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Image security is vital in sectors such as healthcare, defence, finance, and personal data exchange, 
where breaches of image integrity can result in severe consequences. To address this challenge, 
we propose a novel image encryption framework. It combines a Fractal-Fibonacci diffusion process 
based on the Hilbert curve, recursive scrambling guided by chaotic sequences, and a new chaotic 
map entitled the Two Dimensional Cosine Power Sine Coupled Map (2D-CPSCM). These components 
enhance randomness and ensure maximum efficiency, resistance against cryptographic attacks. 
The proposed two-dimensional chaotic system exhibits positive Lyapunov exponents and superior 
statistical properties compared to traditional systems, as demonstrated by high sample entropy, 
permutation entropy, and Kolmogorov entropy, confirming its hyperchaotic behaviour. The encryption 
system has been evaluated using extensive simulations on benchmark images. The findings 
demonstrate strong key sensitivity, with an entropy of 7.9994, Number of Pixel Change Rate (NPCR) of 
99.6%, Unified Average Changing Intensity (UACI) of 33.47%, and Number of Bit Change Rate (NBCR) 
of 50%. Additionally, Structural Similarity Index Metric (SSIM) and Visual Information Fidelity (VIF) 
values of 1 between input and decrypted images guarantee successful decryption, whereas low Peak 
Signal to Noise Ratio (PSNR), SSIM, and VIF between input and encrypted images reduce information 
leakage. The superior security, resilience, and robustness of the 2D-CPSCM based approach against 
statistical, noise, and cropping attacks highlights its potential for safe multimedia transmission and 
useful cryptographic applications.
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In recent years, the rapid growth of digital communication has led to extensive sharing of information in the form 
of digital images. Many of these images contain sensitive data, especially in domains such as healthcare, defence, 
satellite imaging, and intelligent transportation systems. Protecting such information has become a high priority, 
as the increased transmission of digital images over communication channels raises the risk of unauthorized 
access. To address this concern, image encryption has emerged as a crucial solution for safeguarding image data. 
With the rising demand for secure communication, research in the field of image cryptography has become 
increasingly important. Recently, researchers have shown keen interest in the field of image cryptography by 
exploring a wide range of techniques, such as image hiding1, image steganography2, wavelet transforms3,4, 
DNA and RNA based methods5–8, image compression approaches9, neural networks10, and chaos theory11–13. 
Among the various approaches, chaotic based image encryption14 has gained significant attention due to the 
natural characteristics of chaotic maps, such as ergodicity, randomness, and high sensitivity to initial conditions. 
These properties make chaotic maps ideal for designing and implementing cryptographic algorithms for digital 
images. Chaotic systems are generally classified into one-dimensional and multi-dimensional categories. One-
dimensional chaotic maps are simple to implement and require less computation however, they often suffer from 
drawbacks such as a limited key space and periodicity. In contrast, multi-dimensional chaotic systems provide a 
larger key space and exhibit higher randomness, but they are more complex to implement and demand greater 
computational resources.

Two-dimensional (2D) chaotic maps have emerged as efficient tools for image encryption due to their 
simplicity, strong ergodicity, and large key spaces. Early models such as the classical 2D Logistic Map15, 
2D-SLMM16, 2D-LASM17, and 2D-SIMM18 improved dynamical complexity while maintaining low cost. 
Later variants including 2D-LSCM19, and 2D-LSMCL20 enhanced randomness and robustness, while cross 2D 
Hyperchaotic21 and 2D-CLSS22 further strengthened ergodicity and resistance to attacks. Recent contributions 
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such as 2D-SPCM23, 2D Cosine-Sine24, 2D-CSIM25, 2D-TFCDM26, and 2D-ILM27 emphasize lightweight 
computation with high security, while Li et al.28 introduced the 2D-ECSLM to expand chaotic intervals and 
strengthen unpredictability. Collectively, these advancements reflect a consistent trend toward richer dynamics, 
expanded key space, and tighter integration with permutation diffusion frameworks for robust image encryption.

Chaotic map based image encryption has evolved significantly over the past few years, with researchers 
progressively addressing weaknesses in randomness, key space, and computational cost. Zheng et al.29 proposed 
the 2D logistic–sine chaotic map (2D-LSMM) combined with DNA coding, which improved randomness, 
complexity, and key space compared to traditional 1D maps. However, its parameters were constrained to 
[0,4], limiting flexibility. Teng et al.22 overcame this limitation by developing the 2D cross-logistic sine sine 
chaotic map (2D-CLSS), which offered higher structural complexity and improved chaotic performance. While 
effective, it still relied heavily on conventional scrambling and diffusion, leaving scope for innovation in adaptive 
mechanisms. Demla et al.30 designed a medical image encryption scheme using an improved cosine fractional 
chaotic map with DNA operations, demonstrating strong robustness through NPCR, UACI, and entropy 
metrics. The main drawback lies in its higher computational overhead due to DNA encoding. Similarly,  Dua 
et al.31 combined wavelet transform with Lorenz and logistic maps for key generation, achieving high security, 
low complexity, and resilience against cropping attacks, though its reliance on standard chaotic maps may 
restrict novelty. Huang et al.27 proposed a 2D ICMIC logistic modulation with Latin square permutation, 
reducing sequence length requirements and improving efficiency, but the method lacked extensive cryptanalytic 
validation. Gao et al.32 integrated a 2D discrete hyperchaotic system with parallel compressive sensing, index 
scrambling, and diffusion under SHA-512-based key generation. While it enhanced efficiency, compressive 
sensing introduces reconstruction sensitivity that may affect robustness. Yang et al.33 introduced a double image 
encryption method using a fractional order chaotic system with 2D compressive sensing, Zigzag confusion, and 
discrete wavelet transform. The scheme improved robustness and security but incurred higher computational 
cost due to fractional-order dynamics.

Gao et al.34 presented a parallel encryption approach using the 2D logistic Rulkov neuron map (2D-LRNM) 
with cross channel interaction and block wise parallelism, which enhanced efficiency and task load balancing but 
required large memory resources for parallel processing. Xu et al.35 developed a 2D cubic–tent map (2D-CTM) 
with strong chaotic behaviour, employing bit-level scrambling, chaotic flipping, and 3D Hilbert diffusion, thereby 
enhancing security and reducing pixel correlation. However, the increased complexity might limit real-time 
deployment. Zheng et al.36 proposed the 2D iterative Gaussian sine chaotic map (2D-IGSCM) combined with 
a 3D Hill cipher, addressing weaknesses of the classical Hill cipher and achieving high security and efficiency, 
though cipher dependency on key scheduling could be a potential vulnerability. Wang et al.37 designed the 2D log 
logistic sine chaotic map (2D-LLSCM) with a non-linear log function, achieving an enlarged chaotic range and 
dynamic complexity. Its joint scrambling diffusion scheme improved resistance against attacks, though its non-
linear design may complicate hardware implementation. Li et al.38 proposed the 2D exponential tangent cosine 
system (2D-ETCS), exhibiting hyperchaos, and introduced a cross permutation based color encryption method 
with multiple rounds of permutation, rotation, and masking. This significantly improved security but required 
multiple iterations, adding to computational load. Li et al.39 introduced the 2D cross Gaussian hyper chaotic map 
(2D-CGHM) with dynamic polyhedra permutation and arnold diffusion (DPPAD-IE), enabling encryption 
of arbitrary-sized images with strong pseudo randomness. Its main limitation lies in the added algorithmic 
complexity compared to lightweight schemes. Based on the literature survey, to overcome the shortcomings and 
drawbacks of previous algorithms, we proposed a new image encryption framework. The main contributions of 
this research article are summarized as follows

•	 A new two-dimensional chaotic map, termed the 2D-Cosine Power Sine Coupled Map, is proposed. This 
map exhibits strong randomness and unpredictability, supported by high statistical values such as Lyapunov 
exponent, permutation entropy, and sample entropy.

•	 A novel recursive scrambling method is introduced, which leverages chaotic sequences to enhance the ran-
domness and unpredictability of image encryption.

•	 A new diffusion process is developed by using a Fractal Fibonacci based approach, where the fractal structure 
is derived from the Hilbert curve. This mechanism effectively modifies the statistical relationship between 
adjacent pixels in the image.

The remaining sections of this paper describe the proposed chaotic map and its performance evaluation, 
the fundamental building blocks of the suggested encryption scheme, followed by a detailed analysis of its 
performance and security.

Proposed chaotic map
Talhaiui et.al proposes an one dimensional iterative chaotic map40 which delivers maximum lyapunov exponent 
and randomness as in Eq. (1).

	
xn+1 = cos( α

xβ
n

)� (1)

The chaotic map has its limitation wherein, for small values of xn and large values of the exponent β, the term 
xβ

n approaches zero, resulting in the argument of the cosine function becoming unbounded. This leads to severe 
numerical instability and chaotic behaviour that is difficult to control, especially in finite precision systems. 
To increase randomness and chaotic area a one dimensional improved discrete cosine fractional chaotic map 
(1D-IDCF)41 is proposed as defined in Eq. (2).
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xn+1 = mod ((α − 3). cos( α

xβ
n

) ∗ (214), 1)� (2)

Though it increases chaotic area and delivers high Lyapunov exponent it has certain limitations are, when 
α = 3  the chaotic system has a value zero , it kills chaos leading to fixed point and lost all sensitivity to initial 
conditions. If x(n) nearer to zero the trigonometric cosine power can become extremely large which causes 
undefined behaviour in floating point computation.

To avoid such scenarios we are proposing a two dimensional Cosine Power Sine Coupled Map (CPSCM) 
Eq. (3) to increase randomness and unpredictability by adding a sinusoidal chaotic function which erases the 
situation of α = 3 and η to fraction of cosine power to eliminate the denominator to zero

	

xn+1 = mod (f(xn) + ( α

α + 1)(sin(πyn))), 1)

yn+1 = mod (f(yn) + ( α

α + 1)(sin(πxn+1))), 1)
� (3)

where

	
f(xn) = (α) cos( α

xβ
n + η

)

The term α
α+1  is incorporated as a coupling coefficient to ensure that the additive sinusoidal interaction remains 

within a bounded range, satisfying 
∣∣ α

α+1 · sin(πx)
∣∣ < 1 for all x ∈ [0, 1] and α > 0, thereby preserving the 

invariant domain of the map under modular arithmetic and enabling controlled modulation of chaotic intensity 
with respect to α. To avoid singularities and ensure numerical stability in the non-linear mapping, a small 

positive constant η > 0 is added to the denominator in the expression f(xn) = α cos
(

α

x
β
n+η

)
. This guarantees 

that the argument of the cosine function remains finite for all xn ∈ (0, 1], especially when xn → 0 and β > 1, 
thereby preserving the continuity and boundedness of the chaotic system.

The proposed two dimensional chaotic system parameters are within α, β and η ∈ [10−12, 10−4] to ensure 
bounded dynamics and maintain numerical stability.

Performance analysis of proposed chaotic map
This section describes about proposed chaotic system and its performance analysis by considering the 
characteristics of chaotic map like Lyapunov exponent (LE), Bifurcation diagram, Trajectory plots, key 
sensitivity, Sample Entropy (SE), Permutation Entropy (PE), Correlation Dimension (CD), Kolmogorov entropy 
(KE), Correlation analysis, 0-1 test , NIST randomness test.

Dynamic behaviour analysis
The dynamical behaviour of the proposed two-dimensional chaotic map was thoroughly examined to 
characterize its chaotic properties and evaluate its suitability for cryptographic applications. The bifurcation 
plot, shown in Fig.  1, illustrates how the system responds to variations in the control parameters α and β, 
revealing a wide chaotic range and rich unpredictable behaviour across the parameter space. Figure 2 presents 
the comparison of bifurcation diagrams of the proposed chaotic map with other existing chaotic maps presented 
in Table 1, where it exhibits a wider chaotic region compared to the others. Complementing this, trajectory plots 

Fig. 1.  Bifurcation Plots generated from proposed 2D-CPSCM (a) α ∈ (0, 4), β = 20 and η = 10−8 (b) 
β ∈ (10, 50), α = 2.5 and η = 10−8.
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Fig. 3 were used to visualize the evolution of the systems state sequences under fixed parameters. In the chaotic 
regime, the trajectories do not converge to periodic cycles but instead explore the entire phase space, forming 
an aperiodic attractor and highlighting the inherent randomness of the system. A key characteristic of chaos, 
the sensitivity to initial conditions, was analysed by generating sequences with slightly perturbed initial values, 
(x0, y0) = (0.6, 0.6) and (x0, y0) = (0.6 + 10−15, 0.6 + 10−15), with α = 2.5 and β = 20 over 50 iterations. 
As depicted in Fig. 4, even such a minimal variation leads to rapid divergence of trajectories, demonstrating high 
sensitivity, unpredictability, and strong chaotic characteristics.

Chaotic map Mathematical equation Parameters

2D-ILM27

{
xn+1 = mod

(
xn + α yn(yn − 1), 1

)
,

yn+1 = sin
(

10/ sin(xn + yn)
) α ∈ (0, 5]

2D-TFCDM26

{
xn+1 = α cos(xn − yn),

yn+1 = sin(yn) (x
2
n)

α ≥ 2.5

2D-CTM35




xi+1 =
{

(ayi(1 − x2
i )2 + 2π(10 − y2

i )xi) mod 1, xi ∈ (0, 0.5)
ayi(1 − x2

i )2 + 2π(10 − y2
i )(1 − xi) mod 1, xi ∈ [0.5, 1)

yi+1 =
{

(axi+1(1 − y2
i )2 + 2π(10 − x2

i+1)yi mod 1, yi ∈ (0, 0.5)
(axi+1(1 − y2

i )2 + 2π(10 − x2
i+1)(1 − yi)) mod 1, yi ∈ [0.5, 1)

a ∈ (0, +∞)

2D-CSM24

{
xi+1 =

∣∣ cos
(

sin(4πx
2
i (r + 1)2) + sin(πrxiyi) + sin(πry

2
i )

) ∣∣,

yi+1 = cos
(

sin(4πy
2
i (r + 1)2)) sin(2πrxi+1yi)

) r ∈ [0.5, 10]

2D-CSIM25

{
xi+1 = cos(βyi),

yi+1 = xi − sin(yi) β ∈ [10, 100]

2D-CPSCM




xn+1 = mod
(

f(xn) +
α

α + 1
sin(πyn), 1

)
,

yn+1 = mod
(

f(yn) +
α

α + 1
sin(πxn+1), 1

)
,

f(xn) = α cos
(

α

xβ
n + η

)
α > 0, β > 1, η ∈ [10−12, 10−4]

Table 1.  Mathematical comparison of different chaotic maps.
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Fig. 2.  Bifurcation diagrams of different two dimensional chaotic maps considering α as control parameter. 
Row 1: Chaotic sequence x and Row 2: Chaotic sequence y of 2D-TFCDM, 2D-CSM, 2D-CSIM and Proposed 
2D-CPSCM, (Left to Right side).
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To quantitatively measure this divergence, the Lyapunov exponents (LEs) of the system were computed. LEs 
quantify how fast two initially close trajectories diverge, and a positive LE indicates chaos. For an n-dimensional 
system, the i-th Lyapunov exponent is calculated as Eq. (4)

	
LEi = lim

n→∞

1
n

n∑
k=1

ln
∣∣λi(Jk)

∣∣� (4)

where λi(Jk) is Jacobian matrix Jk  eigenvalues at iteration k. The Jacobian matrix of the system is defined in 
Eq. (5)

Fig. 4.  Initial sensitivity analysis.

 

Fig. 3.  Phase Attractor Plots: (a–c) for α = 0.8, 1.5, 3.2 with β = 20; (d–f) for β = 10, 20, 30 with α = 2.5.
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Jn =




∂ϕ1

∂xn

∂ϕ1

∂yn
∂ϕ2

∂xn

∂ϕ2

∂yn


� (5)

and the eigenvalues satisfy the characteristic equation in Eq. (6)

	 det(λI − Jk) = 0� (6)

For hyperchaotic systems, having more than two positive Lyapunov exponents further confirms strong chaotic 
behaviour.

Lyapunov exponent numerical calculation
The partial derivative calculations of the proposed 2D-CPSCM are

	
∂ϕ1

∂xn
= ∂

∂xn

[
mod

(
f(xn) + α

α + 1 sin(πyn), 1
)]

= ∂f(xn)
∂xn

. � (7)

	
∂ϕ1

∂yn
= ∂

∂yn

[
mod

(
f(xn) + α

α + 1 sin(πyn), 1
)]

= α

α + 1π cos(πyn). � (8)

	
∂ϕ2

∂xn
= ∂

∂xn

[
mod

(
f(yn) + α

α + 1 sin(πxn+1), 1
)]

= α

α + 1π cos(πxn+1)∂xn+1

∂xn
. � (9)

	
∂ϕ2

∂yn
= ∂

∂yn

[
mod

(
f(yn) + α

α + 1 sin(πxn+1), 1
)]

= ∂f(yn)
∂yn

+ α

α + 1π cos(πxn+1)∂xn+1

∂yn
. � (10)

considering

	
f(xn) = α cos

(
α

xβ
n + η

)
,

	

∂f(xn)
∂xn

= α
∂

∂xn

[
cos

(
α

xβ
n + η

)]
= α2βxβ−1

n

(xβ
n + η)2

sin
(

α

xβ
n + η

)
. � (11)

Similarly,

	

∂f(yn)
∂yn

= α2βyβ−1
n

(yβ
n + η)2

sin
(

α

yβ
n + η

)
.� (12)

Hence the Jacobian is simplified to

	

Jn =




α2βxβ−1
n

(xβ
n + η)2

sin
(

α

xβ
n + η

)
α

α + 1π cos(πyn)

α

α + 1π cos(πxn+1)∂xn+1

∂xn

α2βyβ−1
n

(yβ
n + η)2

sin
(

α

yβ
n + η

)
+ α

α + 1π cos(πxn+1)∂xn+1

∂yn


 .� (13)

Evaluating at the representative point (xn, yn) = (0.131, 0.124) with parameters α = 3, β = 2, and 
η = 0.0001:

	
xβ

n + η = 0.1312 + 0.0001 ≈ 0.017261,
α

xβ
n + η

= 3
0.017261 ≈ 173.8022.

Thus,

	
J ≈

[854.434 2.356133
1.872 850.621

]
.� (14)

To find the the eigenvalues , the characteristic equation

	 det(λI − J) = 0.

	

∣∣∣854.434 − λ 2.356133
1.872 850.621 − λ

∣∣∣ = 0.� (15)

the characteristic equation now as

	 λ2 − 1705.055 λ + 727518.39 = 0.� (16)
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The corresponding eigenvalues are λ1 ≈ 879.28, λ2 ≈ 825.77..
The local Lyapunov exponents (LE) for the proposed chaotic map is given by

	 LEi = ln |λi|, i = 1, 2.� (17)

Thus, LE1 = ln(879.28) = 6.779, LE2 = ln(825.77) = 6.716.
As both LE1 and LE2 are positive, at (xn, yn) = (0.131, 0.124) confirms the hyper chaotic nature of the 

proposed chaotic map.
The calculated LEs of the proposed map Fig. 5a, b are positive, which confirms the high divergence and 

unpredictability observed in the phase trajectories and initial sensitivity analysis. Together, these analyses 
confirm that the proposed chaotic map exhibits robust, aperiodic, and highly unpredictable behaviour, making it 
suitable for secure cryptographic applications where both randomness and sensitivity are critical. Furthermore, 
Fig. 5c, d present a comparative analysis between the proposed chaotic map and several existing two-dimensional 
maps, namely the 2D Cosine–Sine Map (CSM) 24, 2D-CSIM 25, 2D-TFCDM 26, 2D-ILM 27, and 2D-CTM 35. The 
evaluation is carried out for both x and y sequences under variations in the control parameters of each chaotic 
system while maintaining the same initial conditions (x0, y0) = (0.131, 0.124). The results clearly indicate that 
the proposed two-dimensional chaotic map achieves higher Lyapunov exponent values compared to the other 
benchmark maps, thereby confirming its superior chaotic behaviour.

Fixed point stability analysis
For a dynamical system a fixed point42 is a point where the next state output is equal to the current output i,e 
xn+1 = xn. If a point x∗ is said to be equilibrium point of a chaotic map then x∗ = f(x∗). For the proposed 
two dimensional chaotic map assume S(x∗, y∗) be fixed point then it satisfies xn+1 = x∗ and yn+1 = y∗, from 
Eq.3

Fig. 5.  LE analysis.
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xn+1 = ϕ1(xn, yn) = f(xn) + α

α + 1 sin(πyn),

yn+1 = ϕ2(xn, yn) = f(yn) + α

α + 1 sin
(
πxn+1),

� (18)

where

	
f(xn) = α cos

(
α

(xn)β + η

)
, α, β, η > 0.

A fixed point (x∗, y∗) satisfies the nonlinear system

	

{
x∗ = ϕ1(x∗, y∗) = f(x∗) + α

α+1 sin(πy∗),
y∗ = ϕ2(x∗, y∗) = f(y∗) + α

α+1 sin(πx∗). � (19)

The stability analysis of each fixed point like S(X,Y) of the proposed chaotic system is determined by by deriving 
Jacobian matrix Eq. (20)

	

Jn =




α2βxβ−1
n

(xβ
n + η)2

sin
(

α

xβ
n + η

)
α

α + 1π cos(πyn)

α

α + 1π cos(πxn+1)∂xn+1

∂xn

α2βyβ−1
n

(yβ
n + η)2

sin
(

α

yβ
n + η

)
+ α

α + 1π cos(πxn+1)∂xn+1

∂yn


 .� (20)

The corresponding characteristic polynomial of J  is

	 λ2 − (Trace(J))λ + det(J) = 0,� (21)

The corresponding eigenvalues are determined by finding the roots for equation

	
λ1,2 =

Trace(J) ±
√

(Trace J)2 − 4 det(J)
2 ,� (22)

where Trace(J) = J11 + J22 and det(J) = J11J22 − J12J21.
The stability classification the proposed map of infinite fixed points is depends on the magnitude of 

eigenvalues λ1 and λ2 of Eq. (22) as 

	1.	 If both eigenvalues are|λ1| < 1 and |λ2| < 1 then S(X,Y) is stable fixed point ,
	2.	 The eigenvalues|λ1| > 1 or |λ2| > 1, then S(X,Y) unstable fixed point ,
	3.	 If |λ1| < 1 and λ2 = −1 (or vice versa) then the fixed point S(X,Y) is called as period-doubling bifurcation 

point (PBP),
	4.	 If |λ1,2| = 1 with Re(λ1,2) < 1 then the fixed point S(X,Y) is Neimark–Sacker bifurcation point (NBP).

To analyse the fixed point behaviour of the proposed chaotic map in the x-y phase plane, the system parameters 
are set as (α, β, η) = (1.5, 40, 10−8) and (2.5, 20, 10−8). The corresponding phase attractors are shown in the 
Fig. 6, where red filled circles denote unstable fixed points with eigenvalues |λ| > 1, and dense tiny coloured 
dots represent chaotic trajectories around them. To determine the attractor type, trajectories are generated with 
slight perturbation in the unstable fixed points, all converging to the same chaotic region without specific initial 
conditions. The existence of multiple unstable fixed points with bounded chaotic trajectories confirms that the 
system exhibits self excited chaotic attractors, as the trajectories originate directly from the neighbourhood of 
the unstable fixed points.

Complexity and randomness measures
The complexity and randomness of the proposed two-dimensional chaotic map were evaluated using Sample 
Entropy (SE), Permutation Entropy (PE), and Kolmogorov Entropy (KE) to assess the unpredictability and 
information richness of the generated sequences. Sample Entropy measures the irregularity and intricacy of 
time series sequences by counting the number of identical patterns within a acceptable threshold. For a time 
series {y1, y2, . . . , yn}, the SE is defined as Eq. (23)

	
Sample Entropy(r, d, n) = − log E

F
� (23)

where E and F are the counts of vector pairs satisfying the inequalities G[Yr+1(i), Yr+1(j)] < d and 
G[Yr(i), Yr(j)] < d, respectively, with G[·] representing the Chebyshev distance between vectors 
Yr(i) = {yi, yi+1, . . . , yi+r−1}. For the proposed system, the embedding dimension r = 2 and threshold 
d = 0.2 × STD, where STD is the standard deviation of the series. Figure 7 demonstrates that the SE values 
of the proposed map for x and y sequences are significantly higher than those of benchmark chaotic maps, 
indicating strong aperiodicity and pseudo-randomness.
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Permutation Entropy (PE) further quantifies the unpredictability of the system by evaluating the probability 
distribution of ordinal patterns in the sequences. The normalized PE is computed as Eq. (24)

	
P Enorm = P E

log(n!) , P E = −
n!∑

i=1

p(xi) log(p(xi))� (24)

where p(xi) denotes the probability of each ordinal pattern. The proposed map achieves an average PE of 
0.852, near to the theoretical maximum of 1, which is higher and more stable than other contemporary two-
dimensional chaotic systems Fig. 8. This indicates enhanced randomness and unpredictability, reinforcing its 
suitability for secure encryption.

Kolmogorov Entropy (KE) complements SE and PE by quantifying the rate of information generation within 
the system. Mathematically, KE is expressed as Eq. (25)

	
KE = − lim

n→∞
lim
ε→0

lim
τ→0

1
nτ

∑
i0,i1,...,in

p(i1, . . . , in) ln
[
p(i1, . . . , in)

]
� (25)

where the n-dimensional phase space is partitioned into boxes (i0, i1, . . . , in) of size ε, τ  is the temporal delay, 
and p(i1, . . . , in) is the joint probability of the trajectory occupying the corresponding boxes. A positive KE 
reflects high unpredictability, and Fig. 9 illustrates KE variations with α and β. The proposed chaotic map achieves 

Fig. 7.  SE analysis.
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Fig. 6.  Phase portraits for fixed system parameters: (a) (α, β, η) = (1.5, 40, 10−8), (b) 
(α, β, η) = (2.5, 20, 10−8), where red filled circles represent unstable fixed points, and dense tiny coloured 
dots indicate chaotic trajectories around them.
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an average KE of 7.3159, confirming both high unpredictability and stable chaotic behaviour. Collectively, SE, 
PE, and KE analyses demonstrate that the proposed system generates complex, highly unpredictable sequences 
suitable for robust cryptographic applications.

Correlation and statistical analysis
To further evaluate the statistical properties and complexity of the proposed two-dimensional chaotic map, 
autocorrelation, cross-correlation, and correlation dimension analyses were performed. Autocorrelation 
quantifies the similarity of a time series with itself at different lags, while cross-correlation measures the similarity 
between two distinct sequences as a function of displacement τ . Mathematically, these are defined as Eq. (26)

	

rxy(τ) = 1
N − τ

N−τ∑
t=1

(x(t) − µx) (y(t + τ) − µy) ,

rxx(τ) = 1
N − τ

N−τ∑
t=1

(x(t) − µx) (x(t + τ) − µx)

� (26)

where rxx and rxy  denote the autocorrelation and cross-correlation, respectively, N is the number of points in 
each series, and µx and µy  are the mean values of x(t) and y(t). Figure 10a and b illustrate the autocorrelation 
of the x and y sequences, showing a prominent spike at lag 0 and near-zero values at other lags, confirming the 
absence of significant self-similarity and the generation of aperiodic sequences. The cross-correlation between 
the two sequences, depicted in Fig. 10c, exhibits a near-zero zigzag pattern, indicating that x and y are highly 
uncorrelated and statistically independent.

The correlation dimension (CD) provides a quantitative measure of the attractor’s fractal complexity in the 
phase space. It is calculated through the integral of correlation Ce(r) as Eq. (27)

	
CD = lim

r→0
lim

M→∞

Ce(r)
log(r) � (27)

Fig. 9.  KE analysis for α and β.

 

Fig. 8.  PE analysis.

 

Scientific Reports |         (2026) 16:3562 10| https://doi.org/10.1038/s41598-025-33552-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Higher CD values correspond to more complex and irregular behavior, indicating that the time series spans a 
higher-dimensional phase space. The three-dimensional visualization of CD, shown in Fig. 11, confirms that the 
proposed chaotic map exhibits rich and diverse dynamics. Collectively, autocorrelation, cross-correlation, and 
correlation dimension analyses validate that the sequences generated by the proposed system are statistically 
independent, aperiodic, and highly complex, reinforcing their suitability for cryptographic applications.

Chaos validation and randomness testing
To further validate the chaotic nature and cryptographic suitability of the proposed two-dimensional map, both 
the 0-1 test and NIST statistical test suite were employed. The 0-1 test provides a sensitive measure of chaos 
directly from time series data, without requiring phase space reconstruction. For a sequence u(n), the auxiliary 
variables p(n) and q(n) are defined as Eq. (28)

	

p(n + 1) = p(n) + u(n) cos c(n),
q(n + 1) = q(n) + u(n) sin c(n)

� (28)

where c is a constant in the interval (0, 2π). This leads to Eq. (29)

	

pc(n) =
n∑

j=1

u(j) cos(jc),

qc(n) =
n∑

j=1

u(j) sin(jc) n = 1, 2, . . . , N

� (29)

and the mean square displacement is calculated as Eq. (30)

	
M(n) = lim

N→∞

1
N

N∑
j=1

[(
p(j + n) − p(j)

)2 +
(
q(j + n) − q(j)

)2
]

� (30)

Fig. 11.  CD analysis for α and β.

 

Fig. 10.  Correlation analysis.
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The asymptotic growth rate is Eq. (31)

	
K = lim

n→∞

log M(n)
log n

� (31)

indicates chaos when K approaches 1, and regular dynamics when K is close to 0. For the proposed map, with 
α = 2.5, β = 20, and initial values (x0, y0) = (0.131, 0.124), the 0-1 test results Fig. 12 show (p, q) trajectories 
resembling Brownian motion, and the K values for x and y sequences are 0.9077 and 0.9081, respectively, 
confirming hyperchaotic behaviour.

In addition, the NIST statistical test suite was employed to rigorously evaluate the randomness and 
unpredictability of the generated sequences. This suite consists of 15 subtests examining different aspects of 
statistical randomness, with outcomes expressed as p-values. Sequences are considered random if the p-
values exceed 0.01. As summarized in Table 2, all p-values for the proposed chaotic map sequences surpass 
this threshold, confirming strong randomness, unpredictability, and suitability for cryptographic applications. 
Collectively, the 0-1 test and NIST results validate that the proposed map exhibits robust chaotic dynamics and 
produces highly unpredictable sequences.

Furthermore, the comparative analysis of the proposed chaotic map with other systems, in terms of statistical 
measures reported in Table 3, indicates that the proposed two-dimensional chaotic map delivers superior values 
for LE, Asymptotic growth rates (K1, K2), CD and KE, while achieving approximately equal performance for the 
remaining metrics. These results confirm the effectiveness and competitiveness of the proposed chaotic system.

Test name

Sequence x sequence y

p-value Result p-value Result

Single bit test 0.4021 ± 0.279 ✓ 0.4033 ± 0.292 ✓

Frequency test within a block 0.4964 ± 0.222 ✓ 0.5123 ± 0.324 ✓

Nun test 0.5417 ± 0.267 ✓ 0.4934 ± 0.239 ✓

The longest run test 0.4693 ± 0.269 ✓ 0.4784 ± 0.183 ✓

Binary matrix rank test 0.5256 ± 0.273 ✓ 0.4791 ± 0.265 ✓

Discrete Fourier test 0.3745 ± 0.190 ✓ 0.5345 ± 0.268 ✓

Non-overlapping template matching test 0.6513 ± 0.284 ✓ 0.4156 ± 0.302 ✓

Overlap template test 0.463 ± 0.364 ✓ 0.3597 ± 0.245 ✓

MaurerGeneral statistical test 0.5827 ± 0.312 ✓ 0.4974 ± 0.305 ✓

Linear complexity tests 0.5191 ± 0.244 ✓ 0.4288 ± 0.326 ✓

Sequence test 0.2398 ± 0.177 ✓ 0.4285 ± 0.284 ✓

Approximate entropy test 0.4032 ± 0.257 ✓ 0.3296 ± 0.198 ✓

Accumulation and test 0.5156 ± 0.286 ✓ 0.3902 ± 0.334 ✓

random travel test 0.1864 ± 0.093 ✓ 0.1635 ± 0.125 ✓

Random variation testing 0.2198 ± 0.144 ✓ 0.1344 ± 0.084 ✓

Table 2.  NIST test results average ± standard deviation for 10 independent runs. (✓) indicates sequence 
passed the test

 

Fig. 12.  0-1 test analysis.
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Proposed encryption scheme
This section presents the proposed encryption algorithm, outlining its fundamental building blocks and their 
integration in transforming an input image into a highly randomized encrypted image. The overall process is 
illustrated in the flowchart shown in Fig. 13.

Self adaptive prime modulo based Hashing algorithm
The proposed self-adaptive prime-modulo block hashing method partitions an image into dynamically assigned 
hash blocks and iteratively refines their distribution using a feedback-driven mechanism. Given an input image 
I of size m × n, it is first converted to grayscale, flattened into a one-dimensional sequence, and the number 
of hash blocks is defined as B = min(m, n). To ensure uniform and collision-resistant mapping, the smallest 
prime q ≥ mn is selected as the modular space. This process starts with two secret seeds rini and sini are 
converted into integer keys r and s as Eq. (32)

	

r = mod
(
⌊rini × 1010⌋, q − 1

)
+ 1,

s = mod
(
⌊sini × 1010⌋, q

) � (32)

which control the initial pixel-to-block allocation through the hash function defined by Eq. (33)

	 h(i) = mod
(

mod (r · i + s, q), B
)

+ 1� (33)

where i is the pixel index in the flattened sequence. Each pixel is assigned to a block h(i), and after all pixels are 
distributed, block statistics such as the total sum Stotal =

∑B

b=1

∑
x∈Bb

x and cumulative standard deviation 

σtotal =
∑B

b=1 σ(Bb) are computed. These statistics are fed back to update the hash keys across rounds using 
Eq. (34)

	

r ←
(
r + ⌊Stotal⌋

)
mod (q − 1) + 1,

s ←
(
s + ⌊σtotal⌋

)
mod q

� (34)

which introduces adaptivity and ensures that even minor variations in the image propagate across multiple 
iterations. After a predefined number of rounds, this feedback mechanism yields a highly irregular and 
content dependent block structure that enhances confusion and diffusion properties, making it well suited for 
cryptographic applications such as chaotic initialization, DNA based diffusion, or permutation driven image 
encryption. The step wise implementation of this procedure is summarized in Algorithm 1.

Fig. 13.  Image encryption algorithm flow chart.

 

Chaotic map LE1 LE2 SE1 SE2 P E1 P E2 rxx ryy rxy K1 K2 CD KE

Proposed 11.715 14.674 1.850 1.830 0.850 0.852 −0.0070 −0.0086 −0.0084 0.907 0.908 1.855 7.315
24 4.778 6.148 1.742 1.777 0.851 0.851 −0.0446 −0.0232 −0.0344 0.677 0.653 1.734 7.101
25 0.658 0.059 1.197 0.592 0.820 0.705 −0.1426 −0.7804 −0.3764 0.560 0.528 0.029 2.197
26 0.609 1.340 1.379 1.111 0.849 0.797 −0.6394 −0.1499 −0.2449 0.801 0.268 0.761 3.365
27 1.618 1.907 1.792 1.446 0.841 0.850 −0.0080 −0.1731 −0.0225 0.894 0.857 1.736 7.002
35 4.122 4.541 1.868 1.842 0.852 0.853 −0.0097 −0.0064 −0.0072 0.892 0.897 1.736 7.312

Table 3.  Statistical analysis of chaotic maps. Significant values are in bold
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Algorithm 1.  Self-adaptive block hashing

Entropy based key generation
This section describes the generation of control parameters for the proposed chaotic system based on the blocks 
generated from self adaptive prime modulo based hashing algorithm. In this step each block entropy is calculated 
and concatenated into a one dimensional vector to apply to SHA-256 hash algorithm, and convert this 256 bit 
hash value into 512 bit binary number and group onto 64 groups and calculate the control parameters.

The generation of image-dependent chaotic keys is performed in five sequential steps as described below.
Step 1: The input image is initially partitioned into B non-overlapping pixel blocks using self adaptive block 

hashing algorithm 1 and the Shannon entropy of each block is computed as Eq. (35)

	

{B1, B2, . . . , BB},

Hb = −
∑

i

p
(b)
i log2 p

(b)
i , b = 1, 2, . . . , B.� (35)

where p(b)
i  is i-th intensity in block Bb probability. The resulting entropy vector is Eq. (36)

	 E = [H1, H2, . . . , HB ]� (36)

Step 2: The entropy vector E is fed to SHA-256 algorithm producing a 256-bit digest. The digest is represented as 
a 512-bit binary sequence, which is further divided into 64 consecutive 8-bit segments as Eq. (37)

	




h = SHA-256(E),
Hbin = Binary(h), Hbin ∈ {0, 1}512,

Ki = Hbin[ 8(i − 1) + 1 : 8i ], i = 1, 2, . . . , 64.

� (37)

Step 3: Each 8-bit group Ki is converted into its decimal representation using Eq. (38)

	 K[i] = bin2dec(Ki) i = 1, 2, . . . , 64.� (38)

Step 4: To mix entropy across different positions, four aggregate integers are obtained using XOR folding as Eq. 
(39)

Scientific Reports |         (2026) 16:3562 14| https://doi.org/10.1038/s41598-025-33552-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
di =

15⊕
j=0

K[i + 4j] i = 1, 2, 3, 4.� (39)

where ⊕ denotes bitwise XOR.
Step 5: Finally, the XOR-folded integers are mapped to the initial conditions and control parameters of the 

chaotic system as Eq. (40)

	





x0 = 0.1 + 0.8
255 × d1,

y0 = 0.1 + 0.8
255 × d2,

α = 1.0 + 8.0
255 × d3,

β = d4 mod 20.

� (40)

The tuple (x0, y0, α, β) serves as the final chaotic key, which generates the chaotic sequences of length m × n, 
and is modified according to Eqs. (41) and (42) for the usage of subsequent encryption stages. Here consider 
η = 10−8 as constant for generation of chaotic sequences.

	 x(i) = mod
(⌊

x(i) × 105⌋
, 6

)
+ 1� (41)

	 y(i) =
⌊

mod
(
y(i) × 108, 256

)⌋
� (42)

where ⌊.⌋ indicates floor operation.

Recursive chaotic based block scrambling
Traditional image scrambling methods such as row column shuffling, zigzag scanning, Arnold cat maps, and 
global chaotic permutations offer basic obfuscation but suffer from limited key space, predictable structures 
under chosen plaintext attacks, weak entropy diffusion, and low resistance to local statistical analysis. To 
overcome these shortcomings, we propose a Recursive Chaotic Scrambling scheme that leverages fractal inspired 
quadtree decomposition and chaotic key driven geometric transformations for multi-scale disruption of spatial 
dependencies.

Given an input image block I ∈ ZN×N , the algorithm recursively partitions it into four sub blocks 
{Q1, Q2, Q3, Q4} at each recursion level ℓ, where a chaotic key vector x from Eq. (41) assigns a transformation 
index k = x[4(ℓ − 1) + i], i ∈ {1, 2, 3, 4}. Each partitioned sub block then undergoes a reversible operation 
horizontal/vertical flip, 90◦/180◦ rotation, or transposition while k = 1 leaves the block unchanged. After local 
transformation, the blocks are recursively processed up to a maximum depth L and recombined to form the 
scrambled output O. This whole process is explained in Algorithm 2.

This hierarchical strategy breaks coarse structures in early levels and fine pixel correlations in deeper levels, 
yielding multilevel permutation with high sensitivity to initial keys. The combined use of flips, rotations, and 
transpositions enhances permutation entropy, enlarges the key space, and provides high resistance to statistical 
and differential attacks, while remaining lightweight and fully reversible for seamless integration with subsequent 
diffusion stages in secure image encryption.

Fractal Fibonacci fusion diffusion
The proposed Fractal Fibonacci Fusion Diffusion scheme enhances image encryption by combining fractal-
space traversal with Fibonacci inspired recursive diffusion. First, the input scrambled image O ∈ ZM×N  is 
linearized into a one-dimensional sequence P using a Hilbert space filling curve of order log2 N  as shown in 
Fig. 14, which preserves local neighbourhood relations while introducing a fractal mapping that disperses spatial 
correlations.

Fig. 14.  Hilbert curve (a) order 1, (b) order 2, and (c) order 3.
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Algorithm 2.  Recursive chaotic scrambling

Unlike raster scans and zig-zag scans, the Hilbert traversal ensures that 2D neighbours remain close in 
1D, enabling local perturbations to propagate globally during diffusion. The chaotic sequence y from Eq. (42) 
generated from the key dependent system. The diffusion follows the Fibonacci inspired recursion, where the first 
two pixels are updated as Eq. (43)

	

D(1) = (P (1) + y(1)) mod 256,

D(2) = (P (2) + D(1) + y(2)) mod 256
� (43)

and each subsequent pixel for i ≥ 3 is computed as Eq. (44)

	 D(i) =
(
P (i) + D(i − 1) + D(i − 2) + y(i)

)
mod 256� (44)

This recursive fusion ensures that every pixel depends on its two predecessors and the chaotic input, amplifying 
sensitivity to both plaintext and keys. Finally, the diffused 1D sequence is remapped to 2D using the inverse 
Hilbert curve, yielding the final diffused image Ccipher as described in Algorithm 3. By jointly leveraging fractal 
space filling traversal, Fibonacci style dependency, and chaotic modulation, this lightweight diffusion achieves 
high entropy, strong nonlinearity, and robust resistance against statistical and differential attacks.
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Algorithm 3.  Fractal Fibonacci fusion diffusion

Simulation and security analysis
This section presents the simulation results and security analysis of the proposed encryption algorithm, 
implemented using MATLAB 2023a. For evaluation, we considered ten different grayscale images from diverse 
categories, including Chemical Plant, Golden Gate, Couple, Boat, Baboon, Pentagon, and Male from the SIPI 
database43, Brain Tumour44, Chest CT Scan45, and Berry from the RSSCN7 dataset46. These images collectively 
represent a wide range of content, including natural, medical, aerial, and remote sensing images.

Visual evaluation
Visual evaluation illustrates the input, encrypted, and reconstructed images. An effective encryption scheme 
should produce an encrypted image with no recognizable information and a decrypted image closely resembling 
the original. Figure 15 shows the histogram analysis: the input image exhibits distinct peaks representing data 
distribution, the encrypted image histogram is flat and uniform, resembling noise, and the decrypted image 
histogram closely matches the original. These results confirm the proposed scheme’s effectiveness in obscuring 
visual information while preserving recoverability.

Entropy-based analysis
Entropy-based analysis evaluates image randomness via Global Information Entropy (GIE) and Local Information 
Entropy (LIE). GIE measures overall image entropy, while LIE computes the average GIE of randomly selected 
non-overlapping blocks. GIE is calculated as Eq. (45)

	
GIE = −

L−1∑
i=0

p(xi) log(p(xi))� (45)

where L is the maximum intensity level and p(xi) the probability of intensity xi. LIE is given by Eq. (46)

	
LIE = 1

k

k∑
i=1

GIE(Bi, TB)� (46)

with k randomly selected blocks Bi, each containing TB  pixels. For our analysis, k = 30 and TB = 1936. At a 
5% significance level, an image passes if LIE lies within (7.9019, 7.9030). As summarized in Table 4, the input 
image exhibits lower GIE than the encrypted image, and its LIE falls outside the interval, whereas encrypted 
images meet the LIE criterion. This confirms that the proposed encryption ensures strong global and local 
randomness.

Pixel level statistical analysis
This section evaluates the proposed encryption scheme visually and statistically using histogram variance 
analysis and the Chi-square test. Histogram analysis shows pixel distribution, the original image exhibits peaks 
revealing information, while the encrypted image is uniform, preventing data leakage. The Chi-square statistic 
is computed as Eq. (47)

	
χ2 =

255∑
i=0

(o(i) − e(i))2

e(i) � (47)
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Fig. 15.  Histogram analysis of images chemical plant, chest CT scan, boat and male: Row 1→ Original Images; 
Row 2 → Original Image Histograms; Row3 → encrypted images; Row 4 → Encrypted image histograms; Row 
5 →Decrypted Images.
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Here o(i) is observed and e(i)is expected frequency of pixel intensity i. The variance of histogram is calculated 
by Eq. (48)

	
Var(F ) = 1

(256)2

256∑
i=1

256∑
j=1

(fi − fj)2� (48)

Here fi and fj  are the histogram frequencies at gray levels i and j. Table 5 reports variance and Chi-square 
results for original and encrypted images. The encrypted images show significantly lower variance and χ2 values, 
satisfying χ2 < 293.2478, indicating a uniform pixel distribution. These results confirm strong randomness in 
the encrypted images, enhancing the security of the proposed scheme.

Statistical analysis
The proposed encryption algorithm is further evaluated using statistical metrics, Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity Index (SSIM), and Visual Information Fidelity (VIF), which quantify distortion 
during encryption and reconstruction quality during decryption. These are defined as in Eq. (49)

	

PSNR = 10 log10
L2

1
mn

∑m

i=1

∑n

j=1(ri,j − di,j)2
,

SSIM(r, d) = (2µrµd + C1)(2σrd + C2)
(µ2

r + µ2
d + C1)(σ2

r + σ2
d + C2) ,

VIF =

∑
i∈subbands

I
(
C⃗N,i; d⃗N,i | sN,i

)
∑

i∈subbands
I

(
C⃗N,i; r⃗N,i | sN,i

) .

� (49)

Image name

Histogram variance Chi_square test

O E O Result E Result

Chemical plant 50326.45 251.55 50326.45 Failed 251.55 Passed

Brain tumour 1513599.55 280.12 1513600 Failed 280.12 Passed

Berry 36014.30 250.09 36014.3 Failed 250.09 Passed

Golden gate 6025667.85 989.19 1506417 Failed 247.29 Passed

Couple 1195460.98 1115.03 298865.2 Failed 278.75 Passed

Boat 1535878.75 1189.60 383969.7 Failed 289.40 Passed

Baboon 749426.29 897.21 187356.6 Failed 224.30 Passed

Chest CT scan 14627115.66 941.83 3656779 Failed 235.45 Passed

Pentagon 31893181.01 4608.02 1993324 Failed 288.00 Passed

Male 11349450.88 3929.33 709340.7 Failed 245.58 Passed

Table 5.  Histogram and distribution analysis.

 

Image name Size

GIE LIE

O E O E

Chemical plant 256×256 7.3424 7.9972±0.0002 6.7985 7.9029±0.0018

Brain tumour 256×256 6.0437 7.9972±0.0003 5.8458 7.9029±0.0022

Berry 256×256 7.5220 7.9972±0.0001 6.0668 7.9024±0.0021

Golden gate 512×512 5.8848 7.9993±0.0001 4.6133 7.9020±0.0006

Couple 512×512 7.2010 7.9992±0.0001 6.0094 7.9022±0.0005

Boat 512×512 7.1913 7.9992±0.0001 6.1026 7.9027±0.0011

Baboon 512×512 7.3583 7.9994±0.0001 6.6610 7.9025±0.0006

Chest CT scan 512×512 6.1347 7.9993±0.0001 5.4756 7.9030±0.0009

Pentagon 1024×1024 6.7326 7.9998±0.0001 6.0869 7.9023±0.0006

Male 1024×1024 7.5237 7.9998±0.0001 5.9708 7.9027±0.0002

Table 4.  Entropy analysis of different images withaverage ± standard deviation for 10 independent runs. 
O, Original image; E, Encrypted image
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Table 6 presents the results. PSNR, SSIM, and VIF values are very low between the original and encrypted images, 
confirming strong security, and very high between the original and decrypted images (PSNR → ∞, SSIM and 
VIF ≈ 1), indicating near perfect reconstruction. This demonstrates that the proposed scheme ensures both 
confidentiality and faithful image recovery.

Correlation between adjacent pixels analysis
Original images exhibit high correlation between adjacent pixels in horizontal, vertical, and diagonal directions, 
making them vulnerable to statistical attacks. Reducing this correlation is essential for security. The correlation 
coefficient (CC) between adjacent pixels ui and vi is computed using Eq. (50)

	

CC(u, v) =

l∑
i=1

(ui − ū)(vi − v̄)
√

l∑
i=1

(ui − ū)2(vi − v̄)2

� (50)

where ū and v̄ are the mean values. Figure 16 shows that original image pixels cluster closely, indicating strong 
correlation, whereas encrypted image pixels are widely scattered in all three directions. Table 7 confirms that 
correlation coefficients for encrypted images are near zero, demonstrating minimal adjacent-pixel dependency 
and enhanced security.

Differential attack analysis
Differential Attack analysis is well known attack test to measure the vulnerability of crypto system. In this 
analysis two images with slightly differentiate in the features are subjected to undergo encryption process to 
get two cipher images known as E1 and E2. The ability to withstand differential attack of the proposed crypto 
algorithm is measured by calculating how many number of pixels are differed between two cipher images E1 
and E2. This difference of pixels are quantified by two statistical metrics known as Number of Pixel Change 
Rate(NPCR) and Unified Average Changing Intensity(UACI) are calculated using Eqs. (51) and (52) respectively

	
NPCR(E1, E2) = 1

m × n

m∑
i=1

n∑
j=1

ξi,j × 100%� (51)

	
UACI(E1, E2) = 1

m × n

m∑
i=1

n∑
j=1

|E1(i, j) − E2(i, j)|
255 × 100%� (52)

	
ξi,j =

{ 1, if E1(i, j) ̸= E2(i, j)
0, if E1(i, j) = E2(i, j)

Table 8 presents the statistical results of differential attack analysis by measuring NPCR and UACI. From the 
table, it is evident that the average values of NPCR exceed 99.6% and UACI exceed 33.4%, which indicates that 
the proposed algorithm exhibits strong randomness and a high resistance to differential attacks.

Additionally, we compared the statistical values of the Baboon image derived using the proposed encryption 
algorithm with those from previous algorithms. The results, summarized in Table 9, demonstrate that the 
proposed algorithm achieves superior performance.

Robustness analysis
To evaluate robustness against transmission errors and attacks41, noise and data loss were simulated on 
encrypted images. Noise of varying types and densities was added, and portions of encrypted images were 

Image name

PSNR MSE SSIM VIF

O-E O-D O-E O-D O-E O-D O-E O-D

Chemical plant 9.1841 ∞ 7846.38 0 0.00983 1 0.002 1

Brain tumour 7.0654 ∞ 12780.31 0 0.00821 1 0.0018 1

Berry 8.4997 ∞ 9185.68 0 0.01004 1 0.0015 1

Golden gate 10.3685 ∞ 5973.54 0 0.01036 1 0.00079 1

Couple 9.6271 ∞ 7085.56 0 0.01113 1 0.0013 1

Boat 9.2898 ∞ 7657.79 0 0.01112 1 0.0013 1

Baboon 9.5308 ∞ 7244.32 0 0.01017 1 0.0028 1

Chest CT scan 8.5379 ∞ 9105.26 0 0.00837 1 0.0022 1

Pentagon 10.1379 ∞ 6299.30 0 0.01039 1 0.0013 1

Male 7.9976 ∞ 10311.43 0 0.00812 1 0.0011 1

Table 6.  Image quality analysis. O-E Original image-encrypted image; O-D, Original image-decrypted image
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cropped, followed by decryption. Figure 17 shows that decrypted images remain recognizable despite noise, 
with PSNR values in Table 10 decreasing as noise density increases, reflecting reduced resemblance. Similarly, 
Fig. 18 illustrates that even with cropped portions, decrypted images preserve recognizable content, with PSNR 
values reported in Table 11. These outcomes confirm the proposed encryption approach resilience against noise 
and partial data loss.

Key sensitivity and space analysis
Key sensitivity was evaluated using the Berry test image, where encryption and decryption were performed with 
both the original key and slightly modified keys. As shown in Fig. 19, successful decryption occurs only with the 
exact key, while even minimal key variations produce unrecognizable outputs, confirming strong key sensitivity. 
Quantitatively, robustness is measured using the Number of Bit Change Rate (NBCR), defined as Eq. (53)

Fig. 16.  Correlation analysis: original image → Correlation → Encrypted image → Correlation; (a–d) Brain 
Tumour, (e–h) Golden gate, (i–l) Couple, (m–p) Baboon.
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NBCR(b1, b2) = Ham(b1, b2)

length
� (53)

where Ham(.) denotes the Hamming distance between two matrices b1 and b2, and length represents the total 
number of bits. Figure 20 illustrates the total number of bit changes between two encrypted images E1 and E2, 
as well as two decrypted images D1 and D2, obtained using keys key1 and key2, respectively. For each round, 
the NBCR is approximately 50%, indicating that the proposed encryption algorithm is robust against small key 
variations, which in turn ensures high randomness in the resulting images.

In addition, the key space analysis and its comparison are summarized in Table 12. Considering the 
seven parameters random initial seeds(rini, sini), α, β, η, and the initial values(x0, y0) of the chaotic map 
represented in double-precision floating-point format with approximately 10−15 resolution, the total key 
space is approximately 2348. This value is significantly greater than 2100, making it suitable for cryptographic 
applications.

Algorithm GIE

Correlation coefficient

NPCR (%) UACI (%)H V D
47 7.9994 −0.0009 0.0005 0.0004 99.6092 33.4636
36 7.9994 −0.0018 −0.0021 −0.0002 99.7884 33.4768
48 7.9987 −0.0075 −0.0071 0.0041 99.5800 33.1800
49 7.9993 −0.0491 −0.0313 −0.0059 99.6200 33.4700
50 7.9965 0.0002 0.002 0.0006 99.6122 33.4615
51 7.9966 0.0009 0.0006 −0.0036 99.6012 33.4637

Proposed 7.9994 −0.00931 0.00105 0.00972 99.6093 33.4700

Table 9.  Comparison analysis. H, Horizonta; V, Vertica; D, Diagonal Significant values are in bold

 

Image name

Diffrential attack analysis

NPCR (%) Result UACI (%) Result

Chemical plant 99.6163 ± 0.0262 Passed 33.4553 ± 0.0606 Passed

Brain tumour 99.6218 ± 0.0159 Passed 33.4928 ± 0.0294 Passed

Berry 99.6063 ± 0.0183 Passed 33.5243 ± 0.0794 Passed

Golden gate 99.6089 ± 0.0117 Passed 33.4744 ± 0.0649 Passed

Couple 99.6048 ± 0.0161 Passed 33.4726 ± 0.0664 Passed

Boat 99.6189 ± 0.0073 Passed 33.4664 ± 0.0468 Passed

Baboon 99.6032 ± 0.0165 Passed 33.4469 ± 0.0450 Passed

Chest CT scan 99.6006 ± 0.0128 Passed 33.4480 ± 0.0512 Passed

Pentagon 99.6089 ± 0.0027 Passed 33.4430 ± 0.0159 Passed

Male 99.6086 ± 0.0067 Passed 33.4671 ± 0.0281 Passed

Table 8.  Differential attack analysis wth average ± standard deviation for 10 independent runs.

 

Direction Horizontal Vertical Diagonal

Image name O E O E O E

Chemical plant 0.893392 −0.02918 0.941474 -0.02022 0.844118 −0.02783

Brain tumour 0.97356 −0.0085 0.965833 0.010724 0.946471 0.002175

Berry 0.973273 −0.00144 0.969109 0.008763 0.945351 0.009802

Golden gate 0.868076 0.00012 0.879707 0.016889 0.796526 −0.00295

Couple 0.867837 −0.0108 0.910936 -0.03158 0.840118 −0.01942

Boat 0.969824 −0.04259 0.92851 -0.03253 0.913883 −0.02788

Baboon 0.75742 −0.00931 0.865849 0.001046 0.725459 0.009721

Chest CT scan 0.901953 0.0064 0.913544 0.004491 0.882115 −0.00597

Pentagon 0.865628 −0.00073 0.873862 0.007706 0.788741 0.020433

Male 0.979974 −0.00968 0.973724 -0.03051 0.964991 −0.01646

Table 7.  Correlation coefficient analysis.
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Fig. 18.  Crop analysis for pentagon image with % of crop to encrypted image and its corresponding decrypted 
image.

 

Noise type Density PSNR SSIM

SPN

0.005 28.4578 0.8685

0.01 25.4268 0.7588

0.05 18.5374 0.3408

0.1 15.7777 0.1870

SN

0.005 23.3019 0.4855

0.01 20.3011 0.3482

0.05 13.5922 0.0995

0.1 11.6475 0.0454

GN

0.005 18.2998 0.2645

0.01 15.2945 0.1544

0.05 10.7930 0.0254

0.1 10.2637 0.0135

Table 10.  Noise attack analysis.

 

Fig. 17.  Noise attack analysis for pentagon image. SPN: Salt and Pepper Noise, GN: Gaussian Noise, SN: 
Speckle Noise.
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Algorithm Proposed 47 36 49 52

Key space 2348 2319 2215 2319 2967

Table 12.  Key space analysis.

 

Fig. 20.  NBCR analysis.

 

Fig. 19.  Key sensitivity analysis. (a) Original image, (b) Encrypted image with key1, (c) Encrypted image with 
key2, (d) Difference between (a) and (b), (e) Decrypted image with key1, (f) Decrypted image with key2.

 

Crop (%) PSNR (dB) SSIM

5 22.9027 0.9375

10 19.1402 0.7857

20 17.0069 0.7811

30 14.8564 0.5369

40 14.0571 0.5812

50 12.8711 0.3361

Table 11.  Crop analysis.
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Time complexity analysis
The proposed algorithm consists of four linear components block hashing, entropy-based key generation, chaotic 
sequence generation, and Fibonacci diffusion each with complexity O(MN). In addition, recursive scrambling 
and Hilbert traversal introduce two quasi-linear terms, each O(MN log M), due to hierarchical recursion and 
fractal path computation. Thus, the overall complexity is 4O(MN) + 2O(MN log M) ≈ O(MN log M), 
where the logarithmic factor dominates. This quasi-linear cost is only slightly higher than purely linear schemes, 
but it significantly improves security by enhancing permutation strength and diffusion robustness, making the 
trade-off both efficient and defensible. Further, Table 13 presents encryption and decryption times (seconds) 
for different image sizes, (256 × 256) and (512 × 512). It also presents time complexity and compares it 
with existing algorithms. Our proposed algorithm took 1.2455 s (encryption) and 1.3255 s (decryption) for 
(256 × 256) images and 6.045 s (encryption) and 6.241 s (decryption) for (512 × 512) images. This time 
complexity for encryption is slightly higher when compared to existing algorithms due to recursive scrambling 
but within acceptable bounds considering the stronger diffusion.

Conclusion
This study introduced a novel image encryption framework that integrates chaotic-based recursive scrambling 
with a Fractal–Fibonacci diffusion mechanism derived from the Hilbert curve. At its core lies a new two-
dimensional chaotic system, the 2D-CPSCM, which exhibits positive LEs, confirming its hyperchaotic 
nature. The proposed system outperforms existing chaotic maps in statistical measures, including SE, PE and 
KE. Comprehensive experiments on multiple benchmark images demonstrate the robustness of the scheme, 
achieving strong performance in entropy, CC, NPCR, UACI, and NBCR metrics. In addition, its resistance to 
noise and cropping attacks further validates the resilience of the approach. Although the algorithm introduces 
higher computational complexity, this trade-off is justified by the enhanced security, improved randomness, 
and strong resistance to cryptographic attacks, making the proposed approach is suitable for secure multimedia 
communication. noise and cropping attack tests further validate the resilience of the scheme. Although 
the complexity of the algorithm increases, this trade-off is justified by the enhanced security and improved 
randomness in the encrypted images.

Data availability
The corresponding author can provide the data validating the study’s conclusions upon reasonable request.
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