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Multimodal feature enhancement
via dynamically-aware
heterogeneous network for face
anti-spoofing

YutaoYan, Liang Shi*“, Yijun Zhang & Xiaosong Chang

Presentation attacks pose a significant threat to face recognition systems, making face anti-spoofing
(FAS) a critical security measure. However, many existing approaches suffer from inadequate
exploitation of physical modality cues and rely on overly complex architectures, which hinder

their deployment in practical applications. This paper introduces DAH-FAS, a Dynamically-Aware
Heterogeneous Face Anti-Spoofing Network designed to mitigate the limitations of existing face
anti-spoofing methods. To reinforce the RGB branch’s capacity for detailed feature extraction, we
have designed a Variance-Adaptive Multi-Scale Residual Block (VA-MSRB). To improve the model’s
perception of bio-thermal diffusion patterns, the BioThermal Enhancer (BTE) is integrated into the
GhostNet backbone of the IR branch. On this basis, a Bidirectional Group Cross-Modal Attention
(BGC-MA) mechanism is constructed between the IR and depth branches during the feature extraction
stage, enabling cross-modal geometric feature alignment and enhancing the complementarity among
features. We evaluate our method on the CASIA-SURF, CASIA-SURF CeFA, and WMCA datasets, and
results demonstrate that the proposed approach achieves significant advantages in differentiating real
from fake faces.

As face recognition technology progresses rapidly, its applications have become increasingly widespread in
areas such as security surveillance, identity verification, and mobile payment. However, an increasing number
of presentation attacks have been launched against face recognition systems. These span from basic 2D print/
replay attacks to advanced 3D spoofing methods like high-fidelity silicone masks and lifelike 3D head models. By
mimicking facial texture, motion patterns, and 3D deformations, attackers continuously challenge the defensive
boundaries of conventional detection algorithms. Such spoofing attacks pose serious threats to user privacy and
financial security. To ensure dependable face recognition and counter potential attacks, face anti-spoofing (FAS)
technologies serve as an essential safeguard to reinforce system integrity and trust.

In recent years, with the rising focus from researchers, various face anti-spoofing techniques have emerged,
which are typically grouped into two overarching types: traditional machine learning approaches based on
handcrafted features and modern methods driven by deep learning approaches.

Traditional machine learning approaches focus on designing features that capture inherent properties and
texture information in images or videos, such as Local Binary Patterns (LBP)! and Histogram of Oriented
Gradient (HOG)>?, which are often used in conjunction with traditional machine learning approaches such as
Support Vector Machines (SVMs) for extracting and classifying features. Additionally, motion-based methods
typically require users to perform a series of predefined actions—such as blinking, lip movement, or head
rotation-to cooperate with the verification process. For instance, Pan et al.%® proposed using the entire blinking
process as an indicator for liveness detection, while Kollreider et al.® introduced a face anti-spoofing method by
analyzing mouth movement. Although these traditional machine learning approaches achieved certain levels of
success, their limited feature representation capacity has become increasingly evident when confronting more
sophisticated spoofing attacks.

Compared with the limitations of handcrafted features, deep learning approaches have demonstrated
superior capabilities in adaptively capturing cross-modal spoofing cues through data-driven feature learning
mechanisms. For instance, ResNet-1017, a deep residual network, alleviates the gradient vanishing issue via
residual links and enables high-dimensional feature representations. However, its ability to detect subtle spoofing
cues remains insufficient. To overcome this limitation, CDCN® introduces the Central Difference Convolution
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(CDC) to enhance the detection of subtle spoof cues. Nevertheless, the single-path feature extraction structure
of CDCN restricts its ability to fully exploit cross-layer information. Although CDCN++° improves performance
by incorporating a Multiscale Attention Fusion Module (MAFM) and Neural Architecture Search (NAS), it still
lacks sufficient sensitivity to subtle artifacts in complex materials, such as silicone masks, which limits its spoof
detection capability.

Some researchers have introduced spatiotemporal information as auxiliary supervision for better classification
of live/spoof face. However, these methods often lead to increased computational complexity. For example, Xu et
al.8 leveraged the strengths of Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks
(CNNs) by extracting frame-level features using CNNs and modeling their temporal dynamics through LSTM
for binary classification of live and spoof faces. Khan et al.® built a lightweight face anti-spoofing system utilizing
the MobileNetV3 architecture, which leverages temporal and spatial features extracted from video frames to
enhance its capability in detecting presentation attacks.

George et al.!” addressed the limitations of traditional approaches under complex spoofing scenarios by
combining pixel-level supervision with attention mechanisms, which contributes to more accurate liveness
verification. To improve intra-modal representation, Zhang et al.!! designed a novel multimodal multi-scale
fusion strategy that applies channel attention to boost discriminative features and reduce noise across different
modalities.

However, these deep learning approaches still overly make use of data-driven representations and fail to
effectively integrate physical priors such as biometric cues. This leads to blind spots in detecting highly realistic
spoofing attacks. Moreover, their complex architectures pose challenges for achieving real-time performance,
particularly when resources are limited.

This work presents Dynamically-Aware Heterogeneous Face Anti-Spoofing Network (DAH-FAS) to
overcome the limitations discussed above. The key contributions can be summarized as follows:

o Variance-Adaptive Multi-Scale Residual Block (VA-MSRB) is introduced in the RGB branch. It utilizes a tri-
branch heterogeneous structure combined with variance-guided fusion to overcome the limitations of fixed
receptive fields in traditional convolutions and mitigate the loss of cross-scale information typically caused by
single-path convolutional operations.

 BioThermal Enhancer (BTE) is embedded into the IR branch to capture the subtle thermodynamic differenc-
es between silicone masks and real human skin, thereby improving the model’s capability to detect thermal
camouflage.

« A Bidirectional Group Cross-Modal Attention (BGC-MA) mechanism is constructed between the depth and
IR branches to compensate for information degradation resulting from geometric misalignment between the
two modalities. This mechanism enables alignment of geometric features across modalities, thereby enhanc-
ing the effectiveness of multimodal feature fusion.

Related work
Inverted residual
The inverted residual structure was first introduced by Sandler et al.'? in MobileNetV2, with the core idea of
incorporating an efficient residual connection into lightweight networks to lower both computation overhead
and model size, without compromising performance.

As shown in Fig. 1, The typical design of an inverted residual block begins with a 1x1 convolution to
increase dimensionality, continues with a depthwise separable convolution (DSConv), and concludes with a 1x
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Figure 1. Structure of the inverted residual block.

Scientific Reports |

(2026) 16:3535 | https://doi.org/10.1038/s41598-025-33502-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Identity
(O]
(O}
— ~ ——
Conv O ;
Input Output
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Figure 3. Structure of the Ghost bottlenecks.

1 convolution to reduce dimensions. For the case of stride = 1, a residual connection is added. This structure
constrains the non-linear activation function ReLU6 within the channel transformation stages, which helps
maintain the stability of feature representations.

This “inverted” design allows for more effective information retention in low-dimensional space, while
enabling nonlinear transformations in high-dimensional space to enhance representational capacity.

Ghost module and Ghost bottlenecks

The foundational unit of GhostNet, known as the Ghost module, was originally designed by Kai Han et al.'®. Its
main idea is that there exists significant redundancy within the feature maps of convolutional neural networks.
To address this, the Ghost module first generates a small set of intrinsic features using standard convolution,
and then produces additional “ghost features” through inexpensive linear operations, significantly reducing
computational cost. The GhostNet backbone primarily consists of Ghost bottlenecks units, whose foundational
component is the Ghost module, as detailed in Fig. 2.

The Ghost bottlenecks design shares structural characteristics with the inverted residual structure from
MobileNetV2. However, it employs the Ghost module instead of standard convolutions to further enhance
lightweight properties. Specifically, Channel expansion is carried out by the first Ghost module, while the second
one performs channel reduction to ensure compatibility with the input and enable a residual shortcut. When
the stride equals 1, The feature maps, whose spatial dimensions are preserved, provide enhanced representation
capability. When the stride equals 2, the feature maps undergo downsampling to compress spatial information.
Moreover, the Squeeze-and-Excitation (SE) mechanism, which enhances channel-wise attention, is often
integrated with the Ghost bottlenecks module to further boost its effectiveness. The Ghost bottlenecks structure,
as detailed in Fig. 3.

Squeeze-and-excitation
Squeeze-and-Excitation (SE)' is a representative channel attention mechanism. Its core idea is to model inter-
channel dependencies and dynamically recalibrate the importance of each channel feature. It initially applies
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global average pooling to compress spatial dimensions and obtain global contextual information. Then, channel-
wise relationships are modeled and nonlinear interactions are introduced through two fully connected layers that
are combined with nonlinear activation functions. Finally, a Sigmoid activation function outputs the importance
weight for each channel. Owing to its simple structure and significant performance improvement, the SE module
has been widely integrated into various lightweight networks, such as MobileNetV3 and EfficientNet. The SE
attention mechanism can be formulated as:

Fsp(X) :X.U(WQ Co(wh - GAP(X))) (1)

Where X denotes the input feature map, GAP represents global average pooling, ¢ is the ReLU activation
function, o is the Sigmoid activation function, and W1 and W> are the weights of the two fully connected layers.

CDC and face anti-spoofing

In addition to lightweight architectural components, several task-level studies have explored different
perspectives to enhance the generalization, efficiency, and multimodal robustness of face anti-spoofing systems.
Early representative work, Yu et al.® introduced the concept of Central Difference Convolution(CDC), which
models both local intensity and gradient variations to enhance sensitivity to spoof-related texture inconsistencies.
This idea inspired subsequent studies emphasizing pixel-level physical cues, including the Pixel-Inconsistency
Data Augmentation (PIDA)'® strategy, which extended this line by explicitly modeling cross-pixel dependency
disruptions for fine-grained forgery localization, providing valuable insight into detecting 2D print or replay
attacks.

Beyond visual cues, Kong et al. conducted a comprehensive investigation into both digital and physical
face spoofing, highlighting the importance of multimodal defense strategies'®. Meanwhile, they further
explored acoustic-based face anti-spoofing by reconstructing 3D facial geometry from inaudible sound
waves, demonstrating the potential of combining audio and visual modalities for robust spoofing detection'’.
In addition, Mu et al.'® proposed a textually guided domain generalization framework, leveraging semantic
supervision to align spoof representations across domains and further improve generalization.

Recent model-level innovations have also focused on efficiency and generalization. MoE-FFD!® proposed
a mixture-of-experts architecture combining lightweight adapters and dynamic expert routing to enhance
generalization under cross-domain settings. S-Adapter®® generalized Vision Transformers to FAS by introducing
statistical token adapters and style regularization, effectively embedding texture statistics and mitigating domain
shift. Yu et al.?! further re-examined the role of Vision Transformers and Masked Autoencoders in multimodal
FAS, emphasizing modality alignment and texture-aware reconstruction for robust fusion. Furthermore,
MP®FAS?? designed an accurate and robust multimodal mobile FAS system that fuses RGB and acoustic signals,
achieving real-time performance and strong cross-environment robustness on smartphones.

In contrast to these approaches, our proposed DAH-FAS focuses on dynamically-aware heterogeneous feature
extraction across RGB, infrared, and depth modalities. By integrating lightweight backbones (MobileNetV2,
GhostNet, and ResNet-18) with modality-specific enhancement modules (VA-MSRB, BTE, and BGC-MA),
DAH-FAS achieves a balance between generalization capability and multimodal complementarity.

Methods

This section elaborates on the core design of the presented Dynamically- Aware Heterogeneous Face Anti-Spoofing
Network. As illustrated in Fig. 4, a heterogeneous multimodal feature extraction framework is established,
where MobileNetV2'2, GhostNet!?, and ResNet-18 serve as the backbone networks for the RGB, IR, and depth
modalities, respectively. Depth modalities typically encodes richer and more complex geometric structures and
is prone to sensor noise or missing-value artifacts. Therefore, the depth branch adopts ResNet-18 to extract
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Figure 4. Structure of the DAH-FAS.
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more stable and discriminative structural features, ensuring reliable multimodal geometric representation
and benefiting the subsequent cross-modal fusion process. This design ensures computational efficiency while
enabling modality-specific feature optimization.

RGB branch: variance-adaptive multi-scale residual block (VA-MSRB)
Based on the inverted residual structure of MobileNetV2, we design a tri-branch heterogeneous convolutional
module to extract multi-scale deformable features and perform dynamic fusion, as illustrated in Fig. 5. The three
branches are defined as follows:

The baseline branch adopts a 3 x 3 depthwise separable convolution?® to preserve features within the original
receptive field.

Fase = DSConvsys(Figp) € REXCHXW o)

Where Fig1, € REXCXHXW qanotes the input RGB feature map, where B, C, H, and W represent the batch size,
number of channels, height, and width of the feature map, respectively. DSConvs 3 refers to a 3x3 depthwise
separable convolution operation.

The deformable branch adopts Deformable ConvNets v2 (DCNv2)?4, which enhances spatial adaptability by
dynamically learning both sampling offsets and modulation scalars.

k
Fyen = Z wi Frgb(p + pr + Apr) (3)

k=1

Where p denotes the reference spatial location on the feature map, py, is the predefined relative offset of the k-th
convolutional kernel element, and Apy, is a learnable offset vector in the horizontal and vertical directions. wy,
controls the contribution of the sampled feature at the sampled location.

The detail branch adopts a two-stage convolutional structure: a channel compression stage for dimensionality
reduction, followed by spatial feature extraction. This design enables effective capture of local texture details. The
detail branch output is computed as:

Faetail = COIIV3><3 (ReLU (COHV1><1 (Frgb))) (4)
The input feature variance ovar = Var(Figh) is used to generate dynamic fusion weights for the three branches.
Specifically, the variance is first globally averaged, followed by a 1x1 convolution and a Softmax layer to obtain

a normalized weight vector:

w = Softmax (Conv1X1 (GAP(Uvar))), w = [wy, w2, ws] (5)
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Figure 5. Structure of the VA-MSRB.
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where w = [w, w2, wa] represents the fusion weight vector for the three branches. The magnitude of each
weight is determined by the channel-wise variance, which reflects the activation intensity of the corresponding
features. The final output feature is computed as:

Figb = w1 Fase + w2 Faen + w3 Faetail (6)

During the fusion process, regions with high variance-such as edges and texture-rich areas—tend to assign greater
weights to the deformable convolution branch, enabling more precise modeling of geometric deformations and
improving robustness against complex spoofing attacks. In contrast, for low-variance regions, such as smooth
and flat areas, the model emphasizes the detail extraction branch to suppress noise and maintain the stability of
feature representation.

IR branch: biothermal enhancer (BTE)

To enhance the model’s perception of bio-thermal diffusion patterns, a BioThermal Enhancer (BTE) module is

embedded within the GhostNet backbone, as illustrated in Fig. 6. The module extracts thermal gradient cues by

applying Sobel filtering? to the channel-averaged feature map. The computational procedure is detailed below.
First, let the input feature map be Fi, € REXHXW where C denotes the number of channels, and H and

W represent the height and width of the feature map, respectively. The channel-wise averaging thermal map

T € R¥*W s then computed as:

C
1 ¢
T=2Y FY )
c=1

Then, horizontal and vertical gradients are computed by convolving T with Sobel kernels W, and W, :

Ql

Gy =W, xT, Gy=W,xT (8)
The final thermal gradient magnitude is obtained by:

G=GI+Glte 9
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Figure 6. Structure of the BTE. The BTE module consists of four main components: Channel-Wise Averaging,
Sobel Filtering, Thermal Gradient Magnitude, and Sigmoid.
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Where € is a small constant added to avoid numerical instability during computation. To further emphasize
the thermal gradient information, a learnable scaling factor « is introduced. The scaled gradient map is then
normalized to the range [0, 1] using the Sigmoid activation function to generate the thermal attention map:

Ar = o(aG) (10)

Finally, the generated thermal attention A~ is applied to the GhostNet-extracted IR feature map Fi, via element-
wise multiplication to obtain the enhanced representation Fj,:

F,=F, ® Ar (11)

Here, Fi: represents the original feature output from GhostNet, and ® denotes element-wise multiplication,
which enhances the response in biologically active thermal regions. Focusing on regions with abrupt thermal
gradients enables better capture of thermal features, which in turn increases model robustness in face anti-
spoofing.

IR and depth branches: bidirectional group cross-modal attention (BGC-MA)
A Bidirectional Group Cross-Modal Attention (BGC-MA) module is constructed between the IR and depth
branches. The BGC-MA module aims to enhance the complementary relationship between IR and depth
modalities through bidirectional cross-modal feature interaction. It involves channel-wise interaction followed
by spatial interaction to capture geometric correspondences between the modalities, as illustrated in Fig. 7.
Since BGC-MA relies on accurate geometric cues for reliable IR-Depth alignment, a powerful depth backbone is
required; hence, ResNet18 was adopted to provide robust structural representations and enhance the stability of
multimodal fusion. The BGC-MA comprises two components: channel-wise interaction and spatial interaction.

The channel-wise interaction employs global average pooling and grouped convolution to generate attention
weights, thereby strengthening the channel-level correlations between IR and depth features. In contrast, the
spatial interaction integrates the original and enhanced features and utilizes depthwise separable convolution to
compute global spatial attention weights, further improving the effectiveness of cross-modal fusion.

First, global average pooling is employed over both the IR feature F}, € REP*“*HXW and the depth
feature Fieptn € REXCXHXW 0 btaining global context representations. Then, grouped 1x1 convolution is
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Figure 7. Structure of the BGC-MA.
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performed for channel compression, reducing parameter complexity while enhancing the correlation between
IR and depth features.The channel interaction is formulated as follows:

Faepth- enh = Faepth © a(W2 - Hardswish (W; - GAP(EJ)) (12)
Firomn = Fa © U(VQ . Hardswish (V; - GAP(Fdepth))) (13)

Here, W1, Wa, Vi, and V2 are the parameters of 1x1 grouped convolution layers, employed for channel
compression. The function o denotes the Sigmoid activation, which is applied to generate attention weights. The
operator ® indicates element-wise multiplication, used to reweight the feature maps. Through this process, the
cross-channel interaction between the IR and depth features is enhanced, thereby improving the effectiveness
of multimodal fusion.

To capture spatial dependencies between the IR and depth features, we integrate both original and enhanced
features through spatial interaction. Specifically, we concatenate the global average pooled features from the
original IR and depth branches, along with the enhanced IR and depth outputs as follows:

Fspatialiinput = Concat(GAP(Fdepth)7 GAP(Er)7 GAP(Fdepthienh), GAP(Erienh)) (14)

Here, GAP denotes global average pooling. Then, the concatenated global features are fed into two depthwise
separable convolutions with kernel size 7x 7 to produce the spatial attention map Wipatial :

Wepatial = 0<U2 . ReLU(Ul . Fspatialfinput)) (15)

Where Uy and Uz denote two depthwise separable convolutional layers with 7x7 kernels, responsible for
extracting spatial context and generating the attention map. Wpatial are subsequently utilized to refine the
enhanced IR and depth features through element-wise multiplication, yielding the final refined features:

Fdepth— final = Fdepth— enh © Wspatial (16)

Fir- final = Fir- enh © Wspatial (17)

This spatial interaction process effectively performs joint modeling of the spatial information from both IR and
depth features, thereby further enhancing the fusion of the two modalities.

Ultimately, the enhanced IR and Depth features, refined through channel-wise and spatial interaction
modules, are passed to subsequent fully connected layers for final classification.

Experiment

Datasets

To assess the performance and generalization ability of our approach, we select three widely recognized
multimodal face anti-spoofing datasets, namely CASIA-SURF, CASIA-SURF CeFA, and WMCA. The ablation
studies are specifically carried out on the CASIA-SURF dataset.

CASIA-SURF

CASIA-SURFY, constructed by the Institute of Automation at the Chinese Academy of Sciences, serves as
a widely used benchmark for multimodal face presentation attack detection. It includes RGB, IR, and depth
modalities, comprising 21,000 video clips from 1,000 subjects. Among them, 3,000 are real face videos and
18,000 are spoofed face videos, which involve six different types of attack.

CASIA-SURF CeFA

CASIA-SURF CeFA? includes data from 1,607 participants representing three ethnicities: African, East Asian,
and Central Asian. It features RGB, depth, and IR modalities, yielding 18,000 samples in total-comprising 4,500
genuine and 13,500 spoof instances. This dataset encompasses a variety of 2D and 3D presentation attacks, such
as print-based, replay-based, 3D-printed mask, and silicone mask attacks. By adopting synchronized acquisition
and facial region detection, the dataset ensures high quality and consistency, offering a valuable resource for
studying face anti-spoofing algorithms under diverse ethnicity, modality, and attack conditions.

WMCA

WMCA? is a comprehensive multimodal face anti-spoofing dataset consisting of 1,941 short video recordings
from 72 subjects. The data are captured simultaneously from four modalities: RGB, Depth, Infrared (IR), and
Thermal, providing rich cross-modal information. The dataset covers seven attack types involving approximately
80 distinct attack tools, including both visible and invisible spoofing types. It adopts the grandtest protocol for
evaluating “visible” attacks and the leave-one-out (LOO) protocol for assessing “invisible” attacks, making it one
of the most diverse and challenging benchmarks for multimodal face anti-spoofing research.

Experiment preparation
The input images are resized to 112 112. During training, random flipping, rotation, and cropping are applied
for data augmentation. All experiments are conducted on an NVIDIA GeForce GTX 4060 GPU, with model
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Baseline | MobileNetV2(RGB) | GhostNet(IR) | APCER | BPCER | ACER | TPR@FPR=10E-2 | TPR@FPR=10E-3 | TPR@FPR=10E-4

+ 3.80 1.00 2.40 96.70 81.80 56.80
+ + 4.11 1.08 2.59 96.46 88.19 77.26
+ + + 3.47 0.55 2.01 97.76 88.94 79.93

Table 1. Ablation results of backbone replacement on the CASIA-SURF dataset (Unit: %).

VA-MSRB | BTE | BGC-MA | APCER | BPCER | ACER | TPR@FPR=10E-2 | TPR@FPR=10E-3 | TPR@FPR=10E-4
3.47 0.55 2.01 97.76 88.94 79.93
+ 3.31 0.36 1.84 98.46 89.78 72.26
+ 3.19 0.53 1.86 97.33 86.61 79.60
+ 3.32 0.76 2.04 98.61 90.88 75.79
+ + 1.82 1.47 1.65 98.85 90.54 82.35
+ + 2.02 1.35 1.68 98.66 91.85 80.17
+ + 113 1.04 1.08 99.32 94.00 81.39
+ + + 1.31 0.72 1.01 99.19 95.35 87.32

Table 2. Ablation results of different modules on the CASIA-SURF dataset (Unit: %).

construction, training, and dataset evaluation performed using the PyTorch framework and Python 3.8. The
network is optimized using the Adam optimizer, with a cosine annealing learning rate schedule. The initial
learning rate is set to 10E-6 , the batch size is 128, and one cosine cycle spans 10 epochs.

In the experimental evaluation, a comprehensive set of metrics is employed to assess the model’s performance
from different perspectives. For intra-dataset evaluation, we adopt three commonly used indicators: Attack
Presentation Classification Error Rate (APCER), Bona Fide Presentation Classification Error Rate (BPCER), and
the Average Classification Error Rate (ACER). To further assess the model’s recognition capability under varying
security levels, we report the True Positive Rate at fixed False Positive Rates of TPR@FPR=10E-2, 10E-3, and
10E-4. For cross-dataset testing, which evaluates generalization to unseen data distributions, we utilize the Half
Total Error Rate (HTER) and the Area Under the Curve (AUC). Additionally, we report FLOPs and parameters
to evaluate the model’s computational efficiency and complexity.

Results and analysis

Ablation analysis

Backbone network selection for modality branches

The impact of different backbone feature extractors within each modality branch is evaluated by adopting SE
Fusion!! as the baseline multimodal fusion framework. Specifically, we replace the backbone networks of the
RGB and IR branches to construct three comparative experiments, as shown in Table 1.

In the baseline configuration, all three modality branches adopt ResNet-18 as the backbone network, achieving
an ACER of 2.40% and TPR@FPR=10E-4 of 56.80%. After replacing the RGB branch with MobileNetV2, the
TPR@FPR=10E-4 improves significantly to 77.26%, while the ACER slightly increases to 2.59%, indicating
enhanced spoof detection capability under strict false-positive constraints, albeit with a marginal increase in
overall misclassification rate.

When the IR branch is further replaced with GhostNet, the model demonstrates improvements in both
metrics, with the ACER reduced to 2.01% and TPR@FPR=10E-4 increased to 79.93%. Therefore, in multimodal
face anti-spoofing tasks, adopting structurally heterogeneous backbones for different modalities proves to be an
effective and practical design strategy.

Evaluation of the proposed modules and their combinations
After completing the ablation study on backbone replacement, we adopt the best-performing configuration as the
new baseline model to further investigate the effectiveness of the proposed key components. We incrementally
introduce the VA-MSRB, the BTE, and the BGC-MA to evaluate both their individual contributions and
combined impact on face anti-spoofing performance.

The results are presented in Table 2. When introducing each module individually, all three modules contribute
to performance improvement to varying degrees. For VA-MSRB alone, the ACER decreased from 2.01% to 1.84%
and TPR@FPR=10E-2 increased to 98.46%, demonstrating that VA-MSRB enhances local texture modeling and
improves discrimination against attack samples. Separately, when only the BTE module was introduced, the
ACER decreased from 2.01% to 1.86%, suggesting that temperature gradient information effectively enhances the
identification of bona fide cues. In comparison, the standalone BGC-MA module achieves better performance
at TPR@FPR=10E-2 and 10E-3 levels, but demonstrates slightly lower robustness at TPR@FPR=10E-4, with a
marginal increase in ACER. This indicates that while BGC-MA facilitates cross-modal alignment, it may require
cooperation with other modules to achieve optimal performance under strict low-FPR constraints.
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Model APCER | BPCER | ACER | TPR@FPR=10E-2 | TPR@FPR=10E-3 | TPR@FPR=10E-4
Halfway fusion!! 5.60 3.80 470 |89.1 33.6 17.8
SE fusion'! 3.80 1.00 240 |96.7 81.8 56.8
PipeNet® 2.08 2.45 226 |95.90 82.10 56.7
MA-Net? 2.40 1.70 2.00 | 96.00 82.60 58.1
MFE-CNN? 2.84 4.12 348 |- - -
Conv-MLP3! 1.50 1.80 1.60 - - -
MF?ShrT3? 1.60 1.20 1.40 - - -
MFViT and MRF*® | 1.50 1.70 1.60 |- - -
DACA-CNN** 2.77 3.13 2.95 - -
ECA-ICD* 5.57 0.65 311 |- - -
Ours 1.31 0.72 1.01 | 99.19 95.35 87.32

Table 3. Comparison between the proposed method and state-of-the-art methods on CASIA-SURF (Unit: %).

Protocol | APCER | BPCER ACER
4@1 113 1.11 1.12

4@2 2.89 0.51 1.70

4@3 1.63 0.55 1.09

Ours 1.88+0.9 [0.72+£0.33 | 1.30 £ 0.34

Table 4. Experimental results of the proposed method on CASIA-SURF CeFA under different protocols (Unit:
%).

In the dual-module combination experiments, the overall performance is further improved. Notably, the
combination of VA-MSRB and BTE achieves a TPR@FPR=10E-4 of 82.35%, which is significantly higher than
that of each module used individually. The combination of VA-MSRB and BGC-MA yields the best ACER
performance at 1.08%, while maintaining competitive performance under medium-to-high security evaluation
scenarios. Finally, when all three modules are jointly applied, the model achieves the best performance across all
metrics, with the ACER reduced to 1.01% and the TPR@FPR=10E-4 increased to 87.32%. These results indicate
that the three modules are functionally complementary, and their enhancements in spatial, multi-scale, and
cross-modal feature modeling significantly improve the robustness and discriminative capability of the fusion
model under different security thresholds.

Performance comparison
To further evaluate the performance of our proposed multimodal anti-spoofing, comparative analyses are
carried out against existing approaches on the CASIA-SURE, CASIA-SURF CeFA, and WMCA.

CASIA-SURF

As shown in Table 3, our method achieves the best overall performance among all evaluated approaches, with
the ACER reduced to 1.01%, significantly lower than those of DACA-CNN 2.95%, MA-Net 2.00% and MF*ShrT
1.40%, among others. Under stringent security conditions, the proposed method also demonstrates excellent
performance, achieving TPR@FPR=10E-2, 10E-3, 10E-4 and of 99.19%, 95.35%, and 87.32%, respectively,
ranking among the best-performing models that report these metrics. These results validate the effectiveness
of our module designs and fusion strategy in improving both the accuracy and robustness of multimodal face
anti-spoofing.

CASIA-SURF CeFA

To further evaluate the generalization ability and stability of the proposed method in cross-ethnicity scenarios,
we conducted systematic experiments on three sub-protocols (Protocol 4@1,Protocol 4@2, and Protocol 4@3)
of the CASIA-SURF CeFA dataset. As shown in Table 4, the proposed method achieves ACERs of 1.12%, 1.70%,
and 1.09%, respectively, demonstrating strong robustness and consistent performance.

In addition, we carried out comparative experiments with several face anti-spoofing methods under the
same protocol settings on the CASIA-SURF CeFA, and the results are summarized in Table 5. As shown, the
proposed method balances APCER and BPCER, achieving 1.88 + 0.9% and 0.72 + 0.33%, respectively, and an
ACER of 1.30 £ 0.34%. This demonstrates its competitive performance among all listed methods. Compared
to MA-Net, which yields a lower BPCER but suffers from a significantly higher APCER with BPCER = 1.20 +
1.60%, our method demonstrates a more balanced ability to distinguish between genuine and attack samples. In
addition, unlike methods such as FaceBagNet and PSMM-Net, whose ACER standard deviations exceed +1.5%,
the proposed approach consistently maintains lower variance across all metrics, reflecting superior training
stability and generalization capability. Overall, these results confirm that the proposed method ensures high
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Model APCER BPCER | ACER
MA-Net® 20.90 +6.80 | 1.20 £ 1.60 | 11.10 + 4.40
PSMM-Net*® 7.80+2.90 |5.50+3.00 |6.70 +2.20
MFViT and MRF® | 10.67 + 8.33 | 2.37 + 3.24 | 6.50 + 2.59
FaceBagNet 5.59+£0.20 |3.28+2.66 | 4.59 +1.54
PipeNet?® 3254198 | 116+1.12 [221+1.26
Conv-MLP3! 1334030 | 1424026 | 1.37+0.27
DACA-CNN* 1.63+1.79 [232+213 | 1.98+0.83
ECA-ICD* 4.04+325 | 1.53+£0.68 | 274+ 157
DRWT-RDIAY 176 £ 1.12 | 0.87+0.42 | 1.31+0.76
Ours 1.88+£09 |0.72+0.33 | 1.30+0.34

Table 5. Comparison between the proposed method and state-of-the-art methods on CASIA-SURF CeFA
(Unit: %).

Model HETR{ | AQ

FeatherNet®® 39.22 62.52
FlexModal-FAS* | 39.22 65.76
FaceBagNet’® 28.06 78.73
PipeNet?® 12.90 93.11
ViT-S/16* 10.30 95.49
Conv-MLP?! 10.17 96.09
Ours 9.56 97.36

Table 6. Performance comparison under cross-dataset testing in terms of HTER and AUC (Unit: %).

accuracy while maintaining robust cross-ethnicity recognition performance, thereby demonstrating superior
robustness in multimodal face anti-spoofing tasks.

After verifying the effectiveness of our approach using 112112 input images on CASIA-SURF and CASIA-
SURF CeFA, we further evaluated its robustness and generalization under more challenging and practical
conditions. Specifically, we conducted experiments using higher-resolution input images resized to 224 x224,
along with a cross-dataset evaluation where the model was trained on CASIA-SURF CeFA and tested on CASIA-
SURE

The cross-dataset results are summarized in Table 6. Under this challenging evaluation setting that tests model
generalization across different data distributions, our method demonstrates highly competitive performance.
It achieves a Half Total Error Rate of 9.56% and an Area Under the Curve of 97.36%, positioning it among
the top-performing approaches in the comparison.As shown, our method performs comparably to or even
slightly better than other competitive models such as ViT-S/16 (HTER=10.30%, AUC=95.49%) and Conv-MLP
(HTER=10.17%, AUC=96.09%). These results collectively validate the competitive generalization capability of
our method, underscoring its potential for reliable deployment in practical scenarios involving domain shifts.

WMCA

As shown in Table 7, which details the ACER for each “invisible” attack type, our method achieves a highly
competitive mean ACER of 5.40%, ranking among top-performing models such as DaR-ViT at 4.79% and
DRWT-RDIA at 5.49%. Notably, our approach excels in two challenging attack types, Papermask with 0.2% and
Replay with 0.1%, demonstrating its effectiveness against diverse spoofing techniques.

However, under the LOO protocolor assessing “invisible” attack, the performance on the Glasses attack
reaches 26.2%, as this attack involves only partial occlusion of the eye region, while the bonafide set includes
subjects wearing real glasses, creating strong confounding patterns. In such cases, the global variance-guided
fusion in VA-MSRB becomes dominated by genuine facial regions, reducing sensitivity to the small spoofed
area. Additionally, BGC-MA receives misleading IR-Depth cues, as the rigid 3D structure of the glasses remains
geometrically aligned with surrounding real facial regions, producing an appearance of consistent cross-modal
correspondence. In contrast, full-face attacks like Papermask exhibit global IR-Depth inconsistency, enabling
more reliable detection.

Although our method does not achieve the best performance on the Glasses attack, it remains highly stable
across the remaining attack types. When excluding this attack type, DAH-FAS achieves an average ACER of
1.93% with a standard deviation of +2.46%, which are substantially lower than that of methods such as DaR-
ViT at 4.78+4.00% and DRWT-RDIA at 3.73+4.88%, indicating more consistent and robust performance on the
other attack types. Notably, in practical deployment where training sets typically include known attack samples,
the model can learn discriminative features, thus mitigating this limitation.

Scientific Reports |

(2026) 16:3535 | https://doi.org/10.1038/s41598-025-33502-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Model Fakehead | Glasses | Papermask | Rigidmask | Flexiblemask | Replay | Print | Mean + std
ResNet” 2.5 48.3 18.2 15.4 33.2 15.8 35 19.56 + 16.09
MA-Net® 2.1 36.7 0.9 9.8 253 32 0.3 11.18 £13.22
FaceBagNet® 1.2 13.7 2.3 2.6 31.6 8.5 4.5 9.20£9.99
CMFL*! 2.5 335 1.8 1.7 12.4 1.0 0.7 7.60 +11.20
ViTFAS* 2.7 15.9 23 9.5 2.6 12.4 - 7.56 +5.36
Conv-MLP3! 0.2 325 0.9 2.3 12.6 0.8 0.1 7.05 £ 11.16
Dual-Stream*® | 0.4 50.0 0.4 14 18.1 14 0.7 |10.34+18.64
DRWT-RDIAY | 1.1 18.4 0.5 4.1 12.9 0.6 0.8 549 +7.23
DaR-ViT# 3.89 491 1.79 9.31 10.15 3.0 0.54 |4.79 £3.65
Ours 0.8 26.2 0.2 3.8 6.1 0.1 0.6 5.40 +9.44

Table 7. Comparison of different methods under LOO protocol in WMCA (Unit: %).

Model FLOPs(G) | Parameters(M)
ResNet” 7.85 42.5

MCCNN? 10.88 37.7

VIiTFAS* 16.85 85.8
MLP-Mixer”® | 3.30 64.0
MF2ShrT - 37.9
DRWT-RDIAY | 4.22 87.72

QOurs 1.78 29.6

Table 8. Comparison results of different model in terms of efficiency.

Efficiency analysis

In addition to the performance comparison, we further evaluate the computational efficiency of different
methods. As reported in Table 8, our model requires only 1.78 G FLOPs and 29.6 M parameters, achieving
the lowest computational cost among all compared approaches. Even when compared with the MLP-Mixer,
which has 3.30 G FLOPs and 64.0 M parameters, DAH-FAS still demonstrates a more favorable trade-off with
substantially lower FLOPs and fewer parameters. These results show that the overall model maintains a moderate
parameter size and low computational cost, despite integrating modality-specific enhancement modules and
cross-modal alignment.

Conclusion

This paper proposes a Dynamically-Aware Heterogeneous Face Anti-Spoofing Network (DAH-FAS), aiming
to enhance the performance of existing multimodal liveness detection methods in terms of physical attribute
modeling and modality collaboration. To address the representational discrepancies among different modalities,
the VA-MSRB module is introduced in RGB branch to strengthen texture feature representation, BTE module
is embedded in the IR branch to enhance the perception of bio-thermal cues, and the BGC-MA mechanism
is constructed between the IR and depth branches to achieve geometric alignment and efficient information
exchange.

Extensive experiments on three challenging datasets, CASIA-SURE, CASIA-SURF CeFA, and WMCA,
demonstrate that the proposed method achieves state-of-the-art detection performance under multiple
protocols and security levels. For example, it achieves an ACER of only 1.01% and a TPR@FPR=10E-4 of 87.32%
on CASIA-SURE. Moreover, it exhibits excellent generalization and cross-ethnicity adaptability across the three
sub-protocols of CASIA-SURF CeFA. Furthermore, the model demonstrates strong generalization capability in
demanding evaluations, with an HTER of 9.56% in cross-dataset tests and a mean ACER of 5.40% on the WMCA
LOO protocol, highlighting its robustness against unseen domains and attack types. These results thoroughly
validate the effectiveness and robustness of the proposed modular architecture and fusion strategy. However,
certain limitations remain in handling partial-occlusion attacks with confounding patterns, such as the Glasses
attack, where genuine accessories in bonafide samples create ambiguous cross-modal cues that challenge both
the variance-guided fusion in VA-MSRB and the geometric alignment in BGC-MA. Future work will address
these challenges by exploring region-aware feature extraction and context-sensitive fusion mechanisms, while
also focusing on model optimization for lightweight deployment and enhanced adaptability in real-world
application scenarios.

Data availability
The data presented in this study are openly available in [CASIA-SURF] at [https://sites.google.com/view/face-a
nti-spoofing-challenge/dataset-download/casia-surfcvpr2019], [CASIA-SURF CeFA] at [https://sites.google.co
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m/view/face-anti-spoofing-challenge/dataset-download/casia-surf-cefacvpr2020], and [WMCA] at [https://w
ww.idiap.ch/en/scientific-research/data/wmca], reference number [11, 26, 27].
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