

OPEN

Analysis of chloroplast genomes and SSR classification and identification of *Agropyron* species and closely related species

Wenxuan Pan^{1,2}, Weihong Yan^{1,2}✉, Zhiyong Li^{1,2}, Zinian Wu^{1,2}, Qingsong Tian^{1,2}, Ying De^{1,2}, Changzhong Wu^{1,2} & Wenhao Yan^{1,2}

To thoroughly analyze the characteristics of the chloroplast genome in the genus *Agropyron* Gaertn and provide a theoretical basis for its evolutionary biology and the molecular marker-assisted taxonomic identification of the broad-spike and narrow spike clades. This study conducted a systematic analysis of the chloroplast genomes from seven *Agropyron* species and two closely related species (*Elymus trachycaulus* and *Elytrigia elongata*). The chloroplast genome of *Agropyron Gaertn* exhibits a typical quadripartite structure, ranging in size from 135 to 137 kb and containing 131 genes. The *rps12* and *ycf3* genes show high variability, while the intergenic regions (IR) exhibit high GC content of 43.91% to 44.01%. SSR and scattered repetitive sequences exhibit significant interspecific differences among the *Agropyron Gaertn* and the closely related species. For instance, *Elymus trachycaulus* and *Elytrigia elongata* share the locus (CCATA)₃, while simultaneously retaining genus-specific markers. For instance, locus (ATATA)₃ is unique to *Elytrigia elongata*, and *Elymus trachycaulus* lacks the *rps12* gene intron variation, forming a sequence profile that combines both conservation and differentiation. Based on the distribution patterns of SSR loci and nucleotide diversity analysis in this study, the combination patterns of SSR loci in the chloroplast genome can serve as candidate basis for the molecular-assisted taxonomic identification of the broad-spike/narrow-spike clades. Phylogenetic analysis revealed that most species within the genus *Agropyron* form monophyletic clades, while *Elymus trachycaulus* clusters closely with *Elytrigia elongata* due to shared characteristics such as high GC content (44.01%) in the intercalary region of the chloroplast genome and with LSC length (80,642 bp). Combined with its narrow-spike morphology, this result supports the molecular marker-assisted taxonomic identification to identify *Elymus trachycaulus* into the narrow-spike clade, demonstrating the synergy between morphological identification and molecular evidence in auxiliary taxonomy. This study lays the foundation for characterizing the chloroplast genomes of *Agropyron* species and developing molecular markers for the identification of the broad-spike/narrow-spike clades. Further multidisciplinary research is needed to explore the potential applications of these molecular markers and the mechanisms underlying the species' adaption.

Keywords *Agropyron*, Chloroplast genome, SSR locus, Phylogenetic evolution, Molecular marker-assisted taxonomic identification

Abbreviations

rRNA	Ribosomal RNA
tRNA	Transfer RNA
mRNA	Messenger RNA
LSC	Large single-copy region
SSC	Small single-copy region
IRA	Inverted repeat region A
IRB	Inverted repeat region B

¹Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, People's Republic of China.

²Key Laboratory of Forage Resources and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot, People's Republic of China. ✉email: yanweihong@caas.cn

RSCU	Relative synonymous codon usage
SSR	Simple sequence repeats
cpSSR	Chloroplast simple sequence repeats
Pi	Nucleotide diversity
LCBs	Locally collinear blocks

Agropyron, a genus within the tribe Triticeae of the family Poaceae, is classified as a perennial grass species widely distributed across arid and semi-arid regions of Eurasia. As an important forage grass and ecological restoration plant, *Agropyron* plays an important role in grassland improvement, soil and water conservation and biodiversity conservation^{1,2}. These ecological and agronomic roles underscore the importance of further deep study especially unraveling its genetic architecture to advance both theoretical understanding and practical applications.

The taxonomy of *Agropyron Gaertn* has been progressively refined through decades of research, integrating morphological, cytological, and genomic data. In 1933, the Soviet botanist S. A. Nevski proposed a narrow definition of the genus based on morphological traits, which delineated its core species. Later, in the late twentieth century, Dewey³ developed a modern classification system centered on the P chromosome group, which is shared by all species in the genus. Subsequent studies incorporated ploidy levels, clearly distinguishing diploids ($2n=14$) and tetraploids ($2n=28$) species⁴. This chromosome-based system has been continually refined and now recognizes three main species within *Agropyron Gaertn.*, a framework that remains standard today⁵.

The classification of subordinate taxa also relied on differences between broad-spike and narrow-spike forms. For instance, in 1960, British cytbotanist Keith Jones categorized populations of flat-spiked wheatgrass into western broad-spike, eastern broad-spike, and narrow-spike types based on spike morphology⁶. In China, the mainstream classification has long followed the concept of flat-spiked wheatgrass established by Professor Geng Yili⁷ which is based on Nevski system, and has remained relatively stable. However, significant challenges persist in precisely defining broad-spike and narrow-spike clades: on one hand, morphological traits are highly influenced by environmental conditions, which often leads to subjective judgements when identifying transitional forms or closely related species. On the other hand, while chromosome-based classification is accurate, its complex experimental procedures and long timelines make it impractical for rapidly screening large germplasm collections. Therefore, developing molecular markers to efficiently and accurately distinguish broad-spike and narrow-spike clades is crucial. Such techniques would resolve current ambiguities in classification and advance the precise identification and efficient use of *Agropyron* germplasm resources.

Chloroplasts are vital organelles in plant cells responsible for photosynthesis and various metabolic processes. They not only carry out photosynthesis but also contain abundant genetic information. Their genome exhibits characteristics such as maternal inheritance, structural conservation, and moderate evolutionary rates, making it a crucial sequence feature for plant phylogenetics, species identification, and genetic improvement research⁸. Since the first tobacco chloroplast genome was sequenced in the 1980s, significant progress has been made in chloroplast genomics research^{9,10}. In recent years, with the rapid advancement of sequencing technology, an increasing number of plant chloroplast genomes have been successfully sequenced and analyzed, providing rich data support for revealing the genetic code and evolutionary patterns of plant chloroplast genomes. Within the grass family, chloroplast genome research has yielded substantial results. For example, Luo et al.¹¹ conducted a population genetic study of *Agropyron Gaertn* across four populations from the Qinghai-Tibet Plateau, Central Asia, East Asia, and Europe using *Accl* and *GBSSI* gene sequences. The results revealed that *Agropyron Gaertn* exhibits rich genetic diversity at the population level, with the Central Asian population potentially serving as the center of differentiation for *Agropyron Gaertn*. This finding indicates Central Asia as the origin center for *Agropyron Gaertn*, providing crucial theoretical support for the conservation and utilization of its genetic diversity. These studies not only reveal the structural characteristics and evolutionary patterns of grass chloroplast genomes but also provide an important molecular foundation for crop improvement and germplasm resource conservation¹². However, research on complete chloroplast genome sequences for additional species within the genus *Agropyron Gaertn* remains relatively scarce and lacking systematic analysis and comparison. Therefore, the identification of complete chloroplast genome sequences for 7 species of the genus *Agropyron Gaertn* and 2 closely related species is of great significance for comprehensively revealing the genetic characteristics, evolutionary patterns, and potential functions of the chloroplast genomes within the genus *Agropyron Gaertn*.

This study employed high-throughput sequencing technology to analyze the chloroplast genomes of seven *Agropyron Gaertn* species and two closely related species (*Elymus trachycaulus* and *Elytrigia elongata*), elucidating their genetic characteristics and evolutionary patterns. As a representative of the closely related genus within the Triticeae¹³, the 2 closely related species (*Elymus trachycaulus* and *Elytrigia elongata*) can be used in comparative genomic analysis to screen for specific molecular markers distinguishing the broad-spike and narrow spike clades within the genus *Agropyron Gaertn*, thereby providing a reference supporting taxonomic identification. This study aims to provide theoretical support for the precise utilization of *Agropyron Gaertn* germplasm resources and the establishment of an efficient identification system.

Materials and methods

Plant materials

This study screened seven species of the genus *Agropyron Gaertn* and two closely related species: ACPE(*Agropyron cristatum* var. *pectiniforme*)^{14,15}, ACPL(*Agropyron cristatum* var. *pluriflorum*)^{14,15}, AD(*Agropyron dasystachyum* var. *subvillosum*)^{16,17}, ADP(*Agropyron desertorum* var. *pilosiusculum*)^{14,15}, AS(*Agropyron sibiricum* f. *sibiricum*)^{14,15}, AMV (*Agropyron mongolicum* var. *villosum*)^{14,15}, ASP(*Agropyron sibiricum* f. *pubiflorum*)^{14,15}, ET(*Elymus trachycaulus*)¹⁸ and EE(*Elytrigia elongata*)^{14,15,18-20}. The complete chloroplast genomes were characterized and de novo assembled (Table 1). Species identification was primarily based on the identification

Serial No	Code	Latin name	Morphological Characteristics
1	ACPE	<i>Agropyron cristatum</i> (L.) Gaertn. var. <i>pectiniforme</i> (Roem. et Schult)	Broad spike
2	ACPL	<i>Agropyron cristatum</i> (L.) var. <i>pluriflorum</i> H. L. Yang	Broad spike
3	AD	<i>Agropyron dasystachyum</i> var. <i>subvillosum</i> (Hook.) Scribn. & J. G. Sm	Broad spike
4	ADP	<i>Agropyron desertorum</i> (Fisch. ex Link) var. <i>pilosiusculum</i> (Melderis) H. L.	Broad spike
5	AS	<i>Agropyron sibiricum</i> (Willd.) P. Beauv. f. <i>sibiricum</i>	Broad spike
6	AMV	<i>Agropyron mongolicum</i> Keng var. <i>villosum</i> H. L. Yang	Broad spike
7	ASP	<i>Agropyron sibiricum</i> (Willd.) P. Beauv. f. <i>pubiflorum</i> Roshev	Broad spike
8	ET	<i>Elymus trachycaulus</i> (Link)	Narrow spike
9	EE	<i>Elytrigia elongata</i> (Host) Nevski	Narrow spike

Table 1. Coded names and morphological characteristics of seven *Agropyron* species and two closely related species. Species identification was based on Volume 9 (Part 2) of Flora of China and Volume 6 of Flora of Inner Mongolia (3rd edition), which served as the phenotypic reference for this study focusing on molecular marker-assisted identification.

keys in Tomus 9 (Part 2) of the Chinese Academy of Sciences¹⁵ and Flora Intramongolica (Editio Tertia) Tomus 6¹⁴. The morphological identification reference by Yan Weihong²¹ employs a chromosome-based identification system to categorize *Agropyron* Gaertn into broad-spike and narrow-spike clades. This identification has long adhered to the concept of narrow-spike narrow-spike agropyron wheatgrass proposed by Professor Geng Yili²² based on the Nevski identification system. This study does not validate this morphological identification through molecular data but instead focuses on screening chloroplast molecular markers that can assist in distinguishing the two clades. All species samples were collected from the Shalqin Experimental Station of the Grassland Research Institute, Chinese Academy of Agricultural Sciences, located at N 40°35', E 111°47'. Genomic DNA was extracted using a modified CTAB method. All samples are stored at the National Pasture Germplasm Resource Intermediate Repository (Hohhot, Inner Mongolia).

cpDNA sequencing and de novo assembly

Raw data were filtered using fastp v0.20.0 (<https://github.com/OpenGene/fastp>) to obtain clean data²³. Bowtie2 v2.2.4 (<http://bowtie-bio.sourceforge.net/bowtie2/index.shtml>) was employed in very-sensitive-local mode to align against the chloroplast genome database, reducing assembly complexity. Sequences aligned were designated as chloroplast genome sequences (cpDNA sequences) for the project samples. The core assembly module employed SPAdes v3.10.1 (<http://cab.spbu.ru/software/spades/>) to assemble chloroplast genomes, utilizing kmer sizes of 55, 87, and 121, with assembly performed independently of reference genomes. The complete chloroplast genomes of seven *Agropyron* species and two closely related species (*E. trachycaulus*, *E. elongata*) have been deposited in the NCBI database under the following accession numbers: SAMN47853882 (*E. elongata*), SAMN47853883 (*A. sibiricum*), SAMN47853884 (*E. trachycaulus*), SAMN47853885 (*A. cristatum* var. *pectiniforme*), SAMN47853886 (*A. cristatum* var. *pluriflorum*), SAMN47853887 (*A. mongolicum* var. *villosum*), SAMN47853888 (*A. desertorum* var. *pilosiusculum*), SAMN47853889 (*A. sibiricum* f. *pubiflorum*) and SAMN47853890 (*A. dasystachyum*).

Chloroplast gene annotation

Two methods were employed to annotate the chloroplast genome, enhancing annotation accuracy. First, Prodigal v2.6.3 (<https://www.github.com/hyattpd/Prodigal>) was used to annotate chloroplast CDSs²⁴, predicted rRNA using hmmer v3.1b2 (<http://www.hmmer.org/>)²⁵, and predicted tRNA using aragorn v1.2.38 (<http://www.sanger.ac.uk/ARAGORN/>)²⁶. Next, gene sequences were extracted from published relatives in NCBI, then aligned against the assembled sequences using blast v2.6 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) to obtain a second annotation result²⁷. Finally, manually examine genes with discrepancies between the two annotation sets, remove erroneous or redundant annotations, and define multi-exon boundaries to obtain the final annotation.

Chloroplast genome map

Nine chloroplast genomes of the genus *Cynodon* were assembled using OGDRAW (<https://chlorobox.mpim-p-golm.mpg.de/OGDraw.html>)²⁸. MISA v1.0 (MicroSATellite identification tool, <https://webblast.ipk-gatersleben.de/misa/>) was used to identify chloroplast SSRs ranging from single-nucleotide to octanucleotide repeats²⁹. RSCU values were analyzed using MEGA 7. Gene sequences were aligned using MAFFT v7.427 (<https://mafft.cbrc.jp/alignment/software>)³⁰, and synonymous and non-synonymous substitution rates were calculated with KaKs_Calculator v2.0 (<https://sourceforge.net/projects/kakscalculator2/>)³¹. Global alignment of homologous gene sequences across different species was performed using MAFFT. Nucleotide diversity (Pi)³² for each gene was calculated using DNAsP v5 (<http://www.ub.edu/dnasp>).

Analysis and identification of cpSSR and scattered repeat sequences

Analysis of cpSSR was performed using MISA v1.0 (MicroSATellite identification tool, <https://webblast.ipk-gatersleben.de/misa/>) with parameters 1–8 (single-base repeats occurring 8 or more times), 2–5, 3–3, 4–3, 5–3, 6–3. Repeat sequences were identified using vmatch v2.3.0 (<http://www.vmatch.de>) combined with a Perl script³³.

This included forward, reverse, complementary, and palindromic tandem repeats with a minimum length of 30 bp and an edit distance less than 3 bp.

Chloroplast sequence homology analysis, collinearity identification, and phylogenetic tree construction

Visualize the boundary information between IR and LSC/SSC using CPJSdraw (<http://cloud.genepioneer.com:9299/#/tool/alltool/detail/296>), expressed as LSC-IRb, IRb-SSC, SSC-IRa, and IRA-LSC³⁴. Perform phylogenetic analysis using the entire genome. Set the same starting point for circular sequences. Perform multiple sequence alignment of interspecies sequences using MAFFT v7.427 software (-auto mode). Process the aligned data using MrBayes v3.2.7a (<http://nbisweden.github.io/MrBayes/>) software. using the GTR+I+G model. Ngammacat was set to 5, with statefreqpr, revmat, pinvar, and shapepr configured according to the optimal model identified by jModelTest software. Other parameters remained at default values to construct Bayesian phylogenetic trees³⁵. Genome alignment was performed using Mauve software with default parameters³⁶.

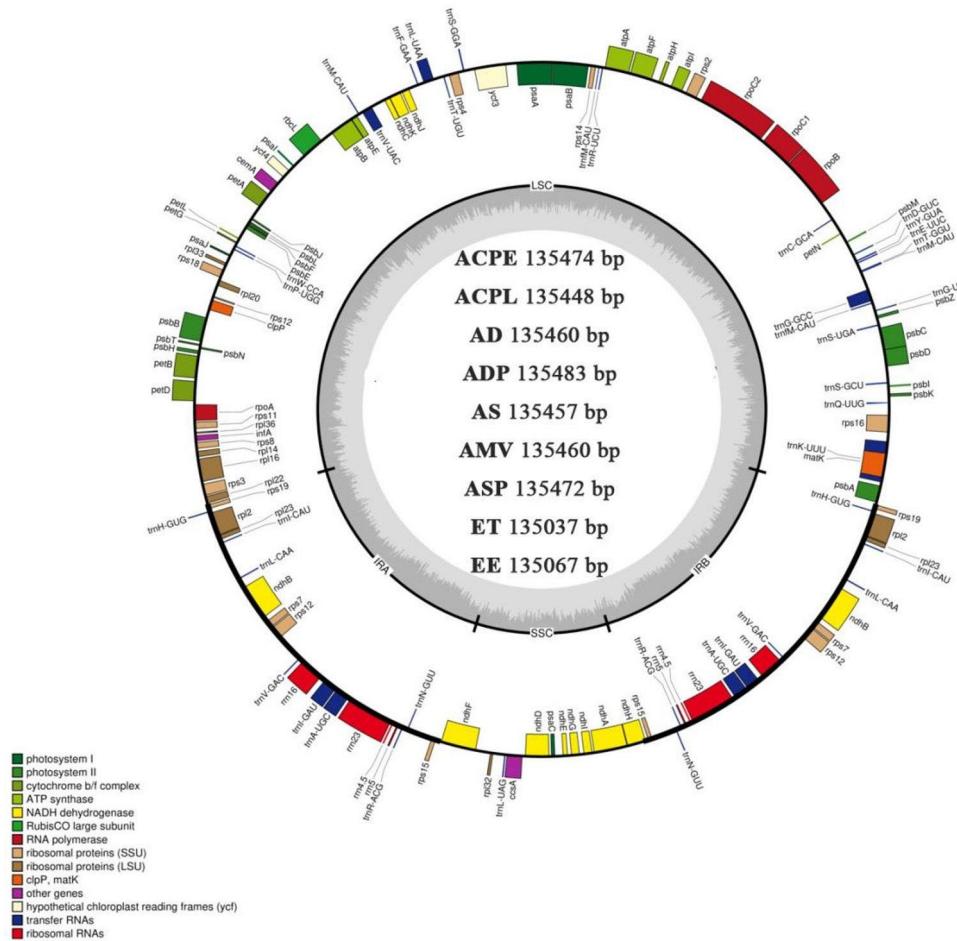
Results

Basic traits of the chloroplast genome

Sequencing of the chloroplast genomes from seven *Agropyron Gaertn* species and two closely related species (*E. trachycaulus*, *E. elongata*) yielded 17,707,085 to 20,670,776 clean paired-end reads, respectively (Table 2). Among these, *E. trachycaulus* (ET) yielded 19,727,229 clean reads, with a complete cp genome length of 135,037 bp. This length is significantly shorter than that of the seven *Agropyron Gaertn*-clade species (135,448–135,483 bp) but comparable to that of the closely related species *E. elongata* (EE, 135,067 bp) (Table 2 and Fig. 1).

In terms of genetic composition, *E. trachycaulus* exhibits unique intermediate characteristics: its chloroplast genome contains 131 genes, specifically 40 tRNA genes, 8 rRNA genes, and 83 mRNA genes. This numerical profile is identical to that of seven *Agropyron Gaertn* species within the broad-spike clades; However, it differs significantly from *E. elongata* (129 genes, 38 tRNA genes), sharing only the numbers of rRNA (8) and mRNA (83) genes with *E. elongata*. This characteristic—where the total gene count aligns with the broad-spike clades of the genus *Agropyron Gaertn* while the genome length approximates that of *E. elongata*—provides crucial chloroplast genomic evidence for *E. trachycaulus* taxonomic identification. It not only reflects its phylogenetic relationship with *Agropyron Gaertn* but also reveals genomic structural signals indicating its differentiation toward the narrow-spike clades (Table 2).

The chloroplast genomes of all species exhibit a single-circular quadripartite structure: a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions (IRa and IRb) (Fig. 1). This architecture is similar to chloroplast genomes in various plant species³⁷. Within the *Agropyron Gaertn* chloroplast genome, the IR regions harbor 8 rRNA genes, 16 tRNA genes, and 14 mRNA genes; the SSC region contains 1 tRNA gene and 10 mRNA genes, while the LSC region contains 23 tRNA genes and 59 mRNA genes (Table 3 and Fig. 1). Although the overall GC content of chloroplast genomes across different *Agropyron Gaertn* species is relatively similar (38.32%–38.34%), the GC content in the IR region (43.91%–44.01%) is significantly higher than that in the LSC region (36.28%–36.38%) and SSC region (32.21%–32.26%). This difference is closely related to the enrichment of high-GC-content rRNA genes in the inverted repeat region (Table 2).


Among these genes, 14 genes (*atpF*, *rpl2*, *rpl16*, *rps16*, *ndhA*, *ndhB*, *petB*, *petD*, *trnA-UGC*, *trnG-GCC*, *trnI-GAU*, *trnK-UUU*, *trnL-UAA*, and *trnV-UAC*) all contained one intron, while the remaining three genes (*ycf3* and *rps12*) contained two introns (Table 4). Among these, the *rps12* gene exhibited the highest nucleotide diversity ($P_i = 0.05198$). Its high variability makes it a potential candidate marker for molecular-assisted taxonomic identification of the broad-spike/narrow-spike clades. *rps12* is located in the IR region, while *ycf3* is situated in the LSC region, while *ndhA*, containing only one intron, is localized in the SSC region. The remaining related genes are distributed in the LSC and IR regions (Table 4).

Codon usage bias analysis

The relative synonymy codon usage (RSCU) quantifies codon usage frequency, revealing codon preferences within the chloroplast genome of *Agropyron Gaertn*. These preferences reflect characteristics of natural selection,

Sample ID	ReadSum	Genome Size(bp)	gene	tRNA	rRNA	mRNA	GC	LSC Length (bp) (GC content)	SSC Length (bp) (GC content)	IRb Length (bp) (GC content)	IRa Length(bp) (GC content)
ACPE	17,707,085	135,474	131	40	8	83	38.33%	79,632 (36.28%)	12,776 (32.21%)	21,533 (43.93%)	21,533 (43.93%)
ACPL	19,391,989	135,448	131	40	8	83	38.33%	79,627 (36.28%)	12,761 (32.22%)	21,530 (43.93%)	21,530 (43.93%)
AD	15,949,431	135,460	131	40	8	83	38.33%	79,619 (36.28%)	12,761 (32.22%)	21,540 (43.91%)	21,540 (43.91%)
ADP	20,429,731	135,483	131	40	8	83	38.32%	79,631 (36.28%)	12,764 (32.22%)	21,544 (43.91%)	21,544 (43.91%)
AS	20,616,407	135,457	131	40	8	83	38.33%	79,618 (36.29%)	12,745 (32.22%)	21,547 (43.91%)	21,547 (43.91%)
AMV	20,670,776	135,460	131	40	8	83	38.33%	79,618 (36.28%)	12,762 (32.22%)	21,540 (43.91%)	21,540 (43.91%)
ASP	20,183,740	135,472	131	40	8	83	38.33%	79,620 (36.29%)	12,764 (32.24%)	21,544 (43.91%)	21,544 (43.91%)
ET	19,727,229	135,037	131	40	8	83	38.34%	80,642 (36.38%)	12,769 (32.26%)	20,813 (44.01%)	20,813 (44.01%)
EE	20,203,171	135,067	129	38	8	83	38.34%	80,671 (36.38%)	12,770 (32.24%)	20,813 (44.00%)	20,813 (44.00%)

Table 2. Basic characteristics of chloroplast genomes. LSC, large single-copy region; SSC, small single-copy region; IRA, inverted repeat region A; IRB, inverted repeat region B.

Fig. 1. Chloroplast genome map. Note: Forward-encoding genes are located on the outer side of the circle, while reverse-encoding genes are positioned on the inner side. The gray inner circle indicates GC content.

species mutation, and genetic variation. When $RSCU > 1$, it indicates that the codon is used more frequently and exhibits strong preference; when $RSCU < 1$, it indicates that the codon is used less frequently and exhibits weak preference; when $RSCU = 1$, it indicates that the codon shows no preference³⁸. Among the chloroplast genomes of seven species of *Agropyron* Gaertn and two closely related species (*E. trachycaulis* and *E. elongata*), 33 codons exhibit an $RSCU$ value greater than 1. The codon with the highest $RSCU$ value is AUG for methionine (Met), at 6.97; followed by UUA for leucine (Leu), at 2.074; while the lowest was GUG for methionine (Met) at 0.03. Amino acid specificity analysis revealed that methionine (Met), arginine (Arg), leucine (Leu), and serine (Ser) exhibited the highest occurrence frequencies. Tryptophan (Trp) was the only codon showing no preference ($RSCU = 1.00$), potentially related to its strict monocodon coding nature in the chloroplast genome. Among codons with $RSCU > 1$, 29 codons (96.67%) terminated with A or U, while only 3 codons (3.33%) terminated with G or C. This pattern aligns strongly with the AU-enriched nature of the chloroplast genome and transcription optimization mechanisms (Table 5 and Fig. 2A). This preference pattern provides a foundational background for developing molecular markers for identifying clades, aiding in the selection of specific markers at the codon level.

Analysis of interspersed repeats

Analysis of repetitive sequences in seven species of the *Agropyron* Gaertn and two closely related species (*E. trachycaulus*, *E. elongata*) revealed 29 to 39 forward repeats and 13 to 18 palindromic repeats. No reverse or complementary repeat sequences were detected, reflecting an evolutionary strategy for maintaining core functional stability in the chloroplast genome. Notably, *E. trachycaulus* (ET) and *E. elongata* (EE) exhibited significantly higher total repeat sequences than the other seven *Agropyron* Gaertn species. This clades-specific repeat sequence pattern can serve as a reference indicator for molecular marker-assisted taxonomic identification of the broad-spike/narrow-spike clades. (Fig. 2B).

cpSSR analysis

SSR loci were most densely distributed in the LSC region, with total numbers varying among species (Table 6). All species contained SSRs ranging from mononucleotides to hexanucleotides, and clade-specific loci were

Category	Gene group	Gene name
Photosynthesis	Subunits of photosystem I	<i>psaA,psaB,psaC,psaI,psaJ</i>
	Subunits of photosystem II	<i>psbA,psbB,psbC,psbD,psbE,psbF,psbH,psbI,psbJ,psbK,psbL,psbM,psbN,psbT,psbZ</i>
	Subunits of NADH dehydrogenase	<i>ndhA*,ndhB*(2),ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK</i>
	Subunits of cytochrome b/f complex	<i>petA,petB*,petD*,petG,petL,petN</i>
	Subunits of ATP synthase	<i>atpA,atpB,atpE,atpF*,atpH,atpI</i>
	Large subunit of rubisco	<i>rbcL</i>
	Subunits photochlorophyllide reductase	–
Self-replication	Proteins of large ribosomal subunit	<i>rpl14,rpl16*,rpl2*(2),rpl20,rpl22,rpl23(2),rpl32,rpl33,rpl36</i>
	Proteins of small ribosomal subunit	<i>rps11,rps12***(2),rps14,rps15(2),rps16*,rps18,rps19(2),rps2,rps3,rps4,rps7(2),rps8</i>
	Subunits of RNA polymerase	<i>rpoA,rpoB,rpoC1,rpoC2</i>
	Ribosomal RNAs	<i>rrn16(2),rrn23(2),rrn4.5(2),rrn5(2)</i>
	Transfer RNAs	<i>trnA-UGC*(2),trnC-GCA,trnD-GUC,trnE-UUC,trnF-GAA,trnG-GCC*,trnG-UCC,trnH-GUG(2),trnI-CAU(2),trnI-GAU*(2),trnK-UUU*,trnL-CAA(2),trnL-UAA*,trnL-UAG,trnM-CAU(2),trnN-GUU(2),trnP-UGG,trnQ-UUG,trnR-ACG(2),trnR-UCU,trnS-GCU,trnS-GGA,trnS-UGA,trnT-GGU,trnT-UGU,trnV-GAC(2),trnV-UAC*,trnW-CCA,trnY-GUA,trnYfM-CAU(2)</i>
Other genes	Maturase	<i>matK</i>
	Protease	<i>clpP</i>
	Envelope membrane protein	<i>cemA</i>
	Acetyl-CoA carboxylase	–
	c-type cytochrome synthesis gene	<i>ccsA</i>
	Translation initiation factor	<i>infA</i>
	other	–
Genes of unknown function	Conserved hypothetical chloroplast ORF	<i>ycf3**,ycf4</i>

Table 3. Genes annotated in the chloroplast genomes. Gene*: Genes containing one intron; Gene**: Genes containing two introns; Gene: Pseudogenes; Gene(2): Genes with copy numbers > 1 (copy numbers in parentheses).

identified: *E. elongata* possesses a unique (ATATA)₃ pentanucleotide locus (exclusive to the narrow-spike clades); *A. desertorum* var. pilosiusculum possesses a unique (TC)₅ locus (exclusive to the broad-spike clades *A. cristatum* var. pluriflorum and *A. desertorum* var. pilosiusculum); *A. sibiricum* f. pubiflorum possesses a unique (TAAA)₄ locus (exclusive to the broad-spike clades *A. sibiricum* and *A. sibiricum* f. pubiflorum); *E. trachycaulus* shares the (CCATA)₃ locus with *E. elongata* (common to the narrow-spike clades), but lacks the (ATATA)₃ locus, serving as a marker to distinguish *E. trachycaulus* from *E. elongata*. SSR loci in the broad-spike clades are highly conserved, yet exhibit single-nucleotide repeat differences. For example, *A. mongolicum* var. villosum lacks the (A)₁₁ site, which can serve as a specific auxiliary marker for *A. mongolicum* var. villosum. The clades specificity and shared patterns of these SSR sites provide a candidate marker library for molecular-assisted taxonomic identification of the broad-spike/narrow-spike clades (Fig. 3).

Analysis of chloroplast nucleotide diversity

Nucleotide diversity (Pi value) serves as a crucial indicator for measuring the degree of nucleic acid sequence variation among different species, with highly variable regions potentially serving as sequence features for population genetics research. Global homology analysis using Mafft software revealed that the *rps12* gene within the large single-copy region (LSC) exhibited the highest genetic diversity, with a Pi value peak of 0.05198. Its high variability makes it a core candidate marker for molecular-assisted taxonomic identification of the broad-spike/narrow-spike clades. Further comparisons revealed that genetic variation in single-copy regions (LSC and SSC) significantly exceeded that in inverted repeat (IR) regions. This difference is closely related to the high conservation of IR regions maintained through gene conversion mechanisms during evolution (Fig. 4).

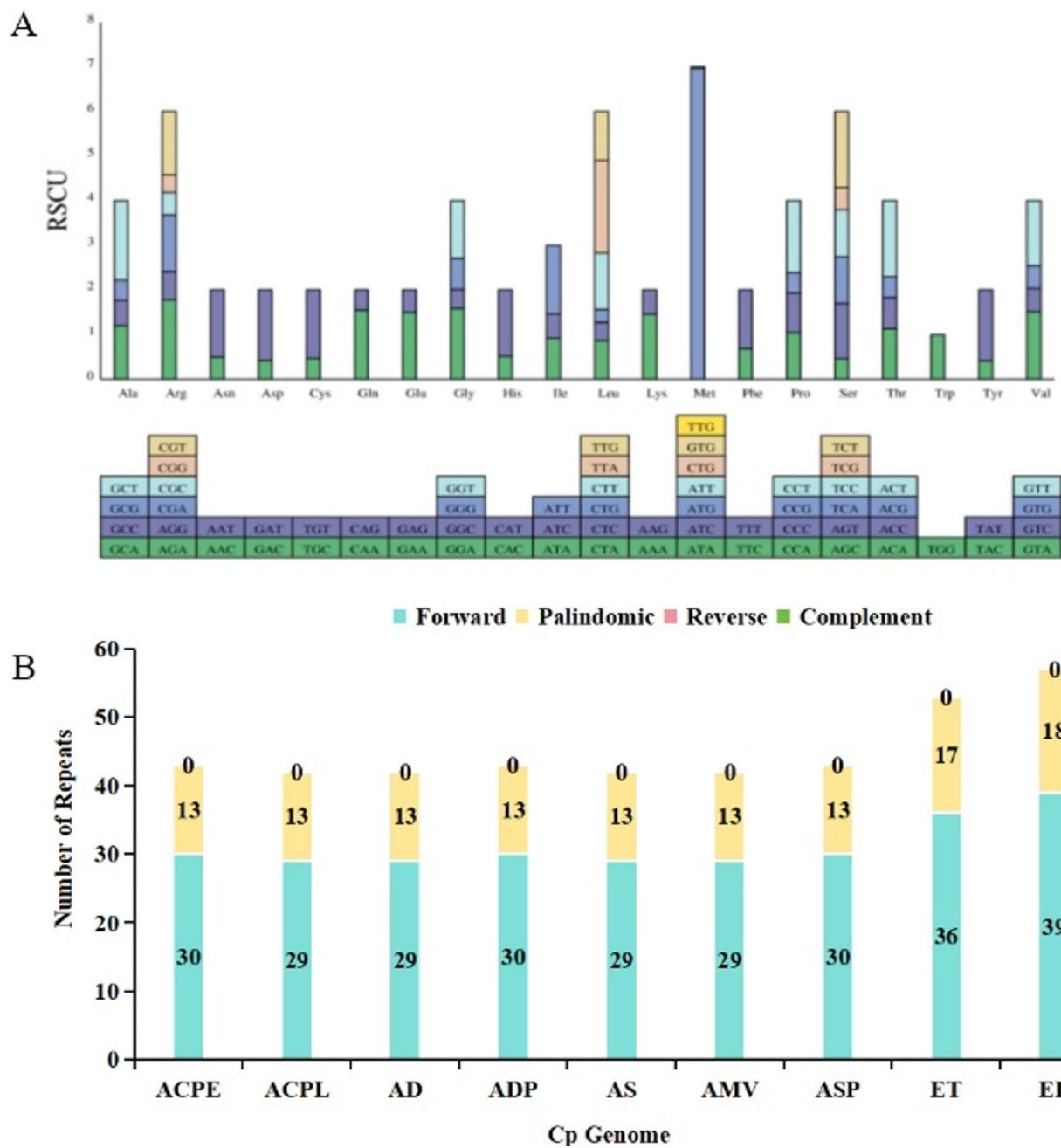
Gene	Location	Exon I(bp)	Intron I(bp)	Exon II(bp)	Intron II(bp)	Exon III(bp)
trnK-UUU	LSC	38,38,38,38,38,38,38,37	2495,2495,2495,2495,2495,2495,2495,2504,2487	33,33,33,33,33,33,33,33,35		
rps16	LSC	66,66,66,66,66,66,66,66,40	800,794,793,799,794,794,794,793,789	210,210,210,210,210,210,210,210,218		
trnG-GCC	LSC	24,24,24,24,24,24,24,24,23	681,681,681,681,681,681,681,682,683	48		
atpF	LSC	159,159,159,159,159,159,159,168,145	808,813,812,806,812,810,810,793,819	408,408,408,408,408,408,408,407		
ycf3	LSC	132,132,132,132,132,132,132,132,124	726,726,726,726,726,726,726,723,723	228,228,228,228,228,228,228,28,228,230	753,75,3,753,747,75,3,753,747,75,1,751	159
trnL-UAA	LSC	35	566,566,566,566,566,566,566,574,575	50		
trnV-UAC	LSC	39	596,596,596,596,596,596,596,596,598	37,37,37,37,37,37,37,37,35		
petB	LSC	6	740,740,740,740,740,740,740,745,745	642		
petD	LSC	8,8,8,8,8,8,9,8	743,743,743,743,743,743,743,710,749	481,481,481,481,481,481,481,481,481,513,475		
rpl16	LSC	9	1047,1048,1047,1048,1046,1048,1046,1054,1051	402		
rps12	IRa	114	-	231,231,231,231,231,231,231,231,231,231,30,232	546,54,6,546,546,54,6,546,546,54,2,542	30,30,30,30,30,30,30,231,29
trnA-UGC	IRa	38	811	35		
trnI-GAU	IRa	42,42,42,42,42,42,42,37	801,801,801,801,801,801,801,801,806	35		
ndhB	IRa	777	712	756		
rpl2	IRa	390,390,390,390,390,390,390,393,403	663,663,663,663,663,663,663,663,660,663	432,432,432,432,432,432,432,432,432,431		
rpl2	IRb	390,390,390,390,390,390,390,393,403	663,663,663,663,663,663,663,663,660,663	432,432,432,432,432,432,432,432,432,431		
ndhB	IRb	777	712	756		
rps12	IRb	231,231,231,231,231,231,231,231,30,232		30,30,30,30,30,30,30,231,29	546,54,6,546,546,54,6,546,546,54,2,542	114
trnI-GAU	IRb	42,42,42,42,42,42,42,37	801,801,801,801,801,801,801,801,806	35		
trnA-UGC	IRb	38	811	35		
ndhA	SSC	549,549,549,549,549,549,549,549,550	1032,1032,1032,1032,1032,1032,1026,1026	540,540,540,540,540,540,540,540,540,540,540,539		

Table 4. Exon–intron structure of annotated genes in the chloroplast genomes. The exon and intron length data for each gene in the table are arranged according to seven species of *Agropyron Gaertn* and two closely related species (ACPE, ACPL, AD, ADP, AS, AMV, ASP, ET, and EE). A single number indicates that the length of this region is consistent across all nine species; multiple numbers indicate that different species exhibit length variations in this region. **2.2 Analysis of Codon Usage Bias and Interspersed Repeats.**

Chloroplast boundary analysis

The chloroplast genome adopts a circular structure, with the intercalary region (IR) sharing four boundaries with the left supercalicinal region (LSC) and the right supercalicinal region (SSC): LSC-IRb, IRb-SSC, SSC-IRa, and IRa-LSC. During genomic evolution, IR boundaries undergo expansion and contraction, causing certain genes to enter the IR region or the single-copy region. Therefore, CPJSdraw was employed to visualize this boundary information. By comparing critical boundary connections within the chloroplast genomes of 10 *Agropyron* species, 1 *Elymus* species, 1 *Elytrigia* species, 1 *Australopyrum* species, and 1 *Psathyrostachys* species, the study focuses on linkages between the inverted repeat region (IR) and the large single-copy region (LSC) as well as the small single-copy region (SSC). Results revealed that across all examined species:—The *rpl22* gene resides within the LSC, spanning 450 bp;—The *rps19* and *rps15* genes are located within IRb, with *rps19* adjacent to the LSC region and *rps15* adjacent to the SSC region; The *ndhF* gene was located within the SSC region; the *ndhH* gene was situated at the SSC/IRa boundary; the *rps19* and *rps15* genes were within IRa; and the *psbA* gene was located within the LSC region. The boundary genes and their connecting lengths showed consistency across seven *Agropyron* species and two closely related species (Fig. 5).

AminoAcid	Codon	RSCU	Numbers	AminoAcid	Codon	RSCU	Numbers
Ter(*)	UAA	1.699	47	Met(M)	AUG	6.970	463
	UAG	0.651	18		GUG	0.030	2
	UGA	0.651	18		AAC	0.506	202
Ala(A)	GCA	1.204	378	Asn(N)	AAU	1.494	597
	GCC	0.570	179		CCA	1.047	224
	GCG	0.443	139		CCC	0.888	190
	GCU	1.784	560		CCG	0.458	98
Cys(C)	UGC	0.473	52	Pro(P)	CCU	1.608	344
	UGU	1.527	168		CAA	1.553	517
Asp(D)	GAC	0.423	150		CAG	0.447	149
	GAU	1.577	559	Arg(R)	AGA	1.784	366
Glu(E)	GAA	1.501	779		AGG	0.629	129
	GAG	0.499	259		CGA	1.272	261
Phe(F)	UUC	0.684	374		CGC	0.497	102
	UUU	1.316	720		CGG	0.395	81
Gly(G)	GGA	1.587	590		CGU	1.423	292
	GGC	0.422	157	Ser(S)	AGC	0.461	109
	GGG	0.699	260		AGU	1.240	293
	GGU	1.291	480		UCA	1.041	246
His(H)	CAC	0.517	116		UCC	1.058	250
	CAU	1.483	333		UCG	0.491	116
Ile(I)	AUA	0.926	502		UCU	1.709	404
	AUC	0.542	294	Thr(T)	ACA	1.133	304
	AUU	1.532	831		ACC	0.693	186
Lys(K)	AAA	1.460	757		ACG	0.466	125
	AAG	0.540	280		ACU	1.707	458
Leu(L)	CUA	0.869	308	Val(V)	GUA	1.520	445
	CUC	0.409	145		GUC	0.512	150
	CUG	0.290	103		GUG	0.509	149
	CUU	1.261	447		GUU	1.458	427
	UUU	2.074	735	Trp(W)	UGG	1.000	343
	UUG	1.097	389		UAC	0.419	151
				Tyr(Y)	UAU	1.581	570


Table 5. Statistical analysis of codon usage bias in chloroplast genomes. * Represents termination codons.

Chloroplast sequence homology analysis

A collinearity analysis was performed on the chloroplast genomes of 10 *Agropyron* Gaertn, 1 *Elytrigia* species, 1 *Elymus* species, 1 *Australopyrum* species, and 1 *Psathyrostachys* species (Table S3). Results revealed homology across all genome sequences, with no significant insertions or deletions detected. The 14 chloroplast genomes were connected by a single red line, indicating highly conserved chloroplast genome structures without gene rearrangements (Table S2 and Fig. 6).

Phylogenetic tree analysis

Fourteen species from different genera within the wheat tribe were selected for phylogenetic tree analysis, including 10 *Agropyron* species, 1 *Elymus* species, 1 *Elytrigia* species, 1 *Australopyrum* species, 1 *Psathyrostachys* species, and 1 cultivar from *Psathyrostachys*. Results indicate that the 14 species are divided into two clades. Clade I comprised 10 *Agropyron* species whose chloroplast genomic characteristics (e.g., codon third position A/U preference > 87%, forward repeat sequence enrichment) strongly aligned with the morphological criteria for broad-spike clades (spike width > 5 mm, lanceolate glumes), supporting the broad-spike clades feature in the North American taxonomic system³⁹. Clade II comprises four species from *Elymus* species, *Campeostachys* species, *Elytrigia* species, and *Australopyrum* species, indicating that *E. trachycaulus* and *E. elongata* are more closely related to species of the *Campeostachys* species and *Australopyrum* species. These phylogenetic branch results provide molecular evidence at the evolutionary level for molecular marker-assisted identification of the broad-spike/narrow-spike clades, corroborating findings from SSR and IR length markers (Table 1 and Fig. 7).

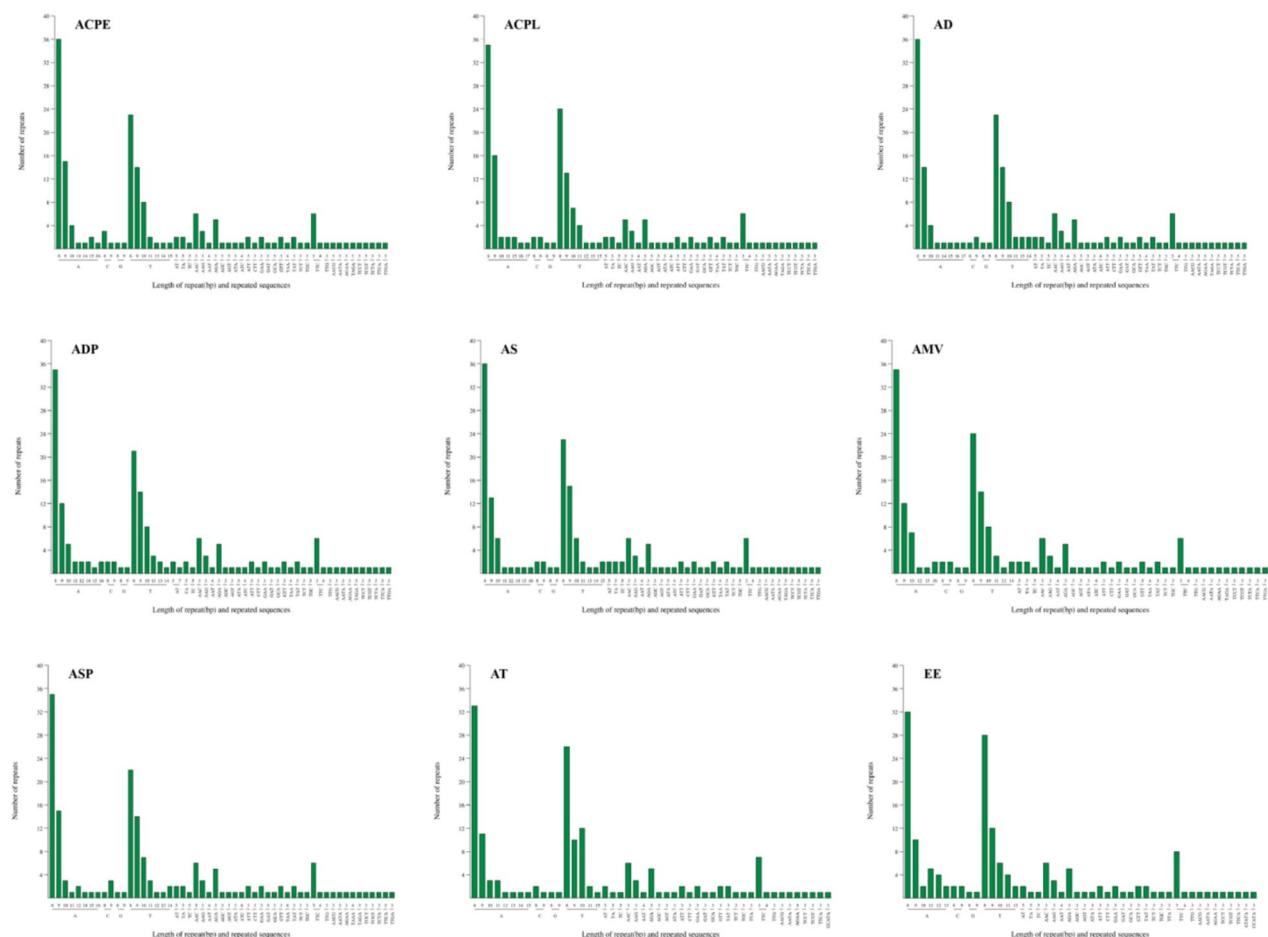
Fig. 2. Relative synonymous codon usage (RSCU) frequency of amino acids and codon repeats. Note: (A) Amino acid usage frequency calculated via RSCU; (B) Repeat sequence analysis under positive selection in chloroplast genomes. Forward, Palindromic, Reverse and Complement represent different repeat patterns.

Discussion

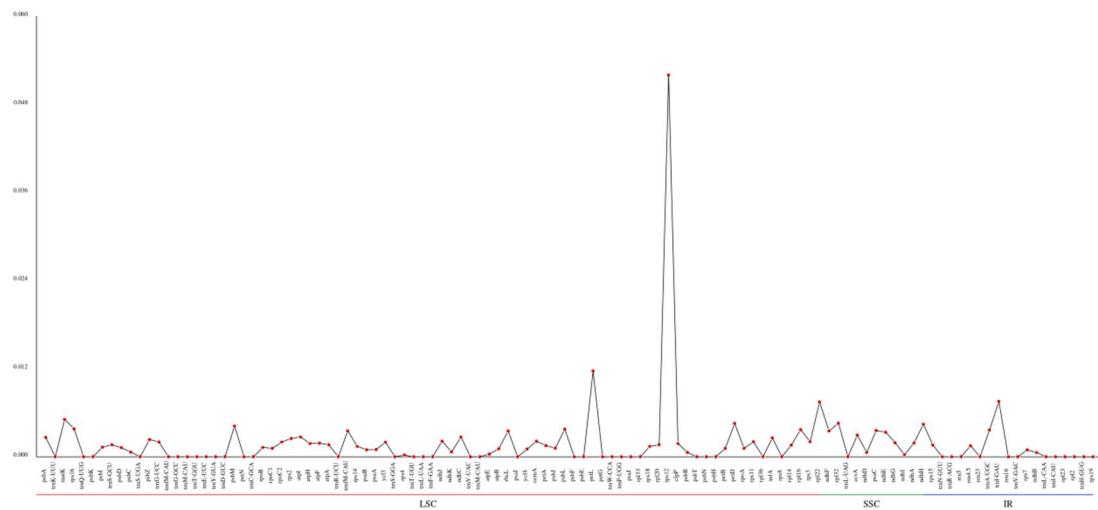
Structural variation in chloroplast genomes and its value as molecular markers

Agropyron Gaertn, an important perennial forage resource within the Triticeae tribe of the gramineae family, has garnered significant attention due to its strong stress tolerance and rich genetic diversity. Research indicates that the chloroplast genome of *Agropyron Gaertn* exhibits a typical quadripartite structure (LSC-IR-SSC-IR), ranging in size from 135 to 137 kb. It contains 130 to 134 annotated functional genes, including 89 to 91 protein-coding genes, 37 to 39 tRNAs, and 8 rRNAs, consistent with the chloroplast genome characteristics of most higher plants⁴⁰. However, variations with taxonomic and phylogenetic significance were also identified within the conserved framework.

Sample ID	Region	Exon	Intron	Intergenic	Total number of markers in different regions	Total markers	Proportion
ACPE	LSC	40	17	69	126	171	73.70%
	SSC	12	0	7	19		11.10%
	IR	12	2	12	26		15.20%
ACPL	LSC	39	17	70	126	170	74.10%
	SSC	12	0	7	19		11.20%
	IR	12	2	11	25		14.70%
AD	LSC	40	16	69	125	170	73.50%
	SSC	12	0	7	19		11.20%
	IR	12	2	12	26		15.30%
ADP	LSC	40	17	70	127	172	73.80%
	SSC	11	0	8	19		11.00%
	IR	12	2	12	26		15.10%
AS	LSC	40	17	70	127	172	73.80%
	SSC	12	0	7	19		11.00%
	IR	12	2	12	26		15.10%
AMV	LSC	39	17	70	126	171	73.70%
	SSC	12	0	7	19		11.10%
	IR	12	2	12	26		15.20%
ASP	LSC	40	17	70	127	171	74.30%
	SSC	11	0	7	18		10.50%
	IR	12	2	12	26		15.20%
AT	LSC	41	19	64	124	162	76.50%
	SSC	10	0	6	16		9.90%
	IR	12	2	8	22		13.60%
EE	LSC	41	19	70	130	167	77.80%
	SSC	10	0	5	15		9.00%
	IR	12	2	8	22		13.20%


Table 6. Statistics for sequence repeats (SSR) in the chloroplast genomes of seven *Agropyron* species and two closely related species.

Coding gene variants: identification of core candidate gene markers


Nucleotide diversity (Pi) analysis revealed that the genes *rps12* and *ycf3* exhibited significantly high variability: The Pi value of the *rps12* gene in the LSC region reached 0.05198, the highest among all tested genes. This result strongly aligns with findings from studies on Triticeae relatives (such as *Setaria* and *Hordeum*) that “high sequence polymorphism in the *rps12* gene can serve as a taxonomic marker”^{41,42}. Its sequence variation effectively distinguishes broad-spike/narrow-spike clades, making it a core candidate gene for molecular marker-assisted identification. Additionally, the *ycf3* gene in the LSC region exhibits potential for clade differentiation due to its structural characteristics—containing two introns—and sequence length polymorphism. This finding corroborates the conclusion by Xie et al.⁴³ that “intron features of the *ycf3* gene can serve as markers for species and clades identification” in the gramineae, further enhancing the reliability of this gene as an auxiliary taxonomic marker.

Variation in scattered repeat sequences: identification of clade-specific structural markers

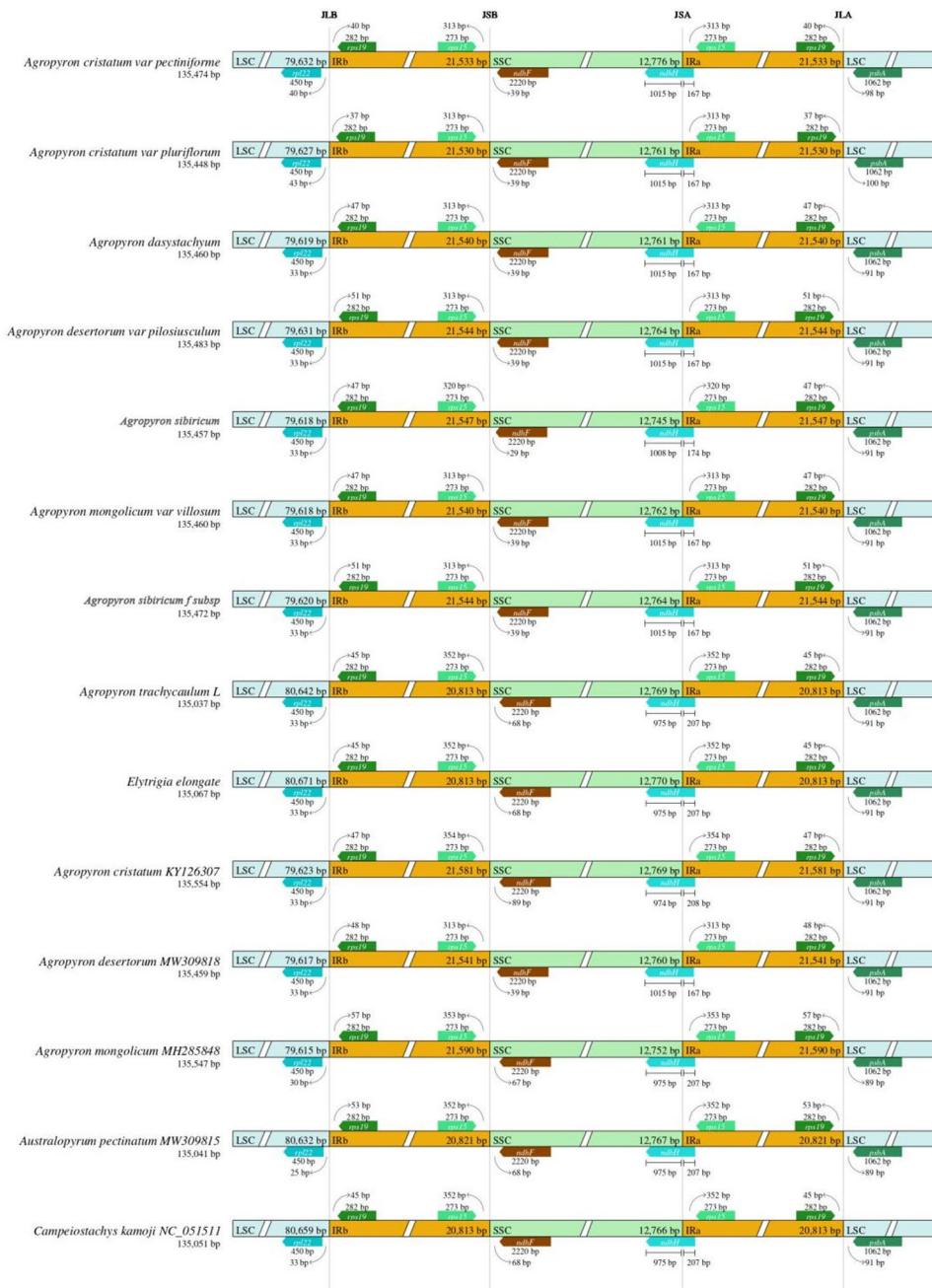
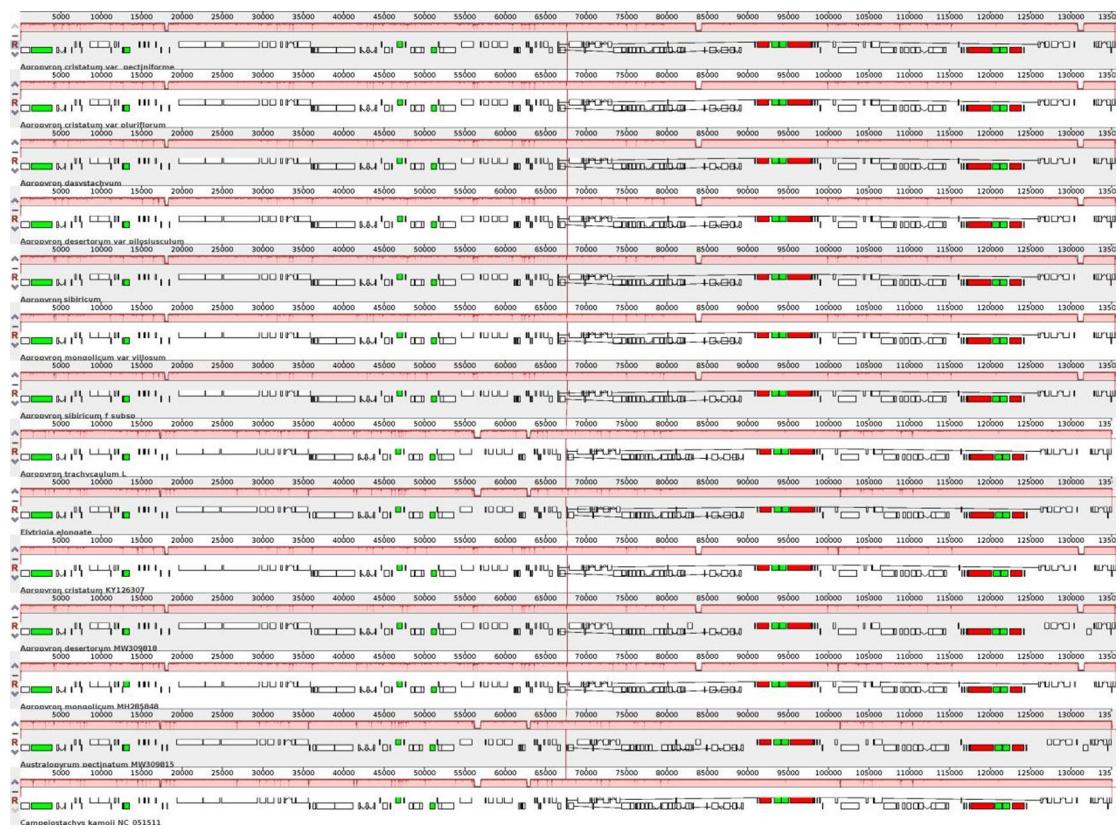

Scattered repetitive sequences comprise only forward and palindromic types, reflecting genomic structural stability. Heidari et al.⁴⁴ noted that forward repeats can promote local sequence amplification through sliding mismatches, while palindromic repeats participate in transcription termination or RNA editing by forming stem-loop structures. The synergistic interaction between these two types may regulate genomic functional diversity. Regarding clades differences, the closely related species *E. elongata* exhibits a total of 57 repetitive sequences, significantly higher than the *Agropyron Gaertn*’s broad-spike clades. Similar phenomena have been applied in interspecific hybrid identification within the Triticeae, where differences in repetitive sequence numbers have been confirmed as a key indicator for distinguishing hybrids from their parents⁴⁵. Wicher et al.⁴⁶ further confirmed that repeat sequence expansion in gramineae often accompanies fine-tuning of genomic architecture, potentially linked to adaptive potential. Concurrently, the distribution characteristics of repetitive sequences in this study, coupled with codon bias (96.67% of highly biased codons terminate with A/U), collectively reflect the AU enrichment feature of the chloroplast genome in response to mutational pressure and natural selection⁴⁷. This coevolutionary pattern was also observed in the genus *Leymus*⁴⁸ within the gramineae, revealing a common evolutionary principle in the chloroplast genomes of Triticeae plants and providing supplementary evidence for resolving phylogenetic relationships among clades.

Fig. 3. Statistics on the number of SSR types in the chloroplast genomes of seven *Agropyron* species and two closely related species.

Fig. 4. Line chart of chloroplast gene nucleotide diversity *Note*: The horizontal-axis represents gene names; the vertical-axis indicates Pi values.


Fig. 5. Comparative analysis of chloroplast genome IR boundaries *Note:* Thin lines represent junction points among regions, displaying genes adjacent to the junctions.

SSR and IR region variation: screening of target marker for precise identification

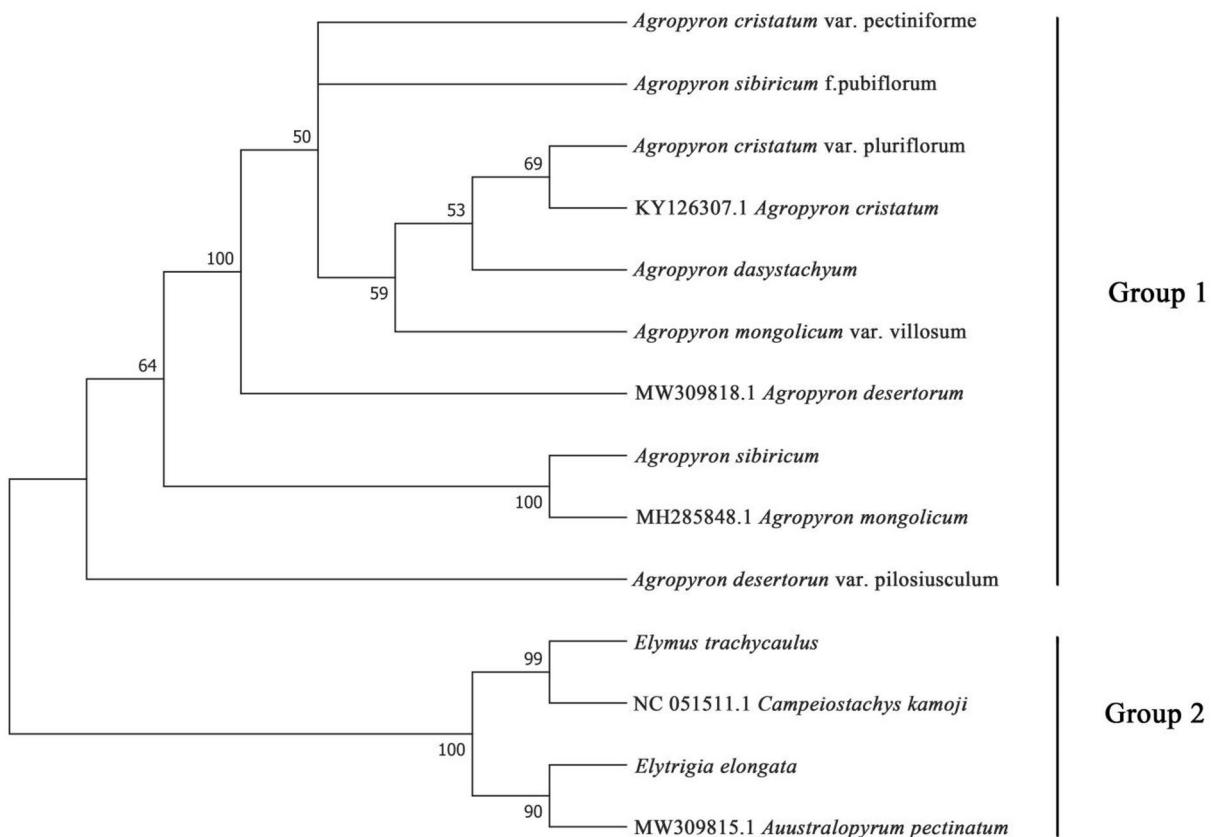
The clade specificity of SSR loci provides direct clues for the precise identification of the broad-spike/narrow-spike clades: *E. elongata* of the narrow-spike clade possesses a unique $(ATATA)_3$ pentanucleotide locus, while *A. desertorum* var. *pilosusculum* possesses a unique $(TC)_5$ site, while *A. sibiricum* f. *pubiflorum* exhibits a distinctive $(TAAA)_4$ site. These sites serve as specific markers at the taxon and species levels, aligning with Deng et al.⁴⁹’s conclusion in their Triticeae SSR study that “site combination patterns support auxiliary identification.” Furthermore, IR region length variation also holds clear taxonomic value: the IRb length in narrow-spike clades (*E. trachycaulus*, *E. elongata*) is uniformly 20,813 bp, significantly shorter than that in broad-spike clades (21,530–21,547 bp). This structural difference can serve as an auxiliary indicator for rapid differentiation between broad-spike and narrow-spike clades.

Molecular marker-assisted taxonomic identification systems and application

Phylogenetic analysis based on chloroplast genomes provides core support for defining the broad-spike/narrow-spike clades within *Agropyron* species: the maximum likelihood phylogenetic tree reveals two highly supported

Fig. 6. Chloroplast sequence homology analysis. Note: Short blocks represent gene locations in the genome, where white indicates CDS, green indicates tRNA, red indicates rRNA, and connecting lines between colored blocks denote collinear relationships.

monophyletic clades, with branch clustering perfectly matching broad-spike/narrow-spike phenotypic traits. The integration of molecular markers—including SSR loci, intergenic region (IR) length, and highly variable genes (*rps12*, *ycf3*)—established a multidimensional molecular marker-assisted identification system for the broad-spike/narrow-spike clades.


Highly variable gene markers form the core of the system. The *rps12* gene which has the highest nucleotide diversity ($P_i = 0.05198$) is particularly informative. Its unique structure and copy number variation in the IR region, combined with the length polymorphism of the *ycf3* gene intron in the LSC region, provide reliable sequence-level evidence for broad-spike/narrow-spike clades discrimination. This supports findings by Wu et al.⁵⁰ in *Setaria* and Han et al.⁵¹ in *Agropyron* *Geartn*, confirming the universality of these genes in distinguishing closely related species.

Simple sequence repeat (SSR) loci offer a high-resolution identification tool. The study identified a (CCATA)₃ locus, shared by all narrow-spike clades, that serves as a reliable clade-specific marker. Furthermore, an (ATATA)₃ locus unique to *E. elongata*, cleanly distinguishes it from *E. trachycaulis*. This multi-locus identification strategy significantly improves identification accuracy and specificity, an approach widely validated in wheat tribe genomic research⁴⁹.

Genomic structural variation enable rapid initial screening. We confirmed that the length of the IR region is stably 20,813 bp in the narrow-spike clades, which is significantly shorter than the 21,530–21,547 bp range in the broad-spike clades. This macrostructural difference is easily detectable via conventional PCR and electrophoresis, making it an ideal screening marker for large-scale germplasm resources. This aligns with reports by Qin et al.⁵² in legumes and Jiang et al.⁵³ in *Setaria* who also found that IR region variation correlates with clades differentiation.

Scattered repetitive sequences provide supplementary corroborating evidence. The total number of repetitive sequences in the closely related species *E. elongata* and *E. trachycaulis* is significantly higher than that in the broad-spike *Agropyron* clades. This genomic structural difference offers further support for the classification.

In summary, the molecular markers identified in this study provide a practical tool for efficient and precise classification and identification of the broad-spike/narrow-spike *Agropyron* clades. They also serve as a reference for developing molecular markers in other wheat tribe species, underscoring broad value of chloroplast genomes in plant phylogenetics and taxonomy.

Fig. 7. Phylogenetic tree based on 14 complete chloroplast genomes and related taxonomic clades.

Conclusions

This study conducted an in-depth analysis of the chloroplast genomes of seven species of *Agropyron* Gaertn and two closely related species, revealing their evolutionary characteristics and taxonomic value. Analysis of chloroplast genome characteristics indicates that *Agropyron* Gaertn species exhibit a typical quadripartite structure (LSC-IR-SSC-IR), with genome sizes ranging from 135 to 137 kb and containing 131 genes. Among these, *rps12* ($Pi=0.05198$) and *ycf3* were screened out as core candidate genes for molecular marker-assisted taxonomic identification of the broad-spike/narrow-spike clades. The high GC content (43.91%–44.01%) in the IR region correlates with gene conversion mechanisms, while the *trnK*-UUU intron length variation (2487–2504 bp) in the LSC region serves as a supplementary marker. Specific combination patterns of chloroplast genome SSR loci (e.g., the $(CCATA)_3$ locus present in all narrow-spike clades) aid in distinguishing between wide-spike and narrow-spike clades. Combined features in *Elymus trachycaulus* which are highly similar with features of *Elytrigia elongata* such as the high GC content (44.01%) in the IR region and the length (80,642 bp) of the LSC region, supports the traditional identification of *Elymus trachycaulus* into the narrow-spike clades at the molecular level. Phylogenetic analysis further confirms the evolutionary validity of the identification system for the broad-spike and narrow-spike clades within *Agropyron* Gaertn. This study identifies chloroplast molecular markers to aid in the taxonomic identification within *Agropyron* Gaertn. These markers provide a tool for the precise identification, utilization, and conservation of *Agropyron* germplasm. Future work should focus on validating marker stability across larger populations and integrating gene markers to establish a more robust identification system.

Data availability

The raw sequencing data from the Illumina NovaSeq 6000 platform and the chloroplast genome sequences have been deposited in the NCBI database (<https://www.ncbi.nlm.nih.gov/>) with the accession numbers SAMN47853882, SAMN47853883, SAMN47853884, SAMN47853885, SAMN47853886, SAMN47853887, SAMN47853888, SAMN47853889, and SAMN47853890.

Received: 27 July 2025; Accepted: 19 December 2025

Published online: 11 January 2026

References

1. Gao, H. J. et al. Research advance on genetic diversity of *Agropyron* Gaertn plants. *J. Grassl. Forage Sci.* **06**, 31–35 (2011).

2. Zhao, Y. et al. Functional Identification of *MwMYB4* Gene from *Agropyron mongolicum* Keng. *Acta Botan. Boreali-Occiden. Sin.* **40**(04), 565–571 (2020).
3. Dewey, D.R. The Genomic System of Classification as a Guide to Intergeneric Hybridization with the Perennial Triticeae. In: Gustafson, J.P. (eds) *Gene Manipulation in Plant Improvement*. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2429-4_9 (1984).
4. Gao, H. J. et al. Study on the morphology and cytology of *Agropyron cristatum*. *Pratacultural Sci.* **27**(10), 54–59 (2010).
5. Li J. X. Genetic diversity of germplasm resources of *Agropyron cristatum* in Inner Mongolia. https://kns.cnki.net/kcms2/article/abstract?v=vK4o1_BKqSVzjRVfq55625CRxaejeNWXWB3loN4n-8f7HO6Ktk_N9M7BE5EmDehpAMALx_FKPuB3mkWuGX_XANTOSXU-mMr6rvkOBUr06rXbcXVnB4LuvEZ4m7ac3ZimQ8zr1zwCTWaHJCNAg41KqShao9SWfVYVB3ybkew5ZO8wpamZPTQ==&uniplatform=NZKPT&language=CHS (2005).
6. Yun, J. F. & Mi, F. G. A historical review of taxonomic research on the genus *Agropyron* Gaertn. *Chin. J. Grassl.* **02**, 3–7 (1989).
7. Geng, Y. L. *Illustrated Guide to Major Plants of China—Gramineae (Volumes 1–2)* (Science Press, 1959).
8. Cay, S. B. et al. Genome skimming approach reveals the gene arrangements in the chloroplast genomes of the highly endangered *Crocus* L species: *Crocus istanbulensis* (B.Mathew) Rukšans. *PLoS ONE* **17**(6), e0269747. <https://doi.org/10.1371/journal.pone.0269747> (2022).
9. Zhang, J. F. et al. Recent advances in tobacco chloroplast genetic engineering. *Tobacco Sci. Technol.* **50**(06), 88–98. <https://doi.org/10.16135/j.issn1002-0861.2017.0035> (2017).
10. Chen, N. et al. Complete structure and variation of the chloroplast genome of *Agropyron cristatum* (L.) Gaertn. *Gene* **640**, 86–96. <https://doi.org/10.1016/j.gene.2017.10.009> (2018).
11. Luo Y. 2019 The study genetic differentiation of *Agropyron cristatum* populations based on genomic size, phenotypic traits and chlorophyll content. *Doctoral Dissertation, Sichuan Agricultural University*. <https://doi.org/10.27345/d.cnki.gsnuy.2019.000307>
12. Yang, T. et al. A comprehensive analysis of chloroplast genome provides new insights into the evolution of the genus *Chrysosplenium*. *Int. J. Mol. Sci.* **24**(19), 14735. <https://doi.org/10.3390/ijms241914735> (2023).
13. Meng L. et al. Study on germplasm resources of *Elytrigia* species. Beijing: *Science press*, 2020: 1–9.
14. Zhao Y. Z. et al. *Flora Intramongolica (Editio Tertia)* Tomus 6. Huhhot: *Typis intramongolicae popularis*, 2020: 139–145.
15. Editorial Committee of Flora of China. Chinese Academy of Sciences. Tomus 9. *Flora Reipublicae Popularis Sinicae*. Beijing: *Science Press*, 2002.
16. Clayton, W. D., Harman, K.T. & Williamson, H. *World Grass Species - Synonymy database* The Board of Trustees of the Royal Botanic Gardens, Kew. (2006).
17. Lavin, M. et al. Physical disturbance shapes vascular plant diversity more profoundly than fire in the sagebrush steppe of southeastern Idaho USA. *Ecol. Evol.* **3**(6), 1626–1641. <https://doi.org/10.1002/ee3.574> (2013).
18. Liu J. et al. Chloroplast genome characteristics and phylogenetic analysis of *Elytrigia elongata* and *Elymus trachycaulus*. *Pratacultural Science*, 1–26[2025-11-23]. <https://link.cnki.net/urlid/62.1069.S.20250904.1434.007> (2025).
19. Zhang, Y. et al. Domestic research progress on *Agropyron elongatum* in our country. *Mod. Agric. Sci. Technol.* **11**, 162–166 (2022).
20. Zhang, Y. et al. Study on carbon, nitrogen and phosphorus contents and stoichiometric characteristics of *Agropyron cristatum* in different phenological periods. *Agric. Technol.* **42**(13), 22–25. <https://doi.org/10.19754/j.nyyjs.20220715006> (2022).
21. Yan W. H. *Genetic Analysis of Some Germplasm Resources of Agropyron Gaertn. and Roegneria C. Koch.* *Dissertation, Chinese Academy of Agricultural Sciences*, 2010.
22. Geng, K. X. et al. Geng Yili: The founder of Gramineae taxonomy in China. *Zhongshan Fengyu* **6**, 21–24 (2002).
23. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. *iMeta* **2**(2), e107–e107. <https://doi.org/10.1002/itm2.107> (2023).
24. Doug, H. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. *BMC Bioinform.* **11**(1), 119. <https://doi.org/10.1186/1471-2105-11-119> (2010).
25. Ananth, P. et al. The HMMER web server for protein sequence similarity search. *Curr. Protoc. Bioinform.* **60**(1), 3–15. <https://doi.org/10.1002/cpbi.40> (2017).
26. Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Res.* **32**(1), 11–16. <https://doi.org/10.1093/nar/gkh152> (2004).
27. Christiam, C. et al. BLAST+: Architecture and applications. *BMC Bioinform.* **10**(1), 421. <https://doi.org/10.1186/1471-2105-10-421> (2009).
28. Lohse, M., Drechsel, O. & Bock, R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. *Curr. Genet.* **52**(5–6), 267–274. <https://doi.org/10.1007/s00294-007-0161-y> (2007).
29. Thiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.) TAG. *Theor. Appl. Gen. Theoretische und angewandte Genetik* **106**(3), 411–422. <https://doi.org/10.1007/s00122-002-1031-0> (2003).
30. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* **30**(4), 772–780. <https://doi.org/10.1093/molbev/mst010> (2013).
31. Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. *Genomics Proteomics Bioinform.* **8**(1), 77–80. [https://doi.org/10.1016/S1672-0229\(10\)60008-3](https://doi.org/10.1016/S1672-0229(10)60008-3) (2010).
32. Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* **25**(11), 1451–1452. <https://doi.org/10.1093/bioinformatics/btp187> (2009).
33. Breitenbach, J. E., Shelby, K. S. & Popham, H. J. Baculovirus induced transcripts in hemocytes from the larvae of *Heliothis virescens*. *Viruses* **3**(11), 2047–2064. <https://doi.org/10.3390/v3112047> (2011).
34. Li, H. et al. CPJSdraw: analysis and visualization of junction sites of chloroplast genomes. *PeerJ* **11**, e15326. <https://doi.org/10.7717/peerj.15326> (2023).
35. Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* **61**(3), 539–542. <https://doi.org/10.1093/sysbio/sys029> (2012).
36. Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. *Genome Res.* **14**(7), 1394–1403. <https://doi.org/10.1101/gr.2289704> (2004).
37. Wang, P., Guo, J., Zhou, J. & Wang, Y. Characterization of the complete chloroplast genome and development of molecular markers of *Salix*. *Sci. Rep.* **14**(1), 28528. <https://doi.org/10.1038/s41598-024-79604-8> (2024).
38. Wang, J.-H., Moore, M. J., Wang, H., Zhu, Z.-X. & Wang, H.-F. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. *Gene* **765**, 145103–145103. <https://doi.org/10.1016/j.gene.2020.145103> (2021).
39. Rabeler R K, Hartman R L. Flora of North America. From Internet, 2007, 767.
40. Sathyamurthy, D. et al. Comparative chloroplast genome analysis of six millet species along with related Poaceae family members. *Nucleus* **68**, 13–24. <https://doi.org/10.1007/s13237-023-00464-0> (2025).
41. Su, Q. et al. The complete chloroplast genomes of seventeen *Aegilops tauschii*: genome comparative analysis and phylogenetic inference. *PeerJ* **8**, e8678. <https://doi.org/10.7717/peerj.8678> (2020).
42. Ou, T., Wu, Z., Tian, C., Yang, Y. & Li, Z. Complete mitochondrial genome of *Agropyron cristatum* reveals gene transfer and RNA editing events. *BMC Plant Biol.* **24**(1), 830. <https://doi.org/10.1186/s12870-024-0558-8> (2024).
43. Xie, W. et al. LpY3IP1 Enhances the drought and salt tolerance of perennial ryegrass by protecting the photosynthetic apparatus. *Sci. Hortic.* **2024**, 338113645–339113645. <https://doi.org/10.1016/J.SCIENTA.2024.113645> (2024).

44. Heidari, B. & Shariatipour, N. Meta-analysis of expression of the stress tolerance associated genes and uncover their -regulatory elements in rice (L.). *Open Bioinform. J.* **13**, 39–49 (2020).
45. Feng, H. et al. *Hordeum* I genome unlocks adaptive evolution and genetic potential for crop improvement. *Nat. Plants* **11**(3), 438–452. <https://doi.org/10.1038/s41477-025-01942-w> (2025).
46. Wicker, T. et al. Impact of transposable elements on genome structure and evolution in bread wheat. *Genome Biol.* **19**(1), 103. <https://doi.org/10.1186/s13059-018-1479-0> (2018).
47. Zhang, Y. R. et al. Analysis of codon usage patterns of the chloroplast genomes in the Poaceae family. *Aust. J. Bot.* **60**(5), 461–470 (2012).
48. Li, Y. Y. et al. Phylogenetic analysis of *Leymus* (Poaceae: Triticeae) based on random amplified polymorphic DNA. *Biologia* **71**, 396–401. <https://doi.org/10.1515/biolog-2016-0048> (2016).
49. Deng, P. et al. Genome-wide characterization of microsatellites in Triticeae species: Abundance, distribution and evolution. *Sci. Rep.* **6**, 32224. <https://doi.org/10.1038/srep32224> (2016).
50. Wu, Z. N. et al. Comparative and phylogenetic analysis of complete chloroplast genomes in *Leymus* (Triticodae, Poaceae). *Genes* **13**(8), 1425. <https://doi.org/10.3390/genes13081425> (2022).
51. Han, H. et al. Analysis of chloroplast genomes provides insights into the evolution of *Agropyron*. *Front. Genet.* **13**, 832809. <https://doi.org/10.3389/fgene.2022.832809> (2022).
52. Qin, Q. et al. Comparative analysis of chloroplast genomes reveals molecular evolution and phylogenetic relationships within the *Papilionoideae* of *Fabaceae*. *BMC Plant. Biol.* **25**, 157. <https://doi.org/10.1186/s12870-025-06138-0> (2025).
53. Jiang, L. et al. The chloroplast genome of *Elytrigia repens* (L.) Nevski (Poaceae: Triticeae), a widespread perennial grass from Qinghai-Tibetan Plateau China. *Mitochondrial DNA B Resour.* **6**(12), 3490–3492. <https://doi.org/10.1080/23802359.2021.1993098> (2021).

Author contributions

WXP prepared figures and tables and wrote the first draft of the manuscript. WHY designed the experiments, performed data analyses, and revised the manuscript. ZYL and ZNW collected plant materials and extracted DNA. QST and YD conceived and designed the experiments. CZW and WHY contributed to the analysis of results and revision of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Inner Mongolia Key Science and Technology Project “Key Technology Research on Germplasm Innovation and Application of Fine Native Grasses” (2021ZD0031); the General Project of the Inner Mongolia Autonomous Region Natural Science Foundation “Development of Salt-Tolerant Related Sequence Features for *Agropyron cristatum* and Creation of New Germplasm with Marker Assistance” (2023MS03033); and the Inner Mongolia Autonomous Region Science and Technology Plan Project “Integration of High-Efficiency Breeding, Processing, and Utilization Technologies for Multi-Functional Native Grasses in Xilingol League” (2022YFDZ0083).

Declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was conducted the plant material that complies with relevant institutional, national, and international guidelines and legislation.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-33570-x>.

Correspondence and requests for materials should be addressed to W.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2026