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The unpredictability of solar energy has led to reliability and integration problems that require 
costly and technically complex solutions in the electrical grid. Solar resource availability and energy 
generation are highly influenced by local climate variables, like atmospheric temperature, humidity, 
wind and pressure. If there is generational uncertainty, it is challenging to calculate economic criteria 
such as energy costs and returns, which impacts the feasibility study of a solar power plant. Also, it is 
very difficult and costly to maintain pyranometers at the locations. To forecast solar irradiance and the 
power generation at any location, machine learning (ML) techniques can be used. The present work 
deals with determining the influence of different parameters in predicting the solar radiation by ML 
models. A comparison study of six regression models: Ada Boosing Regressor (ABR), Gradient Boosting 
Regressor (GBR), Random Forest Regressor (RFR), Decision Tree Regressor (DTR), Linear Regression 
(LR), and Extreme Gradient Boosting Regressor (XGBR), shows that RFR gave the highest regression 
score of 0.9028. This also recorded the Mean Absolute Error (MAE) of 0.6198 and Mean Squared Error 
(MSE) of 1.348. The next best regression score produced by the Gradient Boosting Regressor(GBR) 
with value of 0.891. This is 1.18% lower than the RFR. For the RFR regression analysis, an Explainable 
AI (XAI) model used to interpret the results using Local Interpretable Model-agnostic Explanations 
(LIME) for local surrogacy and Shapely for global surrogacy. Both the LIME and Shapely interpretations 
shows that the parameter temperature has the highest correlation with the radiation. The paper would 
benefit from a more explicit statement of what is new compared to prior studies.

For Earth, the radiation emitted by the Sun is the primary source of energy. The Earth is in an orbit with an 
average distance of 149 million kilometres from the Sun. Even though the Earth takes an elliptical path around 
the Sun, the solar radiation incident on the earth’s outer atmosphere is relatively constant. The World Radiometric 
Centre (WRC) recommends a value of 1367 W/m2, the Solar Constant, which corresponds to the total radiation 
incident per unit area per unit time on a surface kept perpendicular to sun’s rays just outside the atmosphere1. 
However, the radiation incident on the earth’s surface at ground level varies drastically at any location. It is due 
to the effects of parameters like earth’s axial tilt and rotation, angle of incidence and air mass, and atmospheric 
composition and climatic conditions2. In addition, parameters like earth’s temperature, wind speed, atmospheric 
pressure, relative humidity, and daily air temperature also affects the value of solar radiation incident3.

Conventionally, the solar radiation was predicted from the statistical data collected from various weather 
stations, satellite data and Geographic Information System (GIS)4,5. Climate change in recent times due to global 
warming has led to deviations in solar radiation values predicted from these statistical data. Global warming has 
led formation of more aerosols and clouds in the atmosphere which contributes to significant reduction in solar 
radiation incident called solar dimming6. Solar dimming is adversely affecting the solar radiation prediction 
and it is proposed to use the ten most recent years data rather than the longest possible period to predict the 
radiation values7. Recent advances made in the solar photovoltaic technologies have led to steady increase with 
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1,281 GW installed capacity of photovoltaics throughout the world8,9. Solar dimming is a serious concern for 
these installations as it will lead to lower power production at various sites which in turn negatively affects the 
economics of a solar power plants7. Also, as renewable energy’s installed capacity rises globally, the site-specific, 
regional, and systemic changes in radiation availability will impact renewable energy system performance and 
economics10.

In addition, majority of solar forecasting techniques were developed for centralized solar power plants, which 
only impact a few sites. Due to the rapidly growing installation of PV systems, particularly distributed solar 
generating systems over large areas, solar forecasting and grid integration are encountering new challenges11. 
Being closer to customers, having lower transmission loss, removing obstacles to investment, stabilizing the 
local grid, and providing flexible installation that maximizes land use are some advantages, which has led to 
more installation of grid tied distributed solar generating systems compared to centralised solar power plants12. 
Poor solar forecast will also lead to significant expenses for scaling up or down, little adaptability to real-world 
operations, and complexity in optimising the installation parameters of distributed solar generating systems. The 
need of the hour for power system planning to coordinate, integrate, control, and oversee solar energy production 
in a wide region is accurate and reliable solar forecasting models13,14. Comparative analysis of regression models 
are already available in the exisiting research. The novelty of the proposed work is the integration of XAI for 
interpretability which increases the reliability and trustworthiness of the solar radiation prediction.

Literature review
Machine learning (ML) algorithms use computational techniques can produce more accurate and reliable 
predictions for solar energy by capturing dynamic interactions between factors and adapting to changing 
conditions16. The best machine learning models have a balance between model complexity and accuracy15,16. 
Feature selection helps determine the best input combination for prediction models; by removing irrelevant 
or redundant information and keeping the most crucial features. Feature selection can lower computing 
costs, improve overfitting issues, and solve multicollinearity issues in the models, feature selection can lower 
computing costs, improve over-fitting issues, and solve multicollinearity issues in the models17,18. At present 
these models forecast sun radiance using either time series data or sky pictures using different network 
topologies. Conventionally, there are three types of solar irradiance forecasting models like image-based 
models19, hybrid models20, and time series-based models21,22 The three different kinds of solar irradiance 
forecasting models are all relatively short-term methods that include predicting irradiance levels for a short time 
frame, often a few seconds to a few minutes in advance23. They are not appropriate for long-term forecasting 
since the variables influencing sun irradiance change with time24. Time series models assess a clearness score 
based on the relationship between incident solar radiation and weather conditions. Time series models have the 
advantage that it can be easily trained using accurate climate data from weather stations and implemented to 
predict radiation at nearby locations with similar climatic conditions25.

The overall framework for the solar radiation, the prediction and interpretable framework are represented 
in the process diagram represented in Fig. 1. The data acquisition is done from sun source and meteorological 
data sources. The data is pre-processed and applied to ML models. The ML regression scores are later used by 
XAI models for providing interpretability of four parameters Temperature, Humidity, Pressure and Wind speed.

ML techniques like Linear Regression (LR), Decision Tree Regressor (DTR), Random Forest Regressor 
(RFR), Gradient Boosting Regressor (GBR), Ada Boosting Regressor (ABR), Extreme Gradient Boosting 
Regressor (XGBR), Support Vector Machine (SVM), artificial neural network (ANN), Gaussian process (GP), 
etc are time series-based regression or artificial intelligence (AI) models used to predict solar radiation26,27. ANN 
was used to determine the most important input parameters affecting solar radiation out of latitude, longitude, 
temperature, altitude, sunshine hours, maximum temperature, and minimum temperature for various Indian 
cities. Temperature, altitude, daylight hours, maximum temperature, and minimum temperature are the most 
important input variables, while latitude and longitude have the least impact on solar radiation prediction, as per 

Fig. 1.  Overall solar radiation framework.
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WEKA analysis28. Certain models show a positive correlation between the values and the Pearson correlation 
coefficient.

Prediction accuracy is lower for weakly correlated parameters and greater for highly correlated parameters 
as inputs in RFR, Extra Trees, Bagging, Decision Tree, and XGB29. In both data-rich and data-poor settings, 
the use of regressive approaches can benefit by taking advantage of the correlative nature of the irradiance 
observations30. Since large number of parameters leads to high computational requirements and complexity, it 
is imperative to reduce the number of parameters and identify the best parameters that influence the prediction. 
XAI is also used for predicting the Air Quality Index, which is a time series data31. In the Era of Industry 4.0–5.0 
XAI plays vital role in all the industry sectors32. It is also used in autonomous transportation systems also33.

This article attempts to find the influence of different independent climatic parameters on solar radiation 
by a correlation analysis on Six ML models. Linear Regression (LR), Decision Tree Regressor (DTR), Random 
Forest Regressor (RFR), Gradient Boosting Regressor (GBR), Ada Boosting Regressor (ABR), and Extreme 
Gradient Boosting Regressor (XGBR) were developed to evaluate and compare the solar radiation prediction. 
These models incorporate solar angles and atmospheric conditions (wind direction, humidity, wind speed and 
temperature) as input to predict solar radiation values. The LIME model was used to interpret the influence of the 
local surrogates, while the SHAPELY model was used to interpret the global surrogacy. The models were trained 
to forecast and predict from the data collected from a solar radiation resource. The comparative performance 
analysis of all models was done using metrics such as Mean Square Error (MSE), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) to identify the variable 
selection strategies and best performing model.

Traditional shadow-box AI models often come up with good results without making it clear how those results 
were reached. The viability of solar energy as an investment cannot be determined by the consumers due to the 
lack of solar energy data at any location and the climate change. In addition, the lack of understanding about the 
ML’s reasoning in these situations can make consumers not trust AI and make them hesitant to trust the choices 
and suggestions that are made by AI or ML systems. The Explainable Artificial Intelligence (XAI) platform is 
responsible for the development of AI models that produce results that are comprehensible to consumers and that 
contribute valuable information regarding the decisions made by AI systems. XAI facilitates the transparency, 
interpretability, and accountability of AI decisions34,35. The interpretability of the intricate AI models used in 
significant wind energy applications, such as wind power forecasting, defect detection, predictive maintenance, 
wind farm optimization, and SCADA data analysis, is enhanced using XAI in wind energy systems36. LIME 
based XAI was also successfully implemented for efficient monitoring and fault detection of solar photovoltaic 
panels37. However, XAI has not been used in radiation prediction models. The novelty of the current article 
is the integration of ML regression scores by XAI models for providing interpretability of the parameters like 
Temperature, Humidity, Pressure and Windspeed to predict the solar radiation.

Methods
This section of the paper presents the system architecture, description of the dataset38, models and methods used 
in the proposed work with the equations related to the solar radiation measurements.

Architecture
The architecture of our estimation model is designed to effeciently compute the data using machine learning 
models. The Fig. 1, illustrates how data processing works in our research by demonstrating each step in the 
process from input to output. The process involves collection of key parameters such as wind direction, speed, 
temperature and humidity. The data is then preprocessed to handle discrepencies in the form of missing values, 
outliers, and normalised, resulting in a clean and standardised input to train the model. Correlation analysis 
aids in feature selection, while domain expertise supports the development of additional relevant characteristics. 
Factors like time of day and solar angle capture the cyclic nature of solar radiation patterns.

The radiation experiences at a specific location is greatly influenced by the angle and position of the sun in 
the sky. Understanding these angles is critical for anticipating the pattern of solar radiation. We incorporated 
Ada Boost, Random Forest, Decision Tree, Gradient Boost and Extreme Gradient Boosting Regressor models for 
predicting solar radiation. The dataset is divided into sets to train and evaluate the model’s performance. Upon 
training, our models are tested on a separate dataset to determine its real-world performance. The models are 
then evaluated on metrics such as Mean Square Error (MSE), R2-Score, and Mean Absolute Error (MAE). These 
metrics provide information about the model’s accuracy and capacity to capture solar radiation fluctuation. 
After successful evaluation, the model is ready for deployment (Fig. 2).

Dataset
The features that are important to the prediction of the solar radiation are carefully selected form the dataset. 
There are 32686 instances of data for four attributes as independent variables such as Temperature, Pressure, 
Wind Speed, and Humidity. The target dependent attribute is temperature. The data types are numerical and they 
have relatively high correlation with the radiation.The data was recorded in the Mascow, Russia for 4 months. 
This data was presented in Space Apps Moscow was held on April 29th and 30th on 2017, where 175 people 
joined the International Space Apps Challenge at this location. There are no bias or missing values available in 
the dataset39.

Random forest
The Random Forest Regressor model creates multiple decision trees and combines their predictions. Each 
decision tree is trained on a random subset of the data formed by taking random feature selections. The final 

Scientific Reports |         (2026) 16:3549 3| https://doi.org/10.1038/s41598-025-33604-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


prediction is the average output of the decision trees. This regressor model captures non-linear relationships, 
making it ideal for handling high-dimensional data. 

	1.	 Training

•	 Bootstrap sample: Xt, yt = bootstrap_sample(X,y) This step involves randomly selecting features to create 
a subset of the original dataset. Xt and yt

•	 Train decision tree: ht(x) = train_decision_tree(Xt, yt) This step involves training a decision tree ht(x) 
on the bootstrap sample

	2.	 Prediction Aggregate prediction: 

	
H(x) = 1

T

T∑
t=1

ht(x)� (1)

	 where feature matrix (input data) with N samples and M features. y: target variable (solar radiation) with N 
samples. T: number of trees in the forest. htt(x): prediction of each decision tree. H(x): final prediction of the 
model.

Linear regression
The Linear Regression model is commonly used model for continuous prediction. It assumes a linear relationship 
between the features and the target variable, that is solar radiation. The model maps how atmospheric parameters 
affect the radiation being experiences at a point on the surface of the Earth. The model fits a hyperplane to the 
data points and adjusts parameters θ to minimize errors. 

Fig. 2.  Architecture flow diagram.

 

Scientific Reports |         (2026) 16:3549 4| https://doi.org/10.1038/s41598-025-33604-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	1.	 Training

	Model hypothesis:  The hypothesis function for linear regression is defined as, 

	 hθ(x) = θ0 + θ1x1 + · · · + θM xM � (2)

	 where x1, x2, . . . , xM  are the features
Cost function:  The cost function quantifies how well the linear regression model’s predictions match the actual 

target values. The goal is to minimize this cost function during training. 

	
J(θ) = 1

2N

N∑
i=1

hθ((xi) − yi)2� (3)

•	 J(θ): cost function
•	 N: ith data point. Each xi consists of the features x1, x2, ..., xM  for that particular data point.
•	 hθ(xi): predicted value for the i-th input.
•	 yi: actual target value (the ground truth) for the i-th data point.

	2.	 Predictions 

	 H(x) = hθ(x)� (4)

	 The final prediction is the value computed by the learned linear regression model.

Decision tree regressor
The Decision Tree Regressor maps input features to output values. It creates a tree-like structure where each 
internal node represents a decision based on feature values, and each leaf node corresponds to a predicted output 
value. The model recursively partitions the input space into regions where the output is as constant as possible40. 

	1.	 Training

•	 Select best feature to split on: 

	
Split = arg min

f

(
1

Nf

Nf∑
i=1

(yi − ŷf )2

)
� (5)

	 This step involves selecting the feature f  that minimizes the mean squared error (MSE) within each subset Nf  
after the split.

•	 Recursive splitting: 

	 h(x) = predict_leaf(x)� (6)

	 The recursive splitting process continues until the stopping criteria are met, such as maximum depth or mini-
mum number of samples per leaf.

	2.	 Prediction The predicted value is: 

	 H(x) = ŷleaf� (7)

	 where x: feature matrix (input data) with N  samples and M  features.ŷleaf: predicted value for the input x based 
on the leaf node that x falls into.

Gradient boosting regressor
Gradient Boosting Regressor is a more advanced model that sequentially builds multiple decision trees, adjusting 
errors on each iteration. Unlike Decision Tree which makes predictions by splitting data into branches based on 
feature values, Gradient Boosting constructs trees in a sequence, learning from previous mistakes to gradually 
improve the model’s accuracy. This “boosting” algorithm makes it more powerful for complex, non-linear 
relationships, such as those found in solar radiation patterns. 

	1.	 Training Initialize the model with an initial prediction: 
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H0(x) = 1

N

N∑
i=1

yi� (8)

	 where 

	 (a)	 H0(x): initial prediction
	 (b)	 N : number of samples.

 For t = 1 to T :
•	 Compute Residuals: 

	 residualst = y − Ht−1(x)� (9)

	 where 

	 (a)	 y: actual target values
	 (b)	 Ht−1(x): current prediction

•	 Train Weak Learner: Fit a weak learner to the residuals to capture patterns not yet learned by the model: 

	 ht(x) = train_weak_learner(X, residualst)� (10)

	 where ht(x) is the weak learner trained on the residuals to correct the model’s previous errors.

•	 Update the Model with Boosting: 

	 Ht(x) = Ht−1(x) + µtht(x)� (11)

	 where µt is the learning rate that scales the contribution of each weak learner ht(x). This boosting step enables 
the model to iteratively reduce prediction errors by adding each new learner’s corrections to the previous 
prediction.

	2.	 Prediction 

	 H(x) = HT (x)� (12)

	 where H(x) represents the final model’s prediction after T  boosting iterations.

AdaBoost model
The AdaBoost Regressor model combines multiple weak learners and creates a stronger and more accuracte 
model. It does so by training a series of base models, adjusting the weight of the model in each iteration. It assigns 
higher weights to misclassified points, thereby highlighting them for subsequent iterations. The integrations of 
AdaBoost Regressor with XAI, not only offers accurate predictions for solar radiation but makes the prediction 
easier for human interpretation.

Initialize equal weights for all data points. Let

	
D1(i) = 1

N
� (13)

where 

	1.	 D1(i): weight assigned to ith data of first iteration.
	2.	 N: total number of data points

The weight of the weak learner in the final model (αt) is calculated as follows:

	
αt = 0.5 ln 1 − et

et
� (14)

where 

	1.	 et: weak learner’s error factor at time t.

The weight of the data point at the new iteration is:
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Dt+1(i) = Dt(i).e(−αt∗yi∗ht(xi))

Zt

� (15)

Upon combining the weighted sum of weak learners, we can the final predicted model as:

	
H(x) = sign

(
t∑

i=1

αt ∗ ht(x)

)
� (16)

where 

	1.	 ht(x): weak learner at iteration t

Local interpretable model-agnostic explanations (LIME)
In the context of Reliable and Efficient Solar Radiation Estimation, LIME (Local Interpretable Model-agnostic 
Explanations) is a valuable tool for explaining and interpreting the predictions made by machine learning models. 
LIME explains individual predictions by approximating the behavior of complex models around a specific 
prediction. For each data point, it generates a set of similar samples and learns how small changes in feature 
values impact the prediction. LIME therefore creates a model that represents behavior around that particular 
instance which is easy for human interpretation. LIME explains a model’s predictions as weights of features in 
the local surrogate model. The model attempts to approximate what is observed by a more complicated black box 
model in the neighborhood of the point of interest for the data41.

LIME helps to interpret the models used in the estimation of solar radiation by approximating the behavior 
of each model around specific data points, thus improving transparency and reliability42. For example, for linear 
regression, LIME identifies the most important features, especially if the features are high dimensional or have 
multi col-linearity. For decision trees, LIME explains influential feature splits for any given particular prediction. 
It reveals the important factors in the complex dataset for a random forest. LIME reveals Ada Boost’s iterative 
feature emphasis as a reflection of the season or sensor impact. For gradient boosting, LIME demystifies complex 
feature contributions that confirm how variables like humidity and cloud cover affect predictions.

Local perturbations
To generate explanations, LIME produces a series of perturbed samples around the target instance, slightly 
modifying feature values to observe changes in the model’s output. This perturbation allows LIME to construct 
a local, interpretable model that captures the black-box model’s behavior in the immediate vicinity of the data 
instance. By making assumptions and approximation of the model around specific predictions, LIME reveals 
which features are most influential in the specific prediction.

Weighted regression model
The objective function for LIME, which balances model fidelity and interpretability, can be expressed as:

	
Objective Function = arg min

g
(L(f, g, πx) + Ω(g))� (17)

where:

•	 L(f, g, πx): Denotes the fidelity loss between the black-box model f  and the interpretable model g, measured 
within a local neighborhood πx around the instance x.

•	 πx: A local neighborhood around the target instance x, created by perturbing x to generate similar samples.
•	 Ω(g): A regularization term penalizing the complexity of g, promoting simpler models that enhance inter-

pretability43.

Interpretation of results
The simplified model g reveals the importance of each feature, highlighting which ones most strongly influence 
the prediction for the specific instance. Visual tools in LIME, such as bar charts, display positive and negative 
feature influences, helping users understand the role of each feature in the final prediction. LIME has been 
extensively applied in fields such as healthcare and finance, enabling transparency in high-stakes decision-
making with black-box models.

SHAPELY
SHAP (SHapley Additive exPlanations) is a powerful approach to model outputs with an explanation by 
assigning an importance value to every feature using cooperative game theory. IT helps to solve the challenge of 
quantifying individual contributions of certain environmental factors, such as take temperature, cloud cover, and 
humidity, toward improving predictions and, thus, making models transparent. It can give rise to interactions 
among features, which is particularly useful especially for attempts at trying to understand complex models like 
gradient boosting and random forests, or validate predictions with respect to expected physical processes.

The SHAP methodology is grounded in the following principles:

•	 Fairness: SHAP ensures fairness by assigning each feature a contribution value, considering its interactions 
with other features.
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•	 Additivity: A baseline prediction typically constitutes the expected value for that particular model. This meas-
ures just how much each feature contributes to taking the prediction away from this baseline, making clear 
exactly how each feature influences the model’s decision.

•	 Consistency: If the contribution of a feature to the prediction increases when another feature is removed, the 
SHAP value of the feature will also increase44.Equation:

	
ϕi =

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |! [f(S ∪ {i}) − f(S)]� (18)

ϕi: The SHAP value for feature i, S: A subset of features excluding the feature i. N : total set of all features in 
the model. f(S): The model’s output when only the features in S are considered. f(S ∪ {i}): The model’s output 
when the feature i is included along with the features in S. |S|!(|N|−|S|−1)!

|N|! : A combinatorial factor that accounts 
for the possible feature orderings in the cooperative game framework.

One of SHAP’s advantages is its broad applicability across various domains, such as healthcare and finance, 
where transparency in decision-making is critical. It allows for the identification of influential features, which 
is essential for high-stakes applications where trust in the model’s decisions is paramount. SHAP’s ability to 
explain complex models, such as ensemble learning methods, by breaking down their predictions into feature 
contributions, makes it invaluable for creating interpretable AI systems45.

Moreover, SHAPELY provides clear and consistent explanations for complex machine learning models and 
has been widely applied across multiple fields due to its ability to break down a model’s output in terms of 
contributions from individual features. SHAP interprets model predictions in fields ranging from healthcare to 
finance to guarantee transparency and fairness and help better make more effective decisions with actionable 
insights. This importance of trust and understanding in machine learning systems is reflected in its applications 
and usability in real-world tasks such as fraud detection, risk assessment, and personalized health.

Solar radiation pattern equations
Solar Declination (δ) It is the angle between the sun’s rays and equator.

	
δ = 23.45sin

360
365(N + 284)� (19)

where N is the day of the year
Hour angle (H) The hour angle represents the time since solar noon, measured in degrees.

	 H = 15 deg(12 − LocalSolarT ime)� (20)

Solar Elevation angle (β) The solar elevation angle indicates the height of the sun above the horizon.

	 sin(β) = sin(Φ)sin(δ) + cod(β)cos(δ)cos(H)� (21)

where ϕ is the latitude of the point of reference.
Azimuth angle (θ) The azimuth is the angle between the north vector and the star’s vector on the horizontal 

plane. Azimuth is usually measured in degrees, in the positive range 0◦ to 360◦ or in the signed range -180◦ to 
+180◦.

	
tan(θ) = sin(H)

tan(δ)cos(ϕ) − sin(ϕ)cos(H) � (22)

It’s worth noting that the value obtained from the formula may need to be adjusted depending on the position of 
the sun. The adjustment is typically done to ensure the azimuth angle falls within the correct compass quadrant 
(e.g., between 0◦ and 360◦).

Metrics for comparative study
When evaluating machine learning models for solar radiation prediction, several regression metrics are 
commonly used to assess performance: 

	1.	 Mean Squared Error (MSE) measures the average squared differences between the predicted (ŷi) and actual 
(yi) values. A smaller MSE indicates better model accuracy. 

	
MSE = 1

N

N∑
i=1

(yi − ŷi)2� (23)

	2.	 Mean Absolute Error (MAE) calculates the average of the absolute differences between predicted and actual 
values. MAE is less sensitive to large errors compared to MSE. 
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MAE = 1

N

∑
|yi − ŷi|� (24)

	3.	 R-squared (R2) indicates the proportion of variance in the target variable that is explained by the model. A 
higher R2 suggests a better model fit. 

	
R2 = 1 −

∑N

i=1(yi − ŷi)2

∑N

i=1(yi − ȳ)2
� (25)

Results
This section describes the detailed experimentation analysis and results of the statistical significance of data 
attributes, AI results of the regression models such as DTR, RFR, GDR, ABR and XGBR. Later the results are 
presented for the local surrogates with LIME model. The global surrogacy results are presented using SHAPELY 
model.

The dataset contains independent attributes such as Humidity, Temperature, Speed,Wind Direction, Pressure 
and the dependent attribute is the target Solar radiation. The Pearson correlation model is applied to test the 
statistical significance of the attributes. The correlation matrix is presented in the Fig. 3. The correlation matrix 
shows the Radiation has the highest correlation with the Temperature, followed by the Pressure, the Wind 
Direction and Humidity work against the regression score of the Radiation, showing the negative correlation 
towards the dependent variable.

The regression scores of the various models are presented in the Table 1. The RFR tops the table with the 
regression score of 0.9028, followed by the GBR with the score of 0.8910. Thus the XAI models are built, based 
on the regression score and values of the RFR.

R score is often preferred in the context of Explainable AI (XAI) because it provides a normalized, relative 
measure of the proportion of variance explained by the model, making it easier to interpret in an absolute sense 
than MAE or MSE. MAE and MSE are scale-dependent error metrics whose values alone do not inherently 
indicate a good or bad fit. That is why RF is chosen in this context for explainability.

The models selected for solar radiation regression prediction—Decision Tree Regressor, Random Forest 
Regressor, Gradient Boosting Regressor, AdaBoost Regressor, and Extreme Gradient Boosting (XGBoost) 
Regressor—were chosen because they collectively provide a strong balance of accuracy, robustness, and 
interpretability required for modeling the highly non-linear and variable nature of solar radiation. Decision 
Trees offer a simple and interpretable baseline for capturing fundamental patterns, while Random Forests 
enhance stability and generalization through bagging, making them resilient to noise and missing data 

Fig. 3.  Correlation map of the solar radiation attributes.
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commonly found in environmental datasets. Gradient Boosting methods further improve predictive accuracy 
by sequentially correcting errors, enabling the model to capture fine-grained atmospheric variations. AdaBoost 
complements this by focusing learning on difficult-to-predict samples, thus strengthening overall performance. 
XGBoost, as a state-of-the-art boosting algorithm, brings computational efficiency, built-in regularization, and 
superior handling of complex feature interactions, making it particularly effective for solar radiation forecasting. 
Together, these models provide a comprehensive and well-justified suite capable of delivering robust, high-
precision solar radiation predictions.

LIME and SHAP decides the weight of the contributing feature and it’s polarity, which features may increase 
radiation or temperature. These diagrams show the impact of the features in determining the magnitude of the 
target variable, their polarity (nature) , importance and weights in determining the regression score of a target 
variable, it interprets the impact and importance of feature in determining the regression score in both local and 
global surrogacy.

In regression analysis, each SHAP plot provides a distinct perspective on how input features contribute to the 
model’s continuous output predictions. The SHAP summary plot displays all data points as colored dots, where 
each dot represents an individual prediction and its SHAP value indicates the magnitude and direction of that 
feature’s influence on the target variable. For instance, in the solar dataset, higher SHAP values for temperature 
correspond to increased predicted solar radiation, with the color gradient (from blue to red) showing low to 
high feature values. The dependence plot further isolates one feature to show how its SHAP value changes 
across the data range, revealing both linear and nonlinear relationships (e.g., temperature rising with radiation 
until a saturation point). Meanwhile, force and waterfall plots visualize individual predictions by showing how 
each feature pushes the output above or below the average model prediction. Collectively, these plots allow 
practitioners to interpret not only which features matter most but also how and to what extent they influence 
solar radiation predictions across different conditions.

The next presented model is LIME. This model brings about the local surrogacy and the dependency with the 
features, based on lasso, which is a linear relationship model, that analyses the surrogacy between the dependent 
and the independent variables on the dataset. The LIME model is presented with two plots such as PyPlot and a 
Notebook. Pyplot is basically presents the nature of the features with bar chart. The green indicates the feature 
that contains weight that are positive towards the prediction and red indicates the weights that are lesser the better 
for the prediction. The four features towards the target prediction with the nature and corresponding weights 
are presented in the Table 2. These results are with respect to the test data for a particular instance X_test[0]. 
The pictorial representation of the same is presented in the Fig. 4. The next representation is the Notebook. This 
shows the prediction score of 50.86 for the instance. This shows the order of importance of the features with 
respect to the determination of the regression score. This shows 82% importance for the Temperature,73% for 
the speed, 8.57% importance for the Pressure and 4.25% for the Pressure. The corresponding weights and order 
of importance are also presented by the notebook, which is represented in Fig. 5.

The statistical significance test is provided in the Table  3. This shows that the p-value is 0.0000 and the 
Correlation is 0.7349, The correlation is positive and the p-value is less than <0.05 and hence the data points are 
statistically significant

The next XAI representation is SHAPELY. This model illustrates several plots such as Force plot, Box plot, 
Waterfall plot, Decision and Dependency plot. These plots provide the results in both local and global surrogacy 
based on their nature. The Dependency plot for the global surrogacy, for the complete dataset is presented in 
Fig. 6. This shows the dependency between two features such as Solar Radiation and Pressure, the blue dotted 
lines shows strong correlation and red dotted lines show weaker dependency. The density of the dependency is 
higher during the center of the dataset. There is another plot in XAI for local surrogacy namely known as Partial 
Dependency Plot(PDP) plot. This shows the dependency between the attributes in the local surrogacy.

Feature Weigtht Nature

Temperature 0.82 Positive

Pressure 0.60 Positive

Speed − 0.48 Negative

Humidity − 0.73 Negative

Table 2.  Feature analysis with LIME.

 

Model R2-score MAE MSE

DTRr 0.7882 0.3152 1.348

RFR 0.9028 0.6198 1.828

GBR 0.891 0.2156 0.6956

ABR 0.8289 0.2792 1.091

XGBR 0.7098 0.3710 1.857

Table 1.  Performance comparison of various regression models.
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The next plot presented is the Force plot. This is also a global surrogacy explanation. The force plot has two 
regions such as low to high and high to low. The regions under blue color represented as low and red colored 
regions are represented as high. The Force plot is presented in the Fig. 7. The Feature 0 which is the Temperature 
and Feature 2 which is Speed taking highest priorities as per the Fig. 7, since they share the boundary of red and 
blue colored regions. The feature weights are also represented for each of the feature.

Feature Importance Plot of the SHAPELY is presented in Fig. 8. This plot shows the order of importance of 
the feature in global surrogacy. The red dots towards the maximum the better prediction and blue dots represents 
minimum the better for the determination of the magnitude of the output. Feature 0 takes the highest priority as 
per the order of importance for the determination of the magnitude of the output.

The Box plot of SHAPELY is presented in Fig. 9. This plot shows the weight and nature of the feature for 
a particular instance. As per the given instance of data, Feature 2, which is Pressure takes the highest positive 
weight of 14.57, takes the highest priority. The next priority is taken by Feature 0 which takes − 1.97 as a negative 
weight. The same features are also represented by the Waterfall plot of SHAPELY, with the same data instance 
and similar weights for all features. This plot is represented by the Fig. 10.

The Decision plot is the final representation of this experimentation which shows the contribution of each of 
the features in determining the target regression score. The score is distributed over 0 to 1. The features that are 
connected with blue and red color lines indicate the high and low correlation with the regression score for a data 
instance in the dataset.The plot is represented by the Fig. 11.

The LIME and SHAP plots play a vital role in interpreting how each feature in the solar dataset influences 
the predicted solar radiation, thereby enhancing both the transparency and practical usability of the predictive 
model. Through LIME, individual predictions can be explained locally by identifying which factors most 
strongly affected a specific outcome.For example, if the model predicts a solar radiation for a certain hour, 

Feature p-value Correlation

Radiation versus temperature 0.0000 0.7349

Table 3.  Statistical significant test.

 

Fig. 5.  LIME NoteBook of the solar radiation attributes.

 

Fig. 4.  PyPlot of the solar radiation attributes.
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LIME might show that this is primarily due to elevated temperature and reduced humidity, while wind speed or 
pressure contribute less. This helps researchers and engineers understand why a model behaves in a certain way 
under specific environmental conditions, which is critical when applying predictions for real-world solar energy 
forecasting, environmental monitoring, or microclimate analysis.

On the other hand, SHAP offers both local and global interpretability by quantifying each feature’s contribution 
to every prediction using Shapley values from cooperative game theory. In practical terms, SHAP plots reveal that 
features such as temperature has the strongest positive impact on solar radiation, while humidity and pressure 
typically exhibit negative or moderating effects. This global view enables decision-makers to validate whether 
the model’s reasoning aligns with real-world physical relationships, improving trust and reliability. Additionally, 
SHAP’s dependence plots can highlight non-linear effects—such as diminishing solar radiation gains at high 

Fig. 8.  SHAPLEY Summary Plot for the Solar Radiation attributes.

 

Fig. 7.  SHAPLEY force plot for the solar radiation attributes.

 

Fig. 6.  SHAPLEY dependency of the solar radiation attributes.
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radiation levels—helping practitioners optimize sensor placement, calibrate solar panels, or adjust operational 
parameters in energy systems for better temperature regulation and forecasting accuracy.

Discussion
This study aims to develop a methodical guide for feature selection, to identify the most important input 
parameters that affect radiation for forecasting by regression ML models. Accurate forecasting by ML techniques 
helps eliminate the need for installation of pyranometers at the planned location in advance for solar radiation 
forecasting. Also, ML regression helps in cost effective and remote radiation forecast even at remote and 
inaccessible sites, if there are training data sets available for similar locations. This in turn helps to identify 
locations suitable for solar power plant installations and to correctly size the solar power plants and avoid grid 
disparity due to fluctuations power production. Further, feature selection can help reduce computation costs, 
improve over-fitting problems, and resolve multi col-linearity difficulties in the models by eliminating redundant 
or unnecessary information while retaining the most important features. By identifying the most significant 
variables, the redundant parameters can be eliminated, reducing the complexity, computation requirements 
and cost of solar radiation forecasting. Using only four independent variables, the RFR was able to predict 

Fig. 11.  SHAPLEY decision plot for the solar radiation attributes.

 

Fig. 10.  SHAPLEY waterfall plot for the solar radiation attributes.

 

Fig. 9.  SHAPLEY box plot for the solar radiation attributes.
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radiation with the regression score of 0.9028. The statistical significance of the parameters is tested using the 
Pearson correlation model shows that temperature has the strongest link to radiation followed by Pressure. Wind 
direction, and humidity all act against the radiation’s regression score, indicating a negative correlation with the 
radiation. The study cements the directly proportional relation between radiation and temperature. The four 
independent parameters can be easily obtained for any location from GIS based satellite data and can be used for 
solar radiation forecast. Additionally, there may be some possible limitations of the study. The parameters of the 
optimization for various models used in the proposed work is presented in Table 4.

Advantages of the proposed framework
The proposed framework helps the consumers identify the most productive locations for new solar farms by solar 
radiation forecasts, which maximize the future energy yield and return on investment. It also helps to carry out 
proactive maintenance and optimize cleaning schedules of a solar power plant. In addition, radiation prediction 
can assist in the identification of fluctuations in solar power output, which can lead to the optimization of energy 
storage, the promotion of grid stability and reliability, and the management of strategic reserves.

•	 Some unpredictable non-linear parameters such as cloud cover, sunshine hours, and aerosols are neglected 
and these variables can impact the accuracy of solar radiation prediction. Their correlation needs to be stud-
ied in the future to further improve the accuracy of the prediction.

•	 The model developed is very short-term irradiance prediction techniques and cannot be used for long-term 
irradiance prediction. Long-term irradiance prediction may requires training the model on GIS based satel-
lite data of the independent parameters of very large data sets over a period of 10+ years and may be compu-
tationally intensive.

•	 The cost effectiveness of the system would highly be reduced using XAI insight for the solar energy estima-
tion. This reduces the need of the sophisticated physical devices, and predicts the factors that influences the 
radiation with parametric analysis and evaluation.

•	 There is lesser influence of hardware malfunction, physical availability and personnel requirement to monitor 
the radiation. The proposed framework builds an automated system that generates the reports for the entire 
set of people involved.

•	 The parameters that are changing during idling, down-time, rain-fall and outage can be recorded and their 
variations can also be mapped in accordance with the radiation estimation.

•	 This proposed framework uses both local and global surrogacy models, and hence they can work on small 
samples of data or on an entire dataset also.

Challenges

•	 Like any ML model, the ability of the model to predict radiation accurately from independent variables de-
pends on the quality of the training data set.

•	 Some independent parameters like sunshine hours, time of the day, etc are not considered in the study and are 
neglected due to their very low corelations to radiation as given by previous literatures.

•	 The effect of atmospheric pollution on radiation forecast is not included in the study.
•	 The model developed is very short-term irradiance prediction techniques and cannot be used for long-term 

irradiance prediction .

Conclusion
The proposed work showcases the importance of using an interpretable framework for solar radiation prediction. 
The interpretable LIME and SHAPELY models are built based on the RFR since the regression score is 0.9026 
which is higher when compared with the competing models such as GBR, with regression score of 0.891 and 
ABR, with the regression score of 0.8289. The LIME and SHAPELY are tracking the influence of the features in 
the target estimation. The proposed framework also depicts the variations of these parameters under challenging 
climatic conditions, rain-fall, pollution and other natural calamities and how it impacts the solar radiation and 
the production of the energy. The proposed work assures timely and reliable prediction of parameters, which 

Model Key parameters Optimization strategies

Decision tree max_depth, min_samples_leaf, criterion
1. Limit tree depth to reduce overfitting.

2. Use grid search with cross-validation.

Random forest n_estimators, max_features, max_depth
1. Increase n_estimators until OOB error stabilizes.

2. Tune max_features for bias–variance control.

AdaBoost n_estimators, learning_rate
1.Balance n_estimators and learning_rate.

2. Use shallow base learners (depth 1–3).

Gradient boosting learning_rate, n_estimators, subsample
1. Use small learning_rate with more estimators.

2. Apply early stopping for generalization.

XGBoost eta, max_depth, subsample, lambda
1. Tune regularization (lambda, alpha).

2. Use early stopping and balanced learning rate.

Table 4.  Optimization points for regression models.

 

Scientific Reports |         (2026) 16:3549 14| https://doi.org/10.1038/s41598-025-33604-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


enhances the quantum and quality of the renewable energy production, that is one of the prime sustainable goal 
in the era of Industry 5.0. The proposed work can also be extended for similar alternative energy production 
system, to read the influence of various parameters in the generation of the alternative energy.

The XAI adds reliability and interpretability for the prediction of solar radiation and voltage generation. It 
adds the confidentiality to the user, so that they can anticipate a certain amount of power generation in the near 
future, because they understand the behavior and influence of the features with XAI plots. Thus, the XAI makes 
solar power generation process more predictable and dependable in the end user perspective.

Data availability
The datasets used and/or analysed during the current study are available in Kaggle, in the link ​h​t​t​p​s​:​/​/​w​w​w​.​k​a​g​
g​l​e​.​c​o​m​/​d​a​t​a​s​e​t​s​/​d​r​o​n​i​o​/​S​o​l​a​r​E​n​e​r​g​y​​​​​​

Code availability
Sample codes used in the proposed study is available as a supplementary material.
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