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The unpredictability of solar energy has led to reliability and integration problems that require

costly and technically complex solutions in the electrical grid. Solar resource availability and energy
generation are highly influenced by local climate variables, like atmospheric temperature, humidity,
wind and pressure. If there is generational uncertainty, it is challenging to calculate economic criteria
such as energy costs and returns, which impacts the feasibility study of a solar power plant. Also, it is
very difficult and costly to maintain pyranometers at the locations. To forecast solar irradiance and the
power generation at any location, machine learning (ML) techniques can be used. The present work
deals with determining the influence of different parameters in predicting the solar radiation by ML
models. A comparison study of six regression models: Ada Boosing Regressor (ABR), Gradient Boosting
Regressor (GBR), Random Forest Regressor (RFR), Decision Tree Regressor (DTR), Linear Regression
(LR), and Extreme Gradient Boosting Regressor (XGBR), shows that RFR gave the highest regression
score of 0.9028. This also recorded the Mean Absolute Error (MAE) of 0.6198 and Mean Squared Error
(MSE) of 1.348. The next best regression score produced by the Gradient Boosting Regressor(GBR)
with value of 0.891. This is 1.18% lower than the RFR. For the RFR regression analysis, an Explainable
Al (XAl) model used to interpret the results using Local Interpretable Model-agnostic Explanations
(LIME) for local surrogacy and Shapely for global surrogacy. Both the LIME and Shapely interpretations
shows that the parameter temperature has the highest correlation with the radiation. The paper would
benefit from a more explicit statement of what is new compared to prior studies.

For Earth, the radiation emitted by the Sun is the primary source of energy. The Earth is in an orbit with an
average distance of 149 million kilometres from the Sun. Even though the Earth takes an elliptical path around
the Sun, the solar radiation incident on the earth’s outer atmosphere is relatively constant. The World Radiometric
Centre (WRC) recommends a value of 1367 W/m?, the Solar Constant, which corresponds to the total radiation
incident per unit area per unit time on a surface kept perpendicular to sun’s rays just outside the atmosphere!.
However, the radiation incident on the earth’s surface at ground level varies drastically at any location. It is due
to the effects of parameters like earth’s axial tilt and rotation, angle of incidence and air mass, and atmospheric
composition and climatic conditions?. In addition, parameters like earth’s temperature, wind speed, atmospheric
pressure, relative humidity, and daily air temperature also affects the value of solar radiation incident®.
Conventionally, the solar radiation was predicted from the statistical data collected from various weather
stations, satellite data and Geographic Information System (GIS)*°. Climate change in recent times due to global
warming has led to deviations in solar radiation values predicted from these statistical data. Global warming has
led formation of more aerosols and clouds in the atmosphere which contributes to significant reduction in solar
radiation incident called solar dimming®. Solar dimming is adversely affecting the solar radiation prediction
and it is proposed to use the ten most recent years data rather than the longest possible period to predict the
radiation values’. Recent advances made in the solar photovoltaic technologies have led to steady increase with
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1,281 GW installed capacity of photovoltaics throughout the world®®. Solar dimming is a serious concern for
these installations as it will lead to lower power production at various sites which in turn negatively affects the
economics of a solar power plants’. Also, as renewable energy’s installed capacity rises globally, the site-specific,
regional, and systemic changes in radiation availability will impact renewable energy system performance and
economics'®.

In addition, majority of solar forecasting techniques were developed for centralized solar power plants, which
only impact a few sites. Due to the rapidly growing installation of PV systems, particularly distributed solar
generating systems over large areas, solar forecasting and grid integration are encountering new challenges!'!.
Being closer to customers, having lower transmission loss, removing obstacles to investment, stabilizing the
local grid, and providing flexible installation that maximizes land use are some advantages, which has led to
more installation of grid tied distributed solar generating systems compared to centralised solar power plants'2.
Poor solar forecast will also lead to significant expenses for scaling up or down, little adaptability to real-world
operations, and complexity in optimising the installation parameters of distributed solar generating systems. The
need of the hour for power system planning to coordinate, integrate, control, and oversee solar energy production
in a wide region is accurate and reliable solar forecasting models'>!*. Comparative analysis of regression models
are already available in the exisiting research. The novelty of the proposed work is the integration of XAI for
interpretability which increases the reliability and trustworthiness of the solar radiation prediction.

Literature review

Machine learning (ML) algorithms use computational techniques can produce more accurate and reliable
predictions for solar energy by capturing dynamic interactions between factors and adapting to changing
conditions!®. The best machine learning models have a balance between model complexity and accuracy'>1°.
Feature selection helps determine the best input combination for prediction models; by removing irrelevant
or redundant information and keeping the most crucial features. Feature selection can lower computing
costs, improve overfitting issues, and solve multicollinearity issues in the models, feature selection can lower
computing costs, improve over-fitting issues, and solve multicollinearity issues in the models!”!%. At present
these models forecast sun radiance using either time series data or sky pictures using different network
topologies. Conventionally, there are three types of solar irradiance forecasting models like image-based
models'®, hybrid models?’, and time series-based models???> The three different kinds of solar irradiance
forecasting models are all relatively short-term methods that include predicting irradiance levels for a short time
frame, often a few seconds to a few minutes in advance?. They are not appropriate for long-term forecasting
since the variables influencing sun irradiance change with time?!. Time series models assess a clearness score
based on the relationship between incident solar radiation and weather conditions. Time series models have the
advantage that it can be easily trained using accurate climate data from weather stations and implemented to
predict radiation at nearby locations with similar climatic conditions®.

The overall framework for the solar radiation, the prediction and interpretable framework are represented
in the process diagram represented in Fig. 1. The data acquisition is done from sun source and meteorological
data sources. The data is pre-processed and applied to ML models. The ML regression scores are later used by
XAImodels for providing interpretability of four parameters Temperature, Humidity, Pressure and Wind speed.

ML techniques like Linear Regression (LR), Decision Tree Regressor (DTR), Random Forest Regressor
(RFR), Gradient Boosting Regressor (GBR), Ada Boosting Regressor (ABR), Extreme Gradient Boosting
Regressor (XGBR), Support Vector Machine (SVM), artificial neural network (ANN), Gaussian process (GP),
etc are time series-based regression or artificial intelligence (AI) models used to predict solar radiation?®?”. ANN
was used to determine the most important input parameters affecting solar radiation out of latitude, longitude,
temperature, altitude, sunshine hours, maximum temperature, and minimum temperature for various Indian
cities. Temperature, altitude, daylight hours, maximum temperature, and minimum temperature are the most
important input variables, while latitude and longitude have the least impact on solar radiation prediction, as per
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Fig. 1. Overall solar radiation framework.
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WEKA analysis?®. Certain models show a positive correlation between the values and the Pearson correlation
coefficient.

Prediction accuracy is lower for weakly correlated parameters and greater for highly correlated parameters
as inputs in RFR, Extra Trees, Bagging, Decision Tree, and XGB?. In both data-rich and data-poor settings,
the use of regressive approaches can benefit by taking advantage of the correlative nature of the irradiance
observations. Since large number of parameters leads to high computational requirements and complexity, it
is imperative to reduce the number of parameters and identify the best parameters that influence the prediction.
XAl is also used for predicting the Air Quality Index, which is a time series data’'. In the Era of Industry 4.0-5.0
XAI plays vital role in all the industry sectors®2. It is also used in autonomous transportation systems also*>.

This article attempts to find the influence of different independent climatic parameters on solar radiation
by a correlation analysis on Six ML models. Linear Regression (LR), Decision Tree Regressor (DTR), Random
Forest Regressor (RFR), Gradient Boosting Regressor (GBR), Ada Boosting Regressor (ABR), and Extreme
Gradient Boosting Regressor (XGBR) were developed to evaluate and compare the solar radiation prediction.
These models incorporate solar angles and atmospheric conditions (wind direction, humidity, wind speed and
temperature) as input to predict solar radiation values. The LIME model was used to interpret the influence of the
local surrogates, while the SHAPELY model was used to interpret the global surrogacy. The models were trained
to forecast and predict from the data collected from a solar radiation resource. The comparative performance
analysis of all models was done using metrics such as Mean Square Error (MSE), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) to identify the variable
selection strategies and best performing model.

Traditional shadow-box Al models often come up with good results without making it clear how those results
were reached. The viability of solar energy as an investment cannot be determined by the consumers due to the
lack of solar energy data at any location and the climate change. In addition, the lack of understanding about the
ML reasoning in these situations can make consumers not trust AI and make them hesitant to trust the choices
and suggestions that are made by AI or ML systems. The Explainable Artificial Intelligence (XAI) platform is
responsible for the development of Al models that produce results that are comprehensible to consumers and that
contribute valuable information regarding the decisions made by AI systems. XAI facilitates the transparency,
interpretability, and accountability of AI decisions*»*. The interpretability of the intricate Al models used in
significant wind energy applications, such as wind power forecasting, defect detection, predictive maintenance,
wind farm optimization, and SCADA data analysis, is enhanced using XAl in wind energy systems®®. LIME
based XAI was also successfully implemented for efficient monitoring and fault detection of solar photovoltaic
panels®”. However, XAI has not been used in radiation prediction models. The novelty of the current article
is the integration of ML regression scores by XAI models for providing interpretability of the parameters like
Temperature, Humidity, Pressure and Windspeed to predict the solar radiation.

Methods
This section of the paper presents the system architecture, description of the dataset®®, models and methods used
in the proposed work with the equations related to the solar radiation measurements.

Architecture

The architecture of our estimation model is designed to effeciently compute the data using machine learning
models. The Fig. 1, illustrates how data processing works in our research by demonstrating each step in the
process from input to output. The process involves collection of key parameters such as wind direction, speed,
temperature and humidity. The data is then preprocessed to handle discrepencies in the form of missing values,
outliers, and normalised, resulting in a clean and standardised input to train the model. Correlation analysis
aids in feature selection, while domain expertise supports the development of additional relevant characteristics.
Factors like time of day and solar angle capture the cyclic nature of solar radiation patterns.

The radiation experiences at a specific location is greatly influenced by the angle and position of the sun in
the sky. Understanding these angles is critical for anticipating the pattern of solar radiation. We incorporated
Ada Boost, Random Forest, Decision Tree, Gradient Boost and Extreme Gradient Boosting Regressor models for
predicting solar radiation. The dataset is divided into sets to train and evaluate the model’s performance. Upon
training, our models are tested on a separate dataset to determine its real-world performance. The models are
then evaluated on metrics such as Mean Square Error (MSE), R2-Score, and Mean Absolute Error (MAE). These
metrics provide information about the model’s accuracy and capacity to capture solar radiation fluctuation.
After successful evaluation, the model is ready for deployment (Fig. 2).

Dataset

The features that are important to the prediction of the solar radiation are carefully selected form the dataset.
There are 32686 instances of data for four attributes as independent variables such as Temperature, Pressure,
Wind Speed, and Humidity. The target dependent attribute is temperature. The data types are numerical and they
have relatively high correlation with the radiation.The data was recorded in the Mascow, Russia for 4 months.
This data was presented in Space Apps Moscow was held on April 29th and 30th on 2017, where 175 people
joined the International Space Apps Challenge at this location. There are no bias or missing values available in
the dataset™.

Random forest
The Random Forest Regressor model creates multiple decision trees and combines their predictions. Each
decision tree is trained on a random subset of the data formed by taking random feature selections. The final
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Fig. 2. Architecture flow diagram.

prediction is the average output of the decision trees. This regressor model captures non-linear relationships,
making it ideal for handling high-dimensional data.

1. Training

« Bootstrap sample: X, y: = bootstrap_sample(X,y) This step involves randomly selecting features to create
a subset of the original dataset. X; and y;

o Train decision tree: h¢(z) = train_decision_tree(X, y:) This step involves training a decision tree ht(x)
on the bootstrap sample

2. Prediction Aggregate prediction:

sl

H@) = =3 hile) 1)

where feature matrix (input data) with N samples and M features. y: target variable (solar radiation) with N
samples. T: number of trees in the forest. h;t(z): prediction of each decision tree. H(x): final prediction of the
model.

Linear regression

The Linear Regression model is commonly used model for continuous prediction. It assumes a linear relationship
between the features and the target variable, that is solar radiation. The model maps how atmospheric parameters
affect the radiation being experiences at a point on the surface of the Earth. The model fits a hyperplane to the
data points and adjusts parameters 6 to minimize errors.
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1. Training
Model hypothesis: The hypothesis function for linear regression is defined as,

he(x) = 0o + 6121 + -+ - + Onrzas 2)

where x1, x2, . . ., T are the features
Cost function: The cost function quantifies how well the linear regression model’s predictions match the actual
target values. The goal is to minimize this cost function during training.

o J(6): cost function

o N: iy, data point. Each x; consists of the features 1, x2, ..., xas for that particular data point.
o hg(x;): predicted value for the i-th input.

o y;:actual target value (the ground truth) for the i-th data point.

2. Predictions

H(z) = he(z) 4)

The final prediction is the value computed by the learned linear regression model.

Decision tree regressor
The Decision Tree Regressor maps input features to output values. It creates a tree-like structure where each
internal node represents a decision based on feature values, and each leaf node corresponds to a predicted output

value. The model recursively partitions the input space into regions where the output is as constant as possible*’.

1. Training

o Select best feature to split on:

Ny
. 1 2
Split = argmin | — P — 1 (5)
P gmin | & ;Zl(y 9r)

This step involves selecting the feature f that minimizes the mean squared error (MSE) within each subset Ny
after the split.

o Recursive splitting:
h(z) = predict _leaf(x) (6)

The recursive splitting process continues until the stopping criteria are met, such as maximum depth or mini-
mum number of samples per leaf.

2. Prediction The predicted value is:
H(‘T;) = gleaf (7)

where x: feature matrix (input data) with N samples and M features.giecas: predicted value for the input  based
on the leaf node that x falls into.

Gradient boosting regressor

Gradient Boosting Regressor is a more advanced model that sequentially builds multiple decision trees, adjusting
errors on each iteration. Unlike Decision Tree which makes predictions by splitting data into branches based on
feature values, Gradient Boosting constructs trees in a sequence, learning from previous mistakes to gradually
improve the model’s accuracy. This “boosting” algorithm makes it more powerful for complex, non-linear
relationships, such as those found in solar radiation patterns.

1. Training Initialize the model with an initial prediction:
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N
1
Ho(w) = 5 > v (8)
i=1
where
(a) Ho(z): initial prediction
(b) N:number of samples.
Fort=1toT:
o Compute Residuals:
residualsy =y — Hy—1(x) 9)

where

(a) y:actual target values
(b) H¢—1(z): current prediction

o Train Weak Learner: Fit a weak learner to the residuals to capture patterns not yet learned by the model:

hi(z) = train_weak learner(X, residuals;) (10)

where h(z) is the weak learner trained on the residuals to correct the model’s previous errors.
« Update the Model with Boosting:
Hi(z) = Hi—1 (%) + pehe(x) (11)

where y1; is the learning rate that scales the contribution of each weak learner (). This boosting step enables
the model to iteratively reduce prediction errors by adding each new learner’s corrections to the previous
prediction.

2. Prediction

H(z) = Hr(x) (12)

where H (x) represents the final model’s prediction after T" boosting iterations.

AdaBoost model
The AdaBoost Regressor model combines multiple weak learners and creates a stronger and more accuracte
model. It does so by training a series of base models, adjusting the weight of the model in each iteration. It assigns
higher weights to misclassified points, thereby highlighting them for subsequent iterations. The integrations of
AdaBoost Regressor with XAl not only offers accurate predictions for solar radiation but makes the prediction
easier for human interpretation.

Initialize equal weights for all data points. Let

(i) = + (13)
where
1. D1(i): weight assigned to i, data of first iteration.
2. N: total number of data points
The weight of the weak learner in the final model (o) is calculated as follows:
a; =0.51n 1-¢ (14)

et
where

1. e': weak learner’s error factor at time t.

The weight of the data point at the new iteration is:
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Dt(i).e(—at*yi*ht(xi))

D i) = 15
t+1 (Z) Zt ( )
Upon combining the weighted sum of weak learners, we can the final predicted model as:
t
H(z) = sign Zat * hi(x) (16)
i=1

where
1. h¢(x): weak learner at iteration t

Local interpretable model-agnostic explanations (LIME)

In the context of Reliable and Efficient Solar Radiation Estimation, LIME (Local Interpretable Model-agnostic
Explanations) is a valuable tool for explaining and interpreting the predictions made by machine learning models.
LIME explains individual predictions by approximating the behavior of complex models around a specific
prediction. For each data point, it generates a set of similar samples and learns how small changes in feature
values impact the prediction. LIME therefore creates a model that represents behavior around that particular
instance which is easy for human interpretation. LIME explains a model’s predictions as weights of features in
the local surrogate model. The model attempts to approximate what is observed by a more complicated black box
model in the neighborhood of the point of interest for the data?!.

LIME helps to interpret the models used in the estimation of solar radiation by approximating the behavior
of each model around specific data points, thus improving transparency and reliability*. For example, for linear
regression, LIME identifies the most important features, especially if the features are high dimensional or have
multi col-linearity. For decision trees, LIME explains influential feature splits for any given particular prediction.
It reveals the important factors in the complex dataset for a random forest. LIME reveals Ada Boost’s iterative
feature emphasis as a reflection of the season or sensor impact. For gradient boosting, LIME demystifies complex
feature contributions that confirm how variables like humidity and cloud cover affect predictions.

Local perturbations

To generate explanations, LIME produces a series of perturbed samples around the target instance, slightly
modifying feature values to observe changes in the model’s output. This perturbation allows LIME to construct
a local, interpretable model that captures the black-box model’s behavior in the immediate vicinity of the data
instance. By making assumptions and approximation of the model around specific predictions, LIME reveals
which features are most influential in the specific prediction.

Weighted regression model
The objective function for LIME, which balances model fidelity and interpretability, can be expressed as:

Objective Function = argmin (L(f, g, 7) + ©(g)) (17)
g

where:

o L(f,g,m): Denotes the fidelity loss between the black-box model f and the interpretable model g, measured
within a local neighborhood 7, around the instance x.

o my: Alocal neighborhood around the target instance x, created by perturbing  to generate similar samples.

o Q(g): A regularization term penalizing the complexity of g, promoting simpler models that enhance inter-
pretability®’.

Interpretation of results

The simplified model g reveals the importance of each feature, highlighting which ones most strongly influence
the prediction for the specific instance. Visual tools in LIME, such as bar charts, display positive and negative
feature influences, helping users understand the role of each feature in the final prediction. LIME has been
extensively applied in fields such as healthcare and finance, enabling transparency in high-stakes decision-
making with black-box models.

SHAPELY

SHAP (SHapley Additive exPlanations) is a powerful approach to model outputs with an explanation by
assigning an importance value to every feature using cooperative game theory. IT helps to solve the challenge of
quantifying individual contributions of certain environmental factors, such as take temperature, cloud cover, and
humidity, toward improving predictions and, thus, making models transparent. It can give rise to interactions
among features, which is particularly useful especially for attempts at trying to understand complex models like
gradient boosting and random forests, or validate predictions with respect to expected physical processes.

The SHAP methodology is grounded in the following principles:

o Fairness: SHAP ensures fairness by assigning each feature a contribution value, considering its interactions
with other features.
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« Additivity: A baseline prediction typically constitutes the expected value for that particular model. This meas-
ures just how much each feature contributes to taking the prediction away from this baseline, making clear
exactly how each feature influences the model’s decision.

o Consistency: If the contribution of a feature to the prediction increases when another feature is removed, the
SHAP value of the feature will also increase**. Equation:

o= > PRI s 0 - s0s) (19)

SCN\{i}

¢i: The SHAP value for feature ;, S: A subset of features excluding the feature ;. IV: total set of all features in
the model. f(.S): The model’s output when only the features in .S are considered. f (S U {i}): The model’s output

when the feature ¢ is included along with the features in g. W A combinatorial factor that accounts

for the possible feature orderings in the cooperative game framework.

One of SHAP’s advantages is its broad applicability across various domains, such as healthcare and finance,
where transparency in decision-making is critical. It allows for the identification of influential features, which
is essential for high-stakes applications where trust in the model’s decisions is paramount. SHAP’s ability to
explain complex models, such as ensemble learning methods, by breaking down their predictions into feature
contributions, makes it invaluable for creating interpretable Al systems®.

Moreover, SHAPELY provides clear and consistent explanations for complex machine learning models and
has been widely applied across multiple fields due to its ability to break down a model’s output in terms of
contributions from individual features. SHAP interprets model predictions in fields ranging from healthcare to
finance to guarantee transparency and fairness and help better make more effective decisions with actionable
insights. This importance of trust and understanding in machine learning systems is reflected in its applications
and usability in real-world tasks such as fraud detection, risk assessment, and personalized health.

Solar radiation pattern equations
Solar Declination (6) It is the angle between the sun’s rays and equator.
360
= 23. i — 19
§ = 23.45sin 365 (N +284) (19)

where N is the day of the year
Hour angle (H) The hour angle represents the time since solar noon, measured in degrees.

H = 15deg(12 — LocalSolarTime) (20)

Solar Elevation angle () The solar elevation angle indicates the height of the sun above the horizon.

sin(B) = sin(P)sin(d) + cod(B)cos(d)cos(H) (21)

where ¢ is the latitude of the point of reference.

Azimuth angle (0) The azimuth is the angle between the north vector and the star’s vector on the horizontal
plane. Azimuth is usually measured in degrees, in the positive range 0° to 360° or in the signed range -180° to
+180°.

sin(H)

tan(0) = tan(d)cos(¢) — sin(¢)cos(H)

(22)

It's worth noting that the value obtained from the formula may need to be adjusted depending on the position of
the sun. The adjustment is typically done to ensure the azimuth angle falls within the correct compass quadrant
(e.g., between 0° and 360°).

Metrics for comparative study
When evaluating machine learning models for solar radiation prediction, several regression metrics are

commonly used to assess performance:

1. Mean Squared Error (MSE) measures the average squared differences between the predicted (¢;) and actual
(y:) values. A smaller MSE indicates better model accuracy.

N
_ 1 a2
MSE = ~ > i) (23)
=1

2. Mean Absolute Error (MAE) calculates the average of the absolute differences between predicted and actual
values. MAE is less sensitive to large errors compared to MSE.
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1 N
MAEINZ\%—ZM (24)

3. R-squared (R?) indicates the proportion of variance in the target variable that is explained by the model. A
higher R? suggests a better model fit.

S (i — 0)?

R*=1- (25)

Results

This section describes the detailed experimentation analysis and results of the statistical significance of data
attributes, Al results of the regression models such as DTR, RFR, GDR, ABR and XGBR. Later the results are
presented for the local surrogates with LIME model. The global surrogacy results are presented using SHAPELY
model.

The dataset contains independent attributes such as Humidity, Temperature, Speed,Wind Direction, Pressure
and the dependent attribute is the target Solar radiation. The Pearson correlation model is applied to test the
statistical significance of the attributes. The correlation matrix is presented in the Fig. 3. The correlation matrix
shows the Radiation has the highest correlation with the Temperature, followed by the Pressure, the Wind
Direction and Humidity work against the regression score of the Radiation, showing the negative correlation
towards the dependent variable.

The regression scores of the various models are presented in the Table 1. The RFR tops the table with the
regression score of 0.9028, followed by the GBR with the score of 0.8910. Thus the XAI models are built, based
on the regression score and values of the RFR.

R score is often preferred in the context of Explainable AI (XAI) because it provides a normalized, relative
measure of the proportion of variance explained by the model, making it easier to interpret in an absolute sense
than MAE or MSE. MAE and MSE are scale-dependent error metrics whose values alone do not inherently
indicate a good or bad fit. That is why RF is chosen in this context for explainability.

The models selected for solar radiation regression prediction—Decision Tree Regressor, Random Forest
Regressor, Gradient Boosting Regressor, AdaBoost Regressor, and Extreme Gradient Boosting (XGBoost)
Regressor—were chosen because they collectively provide a strong balance of accuracy, robustness, and
interpretability required for modeling the highly non-linear and variable nature of solar radiation. Decision
Trees offer a simple and interpretable baseline for capturing fundamental patterns, while Random Forests
enhance stability and generalization through bagging, making them resilient to noise and missing data
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Fig. 3. Correlation map of the solar radiation attributes.
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Model | R2-score | MAE | MSE

DTRr | 0.7882 0.3152 | 1.348

RFR 0.9028 0.6198 | 1.828

GBR 0.891 0.2156 | 0.6956

ABR 0.8289 0.2792 | 1.091

XGBR | 0.7098 0.3710 | 1.857

Table 1. Performance comparison of various regression models.

Feature Weigtht | Nature

Temperature | 0.82 Positive
Pressure 0.60 Positive
Speed —0.48 | Negative
Humidity —0.73 | Negative

Table 2. Feature analysis with LIME.

commonly found in environmental datasets. Gradient Boosting methods further improve predictive accuracy
by sequentially correcting errors, enabling the model to capture fine-grained atmospheric variations. AdaBoost
complements this by focusing learning on difficult-to-predict samples, thus strengthening overall performance.
XGBoost, as a state-of-the-art boosting algorithm, brings computational efficiency, built-in regularization, and
superior handling of complex feature interactions, making it particularly effective for solar radiation forecasting.
Together, these models provide a comprehensive and well-justified suite capable of delivering robust, high-
precision solar radiation predictions.

LIME and SHAP decides the weight of the contributing feature and it’s polarity, which features may increase
radiation or temperature. These diagrams show the impact of the features in determining the magnitude of the
target variable, their polarity (nature) , importance and weights in determining the regression score of a target
variable, it interprets the impact and importance of feature in determining the regression score in both local and
global surrogacy.

In regression analysis, each SHAP plot provides a distinct perspective on how input features contribute to the
model’s continuous output predictions. The SHAP summary plot displays all data points as colored dots, where
each dot represents an individual prediction and its SHAP value indicates the magnitude and direction of that
feature’s influence on the target variable. For instance, in the solar dataset, higher SHAP values for temperature
correspond to increased predicted solar radiation, with the color gradient (from blue to red) showing low to
high feature values. The dependence plot further isolates one feature to show how its SHAP value changes
across the data range, revealing both linear and nonlinear relationships (e.g., temperature rising with radiation
until a saturation point). Meanwhile, force and waterfall plots visualize individual predictions by showing how
each feature pushes the output above or below the average model prediction. Collectively, these plots allow
practitioners to interpret not only which features matter most but also how and to what extent they influence
solar radiation predictions across different conditions.

The next presented model is LIME. This model brings about the local surrogacy and the dependency with the
features, based on lasso, which is a linear relationship model, that analyses the surrogacy between the dependent
and the independent variables on the dataset. The LIME model is presented with two plots such as PyPlot and a
Notebook. Pyplot is basically presents the nature of the features with bar chart. The green indicates the feature
that contains weight that are positive towards the prediction and red indicates the weights that are lesser the better
for the prediction. The four features towards the target prediction with the nature and corresponding weights
are presented in the Table 2. These results are with respect to the test data for a particular instance X_test[0].
The pictorial representation of the same is presented in the Fig. 4. The next representation is the Notebook. This
shows the prediction score of 50.86 for the instance. This shows the order of importance of the features with
respect to the determination of the regression score. This shows 82% importance for the Temperature,73% for
the speed, 8.57% importance for the Pressure and 4.25% for the Pressure. The corresponding weights and order
of importance are also presented by the notebook, which is represented in Fig. 5.

The statistical significance test is provided in the Table 3. This shows that the p-value is 0.0000 and the
Correlation is 0.7349, The correlation is positive and the p-value is less than <0.05 and hence the data points are
statistically significant

The next XAI representation is SHAPELY. This model illustrates several plots such as Force plot, Box plot,
Waterfall plot, Decision and Dependency plot. These plots provide the results in both local and global surrogacy
based on their nature. The Dependency plot for the global surrogacy, for the complete dataset is presented in
Fig. 6. This shows the dependency between two features such as Solar Radiation and Pressure, the blue dotted
lines shows strong correlation and red dotted lines show weaker dependency. The density of the dependency is
higher during the center of the dataset. There is another plot in XAI for local surrogacy namely known as Partial
Dependency Plot(PDP) plot. This shows the dependency between the attributes in the local surrogacy.
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Fig. 5. LIME NoteBook of the solar radiation attributes.

Feature p-value | Correlation

Radiation versus temperature | 0.0000 | 0.7349

Table 3. Statistical significant test.

The next plot presented is the Force plot. This is also a global surrogacy explanation. The force plot has two
regions such as low to high and high to low. The regions under blue color represented as low and red colored
regions are represented as high. The Force plot is presented in the Fig. 7. The Feature 0 which is the Temperature
and Feature 2 which is Speed taking highest priorities as per the Fig. 7, since they share the boundary of red and
blue colored regions. The feature weights are also represented for each of the feature.

Feature Importance Plot of the SHAPELY is presented in Fig. 8. This plot shows the order of importance of
the feature in global surrogacy. The red dots towards the maximum the better prediction and blue dots represents
minimum the better for the determination of the magnitude of the output. Feature 0 takes the highest priority as
per the order of importance for the determination of the magnitude of the output.

The Box plot of SHAPELY is presented in Fig. 9. This plot shows the weight and nature of the feature for
a particular instance. As per the given instance of data, Feature 2, which is Pressure takes the highest positive
weight of 14.57, takes the highest priority. The next priority is taken by Feature 0 which takes — 1.97 as a negative
weight. The same features are also represented by the Waterfall plot of SHAPELY, with the same data instance
and similar weights for all features. This plot is represented by the Fig. 10.

The Decision plot is the final representation of this experimentation which shows the contribution of each of
the features in determining the target regression score. The score is distributed over 0 to 1. The features that are
connected with blue and red color lines indicate the high and low correlation with the regression score for a data
instance in the dataset.The plot is represented by the Fig. 11.

The LIME and SHAP plots play a vital role in interpreting how each feature in the solar dataset influences
the predicted solar radiation, thereby enhancing both the transparency and practical usability of the predictive
model. Through LIME, individual predictions can be explained locally by identifying which factors most
strongly affected a specific outcome.For example, if the model predicts a solar radiation for a certain hour,
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LIME might show that this is primarily due to elevated temperature and reduced humidity, while wind speed or
pressure contribute less. This helps researchers and engineers understand why a model behaves in a certain way
under specific environmental conditions, which is critical when applying predictions for real-world solar energy

forecasting, environmental monitoring, or microclimate analysis.

On the other hand, SHAP offers both local and global interpretability by quantifying each feature’s contribution
to every prediction using Shapley values from cooperative game theory. In practical terms, SHAP plots reveal that
features such as temperature has the strongest positive impact on solar radiation, while humidity and pressure
typically exhibit negative or moderating effects. This global view enables decision-makers to validate whether
the model’s reasoning aligns with real-world physical relationships, improving trust and reliability. Additionally,
SHAP’s dependence plots can highlight non-linear effects—such as diminishing solar radiation gains at high
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radiation levels—helping practitioners optimize sensor placement, calibrate solar panels, or adjust operational
parameters in energy systems for better temperature regulation and forecasting accuracy.

Discussion

This study aims to develop a methodical guide for feature selection, to identify the most important input
parameters that affect radiation for forecasting by regression ML models. Accurate forecasting by ML techniques
helps eliminate the need for installation of pyranometers at the planned location in advance for solar radiation
forecasting. Also, ML regression helps in cost effective and remote radiation forecast even at remote and
inaccessible sites, if there are training data sets available for similar locations. This in turn helps to identify
locations suitable for solar power plant installations and to correctly size the solar power plants and avoid grid
disparity due to fluctuations power production. Further, feature selection can help reduce computation costs,
improve over-fitting problems, and resolve multi col-linearity difficulties in the models by eliminating redundant
or unnecessary information while retaining the most important features. By identifying the most significant
variables, the redundant parameters can be eliminated, reducing the complexity, computation requirements
and cost of solar radiation forecasting. Using only four independent variables, the RFR was able to predict
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Model Key parameters Optimization strategies
o ) o 1. Limit tree depth to reduce overfitting.
Decision tree max_depth, min_samples_leaf, criterion
2. Use grid search with cross-validation.
1. Increase n_estimators until OOB error stabilizes.
Random forest n_estimators, max_features, max_depth
2. Tune max_features for bias-variance control.
1.Balance n_estimators and learning_rate.
AdaBoost n_estimators, learning_rate

2. Use shallow base learners (depth 1-3).

1. Use small learning_rate with more estimators.

Gradient boosting | learning_rate, n_estimators, subsample
2. Apply early stopping for generalization.

1. Tune regularization (lambda, alpha).
XGBoost eta, max_depth, subsample, lambda

2. Use early stopping and balanced learning rate.

Table 4. Optimization points for regression models.

radiation with the regression score of 0.9028. The statistical significance of the parameters is tested using the
Pearson correlation model shows that temperature has the strongest link to radiation followed by Pressure. Wind
direction, and humidity all act against the radiation’s regression score, indicating a negative correlation with the
radiation. The study cements the directly proportional relation between radiation and temperature. The four
independent parameters can be easily obtained for any location from GIS based satellite data and can be used for
solar radiation forecast. Additionally, there may be some possible limitations of the study. The parameters of the
optimization for various models used in the proposed work is presented in Table 4.

Advantages of the proposed framework

The proposed framework helps the consumers identify the most productive locations for new solar farms by solar
radiation forecasts, which maximize the future energy yield and return on investment. It also helps to carry out
proactive maintenance and optimize cleaning schedules of a solar power plant. In addition, radiation prediction
can assist in the identification of fluctuations in solar power output, which can lead to the optimization of energy
storage, the promotion of grid stability and reliability, and the management of strategic reserves.

« Some unpredictable non-linear parameters such as cloud cover, sunshine hours, and aerosols are neglected
and these variables can impact the accuracy of solar radiation prediction. Their correlation needs to be stud-
ied in the future to further improve the accuracy of the prediction.

« The model developed is very short-term irradiance prediction techniques and cannot be used for long-term
irradiance prediction. Long-term irradiance prediction may requires training the model on GIS based satel-
lite data of the independent parameters of very large data sets over a period of 10+ years and may be compu-
tationally intensive.

« The cost effectiveness of the system would highly be reduced using XAI insight for the solar energy estima-
tion. This reduces the need of the sophisticated physical devices, and predicts the factors that influences the
radiation with parametric analysis and evaluation.

o There is lesser influence of hardware malfunction, physical availability and personnel requirement to monitor
the radiation. The proposed framework builds an automated system that generates the reports for the entire
set of people involved.

o The parameters that are changing during idling, down-time, rain-fall and outage can be recorded and their
variations can also be mapped in accordance with the radiation estimation.

« This proposed framework uses both local and global surrogacy models, and hence they can work on small
samples of data or on an entire dataset also.

Challenges

o Like any ML model, the ability of the model to predict radiation accurately from independent variables de-
pends on the quality of the training data set.

« Some independent parameters like sunshine hours, time of the day, etc are not considered in the study and are
neglected due to their very low corelations to radiation as given by previous literatures.

o The effect of atmospheric pollution on radiation forecast is not included in the study.

« The model developed is very short-term irradiance prediction techniques and cannot be used for long-term
irradiance prediction .

Conclusion

The proposed work showcases the importance of using an interpretable framework for solar radiation prediction.
The interpretable LIME and SHAPELY models are built based on the RFR since the regression score is 0.9026
which is higher when compared with the competing models such as GBR, with regression score of 0.891 and
ABR, with the regression score of 0.8289. The LIME and SHAPELY are tracking the influence of the features in
the target estimation. The proposed framework also depicts the variations of these parameters under challenging
climatic conditions, rain-fall, pollution and other natural calamities and how it impacts the solar radiation and
the production of the energy. The proposed work assures timely and reliable prediction of parameters, which
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enhances the quantum and quality of the renewable energy production, that is one of the prime sustainable goal
in the era of Industry 5.0. The proposed work can also be extended for similar alternative energy production
system, to read the influence of various parameters in the generation of the alternative energy.

The XAI adds reliability and interpretability for the prediction of solar radiation and voltage generation. It
adds the confidentiality to the user, so that they can anticipate a certain amount of power generation in the near
future, because they understand the behavior and influence of the features with XAI plots. Thus, the XAI makes
solar power generation process more predictable and dependable in the end user perspective.

Data availability
The datasets used and/or analysed during the current study are available in Kaggle, in the link https://www.kag
gle.com/datasets/dronio/SolarEnergy

Code availability

Sample codes used in the proposed study is available as a supplementary material.
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