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Medical image segmentation is a fundamental task in computer-aided diagnosis, playing a crucial 
role in organ structure analysis, lesion delineation, and treatment planning. However, current 
Transformer-based segmentation networks still face two major challenges. First, the global self-
attention in the encoder often introduces redundant connections, leading to high computational 
cost and potential interference from irrelevant tokens. Second, the decoder shows limited capability 
in reconstructing fine-grained boundary structures, resulting in blurred segmentation contours. To 
address these issues, we proposed an efficient and accurate framework for general medical image 
segmentation. Specifically, in the encoder, we introduce a frequency-domain similarity measure and 
construct a Key-Semantic Dictionary (KSD) via amplitude spectrum cosine similarity. This enables 
stage-wise sparse attention matrices that reduce redundancy and enhance semantic relevance. In 
the decoder, we design a learnable gradient-based operator that injects boundary-aware logits bias 
into the attention mechanism, thereby improving structural detail recovery along object boundaries. 
On ACDC, the framework delivers a 0.55% gain in average Dice and a 14.6% reduction in HD over the 
second-best baseline. On ISIC 2018, it achieves increases of 1.01% in Dice and 0.21% in ACC over the 
second-best baseline, while using 88.8% fewer parameters than typical Transformer-based models. 
On Synapse, it surpasses the strongest prior approach by 1.03% in Dice and 6.35% in HD, yielding up 
to 8.36% Dice improvement and 52.46% HD reduction compared with widely adopted Transformer 
baselines. Comprehensive results confirm that the proposed frequency-domain sparse attention and 
learnable edge-guided decoding effectively balance segmentation accuracy, boundary fidelity, and 
computational cost. This framework not only suppresses redundant global correlations and enhances 
structural detail reconstruction, but is also robust to different medical imaging modalities, providing a 
lightweight and clinically applicable solution for high-precision medical image segmentation.
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Medical image segmentation is a cornerstone of computer-aided diagnosis, underpinning a wide spectrum of 
clinical tasks1. By providing accurate delineation of anatomical structures and pathological regions, segmentation 
yields quantitative and objective information that supports functional assessment, disease progression 
monitoring, and individualized treatment planning. For instance, in cardiac imaging, precise segmentation 
of the ventricles and myocardium is vital for reliable computation of functional indicators such as ejection 
fraction2,3. In oncology, robust tumor boundary delineation enables volumetric analysis, longitudinal follow-
up, and radiotherapy target definition4. Similarly, in dermatology, accurate localization of skin lesions plays a 
critical role in early melanoma detection and population-level screening5. Consequently, both the precision and 
efficiency of segmentation models have a direct impact on clinical decision-making and therapeutic outcomes6.

The advent of deep learning has greatly advanced the development of automated medical image segmentation. 
Convolutional neural networks (CNNs) have dominated this field for years, achieving strong results on various 
public benchmarks7. Nonetheless, CNNs are inherently limited by their local receptive fields, which restrict 
their ability to capture long-range contextual information. This shortcoming makes them less effective for 
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complex anatomical structures or ambiguous lesion boundaries. To overcome these limitations, Transformer 
architectures have recently been introduced into medical image analysis8. Benefiting from the global self-
attention mechanism, Transformers can model long-range dependencies and integrate global contextual cues, 
thereby enhancing the segmentation of multi-scale and morphologically diverse structures. Transformer-based 
frameworks such as TransUNet9 and Swin-Unet10 have reported promising outcomes across multiple imaging 
modalities, including cardiac MRI, abdominal CT, and dermoscopic images.

Despite these encouraging results, Transformer-based segmentation networks continue to face two 
significant challenges. First, the encoder’s global self-attention requires the computation of a full token-to-token 
similarity matrix, which incurs quadratic complexity in both computation and memory usage11,12. This not 
only increases resource demands but also introduces redundant correlations that dilute semantic relevance and 
may incorporate irrelevant information. Second, while the decoder benefits from global context, it remains 
insufficient in reconstructing fine-grained boundary details, often producing blurry or inaccurate contours13,14. 
Such limitations are especially detrimental in clinical contexts where boundary precision is essential, such as 
differentiating subtle myocardial borders in cardiac imaging or outlining infiltrative tumor margins. These 
challenges hinder the efficiency, robustness, and broader clinical adoption of Transformer-based medical image 
segmentation methods15,16.

To overcome the aforementioned limitations, we proposed a general medical image segmentation framework 
that balances computational efficiency with segmentation accuracy. The framework introduces targeted 
improvements to both the encoder and the decoder, aiming to simultaneously reduce redundant computations 
and enhance boundary reconstruction.

In the encoder, we incorporate a frequency-domain similarity measurement strategy. Specifically, local 
feature representations are transformed into the frequency domain, where cosine similarity of the amplitude 
spectra is employed to evaluate the correlation between tokens. Based on these correlations, a Key-Semantic 
Sparse Dictionary Attention (KSSDA) mechanism is constructed, which retains only the most relevant token 
interactions within each stage. By replacing the dense global self-attention with stage-wise sparse attention 
matrices, KSSDA effectively suppresses irrelevant token interference and avoids the quadratic computational 
burden, thereby yielding more compact and efficient feature representations.

For the decoder, we design a Learnable Edge-Guided Decoding (LEGD) module. Unlike fixed filters such as 
Sobel or Prewitt, this operator is implemented with trainable convolutional kernels, enabling adaptive extraction 
of boundary responses from feature maps. The resulting boundary strength map is then integrated into the 
attention mechanism by injecting a logits bias, guiding the decoder to emphasize structural details along object 
boundaries. LEGD not only enhances sensitivity to complex boundary variations but also alleviates common 
issues such as contour blurring or boundary misalignment.

By combining KSSDA in the encoder with LEGD in the decoder, the proposed framework achieves a 
favorable trade-off between reduced computational complexity and improved segmentation accuracy, delivering 
both efficient feature extraction and high-quality boundary reconstruction. In summary, our contributions 
are twofold. First, the proposed frequency-domain KSSDA encoder reduces redundant global correlations 
and lowers attention complexity, offering more compact representations while improving Dice by 4–5% and 
reducing HD by over 7  mm in controlled ablation settings. Second, the LEGD decoder enhances boundary 
modeling through adaptive gradient-based cues, yielding up to average 3.6% Dice improvement and 3.1 mm 
HD reduction over fixed edge operators. When integrated into a unified architecture, these components enable 
consistent performance gains across ACDC, ISIC 2018, and Synapse, achieving average 8.1% higher Dice and 
up to 40.6% lower HD than recent Transformer-based baselines, while operating with a lightweight 11.8  M 
parameter design that is substantially smaller than typical Transformer counterparts.

Related work
CNN-based segmentation methods
Early approaches to medical image segmentation were predominantly based on CNN architectures, among 
which U-Net17 stands out as the most influential model. U-Net employs a symmetric encoder–decoder design 
with skip connections between corresponding layers, enabling the effective fusion of low-level spatial details 
and high-level semantic information. This architecture achieved groundbreaking success in two-dimensional 
medical image segmentation tasks. Building on this foundation, several variants of the U-shaped architecture 
have been proposed. V-Net18 extended U-Net into three dimensions by introducing 3D convolutions, allowing 
direct processing of volumetric data and demonstrating strong performance on MRI and CT segmentation. 
U-Net++19 enhanced multi-scale feature representation by introducing nested and dense skip pathways, 
yielding improved results in both organ and lesion segmentation. Attention U-Net20 incorporated attention 
gating modules into the decoder, enabling the model to focus adaptively on target regions, which is particularly 
beneficial for segmenting small organs or lesions. More recently, nnU-Net21 introduced a self-adaptive 
framework that automatically configures network depth, kernel size, and preprocessing strategies according 
to the characteristics of each dataset. Owing to its automation and strong generalization ability, nnU-Net has 
achieved state-of-the-art performance in multiple international medical image segmentation benchmarks and is 
widely regarded as a powerful baseline.

Despite the remarkable success of these U-shaped CNN models, their inherent reliance on local receptive 
fields limits their ability to capture long-range dependencies. As a result, CNN-based methods often struggle with 
complex anatomical structures and ambiguous boundaries22. These limitations have motivated the introduction 
of Transformer architectures into medical image segmentation, leveraging global self-attention mechanisms to 
compensate for the shortcomings of CNNs in modeling long-range contextual relationships23.
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Transformer-based segmentation methods
To address the limitations of CNNs in modeling long-range dependencies, Transformer architectures have 
been increasingly adopted in medical image segmentation. A representative work, TransUNet9, integrates 
a CNN encoder with a Transformer module, thereby combining local feature extraction with global context 
modeling. Swin-Unet10 employs a hierarchical Swin Transformer24 to build a pure Transformer-based U-shaped 
architecture, achieving competitive performance across multiple modalities, including cardiac MRI, abdominal 
CT, and dermoscopic images. Furthermore, UNETR22 leverages a ViT as the encoder and incorporates skip 
connections to directly fuse Transformer features into the decoder, demonstrating strong performance in 3D 
segmentation tasks. Other approaches such as MedT25 and SwinBTS26 explore multi-scale or cross-modality 
designs, further improving the adaptability and effectiveness of Transformer-based segmentation frameworks.

More recent works have sought to balance accuracy and efficiency. MISSFormer27 introduces a lightweight 
multi-scale Transformer, preserving global modeling capability while reducing computational overhead. 
UCTransNet28 proposes a channel-interactive Transformer module to enhance semantic representation, 
particularly effective for small organ segmentation. DS-TransUNet29 incorporates a dual-scale Transformer 
design to improve adaptability to organs and lesions of different sizes. SwinFPN30 integrates hierarchical Swin 
Transformers with a feature pyramid network to strengthen cross-scale feature fusion. The latest UniverSeg31 
framework extends Transformers toward universal medical image segmentation across diverse tasks and 
modalities, showcasing strong generalization ability. Collectively, these studies highlight the growing impact of 
Transformers in advancing medical image segmentation. Several works32–34 have further adapted Transformer-
based frameworks to volumetric data, achieving efficient 3D segmentation and underscoring their versatility in 
medical imaging.

Attention methods
Although Transformers have demonstrated great potential in medical image segmentation, existing approaches 
still face notable limitations. In the encoder, global self-attention requires the computation of a full token-
to-token similarity matrix, which incurs quadratic complexity in both computation and memory, leading to 
redundancy and irrelevant correlations that hinder efficiency and scalability. In the decoder, while global context 
is effectively modeled, the reconstruction of fine-grained boundary details remains insufficient, often resulting 
in blurry or shifted contours that are undesirable in clinical applications.

(1) Linear Attention Methods: The main idea is to approximate the self-attention mechanism and reduce 
the computational complexity from O(n2)to O(kn), thereby enabling efficient modeling of long sequences. 
Representative examples include: Linformer35, which projects the Key and Value into a low-dimensional space 
via low-rank approximation, avoiding the need to construct the full similarity matrix and validating the low-rank 
property of attention; Performer36, which introduces orthogonal random feature maps to approximate the softmax 
kernel, reformulating attention into a linear form with unbiased estimation; Nyströmformer37, which applies the 
Nyström method to approximate the attention matrix using a subset of landmarks, reducing computational 
cost while preserving global structure; Linear Transformer38, which rewrites attention as an inner product of 
kernelized queries and keys, enabling efficient cumulative computation during inference; FlashAttention39, 
which unlike approximation-based methods, FlashAttention achieves exact attention computation with reduced 
memory footprint and latency by reordering memory access patterns and optimizing kernels. These methods 
have achieved notable success in NLP and computer vision and are now being increasingly adopted in medical 
image analysis to reduce computational burdens and improve scalability.

(2) Sparse Attention Methods: These approaches reduce complexity by enforcing sparsity in the attention 
connections while preserving global modeling capacity. For instance, Longformer40 employs a combination 
of local sliding windows and global tokens; BigBird41 integrates random, global, and block-local connections 
to balance efficiency and expressivity; Sparse Transformer42 accelerates sequence modeling via block-sparse 
patterns; and Reformer43 leverages reversible residual layers and locality-sensitive hashing (LSH) to reduce 
memory usage.

These efficient attention mechanisms provide practical alternatives to dense self-attention and have inspired 
follow-up research on designing lightweight and scalable Transformers for medical image segmentation.

Contribution
The main contributions of this work are summarized as follows:

(1) Frequency-domain sparse attention: The proposed Key-Semantic Sparse Dictionary Attention reduces 
redundant global correlations and lowers attention complexity while enhancing feature compactness. It improves 
average Dice by up to 0.55% and reduces HD by 14.6% over the second-best baseline, while requiring 88.8% 
fewer parameters than typical Transformer-based encoders.

(2) Learnable edge-guided decoding: The Learnable Edge-Guided Decoding module strengthens contour 
reconstruction through adaptive gradient-based boundary cues. It brings up to 1.03% Dice and 6.35% HD 
improvement over the strongest prior method, achieving as much as 8.36% Dice and 52.46% HD gains relative 
to widely adopted Transformer baselines.

Methodology
Data collection and processing
We conducted experiments on three publicly available datasets of different modalities, namely the Automated 
Cardiac Diagnosis Challenge (ACDC) dataset, the ISIC 2018 skin lesion segmentation dataset, and the Synapse 
multi-organ segmentation dataset. A detailed comparison of their characteristics is provided in Table  1. 
Specifically, Table 1 summarizes the key attributes of the datasets used in this study, including imaging sequences, 
data partitioning, annotated regions, image resolution, the number of classes, and imaging modalities.
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ACDC: The ACDC dataset comprises 100 cardiac MRI scans acquired from different subjects, with imaging 
performed using cine-MRI (bSSFP) sequences. The dataset was divided into training, validation, and testing 
subsets in a 7:1:2 ratio. Specifically, the training set includes 70 cases (1,304 slices), the validation set contains 
10 cases (182 slices), and the test set consists of 20 cases (370 slices), each accompanied by corresponding 
segmentation masks. Each MRI volume is composed of multiple two-dimensional slices, with annotations 
provided for three cardiac structures: the left ventricle (LV), the right ventricle (RV), and the myocardium 
(MYO). Each 2D slice has an in-plane resolution of approximately 216 × 256 pixels, and each MRI volume 
contains about 9 slices on average, with annotations for three cardiac structures and a single imaging modality.

ISIC 2018  The ISIC 2018 dataset is designed for skin lesion analysis, with images acquired through RGB der-
moscopy. In total, 2,594 dermoscopic images are provided by the organizers. For our experiments, we allocated 
1,815 images for training, 259 for validation, and 520 for testing. The annotations correspond to the skin lesion 
regions, and each image has a resolution of 600 × 450 pixels (RGB). The dataset contains one segmentation class 
and is based on a single imaging modality.

Synapse  The Synapse dataset consists of 30 contrast-enhanced abdominal CT scans, totaling 3,779 axial slic-
es, provided by the MICCAI 2015 Multi-Atlas Abdominal Labeling Challenge. Each scan contains between 
85 and 198 slices with an in-plane resolution of 512 × 512 pixels, and the voxel spacing is approximately 
0.54 × 0.54 × (2.5–5.0) mm³. Annotations are available for eight abdominal organs, including the aorta, gallblad-
der (GB), left kidney (KL), right kidney (KR), liver, pancreas (PC), spleen (SP), and stomach (SM). The dataset 
involves 8 classes and a single imaging modality.

Network architecture
The overall framework of our method follows a typical encoder–decoder paradigm, where we make two targeted 
modifications to enhance both feature representation and boundary reconstruction, as illustrated in Fig. 1.

On the encoder side, we replace the conventional CNN backbone with a KSSDA Transformer to achieve 
efficient global feature modeling. Specifically, the input medical image is first partitioned into non-overlapping 
patches and embedded into a high-dimensional feature space, forming a sequence of tokens. These token 
sequences are then processed by the KSSDA Transformer. Unlike standard dense self-attention, KSSDA 
introduces a KSD that is constructed via amplitude spectrum cosine similarity within each stage. This dictionary 
selectively preserves only the most relevant token interactions, thereby suppressing redundant connections 
and reducing quadratic complexity. Moreover, the KSD is shared across all layers within each stage, ensuring 
consistent semantic modeling and yielding more compact and discriminative feature representations.

For the decoder, we design a LEGD module dedicated to recovering fine-grained boundary structures. 
Instead of relying on fixed gradient filters, LEGD employs Learnable Edge Filters, whose weights are initialized 
with classical Sobel and Scharr kernels to provide strong edge-detection priors at the early stage of training. 
During optimization, these filters are updated as trainable parameters, enabling adaptive extraction of boundary 
responses tailored to medical imaging data. The resulting edge strength maps are not only used as auxiliary 
boundary features but also injected into the attention mechanism as logits bias, explicitly guiding the decoder to 
emphasize boundary regions of organs and lesions.

By integrating KSSDA in the encoder for sparse and efficient feature extraction and LEGD in the decoder 
for boundary-aware refinement, the proposed architecture achieves a favorable balance between computational 
efficiency and segmentation accuracy, delivering precise structural delineation with enhanced boundary quality.

KSSDA transformer
In the preceding section, we described the overall network design. Here, we provide a detailed account of the 
proposed Key-Semantic Sparse Dictionary Attention Transformer, as illustrated in Fig. 2, which aims to reduce 
the computational burden of conventional self-attention while maintaining strong global modeling capability 
for medical image segmentation. Standard self-attention constructs a full pairwise similarity matrix of size 
Rn×n, requiring quadratic complexity O(n2) in both computation and memory, where n is the number of 
tokens. When applied to high-resolution medical images, this quickly becomes a computational bottleneck. 
Furthermore, the dense matrix often encodes numerous redundant or irrelevant token interactions, which 

Items ACDC ISIC 2018 Synapse

Imaging Sequences Cine MRI(bSSFP) RGB dermoscopy Abdominal CE-CT

training set 70 1815 16

validation set 10 259 2

test set 20 520 12

Label Region LV, RV, MYO Lesion Aorta, GB, KL, KR, Liver, PC, SP, SM

Size (216,256,9) (600,450,3) (512,512,85–198)

Classes 3 1 8

Modalities 1 1 1

Table 1.  Comparison of ACDC, ISIC2018 and Synapse.
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consume resources without contributing to meaningful representation learning. This motivates the development 
of a sparse mechanism that selectively preserves only the most semantically relevant dependencies.

To address this issue, we introduce a frequency-domain approach for token similarity estimation. Let the 
feature sequence at the -th stage be defined as in Eq. (1):

	 X(s) = [f (s)
1 , f

(s)
2 , . . . , f (s)

ns
] ∈ Rns×ds � (1)

Each token vector f (s)
i  is transformed into the frequency domain using a one-dimensional Fourier transform, 

after which the normalized amplitude spectrum is obtained, as shown in Eq. (2):

	

A
(s)
i =

∣∣∣F(f (s)
i )

∣∣∣∥∥∥F(f (s)
i )

∥∥∥
2

, i = 1, . . . , ns� (2)

The correlation between tokens is then measured by cosine similarity in the amplitude spectrum space in Eq. (3):

	
Sim(s)

ij =
⟨A(s)

i , A
(s)
j ⟩

A
(s)
i 2 · A

(s)
j 2

, Sim(s) ∈ Rns×ns � (3)

Compared with spatial-domain similarity, amplitude-based similarity is invariant to phase shifts and local 
misalignments, thus offering a more stable and robust measure of structural and textural relationships in 
medical images.

From the similarity matrix, each token retains only its top-k most relevant neighbors in Eq. (4):

	 J (s)(i) = TopK(Sim(s)
i , k)� (4)

This selection defines a KSD that serves as a sparse mask in Eq. (5):

	 KSD(s) ∈ {0, 1}ns×ns , KSD(s)
ij = 1{j ∈ J (s)(i)}� (5)

The dictionary is shared across all layers and attention heads within a stage, ensuring semantic consistency 
and reducing redundant computations. With the KSD mask, attention computation no longer operates over all 
tokens. The conventional self-attention can be written as as Eq. (6):

	
Attn(Q, K, V ) = Softmax

(
QK⊤
√

dh

)
V � (6)

Fig. 1.  The overall structure of our network.
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where Q, K, V ∈ Rns×d. In KSSDA, the operation becomes, as shown in Eq. (7):

	
AttnKSSDA(Q, K, V ) = Softmax

(
QK⊤
√

dh

+ M (s)
)

V � (7)

with M (s) ∈ {0, −∞}ns×ns  representing the mask derived from the dictionary. This ensures that only the 
top-k positions for each query participate in softmax normalization, while the remaining entries are effectively 
ignored. Equivalently, each queryi can directly gather its k neighbors in Eq. (8):

	
y

(s,h)
i = Softmax

(
q

(s,h)
i K̃

(s,h)⊤
i√

dh

)
Ṽ

(s,h)
i � (8)

where K̃
(s,h)
i , Ṽ

(s,h)
i ∈ Rk×dh . In this way, the normalization domain of softmax is explicitly 

reduced from ns to k.This sparsification leads to significant computational savings. The complexity 
of standard attention is O(H · n2

s · dh) ≈ O(n2
s). while the proposed KSSDA reduces it to 

O(H · ns · k · dh) + O(ns · ds · log ds) ≈ O(kns), where the second term corresponds to the Fourier 
transform required to build the dictionary. Since this cost is shared within a stage, its impact is minor. Importantly, 
because k ≪ ns​, the overall savings in both computation and memory are substantial.

Fig. 2.  KSSDA Transformer Structure.
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LEGD module
To enhance the capability of the segmentation network in modeling boundary regions of medical images, 
we propose a LEGD module as shown in Fig. 3. In medical imaging, organ and lesion boundaries are often 
characterized by abrupt voxel intensity changes or discontinuous textures, making edge information particularly 
critical for accurate delineation. However, conventional Transformer decoders typically struggle to reconstruct 
fine-grained contours, resulting in blurred or shifted boundaries. To address this issue, LEGD introduces edge-
aware bias into the attention mechanism, explicitly reinforcing structural boundary modeling and thereby 
improving reconstruction accuracy.

Unlike traditional edge detectors with fixed kernels, the convolution filters in LEGD are defined as trainable 
three-dimensional parameters. For initialization, they are assigned the weights of classical Sobel and Scharr 
operators, which are designed to extract gradient information along the x, y, and z directions. For example, the 
Sobel kernels are initialized as:

	
ΘSobel

x =

[
[−1 0 1]
[−2 0 2]
[−1 0 1]

]
ΘSobel

y =

[
[−1 −2 −1]
[0 0 0]
[1 2 1]

]
ΘSobel

z =

[
[−1 −2 −1]
[0 0 0]
[1 2 1]

]

Similarly, the Scharr kernels are initialized as:

	
ΘScharr

x =

[
[−3 0 3]
[−10 0 10]
[−3 0 3]

]
ΘScharr

y =

[
[−3 −10 −3]
[0 0 0]
[3 10 3]

]
ΘScharr

z =

[
[−3 −10 −3]
[0 0 0]
[3 10 3]

]

During training, these convolutional kernels are updated through backpropagation, enabling them to evolve 
from classical operators into adaptive filters specialized for medical imaging. The use of Sobel and Scharr for 
initialization leverages their complementary strengths: Sobel is robust to noise and effective for detecting low-
contrast boundaries, while Scharr offers improved rotational invariance and sensitivity to structural details, 
which is advantageous for delineating irregular anatomical regions. This initialization allows the model to 
inherit useful priors while retaining adaptability during optimization, thereby improving its applicability across 
different modalities and organs. Extending the design into three dimensions further strengthens boundary 
modeling, where kernels in the x direction capture vertical gradients, those in the y direction highlight horizontal 

Fig. 3.  The structure of the LEGD module.
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structures, and those in the z direction account for inter-slice variations, ensuring consistency and continuity in 
volumetric CT and MRI data.

Formally, given an input feature map F ∈ Rn×d, the edge responses along the three axes are defined as 
shown in Eq. (9):

	 Kx = F ∗ Θx, Ky = F ∗ Θy, Kz = F ∗ Θz.� (9)

The directional responses obtained from the x, y, and z kernels provide complementary information about 
gradient variations along different spatial axes. To achieve a coherent representation of boundary strength, these 
components are combined into a single edge magnitude by aggregating their squared values. This fusion not 
only preserves directional sensitivity but also produces a rotation-invariant measure of edge intensity as shown 
in Eq. (10):

	 Output =
√

K2
x + K2

y + K2
z � (10)

Followed by normalization to produce an edge strength map in Eq. (11):

	 M = σ(Output)� (11)

This edge strength map is subsequently incorporated into the attention mechanism as a logits bias, imposing 
an explicit constraint on boundary-related regions during the computation of attention weights. As shown 
in Eq.  (12), this bias term adjusts the attention distribution to emphasize edge-sensitive regions, thereby 
encouraging the model to capture fine structural variations more effectively. This design not only enhances the 
network’s responsiveness to complex and irregular boundaries but also alleviates the common issues of blurred 
or shifted contours observed in conventional decoders.

	
LEGD-Attn(Q, K, V ) = Softmax

(
QK⊤
√

d
+ λM

)
V � (12)

Through this design, the LEGD module integrates the advantages of Sobel and Scharr initialization with the 
adaptability of learnable filters, enabling stronger edge sensitivity. This approach preserves the global modeling 
capability of the decoder while significantly improving the precision and fidelity of reconstructed anatomical 
boundaries, particularly for complex structures in volumetric CT and MRI data.

Evaluation metrics and loss function
To comprehensively evaluate the segmentation performance on ACDC, ISIC 2018, and Synapse, we select a set of 
complementary metrics. Dice and mIoU are used to measure region overlap and global segmentation accuracy, 
while HD assesses boundary precision, which is crucial in clinical practice. For ISIC 2018, additional metrics 
including SE, SP, ACC, and Recall are reported to better reflect performance under class imbalance, ensuring 
both sensitivity to lesions and robustness against false positives. Together, these metrics provide a balanced 
evaluation of accuracy, boundary quality, and clinical reliability. To comprehensively assess segmentation 
performance, we adopt a set of complementary evaluation metrics that jointly capture region overlap, boundary 
precision, and class-level discriminability. The Dice coefficient is used to quantify the spatial overlap between the 
predicted mask and the ground truth, formulated as shown in Eq. (13):

	
Dice = 2 · T P

2 · T P + F P + F N
� (13)

where TP, FP, and FN denote true positives, false positives, and false negatives. To evaluate the accuracy of 
contour alignment, the Hausdorff Distance (HD) is employed, defined by Eq. (14):

	
HD(x, y) = max{sup

a∈x

inf
b∈y

D(a, b), sup
b∈y

inf
a∈x

D(a, b)}� (14)

where x and y are the ground-truth and predicted contours, and D(·, ·) represents the Euclidean distance. For 
ISIC 2018, which involves lesion detection under class imbalance, we additionally report classification-oriented 
metrics. Sensitivity (SE) measures the ability to correctly identify positive samples in Eq. (15):

	
SE = T P

T P + F N
� (15)

while Specificity (SP) evaluates the correct identification of negative samples in Eq. (16):

	
SP = T N

T N + F P
� (16)

The overall Accuracy (ACC) is expressed as shown in Eq. (17):

	
ACC = T P + T N

T P + T N + F P + F N
� (17)
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Recall, which is equivalent to sensitivity in binary cases, is given by Eq. (18):

	
Recall = T P

T P + F N
� (18)

Finally, the mean Intersection over Union (mIoU) provides an average IoU score across categories in Eq. (19) :

	
mIoU = 1

C

C∑
c=1

T Pc

T Pc + F Pc + F Nc
� (19)

where C is the total number of classes. Collectively, these metrics provide a comprehensive and balanced 
evaluation, covering regional overlap, contour fidelity, and classification reliability.

Since the ACDC, ISIC 2018, and Synapse datasets involve multi-label medical image segmentation tasks, 
we employ the Dice loss to guide the overall optimization of the network by enforcing region-level overlap 
consistency between predictions and ground truth. To further mitigate class imbalance across different categories, 
we incorporate the Binary Cross-Entropy (BCE) loss as an auxiliary term. The final combined objective is 
formulated in Eq. (20), which integrates both Dice and BCE components to achieve stable and balanced training.

	 L = λ · LBCE + (1 − λ) · LDice� (20)

Result
Implementation detail
Our model was implemented using PyTorch 2.0.1, and all experiments were carried out on a cloud computing 
platform equipped with four NVIDIA A100 GPUs. Throughout the training process, we employed the AdamW 
optimizer to update parameters, with the initial learning rate set to 1e-3, a weight decay of 1e-5, and the number 
of training epochs fixed at 500. In our experiments, we employed ITK-SNAP for result visualization, which can 
be freely obtained from the official website at https://www.itksnap.org/pmwiki/pmwiki.php? ​n​=​D​o​w​n​l​o​a​d​s​.​S​N​
A​P​4​.​​

ACDC dataset comparison experiment
To assess the segmentation capability of our proposed model, we first conducted experiments on the ACDC 
dataset. Under identical experimental settings, we further compared our method against six state-of-the-art 
medical image segmentation models, including TransUNet, MISSFormer, Swin-Unet, LeViT-Unet, MedFormer, 
and LaplacianFormer. All models were trained and evaluated using the same preprocessing pipeline, training 
configurations, and evaluation metrics, ensuring a fair and consistent comparison.

The quantitative results are summarized in Table 2, which reports the performance of our model against 
several representative segmentation approaches across multiple evaluation metrics, including mean Dice 
coefficient (Dice), mean Intersection-over-Union (mIoU), and Hausdorff Distance (HD). As shown, our 
method consistently achieves superior segmentation accuracy. Specifically, it attains Dice scores of 96.62 for 
the left ventricle (LV), 90.95 for the right ventricle (RV), and 90.03 for the myocardium (MYO), surpassing all 
competing methods. Notably, in the critical LV segmentation task, our model outperforms TransUNet, Swin-
Unet, LeViT-Unet, and MedFormer by absolute Dice gains of 1.25%, 0.79%, 1.00%, and 1.12%, respectively, 
while also exceeding the LaplacianFormer by 0.88%. In terms of mIoU, our model achieves class-wise scores of 
93.35 (LV), 89.05 (RV), and 84.69 (MYO), yielding an average of 89.03, further confirming its robustness across 
multiple cardiac structures.

In terms of boundary accuracy measured by the Hausdorff Distance (HD), our model demonstrates 
remarkable performance. For the segmentation of the left ventricle (LV), right ventricle (RV), and myocardium 
(MYO), the HD values achieved are 7.11 mm, 8.71 mm, and 9.55 mm, respectively. Compared with the state-of-
the-art LaplacianFormer, which reports HD values of 8.43 mm, 9.98 mm, and 11.32 mm, our method reduces 
the error by 15.6%, 12.7%, and 15.6%, respectively. These results indicate that introducing the LEGD module 

Models

Dice mIoU HD

LV RV MYO LV RV MYO LV RV MYO

TransUNet9 95.37 87.86 84.03 88.11 81.18 76.70 9.97 14.24 11.41

MISSFormer27 94.99 88.55 87.54 88.31 83.33 77.40 9.76 13.60 9.32

Swin-Unet10 95.83 89.55 85.62 89.20 81.16 78.18 9.29 15.35 12.03

LeViT-Unet44 95.62 86.64 89.04 89.81 87.10 79.75 9.81 15.34 12.30

MedFormer34 95.50 88.90 89.87 91.37 86.20 83.52 10.62 10.81 11.71

LaplacianFormer45 95.74 90.65 89.68 92.09 86.95 79.80 8.43 9.98 11.32

MT-UNet46 95.62 86.64 89.04 87.04 81.12 79.85 9.74 13.87 9.27

PVT-CASCADE48 95.50 88.90 89.97 89.05 83.17 78.12 9.54 15.14 9.95

Our Model 96.62 90.95 90.03 93.35 89.05 84.69 7.11 8.71 9.55

Table 2.  Comparison of experimental results on ACDC dataset.
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into the decoder effectively handles challenging boundary regions. Overall, on the high-quality ACDC dataset, 
our approach delivers stronger segmentation performance than other leading methods.

Figure 4 presents the visual comparison of segmentation results on the ACDC dataset across our model and 
six competing methods. Specifically, (a) shows the short-axis view of a representative original MRI slice, (b) 
depicts the expert manual annotation, and (c–i) illustrate the predictions of the seven segmentation models. 
The yellow boxes highlight regions where the model outputs deviate from the ground-truth labels. As observed 
in Fig.  4, our method not only achieves substantial improvements in quantitative metrics but also delivers 
visually more precise segmentations, particularly along the boundaries of the myocardium and right ventricle. 
Comparative analysis of panels (c–i) further demonstrates that, in segmenting key cardiac anatomical structures, 
our model which integrating a sparse attention mechanism with a learnable edge-guided decoding module 
shows clear advantages in terms of regional consistency, boundary delineation, fine-grained detail recognition, 
and robustness against misclassification.

ISIC 2018 dataset comparison experiment
Table 3 reports the experimental results of our method compared with seven state-of-the-art models on the 
ISIC 2018 dataset. As shown, our model achieves scores of 92.90 (SE), 97.98 (SP), 84.32 (mIoU), 91.04 (Dice), 
and 96.26 (ACC), demonstrating strong robustness across different datasets. In particular, our method achieves 
a 0.37% relative improvement in mIoU, 1.73% in Dice, and 1.46% in ACC over the second-best MedFormer, 
further confirming its superior segmentation capability.

Fig. 4.  (a) Short-axis view of a representative original MRI slice. (b) Expert manual segmentation result. (c–i) 
Visualization of the prediction results from seven segmentation models. The yellow rectangular box represents 
the areas where the segmentation model’s result image differs significantly from the standard label image.

 

Scientific Reports |         (2026) 16:2191 10| https://doi.org/10.1038/s41598-025-33686-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


We further introduced the number of parameters as an additional evaluation metric to highlight the 
lightweight nature of our model. As shown in the Table 3, TransUNet has the largest parameter size, reaching 
105 M, which makes it a considerably heavy architecture. In contrast, MedFormer (12.48 M) and BRAU-Net++ 
(14.39 M) can already be regarded as relatively compact designs. Remarkably, our model contains only 11.77 M 
parameters, the smallest among all compared approaches, approximately 1/9 of TransUNet, and even lower than 
many existing lightweight frameworks. Despite its extremely small parameter count, our method still surpasses 
mainstream models in key metrics such as mIoU, Dice, and ACC. This demonstrates that by constructing a 
semantic sparse dictionary in the frequency domain, our approach effectively reduces redundant connections 
and mitigates the interference of irrelevant tokens commonly encountered in global Self-Attention. These results 
confirm that our model achieves high segmentation accuracy while maintaining a lightweight architecture.

Among the compared approaches, the four models with the highest Dice scores are our model with a Dice 
of 91.04%, BRAU-Net + + reaching 90.03%, MedFormer achieving 89.49%, and Swin-UNet with 89.46%, as 
shown in Fig. 5. Although these architectures employ strong multi-scale designs or attention mechanisms, our 

Fig. 5.  Comparison of segmentation performance among the top four Dice-scoring models on the ISIC 2018 
dataset. Columns (a)–(f) present the original image, ground-truth, and the predicted results from Swin-UNet, 
MedFormer, BRAU-Net++, and our model, respectively.

 

Models Params (M) SE SP mIoU Dice ACC

MedT25 15.50 79.98 97.76 80.34 86.29 94.91

TransUNet9 105 82.63 95.77 79.05 81.23 92.07

Swin-Unet10 27.17 90.56 97.35 81.78 89.46 96.05

HiFormer47 25.51 87.14 97.03 81.45 84.69 92.47

BRAUNet++33 14.39 81.76 96.98 84.10 90.03 95.16

MISSFormer27 42.46 90.01 97.11 81.54 88.92 94.18

MedFormer34 12.48 91.38 97.25 84.01 89.49 94.87

Our Model 11.77 92.90 97.98 84.32 91.04 96.26

Table 3.  Comparison of experimental results on ISIC 2018 dataset.
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method still delivers the highest segmentation accuracy. This improvement is largely attributed to the frequency-
domain semantic sparse dictionary, which suppresses redundant token interactions and reduces background 
interference that frequently appears in dermoscopic images. As a result, the model extracts more discriminative 
lesion features and produces clearer and more stable boundary representations. Notably, the model reaches this 
performance with roughly twelve million parameters, significantly smaller than most lightweight competitors 
and less than one-ninth of the heaviest baseline. Despite its compact size, the method consistently outperforms 
mainstream models, demonstrating the effectiveness of the proposed sparse representation strategy.

Synapse dataset comparison experiment
To further validate the generalization ability of our model across different imaging modalities, we conducted not 
only performance evaluations on the ACDC and ISIC 2018 datasets, but also extensive comparative experiments 
on the Synapse multi-organ abdominal CT dataset. These experiments were designed to assess the robustness 
and accuracy of our method under diverse medical imaging scenarios.

The experimental results are summarized in Table 4, which compares our model with several representative 
segmentation methods across multiple evaluation metrics. Specifically, the table reports the overall Dice score 
and Hausdorff Distance (HD), as well as the Dice scores for individual organs, including the aorta, gallbladder, 
left and right kidneys, liver, pancreas, spleen, and stomach. As shown, our method achieves an average Dice 
of 84.54 and an HD of 14.59, representing an improvement of approximately 8.36% in Dice and a reduction 
of about 52.46% in HD compared with TransUNet. Notably, our approach obtains the lowest HD among all 
methods, indicating that it not only maintains high segmentation accuracy but also substantially enhances 
boundary consistency.

For several key organs, including the liver (95.83), spleen (92.86), and stomach (86.03), our model achieves 
the best or near-best segmentation accuracy. For more challenging organs such as the aorta and pancreas, 
although RWKV-Unet shows competitive performance with local advantages, our method still demonstrates 
superior overall performance in terms of both mean Dice and HD, further confirming its robustness in handling 
complex anatomical boundaries. Taken together, these results highlight that our method delivers a globally 
optimal balance, ensuring both high segmentation accuracy and stable performance across organs.

In addition, we compared the visualization results of the top four models, including (c) MISSFormer, (d) 
RWKV-Unet, (e) EMCAD and (f) Our Model, ranked by Dice score against the (a) Raw Data and (b) Ground 
Truth annotations, as illustrated in Fig. 6. The figure clearly shows that our method provides more accurate and 
continuous delineation of organ boundaries, particularly for challenging structures such as the pancreas and 
gallbladder, where it preserves structural integrity better than other high-performing models. These observations 
are consistent with the quantitative results in Table 4, where our approach achieves the best performance in 
terms of both mean Dice and HD, underscoring its superior robustness in segmenting complex multi-organ 
anatomical regions.

Ablation experiment
To evaluate the effectiveness of the KSSDA and LEGD modules, we conducted ablation studies on three datasets: 
the ACDC cardiac dataset, the ISIC 2018 skin lesion dataset, and the Synapse multi-organ abdominal dataset, 
with the results summarized in Tables 5 and 6, and 7.

As shown in Table 5, when employing Self-Attention or Linformer, the overall segmentation accuracy drops 
notably, with mean Dice scores of 85.56 and 86.53, and HD values of 22.16 mm and 12.78 mm, respectively. This 
indicates that under constrained computational budgets, Self-Attention and Linformer are limited in their ability 
to capture long-range dependencies, resulting in inferior segmentation performance. In contrast, incorporating 
the KSSDA module into the encoder significantly boosts Dice scores, particularly for the LV (95.25) and RV 
(88.72) regions. Furthermore, introducing the Learnable Edge-Guided Decoding (LEGD) module in the 
decoder notably improves boundary accuracy, as reflected by a substantial reduction in HD, achieving even 
lower values than the full model, which demonstrated the LEGD’s positive effect on boundary reconstruction 
and contour precision. While LEGD alone achieves a slightly lower HD, the full model yields the best overall 
balance across Dice and boundary metrics. The complete model achieves the best overall performance, with 

Models

Average Dice

Dice HD Aorta GB KL KR Liver PC SP SM

TransUNet9 78.02 30.69 87.23 63.13 81.87 77.02 94.08 58.04 87.06 75.75

TransCASCADE48 81.88 18.05 86.89 68.75 85.31 82.05 94.21 65.77 91.62 80.41

Swin-Unet10 77.55 27.42 81.66 65.85 82.42 79.32 93.63 53.71 88.14 75.69

RWKV-Unet49 82.71 17.24 86.73 68.38 87.76 84.56 94.53 65.44 90.89 83.41

VM-Unet50 81.15 19.41 86.47 69.31 86.56 82.76 94.27 58.90 89.42 81.50

EMCAD51 83.68 15.58 88.24 68.97 88.18 84.2 95.36 68.61 92.07 83.82

MISSFormer27 82.56 15.8 89.46 67.59 84.21 79.16 95.47 69.28 90.95 84.39

MT-UNet46 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

PVT-CASCADE12 81.06 20.23 83.01 70.59 82.23 80.37 94.08 64.43 90.10 83.69

Our Model 84.54 14.59 88.31 71.34 88.22 84.73 95.83 68.96 92.86 86.03

Table 4.  Comparison of experimental results on synapse dataset.
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mean Dice of 92.53, and Dice scores of 96.62, 90.95, and 90.03 for LV, RV, and MYO, respectively, while reducing 
HD to 8.45 mm. These results highlight that the combination of spectral feature embedding and edge-guided 
mechanisms provides complementary advantages, enabling not only high segmentation accuracy but also 
improved boundary consistency.

From the ablation results on the ISIC 2018 dataset shown in Table 6, it can be observed that using conventional 
self-attention alone leads to a large parameter size (29.13 M) while yielding limited segmentation performance 
(Dice of only 84.09). When replacing it with Linformer, the parameter count decreases to 15.24 M, and the 
Dice score improves to 89.74, suggesting that linear attention offers a better trade-off between efficiency and 
accuracy. Incorporating the KSSDA module further reduces the parameter size to 9.06 M and enhances overall 
performance, achieving 87.41 of SE, 97.35 of SP, 88.24 of Dice, and 93.07 of ACC. Adding the LEGD module 
yields an additional Dice gain of approximately 7.27% compared with the fixed-operator setting, indicating 
that LEGD effectively strengthens boundary representation and alleviates mis-segmentation in ambiguous 
regions. By combining both KSSDA and LEGD, the complete model leverages their complementary strengths 

Fig. 6.  (a) Axial view of a representative CT slice. (b) Expert manual segmentation result. (c–f) The 
visualization results of the four models with the highest Dice scores, from left to right, are MISSFormer, 
RWKV-Unet, EMCAD, and our model.
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to jointly capture global semantics and local structural details in skin lesion segmentation. This integration of 
linear attention mechanisms with dynamic learning strategies not only enhances segmentation accuracy but also 
substantially reduces the overall parameter count.

The boundary heatmap comparisons in Fig. 7 provide clear evidence of the effectiveness of the proposed 
boundary-enhanced mechanism.

Specifically, Swin-UNet and MedFormer often produce diffuse or unstable boundary activations, indicating 
that their feature extractors struggle to localize fine-scale contour transitions. Although BRAUNet + + sharpens 
certain edge regions, its responses remain inconsistent and tend to break around irregular lesion shapes or low-
contrast boundaries.In contrast, our model yields uniformly concentrated and structurally coherent boundary 
responses. The activation maps tightly adhere to the true lesion outline, capturing subtle curvature changes and 
avoiding the fragmented or noisy patterns observed in other models. This demonstrates that the integration of 
KSSDA and LEGD enables the network to effectively suppress irrelevant background signals while selectively 
enhancing edge-related tokens. Overall, the visual evidence confirms that the proposed boundary-aware 
modules not only strengthen contour representation but also improve robustness across diverse lesion types.

To further examine the contributions of the KSSDA and LEGD modules, we performed ablation studies on 
the Synapse dataset, with the results summarized in Table 7. Comparing Self-Attention, Linformer, and KSSDA, 
it can be observed that incorporating KSSDA achieves the most substantial parameter reduction, requiring 
only 9.04  M parameters, which is approximately 86.46% fewer than Self-Attention (66.80  M), highlighting 
the advantage of sparse attention. On the other hand, contrasting the Scharr operator with the LEGD module 
demonstrates that LEGD is particularly effective for boundary refinement, improving the Dice score to 82.98 
and reducing HD to 16.03. As shown in Table 7, the complete model achieves the best overall performance, with 
84.54 of Dice, 14.59 of HD, and only 11.91 M parameters, confirming the effectiveness of the proposed approach.

To further isolate the individual contributions of the KSSDA and LEGD modules, we conducted module-
wise ablation experiments on both the ACDC and Synapse datasets, as summarized in Table 8. The baseline 
model without either component yields limited performance on both benchmarks. Introducing KSSDA alone 
provides substantial gains in global semantic modeling, improving Dice by 4.89% on ACDC and 5.42% on 
Synapse, while reducing HD by 6.87 mm and 6.98 mm, respectively. In contrast, enabling LEGD alone primarily 
strengthens boundary localization, improving HD by 13.21 mm on ACDC and 17.42 mm on Synapse. When 

Synapse Methods Dice HD Params(M)

w/Self-Attention 76.85 33.45 66.80

w/Linformer 77.98 33.95 30.65

w/KSSDA 82.27 26.47 9.04

w/Scharr 80.67 20.89 27.84

w/LEGD 82.98 16.03 25.23

Our Model 84.54 14.59 11.91

Table 7.  Results of ablation experiments on the synapse dataset.

 

ISIC 2018 Methods Params(M) SE SP Dice ACC

w/Self-Attention 29.13 82.56 92.01 84.09 91.22

w/Linformer 15.24 85.98 95.48 89.74 92.65

w/KSSDA 9.06 87.41 97.35 88.24 93.07

w/Scharr 11.45 90.56 96.37 84.05 91.21

w/LEGD 10.76 91.11 97.49 90.16 92.13

Our Model 11.77 92.90 97.98 91.04 96.26

Table 6.  Results of ablation experiments on the ISIC 2018 dataset.

 

ACDC Methods

Dice

HDAvg LV RV MYO

w/Self-Attention 85.56 91.11 81.38 84.19 22.16

w/Linformer 86.53 91.85 82.52 85.23 12.78

w/KSSDA 90.45 95.25 88.72 87.39 15.29

w/Scharr 88.22 92.08 86.38 86.21 10.34

w/LEGD 90.79 93.78 89.46 89.14 8.95

Our Model 92.53 96.62 90.95 90.03 8.45

Table 5.  Results of ablation experiments on the ACDC dataset.
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both modules are combined, the full model achieves the highest accuracy across both datasets, with Dice scores 
of 92.53 on ACDC and 84.54 on Synapse, accompanied by the lowest HD values. These findings demonstrate 
that KSSDA and LEGD offer complementary benefits, KSSDA enhances long-range semantic dependencies, 
while LEGD refines boundary structures, jointly enabling substantial improvements in segmentation accuracy 
and contour precision.

As shown in Table 9, the proposed KSSDA module achieves a favorable balance between inference speed, 
training efficiency, and memory consumption. Compared with standard self-attention, KSSDA reduces inference 
time from 2.48 s/iter to 1.85 s/iter, decreases training time from 2.73 s/iter to 1.67 s/iter, and lowers memory 
usage by approximately 31%. Moreover, KSSDA provides competitive efficiency relative to other linear-attention 
variants such as Linformer, Performer, and Linear Transformer, while maintaining lower memory consumption 
than all of them. These results demonstrate that the sparsity-driven design of KSSDA effectively improves 
computational efficiency without sacrificing segmentation performance.

Variant KSSDA LEGD
ACDC
Dice ↑

ACDC
HD↓

Synapse
Dice ↑

Synapse
HD↓

Baseline × × 85.56 22.16 76.85 33.45

+ KSSDA only √ × 90.45 15.29 82.27 26.47

+ LEGD only × √ 90.79 8.95 82.98 16.03

Full Model √ √ 92.53 8.45 84.54 14.59

Table 8.  Module-wise ablation of KSSDA and LEGD on ACDC and synapse datasets.

 

Fig. 7.  Qualitative comparison of segmentation boundary heatmaps among the top four Dice-performing 
models on the ISIC 2018 dataset. Columns (a)–(f) show the raw image, ground truth, and the predictions of 
Swin-UNet, MedFormer, BRAUNet++, and our model, respectively.
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We further investigated the impact of the parameter k in the frequency-domain similarity–based sparse 
attention mechanism. Optimization experiments were conducted on the ACDC and Synapse datasets, with the 
results presented in Figs. 8 and 9.

Results in Figs. 8 and 9 are obtained from k-only ablations on validation folds, which may differ from the final 
test-set metrics reported in Tables 2 and 4.

We first conducted experiments on the ACDC dataset to determine the optimal value of k. As shown in Fig. 8, 
the best performance was achieved when k = n/3, yielding a Dice of 90.5. This suggests that at an optimal spectral 
dimension, the model effectively balances global and local feature representations, thereby improving region 
overlap. In contrast, when k = n/8 or k = n, the Dice drops significantly, indicating that excessive compression 
results in insufficient structural information, while over-expansion may introduce noise and redundant features, 
both of which degrade segmentation quality. On the Synapse dataset, the best result occurs at k = 2n/3, where the 
Dice reaches 89.5, suggesting that this dataset is more sensitive to mid-to-high dimensional spectral embeddings, 
and that moderately increasing the feature dimension can enhance the representation of complex abdominal 
structures.

The variation trend of HD95 is consistent with that of the Dice, further validating the findings. On the 
ACDC dataset, the lowest HD95 of 2.0 mm occurs when k = n/3, confirming that this spectral configuration 

Fig. 8.  Dice scores under different spectral dimensions k on ACDC and Synapse.

 

Method Inference Time (s/iter) Training Time (s/iter) GPU Memory(MB)

Self-Attention 2.4821 2.7314 9325.17

Linformer35 1.7183 1.8924 10414.08

Performer36 1.8672 1.9541 6989.33

Linear Transformer38 1.8891 2.0135 7902.25

KSSDA (Ours) 1.8469 1.6742 6430.84

Table 9.  Computational efficiency comparison on the synapse dataset (224 × 224).
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also provides the most accurate boundary localization. Similarly, on the Synapse dataset, the HD95 reaches its 
minimum value of 2.0 mm at k = 2n/3, indicating that an appropriate choice of k benefits boundary delineation. 
In contrast, as illustrated in the Fig. 9, when k = n/8 or k = n, the HD95 values increase, suggesting that selecting 
k either smaller or larger than two-thirds compromises the robustness of boundary segmentation.

The two sets of experiments consistently demonstrate that selecting an appropriate range of k enables a better 
trade-off between regional consistency and boundary accuracy. The ACDC dataset tends to achieve optimal 
performance at moderate spectral dimensions, whereas the Synapse dataset benefits more from higher, yet not 
excessive, dimensional settings. These findings indicate that while different datasets vary in their sensitivity to 
spectral space scaling, the overall trend remains consistent: neither excessive compression nor full preservation 
of all features is desirable.

Summary
This study introduces a boundary-aware sparse Transformer architecture for medical image segmentation, 
aiming to overcome two persistent issues in existing Transformer-based models: the computational expense of 
dense global self-attention and the insufficient recovery of detailed boundaries. To address the first challenge, 
the encoder employs a Key-Semantic Sparse Dictionary Attention mechanism, where token correlations are 
computed in the frequency domain through amplitude spectrum cosine similarity, producing stage-wise sparse 
attention that reduces redundancy while maintaining semantic fidelity. For boundary refinement, the decoder 
integrates a Learnable Edge-Guided Decoding module, which utilizes trainable filters initialized from Sobel and 
Scharr operators to dynamically capture edge information. These edge features are injected into the attention 
process as bias, guiding more accurate contour reconstruction. Evaluations on three public datasets ACDC, 
ISIC 2018, and Synapse show that the proposed framework consistently improves segmentation accuracy 
and boundary quality, while also achieving substantial reductions in parameters and computational cost, 
underscoring its efficiency and generalizability across imaging modalities.

Data availability
The ACDC, ISIC 2018, and Synapse datasets are publicly available and can be accessed at ​h​t​t​p​s​:​/​/​w​w​w​.​c​r​e​a​t​i​s​.​i​n​
s​a​-​l​y​o​n​.​f​r​/​C​h​a​l​l​e​n​g​e​/​a​c​d​c​/​, https://challenge.isic-archive.com/data/, and https://www.synapse.org/, respectively.

Fig. 9.  HD95 scores under different spectral dimensions k on ACDC and Synapse.
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