their limited feature representation capacity has become increasingly evident when confronting more 
sophisticated spoofing attacks.

Compared with the limitations of handcrafted features, deep learning approaches have demonstrated 
superior capabilities in adaptively capturing cross-modal spoofing cues through data-driven feature learning 
mechanisms. For instance, ResNet-1017, a deep residual network, alleviates the gradient vanishing issue via 
residual links and enables high-dimensional feature representations. However, its ability to detect subtle spoofing 
cues remains insufficient. To overcome this limitation, CDCN6 introduces the Central Difference Convolution 
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(CDC) to enhance the detection of subtle spoof cues. Nevertheless, the single-path feature extraction structure 
of CDCN restricts its ability to fully exploit cross-layer information. Although CDCN++6 improves performance 
by incorporating a Multiscale Attention Fusion Module (MAFM) and Neural Architecture Search (NAS), it still 
lacks sufficient sensitivity to subtle artifacts in complex materials, such as silicone masks, which limits its spoof 
detection capability.

Some researchers have introduced spatiotemporal information as auxiliary supervision for better classification 
of live/spoof face. However, these methods often lead to increased computational complexity. For example, Xu et 
al.8 leveraged the strengths of Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks 
(CNNs) by extracting frame-level features using CNNs and modeling their temporal dynamics through LSTM 
for binary classification of live and spoof faces. Khan et al.9 built a lightweight face anti-spoofing system utilizing 
the MobileNetV3 architecture, which leverages temporal and spatial features extracted from video frames to 
enhance its capability in detecting presentation attacks.

George et al.10 addressed the limitations of traditional approaches under complex spoofing scenarios by 
combining pixel-level supervision with attention mechanisms, which contributes to more accurate liveness 
verification. To improve intra-modal representation, Zhang et al.11 designed a novel multimodal multi-scale 
fusion strategy that applies channel attention to boost discriminative features and reduce noise across different 
modalities.

However, these deep learning approaches still overly make use of data-driven representations and fail to 
effectively integrate physical priors such as biometric cues. This leads to blind spots in detecting highly realistic 
spoofing attacks. Moreover, their complex architectures pose challenges for achieving real-time performance, 
particularly when resources are limited.

This work presents Dynamically-Aware Heterogeneous Face Anti-Spoofing Network (DAH-FAS) to 
overcome the limitations discussed above. The key contributions can be summarized as follows:

•	 Variance-Adaptive Multi-Scale Residual Block (VA-MSRB) is introduced in the RGB branch. It utilizes a tri-
branch heterogeneous structure combined with variance-guided fusion to overcome the limitations of fixed 
receptive fields in traditional convolutions and mitigate the loss of cross-scale information typically caused by 
single-path convolutional operations.

•	 BioThermal Enhancer (BTE) is embedded into the IR branch to capture the subtle thermodynamic differenc-
es between silicone masks and real human skin, thereby improving the model’s capability to detect thermal 
camouflage.

•	 A Bidirectional Group Cross-Modal Attention (BGC-MA) mechanism is constructed between the depth and 
IR branches to compensate for information degradation resulting from geometric misalignment between the 
two modalities. This mechanism enables alignment of geometric features across modalities, thereby enhanc-
ing the effectiveness of multimodal feature fusion.

Related work
Inverted residual
The inverted residual structure was first introduced by Sandler et al.12 in MobileNetV2, with the core idea of 
incorporating an efficient residual connection into lightweight networks to lower both computation overhead 
and model size, without compromising performance.

As shown in Fig. 1, The typical design of an inverted residual block begins with a 1×1 convolution to 
increase dimensionality, continues with a depthwise separable convolution (DSConv), and concludes with a 1×

Figure 1.  Structure of the inverted residual block.
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1 convolution to reduce dimensions. For the case of stride = 1, a residual connection is added. This structure 
constrains the non-linear activation function ReLU6 within the channel transformation stages, which helps 
maintain the stability of feature representations.

This “inverted” design allows for more effective information retention in low-dimensional space, while 
enabling nonlinear transformations in high-dimensional space to enhance representational capacity.

Ghost module and Ghost bottlenecks
The foundational unit of GhostNet, known as the Ghost module, was originally designed by Kai Han et al.13. Its 
main idea is that there exists significant redundancy within the feature maps of convolutional neural networks. 
To address this, the Ghost module first generates a small set of intrinsic features using standard convolution, 
and then produces additional “ghost features” through inexpensive linear operations, significantly reducing 
computational cost. The GhostNet backbone primarily consists of Ghost bottlenecks units, whose foundational 
component is the Ghost module, as detailed in Fig. 2.

The Ghost bottlenecks design shares structural characteristics with the inverted residual structure from 
MobileNetV2. However, it employs the Ghost module instead of standard convolutions to further enhance 
lightweight properties. Specifically, Channel expansion is carried out by the first Ghost module, while the second 
one performs channel reduction to ensure compatibility with the input and enable a residual shortcut. When 
the stride equals 1, The feature maps, whose spatial dimensions are preserved, provide enhanced representation 
capability. When the stride equals 2, the feature maps undergo downsampling to compress spatial information. 
Moreover, the Squeeze-and-Excitation (SE) mechanism, which enhances channel-wise attention, is often 
integrated with the Ghost bottlenecks module to further boost its effectiveness. The Ghost bottlenecks structure, 
as detailed in Fig. 3.

Squeeze-and-excitation
Squeeze-and-Excitation (SE)14 is a representative channel attention mechanism. Its core idea is to model inter-
channel dependencies and dynamically recalibrate the importance of each channel feature. It initially applies 

Figure 3.  Structure of the Ghost bottlenecks.

 

Figure 2.  Structure of the Ghost module.
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global average pooling to compress spatial dimensions and obtain global contextual information. Then, channel-
wise relationships are modeled and nonlinear interactions are introduced through two fully connected layers that 
are combined with nonlinear activation functions. Finally, a Sigmoid activation function outputs the importance 
weight for each channel. Owing to its simple structure and significant performance improvement, the SE module 
has been widely integrated into various lightweight networks, such as MobileNetV3 and EfficientNet. The SE 
attention mechanism can be formulated as:

	
FSE(X) = X · σ

(
W2 · δ

(
W1 · GAP(X)

))
� (1)

Where X denotes the input feature map, GAP represents global average pooling, δ is the ReLU activation 
function, σ is the Sigmoid activation function, and W1 and W2 are the weights of the two fully connected layers.

CDC and face anti-spoofing
In addition to lightweight architectural components, several task-level studies have explored different 
perspectives to enhance the generalization, efficiency, and multimodal robustness of face anti-spoofing systems. 
Early representative work, Yu et al.6 introduced the concept of Central Difference Convolution(CDC), which 
models both local intensity and gradient variations to enhance sensitivity to spoof-related texture inconsistencies. 
This idea inspired subsequent studies emphasizing pixel-level physical cues, including the Pixel-Inconsistency 
Data Augmentation (PIDA)15 strategy, which extended this line by explicitly modeling cross-pixel dependency 
disruptions for fine-grained forgery localization, providing valuable insight into detecting 2D print or replay 
attacks.

Beyond visual cues, Kong et al. conducted a comprehensive investigation into both digital and physical 
face spoofing, highlighting the importance of multimodal defense strategies16. Meanwhile, they further 
explored acoustic-based face anti-spoofing by reconstructing 3D facial geometry from inaudible sound 
waves, demonstrating the potential of combining audio and visual modalities for robust spoofing detection17. 
In addition, Mu et al.18 proposed a textually guided domain generalization framework, leveraging semantic 
supervision to align spoof representations across domains and further improve generalization.

Recent model-level innovations have also focused on efficiency and generalization. MoE-FFD19 proposed 
a mixture-of-experts architecture combining lightweight adapters and dynamic expert routing to enhance 
generalization under cross-domain settings. S-Adapter20 generalized Vision Transformers to FAS by introducing 
statistical token adapters and style regularization, effectively embedding texture statistics and mitigating domain 
shift. Yu et al.21 further re-examined the role of Vision Transformers and Masked Autoencoders in multimodal 
FAS, emphasizing modality alignment and texture-aware reconstruction for robust fusion. Furthermore, 
M3FAS22 designed an accurate and robust multimodal mobile FAS system that fuses RGB and acoustic signals, 
achieving real-time performance and strong cross-environment robustness on smartphones.

In contrast to these approaches, our proposed DAH-FAS focuses on dynamically-aware heterogeneous feature 
extraction across RGB, infrared, and depth modalities. By integrating lightweight backbones (MobileNetV2, 
GhostNet, and ResNet-18) with modality-specific enhancement modules (VA-MSRB, BTE, and BGC-MA), 
DAH-FAS achieves a balance between generalization capability and multimodal complementarity.

Methods
This section elaborates on the core design of the presented Dynamically-Aware Heterogeneous Face Anti-Spoofing 
Network. As illustrated in Fig. 4, a heterogeneous multimodal feature extraction framework is established, 
where MobileNetV212, GhostNet13, and ResNet-18 serve as the backbone networks for the RGB, IR, and depth 
modalities, respectively. Depth modalities typically encodes richer and more complex geometric structures and 
is prone to sensor noise or missing-value artifacts. Therefore, the depth branch adopts ResNet-18 to extract 

Figure 4.  Structure of the DAH-FAS.
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more stable and discriminative structural features, ensuring reliable multimodal geometric representation 
and benefiting the subsequent cross-modal fusion process. This design ensures computational efficiency while 
enabling modality-specific feature optimization.

RGB branch: variance-adaptive multi-scale residual block (VA-MSRB)
Based on the inverted residual structure of MobileNetV2, we design a tri-branch heterogeneous convolutional 
module to extract multi-scale deformable features and perform dynamic fusion, as illustrated in Fig. 5. The three 
branches are defined as follows:

The baseline branch adopts a 3×3 depthwise separable convolution23 to preserve features within the original 
receptive field.

	 Fdsc = DSConv3×3(Frgb) ∈ RB×C×H×W � (2)

Where Frgb ∈ RB×C×H×W  denotes the input RGB feature map, where B, C, H, and W represent the batch size, 
number of channels, height, and width of the feature map, respectively. DSConv3×3 refers to a 3×3 depthwise 
separable convolution operation.

The deformable branch adopts Deformable ConvNets v2 (DCNv2)24, which enhances spatial adaptability by 
dynamically learning both sampling offsets and modulation scalars.

	
Fdcn =

k∑
k=1

wk Frgb(p + pk + ∆pk) � (3)

Where p denotes the reference spatial location on the feature map, pk  is the predefined relative offset of the k-th 
convolutional kernel element, and ∆pk  is a learnable offset vector in the horizontal and vertical directions. wk  
controls the contribution of the sampled feature at the sampled location.

The detail branch adopts a two-stage convolutional structure: a channel compression stage for dimensionality 
reduction, followed by spatial feature extraction. This design enables effective capture of local texture details. The 
detail branch output is computed as:

	 Fdetail = Conv3×3
(
ReLU

(
Conv1×1(Frgb)

))
� (4)

The input feature variance σvar = Var(Frgb) is used to generate dynamic fusion weights for the three branches. 
Specifically, the variance is first globally averaged, followed by a 1×1 convolution and a Softmax layer to obtain 
a normalized weight vector:

	
w = Softmax

(
Conv1×1

(
GAP(σvar)

))
, w = [w1, w2, w3] � (5)

Figure 5.  Structure of the VA-MSRB.
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where w = [w1, w2, w3] represents the fusion weight vector for the three branches. The magnitude of each 
weight is determined by the channel-wise variance, which reflects the activation intensity of the corresponding 
features. The final output feature is computed as:

	 Frgb = w1 Fdsc + w2 Fdcn + w3 Fdetail� (6)

During the fusion process, regions with high variance–such as edges and texture-rich areas–tend to assign greater 
weights to the deformable convolution branch, enabling more precise modeling of geometric deformations and 
improving robustness against complex spoofing attacks. In contrast, for low-variance regions, such as smooth 
and flat areas, the model emphasizes the detail extraction branch to suppress noise and maintain the stability of 
feature representation.

IR branch: biothermal enhancer (BTE)
To enhance the model’s perception of bio-thermal diffusion patterns, a BioThermal Enhancer (BTE) module is 
embedded within the GhostNet backbone, as illustrated in Fig. 6. The module extracts thermal gradient cues by 
applying Sobel filtering25 to the channel-averaged feature map. The computational procedure is detailed below.

First, let the input feature map be Fir ∈ RC×H×W  , where C denotes the number of channels, and H and 
W represent the height and width of the feature map, respectively. The channel-wise averaging thermal map 
T ∈ RH×W  is then computed as:

	
T = 1

C

C∑
c=1

F
(c)
ir � (7)

Then, horizontal and vertical gradients are computed by convolving T with Sobel kernels Wx and Wy  :

	 Gx = Wx × T, Gy = Wy × T � (8)

The final thermal gradient magnitude is obtained by:

	 G =
√

G2
x + G2

y + ϵ � (9)

Figure 6.  Structure of the BTE. The BTE module consists of four main components: Channel-Wise Averaging, 
Sobel Filtering, Thermal Gradient Magnitude, and Sigmoid.
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Where ϵ is a small constant added to avoid numerical instability during computation. To further emphasize 
the thermal gradient information, a learnable scaling factor α is introduced. The scaled gradient map is then 
normalized to the range [0, 1] using the Sigmoid activation function to generate the thermal attention map:

	 AT = σ(αG) � (10)

Finally, the generated thermal attention AT  is applied to the GhostNet-extracted IR feature map Fir via element-
wise multiplication to obtain the enhanced representation F ′

ir:

	 F ′
ir = Fir ⊙ AT � (11)

Here, Fir represents the original feature output from GhostNet, and ⊙ denotes element-wise multiplication, 
which enhances the response in biologically active thermal regions. Focusing on regions with abrupt thermal 
gradients enables better capture of thermal features, which in turn increases model robustness in face anti-
spoofing.

IR and depth branches: bidirectional group cross-modal attention (BGC-MA)
A Bidirectional Group Cross-Modal Attention (BGC-MA) module is constructed between the IR and depth 
branches. The BGC-MA module aims to enhance the complementary relationship between IR and depth 
modalities through bidirectional cross-modal feature interaction. It involves channel-wise interaction followed 
by spatial interaction to capture geometric correspondences between the modalities, as illustrated in Fig. 7. 
Since BGC-MA relies on accurate geometric cues for reliable IR-Depth alignment, a powerful depth backbone is 
required; hence, ResNet18 was adopted to provide robust structural representations and enhance the stability of 
multimodal fusion. The BGC-MA comprises two components: channel-wise interaction and spatial interaction.

The channel-wise interaction employs global average pooling and grouped convolution to generate attention 
weights, thereby strengthening the channel-level correlations between IR and depth features. In contrast, the 
spatial interaction integrates the original and enhanced features and utilizes depthwise separable convolution to 
compute global spatial attention weights, further improving the effectiveness of cross-modal fusion.

First, global average pooling is employed over both the IR feature Fir ∈ RB×C×H×W  and the depth 
feature Fdepth ∈ RB×C×H×W  , obtaining global context representations. Then, grouped 1×1 convolution is 

Figure 7.  Structure of the BGC-MA.
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performed for channel compression, reducing parameter complexity while enhancing the correlation between 
IR and depth features.The channel interaction is formulated as follows:

	
Fdepth- enh = Fdepth ⊙ σ

(
W2 · Hardswish

(
W1 · GAP(Fir)

))
� (12)

	
Fir- enh = Fir ⊙ σ

(
V2 · Hardswish

(
V1 · GAP(Fdepth)

))
� (13)

Here, W1, W2, V1, and V2 are the parameters of 1×1 grouped convolution layers, employed for channel 
compression. The function σ denotes the Sigmoid activation, which is applied to generate attention weights. The 
operator ⊙ indicates element-wise multiplication, used to reweight the feature maps. Through this process, the 
cross-channel interaction between the IR and depth features is enhanced, thereby improving the effectiveness 
of multimodal fusion.

To capture spatial dependencies between the IR and depth features, we integrate both original and enhanced 
features through spatial interaction. Specifically, we concatenate the global average pooled features from the 
original IR and depth branches, along with the enhanced IR and depth outputs as follows:

	 Fspatial_input = Concat
(
GAP(Fdepth), GAP(Fir), GAP(Fdepth_enh), GAP(Fir_enh)

)
� (14)

Here, GAP denotes global average pooling. Then, the concatenated global features are fed into two depthwise 
separable convolutions with kernel size 7×7 to produce the spatial attention map Wspatial :

	
Wspatial = σ

(
U2 · ReLU

(
U1 · Fspatial_input

))
� (15)

Where U1 and U2 denote two depthwise separable convolutional layers with 7×7 kernels, responsible for 
extracting spatial context and generating the attention map. Wspatial are subsequently utilized to refine the 
enhanced IR and depth features through element-wise multiplication, yielding the final refined features:

	 Fdepth- final = Fdepth- enh ⊙ Wspatial � (16)

	 Fir- final = Fir- enh ⊙ Wspatial � (17)

This spatial interaction process effectively performs joint modeling of the spatial information from both IR and 
depth features, thereby further enhancing the fusion of the two modalities.

Ultimately, the enhanced IR and Depth features, refined through channel-wise and spatial interaction 
modules, are passed to subsequent fully connected layers for final classification.

Experiment
Datasets
To assess the performance and generalization ability of our approach, we select three widely recognized 
multimodal face anti-spoofing datasets, namely CASIA-SURF, CASIA-SURF CeFA, and WMCA. The ablation 
studies are specifically carried out on the CASIA-SURF dataset.

CASIA-SURF
CASIA-SURF11, constructed by the Institute of Automation at the Chinese Academy of Sciences, serves as 
a widely used benchmark for multimodal face presentation attack detection. It includes RGB, IR, and depth 
modalities, comprising 21,000 video clips from 1,000 subjects. Among them, 3,000 are real face videos and 
18,000 are spoofed face videos, which involve six different types of attack.

CASIA-SURF CeFA
CASIA-SURF CeFA26 includes data from 1,607 participants representing three ethnicities: African, East Asian, 
and Central Asian. It features RGB, depth, and IR modalities, yielding 18,000 samples in total–comprising 4,500 
genuine and 13,500 spoof instances. This dataset encompasses a variety of 2D and 3D presentation attacks, such 
as print-based, replay-based, 3D-printed mask, and silicone mask attacks. By adopting synchronized acquisition 
and facial region detection, the dataset ensures high quality and consistency, offering a valuable resource for 
studying face anti-spoofing algorithms under diverse ethnicity, modality, and attack conditions.

WMCA
WMCA27 is a comprehensive multimodal face anti-spoofing dataset consisting of 1,941 short video recordings 
from 72 subjects. The data are captured simultaneously from four modalities: RGB, Depth, Infrared (IR), and 
Thermal, providing rich cross-modal information. The dataset covers seven attack types involving approximately 
80 distinct attack tools, including both visible and invisible spoofing types. It adopts the grandtest protocol for 
evaluating “visible” attacks and the leave-one-out (LOO) protocol for assessing “invisible” attacks, making it one 
of the most diverse and challenging benchmarks for multimodal face anti-spoofing research.

Experiment preparation
The input images are resized to 112×112. During training, random flipping, rotation, and cropping are applied 
for data augmentation. All experiments are conducted on an NVIDIA GeForce GTX 4060 GPU, with model 
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construction, training, and dataset evaluation performed using the PyTorch framework and Python 3.8. The 
network is optimized using the Adam optimizer, with a cosine annealing learning rate schedule. The initial 
learning rate is set to 10E-6 , the batch size is 128, and one cosine cycle spans 10 epochs.

In the experimental evaluation, a comprehensive set of metrics is employed to assess the model’s performance 
from different perspectives. For intra-dataset evaluation, we adopt three commonly used indicators: Attack 
Presentation Classification Error Rate (APCER), Bona Fide Presentation Classification Error Rate (BPCER), and 
the Average Classification Error Rate (ACER). To further assess the model’s recognition capability under varying 
security levels, we report the True Positive Rate at fixed False Positive Rates of TPR@FPR=10E-2, 10E-3, and 
10E-4. For cross-dataset testing, which evaluates generalization to unseen data distributions, we utilize the Half 
Total Error Rate (HTER) and the Area Under the Curve (AUC). Additionally, we report FLOPs and parameters 
to evaluate the model’s computational efficiency and complexity.

Results and analysis
Ablation analysis
Backbone network selection for modality branches
The impact of different backbone feature extractors within each modality branch is evaluated by adopting SE 
Fusion11 as the baseline multimodal fusion framework. Specifically, we replace the backbone networks of the 
RGB and IR branches to construct three comparative experiments, as shown in Table 1.

In the baseline configuration, all three modality branches adopt ResNet-18 as the backbone network, achieving 
an ACER of 2.40% and TPR@FPR=10E-4 of 56.80%. After replacing the RGB branch with MobileNetV2, the 
TPR@FPR=10E-4 improves significantly to 77.26%, while the ACER slightly increases to 2.59%, indicating 
enhanced spoof detection capability under strict false-positive constraints, albeit with a marginal increase in 
overall misclassification rate.

When the IR branch is further replaced with GhostNet, the model demonstrates improvements in both 
metrics, with the ACER reduced to 2.01% and TPR@FPR=10E-4 increased to 79.93%. Therefore, in multimodal 
face anti-spoofing tasks, adopting structurally heterogeneous backbones for different modalities proves to be an 
effective and practical design strategy.

Evaluation of the proposed modules and their combinations
After completing the ablation study on backbone replacement, we adopt the best-performing configuration as the 
new baseline model to further investigate the effectiveness of the proposed key components. We incrementally 
introduce the VA-MSRB, the BTE, and the BGC-MA to evaluate both their individual contributions and 
combined impact on face anti-spoofing performance.

The results are presented in Table 2. When introducing each module individually, all three modules contribute 
to performance improvement to varying degrees. For VA-MSRB alone, the ACER decreased from 2.01% to 1.84% 
and TPR@FPR=10E-2 increased to 98.46%, demonstrating that VA-MSRB enhances local texture modeling and 
improves discrimination against attack samples. Separately, when only the BTE module was introduced, the 
ACER decreased from 2.01% to 1.86%, suggesting that temperature gradient information effectively enhances the 
identification of bona fide cues. In comparison, the standalone BGC-MA module achieves better performance 
at TPR@FPR=10E-2 and 10E-3 levels, but demonstrates slightly lower robustness at TPR@FPR=10E-4, with a 
marginal increase in ACER. This indicates that while BGC-MA facilitates cross-modal alignment, it may require 
cooperation with other modules to achieve optimal performance under strict low-FPR constraints.

VA-MSRB BTE BGC-MA APCER BPCER ACER TPR@FPR=10E-2 TPR@FPR=10E-3 TPR@FPR=10E-4

3.47 0.55 2.01 97.76 88.94 79.93

+ 3.31 0.36 1.84 98.46 89.78 72.26

+ 3.19 0.53 1.86 97.33 86.61 79.60

+ 3.32 0.76 2.04 98.61 90.88 75.79

+ + 1.82 1.47 1.65 98.85 90.54 82.35

+ + 2.02 1.35 1.68 98.66 91.85 80.17

+ + 1.13 1.04 1.08 99.32 94.00 81.39

+ + + 1.31 0.72 1.01 99.19 95.35 87.32

Table 2.  Ablation results of different modules on the CASIA-SURF dataset (Unit: %).

 

Baseline MobileNetV2(RGB) GhostNet(IR) APCER BPCER ACER TPR@FPR=10E-2 TPR@FPR=10E-3 TPR@FPR=10E-4

+ 3.80 1.00 2.40 96.70 81.80 56.80

+ + 4.11 1.08 2.59 96.46 88.19 77.26

+ + + 3.47 0.55 2.01 97.76 88.94 79.93

Table 1.  Ablation results of backbone replacement on the CASIA-SURF dataset (Unit: %).
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In the dual-module combination experiments, the overall performance is further improved. Notably, the 
combination of VA-MSRB and BTE achieves a TPR@FPR=10E-4 of 82.35%, which is significantly higher than 
that of each module used individually. The combination of VA-MSRB and BGC-MA yields the best ACER 
performance at 1.08%, while maintaining competitive performance under medium-to-high security evaluation 
scenarios. Finally, when all three modules are jointly applied, the model achieves the best performance across all 
metrics, with the ACER reduced to 1.01% and the TPR@FPR=10E-4 increased to 87.32%. These results indicate 
that the three modules are functionally complementary, and their enhancements in spatial, multi-scale, and 
cross-modal feature modeling significantly improve the robustness and discriminative capability of the fusion 
model under different security thresholds.

Performance comparison
To further evaluate the performance of our proposed multimodal anti-spoofing, comparative analyses are 
carried out against existing approaches on the CASIA-SURF, CASIA-SURF CeFA, and WMCA.

CASIA-SURF
As shown in Table 3, our method achieves the best overall performance among all evaluated approaches, with 
the ACER reduced to 1.01%, significantly lower than those of DACA-CNN 2.95%, MA-Net 2.00% and MF²ShrT 
1.40%, among others. Under stringent security conditions, the proposed method also demonstrates excellent 
performance, achieving TPR@FPR=10E-2, 10E-3, 10E-4 and of 99.19%, 95.35%, and 87.32%, respectively, 
ranking among the best-performing models that report these metrics. These results validate the effectiveness 
of our module designs and fusion strategy in improving both the accuracy and robustness of multimodal face 
anti-spoofing.

CASIA-SURF CeFA
To further evaluate the generalization ability and stability of the proposed method in cross-ethnicity scenarios, 
we conducted systematic experiments on three sub-protocols (Protocol 4@1,Protocol 4@2, and Protocol 4@3) 
of the CASIA-SURF CeFA dataset. As shown in Table 4, the proposed method achieves ACERs of 1.12%, 1.70%, 
and 1.09%, respectively, demonstrating strong robustness and consistent performance.

In addition, we carried out comparative experiments with several face anti-spoofing methods under the 
same protocol settings on the CASIA-SURF CeFA, and the results are summarized in Table 5. As shown, the 
proposed method balances APCER and BPCER, achieving 1.88 ± 0.9% and 0.72 ± 0.33%, respectively, and an 
ACER of 1.30 ± 0.34%. This demonstrates its competitive performance among all listed methods. Compared 
to MA-Net, which yields a lower BPCER but suffers from a significantly higher APCER with BPCER = 1.20 ± 
1.60%, our method demonstrates a more balanced ability to distinguish between genuine and attack samples. In 
addition, unlike methods such as FaceBagNet and PSMM-Net, whose ACER standard deviations exceed ±1.5%, 
the proposed approach consistently maintains lower variance across all metrics, reflecting superior training 
stability and generalization capability. Overall, these results confirm that the proposed method ensures high 

Protocol APCER BPCER ACER

4@1 1.13 1.11 1.12

4@2 2.89 0.51 1.70

4@3 1.63 0.55 1.09

Ours 1.88 ± 0.9 0.72 ± 0.33 1.30 ± 0.34

Table 4.  Experimental results of the proposed method on CASIA-SURF CeFA under different protocols (Unit: 
%).

 

Model APCER BPCER ACER TPR@FPR=10E-2 TPR@FPR=10E-3 TPR@FPR=10E-4

Halfway fusion11 5.60 3.80 4.70 89.1 33.6 17.8

SE fusion11 3.80 1.00 2.40 96.7 81.8 56.8

PipeNet28 2.08 2.45 2.26 95.90 82.10 56.7

MA-Net29 2.40 1.70 2.00 96.00 82.60 58.1

MFF-CNN30 2.84 4.12 3.48 – – –

Conv-MLP31 1.50 1.80 1.60 – – –

MF²ShrT32 1.60 1.20 1.40 – – –

MFViT and MRF33 1.50 1.70 1.60 – – –

DACA-CNN34 2.77 3.13 2.95 – –

ECA-ICD35 5.57 0.65 3.11 – – –

Ours 1.31 0.72 1.01 99.19 95.35 87.32

Table 3.  Comparison between the proposed method and state-of-the-art methods on CASIA-SURF (Unit: %).
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accuracy while maintaining robust cross-ethnicity recognition performance, thereby demonstrating superior 
robustness in multimodal face anti-spoofing tasks.

After verifying the effectiveness of our approach using 112×112 input images on CASIA-SURF and CASIA-
SURF CeFA, we further evaluated its robustness and generalization under more challenging and practical 
conditions. Specifically, we conducted experiments using higher-resolution input images resized to 224×224, 
along with a cross-dataset evaluation where the model was trained on CASIA-SURF CeFA and tested on CASIA-
SURF.

The cross-dataset results are summarized in Table 6. Under this challenging evaluation setting that tests model 
generalization across different data distributions, our method demonstrates highly competitive performance. 
It achieves a Half Total Error Rate of 9.56% and an Area Under the Curve of 97.36%, positioning it among 
the top-performing approaches in the comparison.As shown, our method performs comparably to or even 
slightly better than other competitive models such as ViT-S/16 (HTER=10.30%, AUC=95.49%) and Conv-MLP 
(HTER=10.17%, AUC=96.09%). These results collectively validate the competitive generalization capability of 
our method, underscoring its potential for reliable deployment in practical scenarios involving domain shifts.

WMCA
As shown in Table 7, which details the ACER for each “invisible” attack type, our method achieves a highly 
competitive mean ACER of 5.40%, ranking among top-performing models such as DaR-ViT at 4.79% and 
DRWT-RDIA at 5.49%. Notably, our approach excels in two challenging attack types, Papermask with 0.2% and 
Replay with 0.1%, demonstrating its effectiveness against diverse spoofing techniques.

However, under the LOO protocolor assessing “invisible” attack, the performance on the Glasses attack 
reaches 26.2%, as this attack involves only partial occlusion of the eye region, while the bonafide set includes 
subjects wearing real glasses, creating strong confounding patterns. In such cases, the global variance–guided 
fusion in VA-MSRB becomes dominated by genuine facial regions, reducing sensitivity to the small spoofed 
area. Additionally, BGC-MA receives misleading IR–Depth cues, as the rigid 3D structure of the glasses remains 
geometrically aligned with surrounding real facial regions, producing an appearance of consistent cross-modal 
correspondence. In contrast, full-face attacks like Papermask exhibit global IR–Depth inconsistency, enabling 
more reliable detection.

Although our method does not achieve the best performance on the Glasses attack, it remains highly stable 
across the remaining attack types. When excluding this attack type, DAH-FAS achieves an average ACER of 
1.93% with a standard deviation of ±2.46%, which are substantially lower than that of methods such as DaR-
ViT at 4.78±4.00% and DRWT-RDIA at 3.73±4.88%, indicating more consistent and robust performance on the 
other attack types. Notably, in practical deployment where training sets typically include known attack samples, 
the model can learn discriminative features, thus mitigating this limitation.

Model HETR↓ AUC↑

FeatherNet38 39.22 62.52

FlexModal-FAS39 39.22 65.76

FaceBagNet36 28.06 78.73

PipeNet28 12.90 93.11

ViT-S/1640 10.30 95.49

Conv-MLP31 10.17 96.09

Ours 9.56 97.36

Table 6.  Performance comparison under cross-dataset testing in terms of HTER and AUC (Unit: %).

 

Model APCER BPCER ACER

MA-Net29 20.90 ± 6.80 1.20 ± 1.60 11.10 ± 4.40

PSMM-Net26 7.80 ± 2.90 5.50 ± 3.00 6.70 ± 2.20

MFViT and MRF33 10.67 ± 8.33 2.37 ± 3.24 6.50 ± 2.59

FaceBagNet36 5.59 ± 0.20 3.28 ± 2.66 4.59 ± 1.54

PipeNet28 3.25 ± 1.98 1.16 ± 1.12 2.21 ± 1.26

Conv-MLP31 1.33 ± 0.30 1.42 ± 0.26 1.37 ± 0.27

DACA-CNN34 1.63 ± 1.79 2.32 ± 2.13 1.98 ± 0.83

ECA-ICD35 4.04 ± 3.25 1.53 ± 0.68 2.74 ± 1.57

DRWT-RDIA37 1.76 ± 1.12 0.87 ± 0.42 1.31 ± 0.76

Ours 1.88 ± 0.9 0.72 ± 0.33 1.30 ± 0.34

Table 5.  Comparison between the proposed method and state-of-the-art methods on CASIA-SURF CeFA 
(Unit: %).
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Efficiency analysis
In addition to the performance comparison, we further evaluate the computational efficiency of different 
methods. As reported in Table 8, our model requires only 1.78 G FLOPs and 29.6 M parameters, achieving 
the lowest computational cost among all compared approaches. Even when compared with the MLP-Mixer, 
which has 3.30 G FLOPs and 64.0 M parameters, DAH-FAS still demonstrates a more favorable trade-off with 
substantially lower FLOPs and fewer parameters. These results show that the overall model maintains a moderate 
parameter size and low computational cost, despite integrating modality-specific enhancement modules and 
cross-modal alignment.

Conclusion
This paper proposes a Dynamically-Aware Heterogeneous Face Anti-Spoofing Network (DAH-FAS), aiming 
to enhance the performance of existing multimodal liveness detection methods in terms of physical attribute 
modeling and modality collaboration. To address the representational discrepancies among different modalities, 
the VA-MSRB module is introduced in RGB branch to strengthen texture feature representation, BTE module 
is embedded in the IR branch to enhance the perception of bio-thermal cues, and the BGC-MA mechanism 
is constructed between the IR and depth branches to achieve geometric alignment and efficient information 
exchange.

Extensive experiments on three challenging datasets, CASIA-SURF, CASIA-SURF CeFA, and WMCA, 
demonstrate that the proposed method achieves state-of-the-art detection performance under multiple 
protocols and security levels. For example, it achieves an ACER of only 1.01% and a TPR@FPR=10E-4 of 87.32% 
on CASIA-SURF. Moreover, it exhibits excellent generalization and cross-ethnicity adaptability across the three 
sub-protocols of CASIA-SURF CeFA. Furthermore, the model demonstrates strong generalization capability in 
demanding evaluations, with an HTER of 9.56% in cross-dataset tests and a mean ACER of 5.40% on the WMCA 
LOO protocol, highlighting its robustness against unseen domains and attack types. These results thoroughly 
validate the effectiveness and robustness of the proposed modular architecture and fusion strategy. However, 
certain limitations remain in handling partial-occlusion attacks with confounding patterns, such as the Glasses 
attack, where genuine accessories in bonafide samples create ambiguous cross-modal cues that challenge both 
the variance-guided fusion in VA-MSRB and the geometric alignment in BGC-MA. Future work will address 
these challenges by exploring region-aware feature extraction and context-sensitive fusion mechanisms, while 
also focusing on model optimization for lightweight deployment and enhanced adaptability in real-world 
application scenarios.

Data availability
The data presented in this study are openly available in [CASIA-SURF] at ​[​h​t​t​p​s​​:​/​/​s​i​t​​e​s​.​g​o​o​​g​l​e​.​c​o​​m​/​v​i​e​w​/​f​a​c​e​-​a​
n​t​i​-​s​p​o​o​f​i​n​g​-​c​h​a​l​l​e​n​g​e​/​d​a​t​a​s​e​t​-​d​o​w​n​l​o​a​d​/​c​a​s​i​a​-​s​u​r​f​c​v​p​r​2​0​1​9​]​, [CASIA-SURF CeFA] at ​[​h​t​t​p​s​​:​/​/​s​i​t​​e​s​.​g​o​o​​g​l​e​.​c​o​​

Model FLOPs(G) Parameters(M)

ResNet7 7.85 42.5

MCCNN27 10.88 37.7

ViTFAS42 16.85 85.8

MLP-Mixer45 3.30 64.0

MF2ShrT32 – 37.9

DRWT-RDIA37 4.22 87.72

Ours 1.78 29.6

Table 8.  Comparison results of different model in terms of efficiency.

 

Model Fakehead Glasses Papermask Rigidmask Flexiblemask Replay Print Mean ± std

ResNet7 2.5 48.3 18.2 15.4 33.2 15.8 3.5 19.56 ± 16.09

MA-Net29 2.1 36.7 0.9 9.8 25.3 3.2 0.3 11.18 ± 13.22

FaceBagNet36 1.2 13.7 2.3 2.6 31.6 8.5 4.5 9.20 ± 9.99

CMFL41 2.5 33.5 1.8 1.7 12.4 1.0 0.7 7.60 ± 11.20

ViTFAS42 2.7 15.9 2.3 9.5 2.6 12.4 – 7.56 ± 5.36

Conv-MLP31 0.2 32.5 0.9 2.3 12.6 0.8 0.1 7.05 ± 11.16

Dual-Stream43 0.4 50.0 0.4 1.4 18.1 1.4 0.7 10.34 ± 18.64

DRWT-RDIA37 1.1 18.4 0.5 4.1 12.9 0.6 0.8 5.49 ± 7.23

DaR-ViT44 3.89 4.91 1.79 9.31 10.15 3.0 0.54 4.79 ± 3.65

Ours 0.8 26.2 0.2 3.8 6.1 0.1 0.6 5.40 ± 9.44

Table 7.  Comparison of different methods under LOO protocol in WMCA(Unit: %).
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