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2D-Cosine power sine coupled map
with fractal-Fibonacci fusion for
hyperchaotic image encryption

Maram Kumar’? & Deepak Ch:2**

Image security is vital in sectors such as healthcare, defence, finance, and personal data exchange,
where breaches of image integrity can result in severe consequences. To address this challenge,

we propose a novel image encryption framework. It combines a Fractal-Fibonacci diffusion process
based on the Hilbert curve, recursive scrambling guided by chaotic sequences, and a new chaotic

map entitled the Two Dimensional Cosine Power Sine Coupled Map (2D-CPSCM). These components
enhance randomness and ensure maximum efficiency, resistance against cryptographic attacks.

The proposed two-dimensional chaotic system exhibits positive Lyapunov exponents and superior
statistical properties compared to traditional systems, as demonstrated by high sample entropy,
permutation entropy, and Kolmogorov entropy, confirming its hyperchaotic behaviour. The encryption
system has been evaluated using extensive simulations on benchmark images. The findings
demonstrate strong key sensitivity, with an entropy of 7.9994, Number of Pixel Change Rate (NPCR) of
99.6%, Unified Average Changing Intensity (UACI) of 33.47%, and Number of Bit Change Rate (NBCR)
of 50%. Additionally, Structural Similarity Index Metric (SSIM) and Visual Information Fidelity (VIF)
values of 1 between input and decrypted images guarantee successful decryption, whereas low Peak
Signal to Noise Ratio (PSNR), SSIM, and VIF between input and encrypted images reduce information
leakage. The superior security, resilience, and robustness of the 2D-CPSCM based approach against
statistical, noise, and cropping attacks highlights its potential for safe multimedia transmission and
useful cryptographic applications.
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In recent years, the rapid growth of digital communication has led to extensive sharing of information in the form
of digital images. Many of these images contain sensitive data, especially in domains such as healthcare, defence,
satellite imaging, and intelligent transportation systems. Protecting such information has become a high priority,
as the increased transmission of digital images over communication channels raises the risk of unauthorized
access. To address this concern, image encryption has emerged as a crucial solution for safeguarding image data.
With the rising demand for secure communication, research in the field of image cryptography has become
increasingly important. Recently, researchers have shown keen interest in the field of image cryptography by
exploring a wide range of techniques, such as image hiding!, image steganography?, wavelet transforms>*,
DNA and RNA based methods®%, image compression approaches’, neural networks!?, and chaos theory!!~13.
Among the various approaches, chaotic based image encryption!* has gained significant attention due to the
natural characteristics of chaotic maps, such as ergodicity, randomness, and high sensitivity to initial conditions.
These properties make chaotic maps ideal for designing and implementing cryptographic algorithms for digital
images. Chaotic systems are generally classified into one-dimensional and multi-dimensional categories. One-
dimensional chaotic maps are simple to implement and require less computation however, they often suffer from
drawbacks such as a limited key space and periodicity. In contrast, multi-dimensional chaotic systems provide a
larger key space and exhibit higher randomness, but they are more complex to implement and demand greater
computational resources.

Two-dimensional (2D) chaotic maps have emerged as efficient tools for image encryption due to their
simplicity, strong ergodicity, and large key spaces. Early models such as the classical 2D Logistic Map',
2D-SLMM!®, 2D-LASM", and 2D-SIMM!® improved dynamical complexity while maintaining low cost.
Later variants including 2D-LSCMY'?, and 2D-LSMCL? enhanced randomness and robustness, while cross 2D
Hyperchaotic?! and 2D-CLSS?? further strengthened ergodicity and resistance to attacks. Recent contributions
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such as 2D-SPCM?%, 2D Cosine-Sine?*, 2D-CSIM?®, 2D-TFCDM?S, and 2D-ILM?’ emphasize lightweight
computation with high security, while Li et al.?® introduced the 2D-ECSLM to expand chaotic intervals and
strengthen unpredictability. Collectively, these advancements reflect a consistent trend toward richer dynamics,
expanded key space, and tighter integration with permutation diffusion frameworks for robust image encryption.

Chaotic map based image encryption has evolved significantly over the past few years, with researchers
progressively addressing weaknesses in randomness, key space, and computational cost. Zheng et al.?’ proposed
the 2D logistic-sine chaotic map (2D-LSMM) combined with DNA coding, which improved randomness,
complexity, and key space compared to traditional 1D maps. However, its parameters were constrained to
[0,4], limiting flexibility. Teng et al.?> overcame this limitation by developing the 2D cross-logistic sine sine
chaotic map (2D-CLSS), which offered higher structural complexity and improved chaotic performance. While
effective, it still relied heavily on conventional scrambling and diffusion, leaving scope for innovation in adaptive
mechanisms. Demla et al.*® designed a medical image encryption scheme using an improved cosine fractional
chaotic map with DNA operations, demonstrating strong robustness through NPCR, UACI, and entropy
metrics. The main drawback lies in its higher computational overhead due to DNA encoding. Similarly, Dua
et al.*! combined wavelet transform with Lorenz and logistic maps for key generation, achieving high security,
low complexity, and resilience against cropping attacks, though its reliance on standard chaotic maps may
restrict novelty. Huang et al.”’ proposed a 2D ICMIC logistic modulation with Latin square permutation,
reducing sequence length requirements and improving efficiency, but the method lacked extensive cryptanalytic
validation. Gao et al.* integrated a 2D discrete hyperchaotic system with parallel compressive sensing, index
scrambling, and diffusion under SHA-512-based key generation. While it enhanced efficiency, compressive
sensing introduces reconstruction sensitivity that may affect robustness. Yang et al.>* introduced a double image
encryption method using a fractional order chaotic system with 2D compressive sensing, Zigzag confusion, and
discrete wavelet transform. The scheme improved robustness and security but incurred higher computational
cost due to fractional-order dynamics.

Gao et al.* presented a parallel encryption approach using the 2D logistic Rulkov neuron map (2D-LRNM)
with cross channel interaction and block wise parallelism, which enhanced efficiency and task load balancing but
required large memory resources for parallel processing. Xu et al.>* developed a 2D cubic-tent map (2D-CTM)
with strong chaotic behaviour, employing bit-level scrambling, chaotic flipping, and 3D Hilbert diffusion, thereby
enhancing security and reducing pixel correlation. However, the increased complexity might limit real-time
deployment. Zheng et al.*® proposed the 2D iterative Gaussian sine chaotic map (2D-IGSCM) combined with
a 3D Hill cipher, addressing weaknesses of the classical Hill cipher and achieving high security and efficiency,
though cipher dependency on key scheduling could be a potential vulnerability. Wang et al.>” designed the 2D log
logistic sine chaotic map (2D-LLSCM) with a non-linear log function, achieving an enlarged chaotic range and
dynamic complexity. Its joint scrambling diffusion scheme improved resistance against attacks, though its non-
linear design may complicate hardware implementation. Li et al.*® proposed the 2D exponential tangent cosine
system (2D-ETCS), exhibiting hyperchaos, and introduced a cross permutation based color encryption method
with multiple rounds of permutation, rotation, and masking. This significantly improved security but required
multiple iterations, adding to computational load. Li et al.* introduced the 2D cross Gaussian hyper chaotic map
(2D-CGHM) with dynamic polyhedra permutation and arnold diffusion (DPPAD-IE), enabling encryption
of arbitrary-sized images with strong pseudo randomness. Its main limitation lies in the added algorithmic
complexity compared to lightweight schemes. Based on the literature survey, to overcome the shortcomings and
drawbacks of previous algorithms, we proposed a new image encryption framework. The main contributions of
this research article are summarized as follows

o A new two-dimensional chaotic map, termed the 2D-Cosine Power Sine Coupled Map, is proposed. This
map exhibits strong randomness and unpredictability, supported by high statistical values such as Lyapunov
exponent, permutation entropy, and sample entropy.

« A novel recursive scrambling method is introduced, which leverages chaotic sequences to enhance the ran-
domness and unpredictability of image encryption.

A new diffusion process is developed by using a Fractal Fibonacci based approach, where the fractal structure
is derived from the Hilbert curve. This mechanism effectively modifies the statistical relationship between
adjacent pixels in the image.

The remaining sections of this paper describe the proposed chaotic map and its performance evaluation,
the fundamental building blocks of the suggested encryption scheme, followed by a detailed analysis of its
performance and security.

Proposed chaotic map
Talhaiui et.al proposes an one dimensional iterative chaotic map*® which delivers maximum lyapunov exponent
and randomness as in Eq. (1).

a
Trt1 =cos(fﬁ) (1
Tn

The chaotic map has its limitation wherein, for small values of x,, and large values of the exponent /3, the term
! approaches zero, resulting in the argument of the cosine function becoming unbounded. This leads to severe
numerical instability and chaotic behaviour that is difficult to control, especially in finite precision systems.
To increase randomness and chaotic area a one dimensional improved discrete cosine fractional chaotic map
(1D-IDCF)*! is proposed as defined in Eq. (2).
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Znt1 = mod ((a—3). cos(%) «(2'),1) 2)

Though it increases chaotic area and delivers high Lyapunov exponent it has certain limitations are, when
a = 3 the chaotic system has a value zero , it kills chaos leading to fixed point and lost all sensitivity to initial
conditions. If x(n) nearer to zero the trigonometric cosine power can become extremely large which causes
undefined behaviour in floating point computation.

To avoid such scenarios we are proposing a two dimensional Cosine Power Sine Coupled Map (CPSCM)
Eq. (3) to increase randomness and unpredictability by adding a sinusoidal chaotic function which erases the
situation of & = 3 and 7 to fraction of cosine power to eliminate the denominator to zero

o= mod (f(zn) + (75 (sin(ry.)). 1)

ynir = mod (f(yn) + (757 (sin(rensa))). 1)

where

f@n) = () cos(—5——
zh + 1

The term 5 is incorporated as a coupling coefficient to ensure that the additive sinusoidal interaction remains
within a bounded range, satisfying |O£L+1 . sin(nm)| < 1forall z € [0,1] and & > 0, thereby preserving the
invariant domain of the map under modular arithmetic and enabling controlled modulation of chaotic intensity
with respect to . To avoid singularities and ensure numerical stability in the non-linear mapping, a small

positive constant 7 > 0 is added to the denominator in the expression f(z,) = a cos (ﬁ) . This guarantees
T +n

that the argument of the cosine function remains finite for all z,, € (0, 1], especially when 2, — 0 and 8 > 1,
thereby preserving the continuity and boundedness of the chaotic system.

The proposed two dimensional chaotic system parameters are within o, 3 and € [107*2,10™%] to ensure
bounded dynamics and maintain numerical stability.

Performance analysis of proposed chaotic map

This section describes about proposed chaotic system and its performance analysis by considering the
characteristics of chaotic map like Lyapunov exponent (LE), Bifurcation diagram, Trajectory plots, key
sensitivity, Sample Entropy (SE), Permutation Entropy (PE), Correlation Dimension (CD), Kolmogorov entropy
(KE), Correlation analysis, 0-1 test , NIST randomness test.

Dynamic behaviour analysis

The dynamical behaviour of the proposed two-dimensional chaotic map was thoroughly examined to
characterize its chaotic properties and evaluate its suitability for cryptographic applications. The bifurcation
plot, shown in Fig. 1, illustrates how the system responds to variations in the control parameters « and 3,
revealing a wide chaotic range and rich unpredictable behaviour across the parameter space. Figure 2 presents
the comparison of bifurcation diagrams of the proposed chaotic map with other existing chaotic maps presented
in Table 1, where it exhibits a wider chaotic region compared to the others. Complementing this, trajectory plots

(a) Chaotic sequence x (b) Chaotic sequence y

Fig. 1. Bifurcation Plots generated from proposed 2D-CPSCM (a) o € (0,4), 3 = 20 and = 10™% (b)
B € (10,50), « = 2.5and n = 1075,
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Fig. 2. Bifurcation diagrams of different two dimensional chaotic maps considering c as control parameter.
Row 1: Chaotic sequence x and Row 2: Chaotic sequence y of 2D-TFCDM, 2D-CSM, 2D-CSIM and Proposed
2D-CPSCM, (Left to Right side).

Chaotic map | Mathematical equation Parameters
Tp41 = mod (zn +ayn(yn — 1), 1),
2D-ILM? a € (0,5]
Yn41 = sin (10/ sin(z, + yn))
Tpt1 = @ cos(Tn — Yn),
2D-TFCDM?2 ) ) a>25
Yn+1 = sin(yn) (z7,)
P (ay; (1 — xf)Q + 27 (10 — yf)xl) mod 1, z; € (0,0.5)
LT ayi(1—22)? +27(10 — y2)(1 — ;) mod 1,  x; € [0.5,1)
2D-CTM?*® a € (0,400
o (aziy1(1 — yf)2 + 27 (10 — a:?Jrl)yi mod 1, y; € (0,0.5) ( )
Yirl = (amip1(1 — y2)? +2m(10 — 27, ) (1 — i) mod 1, y; € [0.5,1)
Tig1 = ‘ cos (sin(47racf(r +1)%) + sin(rrey:) + sin(wryf)) ’,
2D-CSM2 ) ) r € [0.5,10]
Yit1 = COS (sin(47ryi (r+1)%)) sin(27rra:i+1yi))
i zi41 = cos(Byi),
2D-CSIM? { ‘ ! 8 € [10, 100]
Yit1 = x; — sin(y;)
ey
Tp41 = mod (f(a:n) + ] sin(wyn), 1) s
«@
2D-CPSCM Ynt1 = mod (f(yn) +3 1 sin(mxy,41), 1) ; a>0,8>1,ne10712,1074
«@
f(zn) = ozcos(ﬁi)
Tn +n

Table 1. Mathematical comparison of different chaotic maps.

Fig. 3 were used to visualize the evolution of the systems state sequences under fixed parameters. In the chaotic
regime, the trajectories do not converge to periodic cycles but instead explore the entire phase space, forming
an aperiodic attractor and highlighting the inherent randomness of the system. A key characteristic of chaos,
the sensitivity to initial conditions, was analysed by generating sequences with slightly perturbed initial values,
(w0,0) = (0.6,0.6) and (0, y0) = (0.6 + 107'°,0.6 + 10~ %), with & = 2.5and B3 = 20 over 50 iterations.
As depicted in Fig. 4, even such a minimal variation leads to rapid divergence of trajectories, demonstrating high

sensitivity, unpredictability, and strong chaotic characteristics.
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Fig. 4. Initial sensitivity analysis.
To quantitatively measure this divergence, the Lyapunov exponents (LEs) of the system were computed. LEs
quantify how fast two initially close trajectories diverge, and a positive LE indicates chaos. For an n-dimensional
system, the i-th Lyapunov exponent is calculated as Eq. (4)
1 n
LE: = lim — Zln |Xa( k)| (4)
k=1
where \;(Jy) is Jacobian matrix Jj eigenvalues at iteration k. The Jacobian matrix of the system is defined in
Eq. (5)
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961 00

_ | 9zn  Oyn
=002 902
O0rn,  Oyn

and the eigenvalues satisfy the characteristic equation in Eq. (6)

det(\I — Ji) =0

(6)

For hyperchaotic systems, having more than two positive Lyapunov exponents further confirms strong chaotic

behaviour.

Lyapunov exponent numerical calculation
The partial derivative calculations of the proposed 2D-CPSCM are

01 0

T = {mod (f(a:n) + ai : sin(myn), 1)} =

8¢1 _}4@7 « . _ «
Do = B [mod (f(mn) + i) sin(myn ), 1)} == 7 cos(TYn ).
002 _ 0 o« =2 T
@ _ @ [mod <f(yn) + Y s1n(7mcn+1)7 1)} T ar 1WCOS(ME"+1)T%'
2 9 a _ 0f(yn) OZn1
5. = ay, o0 () + g sin(rann) 1) = Fh 4SS oostm) Tt
considering
«a
f(xn) = acos ( ) )
(zn) 2 4n
8f(-1'n) 8 « OzQﬂxﬁ_l .
= a— |cos = sin
Oxy, Oxn, 5+ n (mﬁ +n)?
Similarly,

n  (yn +m)?

Of(yn) _ o*Byn " Sin( o ) .

yn +n

Hence the Jacobian is simplified to

Bzt < « )
3 sin| —
J, = (x5 +n)? Tn +1

o 7 cos(TYn)

ox 2Byt @
T Cos(MTn 1) ot By sin

«Q
+1 9zn  (yn +n)2

O0Tn+1

+ 2 T CoS(MTpi1) ———
yn+n) o+l " oy

(11)

(12)

(13)

Evaluating at the representative point (Zn,yn) = (0.131,0.124) with parameters o =3, S =2, and

n = 0.0001:

«

& 4+ 1 =0.131% +0.0001 ~ 0.017261,

Thus,

T~ 854.434 2.356133
~ 1 1.872 850.621 | -

To find the the eigenvalues , the characteristic equation
det(AI — J) =0.
854.434 — X 2.356133

1872 850.621 — /\‘ =0

the characteristic equation now as

A® — 1705.055 A + 727518.39 = 0.

2f +n 0017261

~ 173.8022.

(14)

(16)
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The corresponding eigenvalues are A1 =~ 879.28, A2 ~ 825.77..
The local Lyapunov exponents (LE) for the proposed chaotic map is given by

LFE; :ln|/\i|, 1= 1,2. (17)

Thus, LE; = In(879.28) = 6.779, LE, = In(825.77) = 6.716.

As both LE and LEj are positive, at (zn, yn) = (0.131,0.124) confirms the hyper chaotic nature of the

proposed chaotic map.

The calculated LEs of the proposed map Fig. 5a, b are positive, which confirms the high divergence and
unpredictability observed in the phase trajectories and initial sensitivity analysis. Together, these analyses
confirm that the proposed chaotic map exhibits robust, aperiodic, and highly unpredictable behaviour, making it
suitable for secure cryptographic applications where both randomness and sensitivity are critical. Furthermore,
Fig. 5¢, d present a comparative analysis between the proposed chaotic map and several existing two-dimensional
maps, namely the 2D Cosine-Sine Map (CSM) %, 2D-CSIM %, 2D-TFCDM 2%, 2D-ILM ¥, and 2D-CTM *°. The
evaluation is carried out for both x and y sequences under variations in the control parameters of each chaotic
system while maintaining the same initial conditions (o, y0) = (0.131, 0.124). The results clearly indicate that
the proposed two-dimensional chaotic map achieves higher Lyapunov exponent values compared to the other

benchmark maps, thereby confirming its superior chaotic behaviour.

Fixed point stability analysis
For a dynamical system a fixed point*? is a point where the next state output is equal to the current output ie
Zn4+1 = Tp. If a point ™ is said to be equilibrium point of a chaotic map then z* = f(z*). For the proposed
two dimensional chaotic map assume S(z*, y™) be fixed point then it satisfies n+1 = @* and yn+1 = y*, from
Eq.3

(a) Chaotic sequence x (b) Chaotic sequence y
20 T T T T T T T 20
Proposed 2D-CSM
15} ~———2D-CSIM ——2D-TFCDM| | 15|
——2D-ILM 2D-CTM
10F L 10 F

/ Proposed 2D-CSM
51 5 ———2D-CSIM —— 2D-TFCDM
——2D-ILM 2D-CTM
10 ; ] ; } ) ; ] 10 | J I I I I I
0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4
control parameter control parameter
(¢) Comparison of LE for chaotic sequence x (d) Comparision of LE for chaotic sequence y

Fig. 5. LE analysis.
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Tn4+1 = ¢1($n7 yn) = f(mn) + « e Sin(ﬂ—y”)a

+1

o (18)
Ynt1 = P2(Tn, Yn) = f(yn) + o

7 sin (7rasn+1)7

where

f(:cn):acos( a,B,m > 0.

Tn n )
( ) '
A fixed point (.’L’*, y*) satisfies the nonlinear system

{ et =¢i(a",y") = f(z") + 57 sin(my”),

y* = a(a",y") = f(y") + 2o sin(ra*). (19)

The stability analysis of each fixed point like S(X,Y) of the proposed chaotic system is determined by by deriving
Jacobian matrix Eq. (20)

Bzt < « )
3 sin| —

7 cos(TYn)

@ 7 coS(MTnt1) Oni1 aQﬂyﬁ_l sin ( @ ) + @ 7 COS(MTn+1) On i1 e
1 Orn  (yh +n)2 v+ a+1 Oyn
The corresponding characteristic polynomial of J is
A — (Trace(J))A + det(J) = 0, (21)
The corresponding eigenvalues are determined by finding the roots for equation
o= Trace(J) £ \/(Trace J)2 — 4det(J) (22)

2 bl

where Trace(J) = Ji1 + J22 and det(J) = Ji11J22 — Ji2Jo1.
The stability classification the proposed map of infinite fixed points is depends on the magnitude of
eigenvalues A1 and A2 of Eq. (22) as

1. Ifboth eigenvalues are|\1| < 1 and |Az| < 1 then S(X,Y) is stable fixed point,

2. The eigenvalues|\1| > 1 or [A2| > 1, then S(X,Y) unstable fixed point,

3. If|[A1] < 1and A2 = —1 (or vice versa) then the fixed point S(X,Y) is called as period-doubling bifurcation
point (PBP),

4. If [A,2| = 1 with Re(A1,2) < 1 then the fixed point S(X,Y) is Neimark-Sacker bifurcation point (NBP).

To analyse the fixed point behaviour of the proposed chaotic map in the z-y phase plane, the system parameters
are set as (o, 3,71) = (1.5,40,1078) and (2.5, 20, 10™®). The corresponding phase attractors are shown in the
Fig. 6, where red filled circles denote unstable fixed points with eigenvalues |A| > 1, and dense tiny coloured
dots represent chaotic trajectories around them. To determine the attractor type, trajectories are generated with
slight perturbation in the unstable fixed points, all converging to the same chaotic region without specific initial
conditions. The existence of multiple unstable fixed points with bounded chaotic trajectories confirms that the
system exhibits self excited chaotic attractors, as the trajectories originate directly from the neighbourhood of
the unstable fixed points.

Complexity and randomness measures

The complexity and randomness of the proposed two-dimensional chaotic map were evaluated using Sample
Entropy (SE), Permutation Entropy (PE), and Kolmogorov Entropy (KE) to assess the unpredictability and
information richness of the generated sequences. Sample Entropy measures the irregularity and intricacy of
time series sequences by counting the number of identical patterns within a acceptable threshold. For a time
series {y1,¥2,- .., Yn}, the SE is defined as Eq. (23)

Sample Entropy(r,d,n) = — log% (23)

where E and F are the counts of vector pairs satisfying the inequalities G[Yy41(%), Yr4+1(j)] < d and
G[Yr(4),Yr(4)] < d, respectively, with G[-] representing the Chebyshev distance between vectors
Y:(2) = {¥i, Yi+1,-- -, Yitr—1}. For the proposed system, the embedding dimension » = 2 and threshold
d = 0.2 x STD, where STD is the standard deviation of the series. Figure 7 demonstrates that the SE values
of the proposed map for x and y sequences are significantly higher than those of benchmark chaotic maps,
indicating strong aperiodicity and pseudo-randomness.
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(a) (b)

Fig. 6. Phase portraits for fixed system parameters: (a) (o, 8,1) = (1.5,40,1078), (b)
(o, B,m) = (2.5,20,10~®), where red filled circles represent unstable fixed points, and dense tiny coloured
dots indicate chaotic trajectories around them.
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Fig. 7. SE analysis.

Permutation Entropy (PE) further quantifies the unpredictability of the system by evaluating the probability
distribution of ordinal patterns in the sequences. The normalized PE is computed as Eq. (24)

PE

PEnorm = T
log(n!)

PE =~ pla:) log(p(:)) @)

where p(z;) denotes the probability of each ordinal pattern. The proposed map achieves an average PE of
0.852, near to the theoretical maximum of 1, which is higher and more stable than other contemporary two-
dimensional chaotic systems Fig. 8. This indicates enhanced randomness and unpredictability, reinforcing its
suitability for secure encryption.

Kolmogorov Entropy (KE) complements SE and PE by quantifying the rate of information generation within
the system. Mathematically, KE is expressed as Eq. (25)

KE = — nlLH;oil—IR)llH%) o | Z | p(i1,...,%n)In [p(zl, e ,zn)] (25)

90,815 0sin
where the n-dimensional phase space is partitioned into boxes (i, %1, . . ., %n) of size €, T is the temporal delay,
and p(41,...,4n) is the joint probability of the trajectory occupying the corresponding boxes. A positive KE

reflects high unpredictability, and Fig. 9 illustrates KE variations with avand . The proposed chaotic map achieves
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Fig. 8. PE analysis.
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Fig. 9. KE analysis for o and f3.

an average KE of 7.3159, confirming both high unpredictability and stable chaotic behaviour. Collectively, SE,
PE, and KE analyses demonstrate that the proposed system generates complex, highly unpredictable sequences
suitable for robust cryptographic applications.

Correlation and statistical analysis

To further evaluate the statistical properties and complexity of the proposed two-dimensional chaotic map,
autocorrelation, cross-correlation, and correlation dimension analyses were performed. Autocorrelation
quantifies the similarity of a time series with itself at different lags, while cross-correlation measures the similarity
between two distinct sequences as a function of displacement 7. Mathematically, these are defined as Eq. (26)

ran(r) = 5 O (@l0) — ) (ylE 4 7) — ),
t:1N_T (26)
Faa(r) = e O ((0) = ) (2t 7) — i)

where 7, and r.y denote the autocorrelation and cross-correlation, respectively, N is the number of points in
each series, and pi, and py are the mean values of x(¢) and y(#). Figure 10a and b illustrate the autocorrelation
of the x and y sequences, showing a prominent spike at lag 0 and near-zero values at other lags, confirming the
absence of significant self-similarity and the generation of aperiodic sequences. The cross-correlation between
the two sequences, depicted in Fig. 10c, exhibits a near-zero zigzag pattern, indicating that x and y are highly
uncorrelated and statistically independent.

The correlation dimension (CD) provides a quantitative measure of the attractor’s fractal complexity in the
phase space. It is calculated through the integral of correlation C.(r) as Eq. (27)

OD = lim lim e

r—0 M—oo log(r) @7)
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Higher CD values correspond to more complex and irregular behavior, indicating that the time series spans a
higher-dimensional phase space. The three-dimensional visualization of CD, shown in Fig. 11, confirms that the
proposed chaotic map exhibits rich and diverse dynamics. Collectively, autocorrelation, cross-correlation, and
correlation dimension analyses validate that the sequences generated by the proposed system are statistically
independent, aperiodic, and highly complex, reinforcing their suitability for cryptographic applications.

Chaos validation and randomness testing

To further validate the chaotic nature and cryptographic suitability of the proposed two-dimensional map, both
the 0-1 test and NIST statistical test suite were employed. The 0-1 test provides a sensitive measure of chaos
directly from time series data, without requiring phase space reconstruction. For a sequence u(n), the auxiliary
variables p(n) and q(n) are defined as Eq. (28)

p(n+1) = p(n) + u(n) cosc(n),

28
a(n +1) = g(n) + u(n) sin c(n) 29
where c is a constant in the interval (0, 27). This leads to Eq. (29)
pe(n) = _u(j) cos(je),
— (29)
ge(n) = Zu(j) sin(je) n=1,2,...,N
j=1
and the mean square displacement is calculated as Eq. (30)
2 , )2
M(n) = lim_ N [ p(i +n)—p(i)" + (al +n) — q(4)) ] (30)
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Fig. 12. 0-1 test analysis.

Sequence x sequence y
Test name p-value Result | p-value Result
Single bit test 0.4021 £0.279 | v 0.4033 £0.292 | v/
Frequency test within a block 0.4964 +0.222 | / 0.5123 £0.324 | v/
Nun test 0.5417 £0.267 | v/ 0.4934 £0.239 | v
The longest run test 0.4693 £0.269 | v/ 0.4784 £0.183 | v/
Binary matrix rank test 0.5256 £0.273 | / 0.4791 £0.265 | v
Discrete Fourier test 0.3745 £ 0.190 | v 0.5345 £ 0.268 | v/
Non-overlapping template matching test | 0.6513 +0.284 | / 0.4156 £0.302 | v/
Overlap template test 0.463+0.364 |/ 0.3597 £0.245 | /
MaurerGeneral statistical test 0.5827 +0.312 | v/ 0.4974 +0.305 | v/
Linear complexity tests 0.5191£0.244 | v/ 0.4288 +0.326 | v/
Sequence test 0.2398 £0.177 | v 0.4285+0.284 | v/
Approximate entropy test 0.4032 +0.257 | v/ 0.3296 +£0.198 | v
Accumulation and test 0.5156 +£0.286 | v 0.3902 £0.334 | v/
random travel test 0.1864 +0.093 | v/ 0.1635 £0.125 | v/
Random variation testing 0.2198 £0.144 | v 0.1344 £ 0.084 | v/

Table 2. NIST test results average + standard deviation for 10 independent runs. () indicates sequence
passed the test

The asymptotic growth rate is Eq. (31)

K = lim 280 (31)
n—oo log n

indicates chaos when K approaches 1, and regular dynamics when K is close to 0. For the proposed map, with

a = 2.5, 8 = 20, and initial values (zo, yo) = (0.131, 0.124), the 0-1 test results Fig. 12 show (p, q) trajectories

resembling Brownian motion, and the K values for x and y sequences are 0.9077 and 0.9081, respectively,

confirming hyperchaotic behaviour.

In addition, the NIST statistical test suite was employed to rigorously evaluate the randomness and
unpredictability of the generated sequences. This suite consists of 15 subtests examining different aspects of
statistical randomness, with outcomes expressed as p-values. Sequences are considered random if the p-
values exceed 0.01. As summarized in Table 2, all p-values for the proposed chaotic map sequences surpass
this threshold, confirming strong randomness, unpredictability, and suitability for cryptographic applications.
Collectively, the 0-1 test and NIST results validate that the proposed map exhibits robust chaotic dynamics and
produces highly unpredictable sequences.

Furthermore, the comparative analysis of the proposed chaotic map with other systems, in terms of statistical
measures reported in Table 3, indicates that the proposed two-dimensional chaotic map delivers superior values
for LE, Asymptotic growth rates (K1, K2), CD and KE, while achieving approximately equal performance for the
remaining metrics. These results confirm the effectiveness and competitiveness of the proposed chaotic system.
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Random seed
values

Chaoticmap | LE1 |LE, |SE, |SE; | PE: |PE3 |7T2qs Tyy Toy K, |Ks |CD |KE

Proposed 11.715 | 14.674 | 1.850 | 1.830 | 0.850 |0.852 |—0.0070 | -0.0086 | —0.0084 | 0.907 | 0.908 | 1.855 | 7.315
2 4.778 16.148 | 1.742 | 1.777 | 0.851 | 0.851 | -0.0446 |-0.0232 | -0.0344 | 0.677 | 0.653 | 1.734 | 7.101
% 0.658 |0.059 |1.197 |0.592 |0.820 |0.705 | -0.1426 |-0.7804 | -0.3764 | 0.560 |0.528 | 0.029 | 2.197
% 0.609 |1.340 |1.379 |1.111 |0.849 |0.797 | -0.6394 | -0.1499 | -0.2449 | 0.801 | 0.268 | 0.761 | 3.365
d 1.618 | 1.907 |1.792 |1.446 |0.841 |0.850 |-0.0080 | -0.1731 | —0.0225 | 0.894 | 0.857 | 1.736 | 7.002
3 4122 | 4.541 1.868 | 1.842 | 0.852 | 0.853 | -0.0097 | —0.0064 | -0.0072 | 0.892 | 0.897 | 1.736 |7.312

Table 3. Statistical analysis of chaotic maps. Significant values are in bold

Recursive Fractal-Fibonacci -
Input Image —>| Scrambling —> dikesion — Cipher Image

l |

Self adaptive block Entropy bas_ed key
generation generation

— Chaotic sequence

Fig. 13. Image encryption algorithm flow chart.

Proposed encryption scheme

This section presents the proposed encryption algorithm, outlining its fundamental building blocks and their
integration in transforming an input image into a highly randomized encrypted image. The overall process is
illustrated in the flowchart shown in Fig. 13.

Self adaptive prime modulo based Hashing algorithm

The proposed self-adaptive prime-modulo block hashing method partitions an image into dynamically assigned
hash blocks and iteratively refines their distribution using a feedback-driven mechanism. Given an input image
I of size m x n, it is first converted to grayscale, flattened into a one-dimensional sequence, and the number
of hash blocks is defined as B = min(m,n). To ensure uniform and collision-resistant mapping, the smallest
prime ¢ > mn is selected as the modular space. This process starts with two secret seeds rini and sin; are
converted into integer keys r and s as Eq. (32)

r= mod ([rii x 10'°], ¢ —1) +1,

32
mod (Lsini X 1010J, q) (32)

S

which control the initial pixel-to-block allocation through the hash function defined by Eq. (33)

h(i) = mod ( mod (r-i+s, q), B) +1 (33)

where i is the pixel index in the flattened sequence. Each pixel is assigned to a block h(i), and after all pixels are

distributed, block statistics such as the total sum Siotal = 253:1 Zz cm, T and cumulative standard deviation

Ototal = Zle o (ABy) are computed. These statistics are fed back to update the hash keys across rounds using
Eq. (34)

r < (T + \_Stotalj) mod (q - 1) + 17

(34)
S +— (s + Latomlj) mod ¢

which introduces adaptivity and ensures that even minor variations in the image propagate across multiple

iterations. After a predefined number of rounds, this feedback mechanism yields a highly irregular and

content dependent block structure that enhances confusion and diffusion properties, making it well suited for

cryptographic applications such as chaotic initialization, DNA based diffusion, or permutation driven image

encryption. The step wise implementation of this procedure is summarized in Algorithm 1.
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Require: Image/ €

7" seeds ripi, sini € (0, 1), rounds R

Ensure: Hash blocks {4, ..., %5}

1I: B < min(m,n)

2: g < smallest prime > mn

3 r+ mod (|rin x 1010 g—1)+1

4 s+ mod (|sin x 100, q)

5: for round < 1 to R do

6: Initialize empty blocks: A,...,%Bp < 0

7: fori < Otomn—1do > Assign each pixel to a block
8: row + |i/n]+1

9: col + (imod n)+1

10: h<+ mod( mod (rxi+s,q),B)+1

11: Append pixel to block: B), < B, U{I(row,col)}
12: end for

13: Compute :

B

Stotal = Z Z X,  Ototal =
b

b=1xc%

14: Update keys:

o(%p)

B
=1

b

r< mod (r+ [Swt],g—1)+1, s« mod (s+ |Gt ], q)

15: end for
16: return {%,...

7<@B}

Algorithm 1. Self-adaptive block hashing

Entropy based key generation
This section describes the generation of control parameters for the proposed chaotic system based on the blocks
generated from self adaptive prime modulo based hashing algorithm. In this step each block entropy is calculated
and concatenated into a one dimensional vector to apply to SHA-256 hash algorithm, and convert this 256 bit
hash value into 512 bit binary number and group onto 64 groups and calculate the control parameters.
The generation of image-dependent chaotic keys is performed in five sequential steps as described below.
Step 1: The input image is initially partitioned into B non-overlapping pixel blocks using self adaptive block
hashing algorithm 1 and the Shannon entropy of each block is computed as Eq. (35)

{%1,%2,...,,@5},
Hy = —Zpiw logngb), b=1,2,...,B. (35)
(b)

where p;

is i-th intensity in block % probability. The resulting entropy vector is Eq. (36)

E =[H.,H>,...,HB] (36)
Step 2: The entropy vector E is fed to SHA-256 algorithm producing a 256-bit digest. The digest is represented as
a 512-bit binary sequence, which is further divided into 64 consecutive 8-bit segments as Eq. (37)

h = SHA-256(F),
Hypin = Binary(h), Hyin € {0, 1}512, (37)

Ki= Hun[8(i—1)+1:8i], i=1,2,...,64.
Step 3: Each 8-bit group Kj; is converted into its decimal representation using Eq. (38)
K[i] = bin2dec(K;) i=1,2,...,64. (38)

Step 4: To mix entropy across different positions, four aggregate integers are obtained using XOR folding as Eq.
(39)
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15
di =P Kli+4j] i=1,234. (39)

Jj=0

where @ denotes bitwise XOR.
Step 5: Finally, the XOR-folded integers are mapped to the initial conditions and control parameters of the
chaotic system as Eq. (40)

0.8

x0:01+% Xdl,
0.8
=014+ — xd
Yo * o5 X9 (40)
8.0
a=1.0 + ﬁ X d37
B = d4 mod 20.

The tuple (xo, Yo, @, ) serves as the final chaotic key, which generates the chaotic sequences of length m x n,
and is modified according to Eqgs. (41) and (42) for the usage of subsequent encryption stages. Here consider
n = 107" as constant for generation of chaotic sequences.

(i) = mod (| (i) x 10°] ,6) + 1 (41)
y(i) = | mod (y(i) x 10°,256) | (42)
where | .] indicates floor operation.

Recursive chaotic based block scrambling

Traditional image scrambling methods such as row column shuffling, zigzag scanning, Arnold cat maps, and
global chaotic permutations offer basic obfuscation but suffer from limited key space, predictable structures
under chosen plaintext attacks, weak entropy diffusion, and low resistance to local statistical analysis. To
overcome these shortcomings, we propose a Recursive Chaotic Scrambling scheme that leverages fractal inspired
quadtree decomposition and chaotic key driven geometric transformations for multi-scale disruption of spatial
dependencies.

Given an input image block I € , the algorithm recursively partitions it into four sub blocks
{Q1,Q,, Qs, Q4 } at each recursion level £, where a chaotic key vector x from Eq. (41) assigns a transformation
index k = x[4(¢ — 1) + 4], i € {1, 2, 3,4}. Each partitioned sub block then undergoes a reversible operation
horizontal/vertical flip, 90°/180° rotation, or transposition while & = 1 leaves the block unchanged. After local
transformation, the blocks are recursively processed up to a maximum depth L and recombined to form the
scrambled output O. This whole process is explained in Algorithm 2.

This hierarchical strategy breaks coarse structures in early levels and fine pixel correlations in deeper levels,
yielding multilevel permutation with high sensitivity to initial keys. The combined use of flips, rotations, and
transpositions enhances permutation entropy, enlarges the key space, and provides high resistance to statistical
and differential attacks, while remaining lightweight and fully reversible for seamless integration with subsequent
diffusion stages in secure image encryption.

ZNXN

Fractal Fibonacci fusion diffusion

The proposed Fractal Fibonacci Fusion Diffusion scheme enhances image encryption by combining fractal-
. . .. . . . . . . : MXN

space traversal with Fibonacci inspired recursive diffusion. First, the input scrambled image O € Z is

linearized into a one-dimensional sequence P using a Hilbert space filling curve of order log, N as shown in

Fig. 14, which preserves local neighbourhood relations while introducing a fractal mapping that disperses spatial

correlations.
T L] |
EERREER R FJ
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Fig. 14. Hilbert curve (a) order 1, (b) order 2, and (c) order 3.
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Require: Image I € Z¥*V, chaotic key sequence x, recursion depth £ < L
Ensure: Scrambled block O

1: if £ > L then

2 return I

3: end if

4: Partition I into quadrants:

I — {Q1,Q2,Q3,Q4}
5. fori=1to4 do

ke x[4(6—1)+i]
Apply chaos-controlled transformation

Qi + Ti(Qi),
where
Ti € {I,Flip,, Flip,, Rotgo, Rot;go, Transpose }
8: Recursively scramble:
Q; + RecursiveScramble(Q;,x,{+1,L)

9: end for
10: Recombine quadrants:

0 — |f21 Qz]
Q3 Qq

11: return O

Algorithm 2. Recursive chaotic scrambling

Unlike raster scans and zig-zag scans, the Hilbert traversal ensures that 2D neighbours remain close in
1D, enabling local perturbations to propagate globally during diffusion. The chaotic sequence y from Eq. (42)
generated from the key dependent system. The diffusion follows the Fibonacci inspired recursion, where the first
two pixels are updated as Eq. (43)

D(1) = (P(1) + y(1)) mod 256,

D(2) = (P(2) + D(1) + y(2)) mod 256 (43)
and each subsequent pixel for ¢ > 3 is computed as Eq. (44)
D(i) = (P(i) + D(i — 1) + D(i — 2) + y(i)) mod 256 (44)

This recursive fusion ensures that every pixel depends on its two predecessors and the chaotic input, amplifying
sensitivity to both plaintext and keys. Finally, the diffused 1D sequence is remapped to 2D using the inverse
Hilbert curve, yielding the final diffused image Ctipner as described in Algorithm 3. By jointly leveraging fractal
space filling traversal, Fibonacci style dependency, and chaotic modulation, this lightweight diffusion achieves
high entropy, strong nonlinearity, and robust resistance against statistical and differential attacks.
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Require: Grayscale image O € ZM*N chaotic sequence y € RV
Ensure: Cipher image Ceipher

1:

=4

R A T

Convert O to double precision
P « HilbertCurveTraversal(O) > Hilbert-ordered pixel sequence
D + zeros(1,N)
D(1) = (P(1) +(1)) mod 256
D(2) + (P(2)+D(1)+y(2)) mod 256
fori=3to N do
D(i) < (P(i) + D(i — 1)+ D(i — 2) +y(i)) mod 256
end for
Ceipher < InverseHilbertMapping(D)
return Ceipper

Algorithm 3. Fractal Fibonacci fusion diffusion

Simulation and security analysis

This section presents the simulation results and security analysis of the proposed encryption algorithm,
implemented using MATLAB 2023a. For evaluation, we considered ten different grayscale images from diverse
categories, including Chemical Plant, Golden Gate, Couple, Boat, Baboon, Pentagon, and Male from the SIPI
database®®, Brain Tumour*!, Chest CT Scan®’, and Berry from the RSSCN7 dataset*®. These images collectively
represent a wide range of content, including natural, medical, aerial, and remote sensing images.

Visual evaluation

Visual evaluation illustrates the input, encrypted, and reconstructed images. An effective encryption scheme
should produce an encrypted image with no recognizable information and a decrypted image closely resembling
the original. Figure 15 shows the histogram analysis: the input image exhibits distinct peaks representing data
distribution, the encrypted image histogram is flat and uniform, resembling noise, and the decrypted image
histogram closely matches the original. These results confirm the proposed scheme’ effectiveness in obscuring
visual information while preserving recoverability.

Entropy-based analysis

Entropy-based analysis evaluates image randomness via Global Information Entropy (GIE) and Local Information
Entropy (LIE). GIE measures overall image entropy, while LIE computes the average GIE of randomly selected
non-overlapping blocks. GIE is calculated as Eq. (45)

L—-1

GIE = — Y " p(w:) log(p(z:)) (45)

=0

where L is the maximum intensity level and p(z;) the probability of intensity x;. LIE is given by Eq. (46)

k
1
LIE = - Z GIE(B;, Ts) (46)

i=1

with k randomly selected blocks B;, each containing T’z pixels. For our analysis, K = 30 and Tp = 1936. Ata
5% significance level, an image passes if LIE lies within (7.9019, 7.9030). As summarized in Table 4, the input
image exhibits lower GIE than the encrypted image, and its LIE falls outside the interval, whereas encrypted
images meet the LIE criterion. This confirms that the proposed encryption ensures strong global and local
randomness.

Pixel level statistical analysis

This section evaluates the proposed encryption scheme visually and statistically using histogram variance
analysis and the Chi-square test. Histogram analysis shows pixel distribution, the original image exhibits peaks
revealing information, while the encrypted image is uniform, preventing data leakage. The Chi-square statistic
is computed as Eq. (47)

255

=3 e )
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Fig. 15. Histogram analysis of images chemical plant, chest CT scan, boat and male: Row 1— Original Images;
Row 2 — Original Image Histograms; Row3 — encrypted images; Row 4 — Encrypted image histograms; Row
5 —Decrypted Images.
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GIE LIE
Image name Size (o] E (o] E
Chemical plant | 256 X256 7.3424 | 7.9972+0.0002 | 6.7985 | 7.9029+0.0018

Brain tumour | 256 X256 6.0437 | 7.9972+0.0003 | 5.8458 | 7.9029+0.0022

Berry 256 X256 7.5220 | 7.9972+0.0001 | 6.0668 | 7.9024+0.0021
Golden gate 512X512 5.8848 | 7.9993+0.0001 | 4.6133 | 7.9020+0.0006
Couple 512x512 7.2010 | 7.9992+0.0001 | 6.0094 | 7.9022+0.0005
Boat 512%512 7.1913 | 7.9992+0.0001 | 6.1026 | 7.9027+0.0011
Baboon 512X512 7.3583 | 7.9994+0.0001 | 6.6610 | 7.9025+0.0006
Chest CT scan | 512X 512 6.1347 | 7.9993+0.0001 | 5.4756 | 7.9030+0.0009
Pentagon 1024x1024 | 6.7326 | 7.9998+0.0001 | 6.0869 | 7.9023+0.0006
Male 10241024 | 7.5237 | 7.9998+0.0001 | 5.9708 | 7.9027+0.0002

Table 4. Entropy analysis of different images withaverage + standard deviation for 10 independent runs.
O, Original image; E, Encrypted image

Histogram variance Chi_square test
Image name o E (o] Result | E Result
Chemical plant | 50326.45 251.55 | 50326.45 | Failed | 251.55 | Passed
Brain tumour | 1513599.55 | 280.12 | 1513600 | Failed | 280.12 | Passed
Berry 36014.30 250.09 | 36014.3 | Failed |250.09 | Passed
Golden gate 6025667.85 | 989.19 | 1506417 | Failed | 247.29 | Passed
Couple 1195460.98 | 1115.03 | 298865.2 | Failed | 278.75 | Passed
Boat 1535878.75 | 1189.60 | 383969.7 | Failed | 289.40 | Passed
Baboon 749426.29 897.21 | 187356.6 | Failed | 224.30 | Passed
Chest CT scan | 14627115.66 | 941.83 | 3656779 | Failed | 235.45 | Passed
Pentagon 31893181.01 | 4608.02 | 1993324 | Failed | 288.00 | Passed
Male 11349450.88 | 3929.33 | 709340.7 | Failed | 245.58 | Passed

Table 5. Histogram and distribution analysis.

Here o(1) is observed and e(4)is expected frequency of pixel intensity i. The variance of histogram is calculated
by Eq. (48)

256 256

Var(F) = s DD (= ) (48)

i=1 j=1

Here f; and f; are the histogram frequencies at gray levels i and j. Table 5 reports variance and Chi-square
results for original and encrypted images. The encrypted images show significantly lower variance and x? values,
satisfying x* < 293.2478, indicating a uniform pixel distribution. These results confirm strong randomness in
the encrypted images, enhancing the security of the proposed scheme.

Statistical analysis

The proposed encryption algorithm is further evaluated using statistical metrics, Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Visual Information Fidelity (VIF), which quantify distortion
during encryption and reconstruction quality during decryption. These are defined as in Eq. (49)

12
Dy 2gy (i — dig)?

perpra + C1)(20ra + C2)

(p2 +p2+ Cr) (o2 4+ 02+ Ca)’ (49)

Z I (éN,i§JN,i \ SN,z')
VIF — i€subbands

oI (aN,i;FN,i | SN,'L) .

i€subbands

PSNR = 10log;

SSIM(r, d) =
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PSNR MSE SSIM VIE
Image name O-E O-D | O-E O-D | O-E O-D | O-E O-D
Chemical plant | 9.1841 | oo 7846.38 |0 0.00983 | 1 0.002 1
Brain tumour | 7.0654 | 5o 12780.31 | 0 0.00821 |1 0.0018 |1
Berry 8.4997 | o 9185.68 |0 0.01004 | 1 0.0015 |1
Golden gate 10.3685 | oo 597354 |0 0.01036 | 1 0.00079 | 1
Couple 9.6271 | 5o 7085.56 |0 0.01113 | 1 0.0013 |1
Boat 9.2898 | o 7657.79 |0 0.01112 | 1 0.0013 |1
Baboon 9.5308 | oo 724432 |0 0.01017 | 1 0.0028 |1
Chest CT scan | 8.5379 | oo 910526 |0 0.00837 | 1 0.0022 |1
Pentagon 10.1379 | 5o 6299.30 |0 0.01039 | 1 0.0013 |1
Male 7.9976 | oo 10311.43 | 0 0.00812 | 1 0.0011 |1

Table 6. Image quality analysis. O-E Original image-encrypted image; O-D, Original image-decrypted image

Table 6 presents the results. PSNR, SSIM, and VIF values are very low between the original and encrypted images,
confirming strong security, and very high between the original and decrypted images (PSNR — oo, SSIM and
VIF ~ 1), indicating near perfect reconstruction. This demonstrates that the proposed scheme ensures both
confidentiality and faithful image recovery.

Correlation between adjacent pixels analysis

Original images exhibit high correlation between adjacent pixels in horizontal, vertical, and diagonal directions,
making them vulnerable to statistical attacks. Reducing this correlation is essential for security. The correlation
coeflicient (CC) between adjacent pixels u; and v; is computed using Eq. (50)

“-

<
Il
-

(ui — u)(vi — )
CC(u,v) = (50)

(ui — u)*(vi —v)?

s
Il
i

where @ and v are the mean values. Figure 16 shows that original image pixels cluster closely, indicating strong
correlation, whereas encrypted image pixels are widely scattered in all three directions. Table 7 confirms that
correlation coeflicients for encrypted images are near zero, demonstrating minimal adjacent-pixel dependency
and enhanced security.

Differential attack analysis

Differential Attack analysis is well known attack test to measure the vulnerability of crypto system. In this
analysis two images with slightly differentiate in the features are subjected to undergo encryption process to
get two cipher images known as 1 and E>. The ability to withstand differential attack of the proposed crypto
algorithm is measured by calculating how many number of pixels are differed between two cipher images F1
and E». This difference of pixels are quantified by two statistical metrics known as Number of Pixel Change
Rate(NPCR) and Unified Average Changing Intensity(UACI) are calculated using Eqgs. (51) and (52) respectively

1 m n
NPCR(E1, ) = —— ZZ@-J x 100% (51)
i=1 j=1
_ 1 xoN- Bi)) — e g)|
UACK(Er, Ba) = —— Z 557 x 100% (52)
i=1 j=1
L0, if B, ) = Ba(i, f)

Table 8 presents the statistical results of differential attack analysis by measuring NPCR and UACI. From the
table, it is evident that the average values of NPCR exceed 99.6% and UACI exceed 33.4%, which indicates that
the proposed algorithm exhibits strong randomness and a high resistance to differential attacks.

Additionally, we compared the statistical values of the Baboon image derived using the proposed encryption
algorithm with those from previous algorithms. The results, summarized in Table 9, demonstrate that the
proposed algorithm achieves superior performance.

Robustness analysis
To evaluate robustness against transmission errors and attacks*!, noise and data loss were simulated on
encrypted images. Noise of varying types and densities was added, and portions of encrypted images were
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Fig. 16. Correlation analysis: original image — Correlation — Encrypted image — Correlation; (a—d) Brain
Tumour, (e-h) Golden gate, (i-1) Couple, (m-p) Baboon.

cropped, followed by decryption. Figure 17 shows that decrypted images remain recognizable despite noise,
with PSNR values in Table 10 decreasing as noise density increases, reflecting reduced resemblance. Similarly,
Fig. 18 illustrates that even with cropped portions, decrypted images preserve recognizable content, with PSNR
values reported in Table 11. These outcomes confirm the proposed encryption approach resilience against noise
and partial data loss.

Key sensitivity and space analysis

Key sensitivity was evaluated using the Berry test image, where encryption and decryption were performed with
both the original key and slightly modified keys. As shown in Fig. 19, successful decryption occurs only with the
exact key, while even minimal key variations produce unrecognizable outputs, confirming strong key sensitivity.
Quantitatively, robustness is measured using the Number of Bit Change Rate (NBCR), defined as Eq. (53)
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Direction Horizontal Vertical Diagonal

Image name (o] E (o] E (o] E
Chemical plant | 0.893392 | —0.02918 | 0.941474 | -0.02022 | 0.844118 | —0.02783
Brain tumour | 0.97356 | —0.0085 | 0.965833 | 0.010724 | 0.946471 | 0.002175

Berry 0.973273 | -0.00144 | 0.969109 | 0.008763 | 0.945351 | 0.009802
Golden gate 0.868076 | 0.00012 | 0.879707 | 0.016889 | 0.796526 | —0.00295
Couple 0.867837 | —0.0108 | 0.910936 | -0.03158 | 0.840118 | —0.01942
Boat 0.969824 | -0.04259 | 0.92851 | -0.03253 | 0.913883 | —0.02788
Baboon 0.75742 | -0.00931 | 0.865849 | 0.001046 | 0.725459 | 0.009721

Chest CT scan | 0.901953 | 0.0064 0.913544 | 0.004491 | 0.882115 | —0.00597

Pentagon 0.865628 | —0.00073 | 0.873862 | 0.007706 | 0.788741 | 0.020433
Male 0.979974 | —0.00968 | 0.973724 | -0.03051 | 0.964991 | —0.01646

Table 7. Correlation coefficient analysis.

Diffrential attack analysis
Image name | NPCR (%) Result | UACI (%) Result
Chemical plant | 99.6163 +0.0262 | Passed | 33.4553 + 0.0606 | Passed

Brain tumour 99.6218 £ 0.0159 | Passed | 33.4928 + 0.0294 | Passed

Berry 99.6063 + 0.0183 | Passed | 33.5243 + 0.0794 | Passed
Golden gate 99.6089 £ 0.0117 | Passed | 33.4744 + 0.0649 | Passed
Couple 99.6048 £ 0.0161 | Passed | 33.4726 + 0.0664 | Passed
Boat 99.6189 + 0.0073 | Passed | 33.4664 + 0.0468 | Passed
Baboon 99.6032 £ 0.0165 | Passed | 33.4469 + 0.0450 | Passed

Chest CT scan | 99.6006 + 0.0128 | Passed | 33.4480 + 0.0512 | Passed

Pentagon 99.6089 + 0.0027 | Passed | 33.4430 + 0.0159 | Passed
Male 99.6086 + 0.0067 | Passed | 33.4671 + 0.0281 | Passed

Table 8. Differential attack analysis wth average & standard deviation for 10 independent runs.

Correlation coefficient
Algorithm |GIE |H v D NPCR (%) | UACI (%)
47 7.9994 | —-0.0009 | 0.0005 | 0.0004 |99.6092 33.4636
36 7.9994 | -0.0018 | -0.0021 | —0.0002 | 99.7884 33.4768
8 7.9987 | —=0.0075 | —0.0071 | 0.0041 99.5800 33.1800
4 7.9993 | -0.0491 | -0.0313 | —0.0059 | 99.6200 33.4700
50 7.9965 | 0.0002 0.002 0.0006 99.6122 33.4615
51 7.9966 | 0.0009 0.0006 | —0.0036 | 99.6012 33.4637
Proposed | 7.9994 | —0.00931 | 0.00105 | 0.00972 | 99.6093 33.4700

Table 9. Comparison analysis. H, Horizonta; V, Vertica; D, Diagonal Significant values are in bold

I‘ICL?TL(ZH7 b2)

NBCR(br,b2) = =

(53)

where Ham(.) denotes the Hamming distance between two matrices b1 and b2, and length represents the total
number of bits. Figure 20 illustrates the total number of bit changes between two encrypted images £ and Eo,
as well as two decrypted images D1 and Do, obtained using keys key: and keys, respectively. For each round,
the NBCR is approximately 50%, indicating that the proposed encryption algorithm is robust against small key
variations, which in turn ensures high randomness in the resulting images.

In addition, the key space analysis and its comparison are summarized in Table 12. Considering the
seven parameters random initial seeds(7ins, Sini), @, B, 1, and the initial values(xo, yo) of the chaotic map
represented in double-precision floating-point format with approximately 10~ '° resolution, the total key
space is approximately 23®, This value is significantly greater than 2'°°, making it suitable for cryptographic
applications.
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(a) SPN=0.005  (b) Decrypted of (a)  (€) SPN=0.01 (e) SPN=0.05

(g) SPN=0.1 (h) Decrypted of (g) (i) GN=10"2 (j) Decrypted of (i) (k) SN=10—2 () Decrypted of (k)

Fig. 17. Noise attack analysis for pentagon image. SPN: Salt and Pepper Noise, GN: Gaussian Noise, SN:
Speckle Noise.

0.005 28.4578 | 0.8685

0.01 25.4268 | 0.7588
SPN

0.05 18.5374 | 0.3408

0.1 15.7777 | 0.1870

0.005 23.3019 | 0.4855

0.01 20.3011 | 0.3482
SN

0.05 13.5922 | 0.0995

0.1 11.6475 | 0.0454

0.005 18.2998 | 0.2645

0.01 15.2945 | 0.1544
GN

0.05 10.7930 | 0.0254

0.1 10.2637 | 0.0135

Table 10. Noise attack analysis.

(a) 5 % crop (c¢) 10 % crop (e) 20 % crop

(9) 30 % crop (h) Decrypted of (g) (i) 40 % crop (j) Decrypted of (i) (k) 50 % crop (I) Decrypted of (k)

Fig. 18. Crop analysis for pentagon image with % of crop to encrypted image and its corresponding decrypted
image.
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5 22.9027 0.9375
10 19.1402 0.7857
20 17.0069 0.7811
30 14.8564 0.5369
40 14.0571 0.5812
50 12.8711 0.3361

Table 11. Crop analysis.

(d) (e) ()

Fig. 19. Key sensitivity analysis. (a) Original image, (b) Encrypted image with key1, (c) Encrypted image with
keys, (d) Difference between (a) and (b), (e) Decrypted image with key:, (f) Decrypted image with keya.

51 T T T T T

—e—NBCR (E1,E2)
50.8f —e—NBCR (D1,02)| ]

50.6 4

50.4 1
2 50.2
50 8
49.8

NBCR (%

496 4
4941 1
49.2 1 1

49 . ! . . - + ! + +
20 40 60 80 100 120 140 160 180 200

Rounds

Fig. 20. NBCR analysis.

Key space | 2348 9319 | 9215 | 9319 | 5967

Table 12. Key space analysis.
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Encryption time Decryption time
(seconds) (seconds)
Algorithm | 256X256 | 512512 | 256 X256 | 512X 512 | Complexity
3 1.66 6.51 1.64 6.47 O(64MN)
7 1.828 7.576 - - O(NlogN)
7 0.170 0.692 0.697 0.697 -
7 - 0.410 - - O(7MN)
& - 0.202 - - OBM + 1M x M)
2 0.459 1.769 0.837 0.837 O(MN)
8 - 1.513 - 1.790 -
Proposed | 1.245 6.045 1.325 6.241 O(MNIlogM)

Table 13. Time complexity analysis comparison of different size images.

Time complexity analysis

The proposed algorithm consists of four linear components block hashing, entropy-based key generation, chaotic
sequence generation, and Fibonacci diffusion each with complexity O(MN). In addition, recursive scrambling
and Hilbert traversal introduce two quasi-linear terms, each O(M N log M), due to hierarchical recursion and
fractal path computation. Thus, the overall complexity is 4O(MN) + 20(M N log M) ~ O(M N log M),
where the logarithmic factor dominates. This quasi-linear cost is only slightly higher than purely linear schemes,
but it significantly improves security by enhancing permutation strength and diffusion robustness, making the
trade-off both efficient and defensible. Further, Table 13 presents encryption and decryption times (seconds)
for different image sizes, (256 x 256) and (512 x 512). It also presents time complexity and compares it
with existing algorithms. Our proposed algorithm took 1.2455 s (encryption) and 1.3255 s (decryption) for
(256 x 256) images and 6.045 s (encryption) and 6.241 s (decryption) for (512 x 512) images. This time
complexity for encryption is slightly higher when compared to existing algorithms due to recursive scrambling
but within acceptable bounds considering the stronger diffusion.

Conclusion

This study introduced a novel image encryption framework that integrates chaotic-based recursive scrambling
with a Fractal-Fibonacci diffusion mechanism derived from the Hilbert curve. At its core lies a new two-
dimensional chaotic system, the 2D-CPSCM, which exhibits positive LEs, confirming its hyperchaotic
nature. The proposed system outperforms existing chaotic maps in statistical measures, including SE, PE and
KE. Comprehensive experiments on multiple benchmark images demonstrate the robustness of the scheme,
achieving strong performance in entropy, CC, NPCR, UACI, and NBCR metrics. In addition, its resistance to
noise and cropping attacks further validates the resilience of the approach. Although the algorithm introduces
higher computational complexity, this trade-off is justified by the enhanced security, improved randomness,
and strong resistance to cryptographic attacks, making the proposed approach is suitable for secure multimedia
communication. noise and cropping attack tests further validate the resilience of the scheme. Although
the complexity of the algorithm increases, this trade-off is justified by the enhanced security and improved
randomness in the encrypted images.

Data availability

The corresponding author can provide the data validating the study’s conclusions upon reasonable request.
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