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Boundary-enhanced sparse
transformer for generalizable
and accurate medical image
segmentation

Chaofan Li%, Qiong Liu?*“ & Jianxiang Song**

Medical image segmentation is a fundamental task in computer-aided diagnosis, playing a crucial
role in organ structure analysis, lesion delineation, and treatment planning. However, current
Transformer-based segmentation networks still face two major challenges. First, the global self-
attention in the encoder often introduces redundant connections, leading to high computational
cost and potential interference from irrelevant tokens. Second, the decoder shows limited capability
in reconstructing fine-grained boundary structures, resulting in blurred segmentation contours. To
address these issues, we proposed an efficient and accurate framework for general medical image
segmentation. Specifically, in the encoder, we introduce a frequency-domain similarity measure and
construct a Key-Semantic Dictionary (KSD) via amplitude spectrum cosine similarity. This enables
stage-wise sparse attention matrices that reduce redundancy and enhance semantic relevance. In
the decoder, we design a learnable gradient-based operator that injects boundary-aware logits bias
into the attention mechanism, thereby improving structural detail recovery along object boundaries.
On ACDC, the framework delivers a 0.55% gain in average Dice and a 14.6% reduction in HD over the
second-best baseline. On ISIC 2018, it achieves increases of 1.01% in Dice and 0.21% in ACC over the
second-best baseline, while using 88.8% fewer parameters than typical Transformer-based models.
On Synapse, it surpasses the strongest prior approach by 1.03% in Dice and 6.35% in HD, yielding up
to 8.36% Dice improvement and 52.46% HD reduction compared with widely adopted Transformer
baselines. Comprehensive results confirm that the proposed frequency-domain sparse attention and
learnable edge-guided decoding effectively balance segmentation accuracy, boundary fidelity, and
computational cost. This framework not only suppresses redundant global correlations and enhances
structural detail reconstruction, but is also robust to different medical imaging modalities, providing a
lightweight and clinically applicable solution for high-precision medical image segmentation.

Keywords Medical image segmentation, Sparse attention, Key-Semantic dictionary, Boundary-Aware
decoder

Medical image segmentation is a cornerstone of computer-aided diagnosis, underpinning a wide spectrum of
clinical tasks!. By providing accurate delineation of anatomical structures and pathological regions, segmentation
yields quantitative and objective information that supports functional assessment, disease progression
monitoring, and individualized treatment planning. For instance, in cardiac imaging, precise segmentation
of the ventricles and myocardium is vital for reliable computation of functional indicators such as ejection
fraction®*. In oncology, robust tumor boundary delineation enables volumetric analysis, longitudinal follow-
up, and radiotherapy target definition®. Similarly, in dermatology, accurate localization of skin lesions plays a
critical role in early melanoma detection and population-level screening®. Consequently, both the precision and
efficiency of segmentation models have a direct impact on clinical decision-making and therapeutic outcomes®.

The advent of deep learning has greatly advanced the development of automated medical image segmentation.
Convolutional neural networks (CNNs) have dominated this field for years, achieving strong results on various
public benchmarks’. Nonetheless, CNNs are inherently limited by their local receptive fields, which restrict
their ability to capture long-range contextual information. This shortcoming makes them less effective for
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complex anatomical structures or ambiguous lesion boundaries. To overcome these limitations, Transformer
architectures have recently been introduced into medical image analysis®. Benefiting from the global self-
attention mechanism, Transformers can model long-range dependencies and integrate global contextual cues,
thereby enhancing the segmentation of multi-scale and morphologically diverse structures. Transformer-based
frameworks such as TransUNet® and Swin-Unet'? have reported promising outcomes across multiple imaging
modalities, including cardiac MRI, abdominal CT, and dermoscopic images.

Despite these encouraging results, Transformer-based segmentation networks continue to face two
significant challenges. First, the encoder’s global self-attention requires the computation of a full token-to-token
similarity matrix, which incurs quadratic complexity in both computation and memory usage'"!2. This not
only increases resource demands but also introduces redundant correlations that dilute semantic relevance and
may incorporate irrelevant information. Second, while the decoder benefits from global context, it remains
insufficient in reconstructing fine-grained boundary details, often producing blurry or inaccurate contours!>!4.
Such limitations are especially detrimental in clinical contexts where boundary precision is essential, such as
differentiating subtle myocardial borders in cardiac imaging or outlining infiltrative tumor margins. These
challenges hinder the efficiency, robustness, and broader clinical adoption of Transformer-based medical image
segmentation methods!>16.

To overcome the aforementioned limitations, we proposed a general medical image segmentation framework
that balances computational efficiency with segmentation accuracy. The framework introduces targeted
improvements to both the encoder and the decoder, aiming to simultaneously reduce redundant computations
and enhance boundary reconstruction.

In the encoder, we incorporate a frequency-domain similarity measurement strategy. Specifically, local
feature representations are transformed into the frequency domain, where cosine similarity of the amplitude
spectra is employed to evaluate the correlation between tokens. Based on these correlations, a Key-Semantic
Sparse Dictionary Attention (KSSDA) mechanism is constructed, which retains only the most relevant token
interactions within each stage. By replacing the dense global self-attention with stage-wise sparse attention
matrices, KSSDA effectively suppresses irrelevant token interference and avoids the quadratic computational
burden, thereby yielding more compact and efficient feature representations.

For the decoder, we design a Learnable Edge-Guided Decoding (LEGD) module. Unlike fixed filters such as
Sobel or Prewitt, this operator is implemented with trainable convolutional kernels, enabling adaptive extraction
of boundary responses from feature maps. The resulting boundary strength map is then integrated into the
attention mechanism by injecting a logits bias, guiding the decoder to emphasize structural details along object
boundaries. LEGD not only enhances sensitivity to complex boundary variations but also alleviates common
issues such as contour blurring or boundary misalignment.

By combining KSSDA in the encoder with LEGD in the decoder, the proposed framework achieves a
favorable trade-off between reduced computational complexity and improved segmentation accuracy, delivering
both efficient feature extraction and high-quality boundary reconstruction. In summary, our contributions
are twofold. First, the proposed frequency-domain KSSDA encoder reduces redundant global correlations
and lowers attention complexity, offering more compact representations while improving Dice by 4-5% and
reducing HD by over 7 mm in controlled ablation settings. Second, the LEGD decoder enhances boundary
modeling through adaptive gradient-based cues, yielding up to average 3.6% Dice improvement and 3.1 mm
HD reduction over fixed edge operators. When integrated into a unified architecture, these components enable
consistent performance gains across ACDC, ISIC 2018, and Synapse, achieving average 8.1% higher Dice and
up to 40.6% lower HD than recent Transformer-based baselines, while operating with a lightweight 11.8 M
parameter design that is substantially smaller than typical Transformer counterparts.

Related work

CNN-based segmentation methods

Early approaches to medical image segmentation were predominantly based on CNN architectures, among
which U-Net!” stands out as the most influential model. U-Net employs a symmetric encoder-decoder design
with skip connections between corresponding layers, enabling the effective fusion of low-level spatial details
and high-level semantic information. This architecture achieved groundbreaking success in two-dimensional
medical image segmentation tasks. Building on this foundation, several variants of the U-shaped architecture
have been proposed. V-Net!® extended U-Net into three dimensions by introducing 3D convolutions, allowing
direct processing of volumetric data and demonstrating strong performance on MRI and CT segmentation.
U-Net++!° enhanced multi-scale feature representation by introducing nested and dense skip pathways,
yielding improved results in both organ and lesion segmentation. Attention U-Net?® incorporated attention
gating modules into the decoder, enabling the model to focus adaptively on target regions, which is particularly
beneficial for segmenting small organs or lesions. More recently, nnU-Net?! introduced a self-adaptive
framework that automatically configures network depth, kernel size, and preprocessing strategies according
to the characteristics of each dataset. Owing to its automation and strong generalization ability, nnU-Net has
achieved state-of-the-art performance in multiple international medical image segmentation benchmarks and is
widely regarded as a powerful baseline.

Despite the remarkable success of these U-shaped CNN models, their inherent reliance on local receptive
fields limits their ability to capture long-range dependencies. As a result, CNN-based methods often struggle with
complex anatomical structures and ambiguous boundaries??. These limitations have motivated the introduction
of Transformer architectures into medical image segmentation, leveraging global self-attention mechanisms to
compensate for the shortcomings of CNNs in modeling long-range contextual relationships?.
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Transformer-based segmentation methods
To address the limitations of CNNs in modeling long-range dependencies, Transformer architectures have
been increasingly adopted in medical image segmentation. A representative work, TransUNet’, integrates
a CNN encoder with a Transformer module, thereby combining local feature extraction with global context
modeling. Swin-Unet'® employs a hierarchical Swin Transformer®* to build a pure Transformer-based U-shaped
architecture, achieving competitive performance across multiple modalities, including cardiac MRI, abdominal
CT, and dermoscopic images. Furthermore, UNETR?? leverages a ViT as the encoder and incorporates skip
connections to directly fuse Transformer features into the decoder, demonstrating strong performance in 3D
segmentation tasks. Other approaches such as MedT?® and SwinBTS?® explore multi-scale or cross-modality
designs, further improving the adaptability and effectiveness of Transformer-based segmentation frameworks.
More recent works have sought to balance accuracy and efficiency. MISSFormer®” introduces a lightweight
multi-scale Transformer, preserving global modeling capability while reducing computational overhead.
UCTransNet?® proposes a channel-interactive Transformer module to enhance semantic representation,
particularly effective for small organ segmentation. DS-TransUNet®® incorporates a dual-scale Transformer
design to improve adaptability to organs and lesions of different sizes. SwinFPN*’ integrates hierarchical Swin
Transformers with a feature pyramid network to strengthen cross-scale feature fusion. The latest UniverSeg®!
framework extends Transformers toward universal medical image segmentation across diverse tasks and
modalities, showcasing strong generalization ability. Collectively, these studies highlight the growing impact of
Transformers in advancing medical image segmentation. Several works**~3* have further adapted Transformer-
based frameworks to volumetric data, achieving efficient 3D segmentation and underscoring their versatility in
medical imaging.

Attention methods

Although Transformers have demonstrated great potential in medical image segmentation, existing approaches
still face notable limitations. In the encoder, global self-attention requires the computation of a full token-
to-token similarity matrix, which incurs quadratic complexity in both computation and memory, leading to
redundancy and irrelevant correlations that hinder efficiency and scalability. In the decoder, while global context
is effectively modeled, the reconstruction of fine-grained boundary details remains insufficient, often resulting
in blurry or shifted contours that are undesirable in clinical applications.

(1) Linear Attention Methods: The main idea is to approximate the self-attention mechanism and reduce
the computational complexity from O(n?)to O(kn), thereby enabling efficient modeling of long sequences.
Representative examples include: Linformer?®, which projects the Key and Value into a low-dimensional space
via low-rank approximation, avoiding the need to construct the full similarity matrix and validating the low-rank
property of attention; Performer?®, which introduces orthogonal random feature maps to approximate the softmax
kernel, reformulating attention into a linear form with unbiased estimation; Nystrémformer?’, which applies the
Nystrom method to approximate the attention matrix using a subset of landmarks, reducing computational
cost while preserving global structure; Linear Transformer, which rewrites attention as an inner product of
kernelized queries and keys, enabling efficient cumulative computation during inference; FlashAttention®?,
which unlike approximation-based methods, FlashAttention achieves exact attention computation with reduced
memory footprint and latency by reordering memory access patterns and optimizing kernels. These methods
have achieved notable success in NLP and computer vision and are now being increasingly adopted in medical
image analysis to reduce computational burdens and improve scalability.

(2) Sparse Attention Methods: These approaches reduce complexity by enforcing sparsity in the attention
connections while preserving global modeling capacity. For instance, Longformer*® employs a combination
of local sliding windows and global tokens; BigBird*! integrates random, global, and block-local connections
to balance efficiency and expressivity; Sparse Transformer?? accelerates sequence modeling via block-sparse
patterns; and Reformer*® leverages reversible residual layers and locality-sensitive hashing (LSH) to reduce
memory usage.

These efficient attention mechanisms provide practical alternatives to dense self-attention and have inspired
follow-up research on designing lightweight and scalable Transformers for medical image segmentation.

Contribution
The main contributions of this work are summarized as follows:

(1) Frequency-domain sparse attention: The proposed Key-Semantic Sparse Dictionary Attention reduces
redundant global correlations and lowers attention complexity while enhancing feature compactness. It improves
average Dice by up to 0.55% and reduces HD by 14.6% over the second-best baseline, while requiring 88.8%
fewer parameters than typical Transformer-based encoders.

(2) Learnable edge-guided decoding: The Learnable Edge-Guided Decoding module strengthens contour
reconstruction through adaptive gradient-based boundary cues. It brings up to 1.03% Dice and 6.35% HD
improvement over the strongest prior method, achieving as much as 8.36% Dice and 52.46% HD gains relative
to widely adopted Transformer baselines.

Methodology

Data collection and processing

We conducted experiments on three publicly available datasets of different modalities, namely the Automated
Cardiac Diagnosis Challenge (ACDC) dataset, the ISIC 2018 skin lesion segmentation dataset, and the Synapse
multi-organ segmentation dataset. A detailed comparison of their characteristics is provided in Table I.
Specifically, Table 1 summarizes the key attributes of the datasets used in this study, including imaging sequences,
data partitioning, annotated regions, image resolution, the number of classes, and imaging modalities.
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Items ACDC ISIC 2018 Synapse

Imaging Sequences | Cine MRI(bSSFP) | RGB dermoscopy | Abdominal CE-CT

training set 70 1815 16

validation set 10 259 2

test set 20 520 12

Label Region LV, RV, MYO Lesion Aorta, GB, KL, KR, Liver, PC, SP, SM
Size (216,256,9) (600,450,3) (512,512,85-198)

Classes 3 1 8

Modalities 1 1 1

Table 1. Comparison of ACDC, ISIC2018 and Synapse.

ACDC: The ACDC dataset comprises 100 cardiac MRI scans acquired from different subjects, with imaging
performed using cine-MRI (bSSFP) sequences. The dataset was divided into training, validation, and testing
subsets in a 7:1:2 ratio. Specifically, the training set includes 70 cases (1,304 slices), the validation set contains
10 cases (182 slices), and the test set consists of 20 cases (370 slices), each accompanied by corresponding
segmentation masks. Each MRI volume is composed of multiple two-dimensional slices, with annotations
provided for three cardiac structures: the left ventricle (LV), the right ventricle (RV), and the myocardium
(MYO). Each 2D slice has an in-plane resolution of approximately 216 x256 pixels, and each MRI volume
contains about 9 slices on average, with annotations for three cardiac structures and a single imaging modality.

ISIC 2018 The ISIC 2018 dataset is designed for skin lesion analysis, with images acquired through RGB der-
moscopy. In total, 2,594 dermoscopic images are provided by the organizers. For our experiments, we allocated
1,815 images for training, 259 for validation, and 520 for testing. The annotations correspond to the skin lesion
regions, and each image has a resolution of 600 x 450 pixels (RGB). The dataset contains one segmentation class
and is based on a single imaging modality.

Synapse The Synapse dataset consists of 30 contrast-enhanced abdominal CT scans, totaling 3,779 axial slic-
es, provided by the MICCAI 2015 Multi-Atlas Abdominal Labeling Challenge. Each scan contains between
85 and 198 slices with an in-plane resolution of 512x512 pixels, and the voxel spacing is approximately
0.54x0.54 x (2.5-5.0) mm®. Annotations are available for eight abdominal organs, including the aorta, gallblad-
der (GB), left kidney (KL), right kidney (KR), liver, pancreas (PC), spleen (SP), and stomach (SM). The dataset
involves 8 classes and a single imaging modality.

Network architecture
The overall framework of our method follows a typical encoder-decoder paradigm, where we make two targeted
modifications to enhance both feature representation and boundary reconstruction, as illustrated in Fig. 1.

On the encoder side, we replace the conventional CNN backbone with a KSSDA Transformer to achieve
efficient global feature modeling. Specifically, the input medical image is first partitioned into non-overlapping
patches and embedded into a high-dimensional feature space, forming a sequence of tokens. These token
sequences are then processed by the KSSDA Transformer. Unlike standard dense self-attention, KSSDA
introduces a KSD that is constructed via amplitude spectrum cosine similarity within each stage. This dictionary
selectively preserves only the most relevant token interactions, thereby suppressing redundant connections
and reducing quadratic complexity. Moreover, the KSD is shared across all layers within each stage, ensuring
consistent semantic modeling and yielding more compact and discriminative feature representations.

For the decoder, we design a LEGD module dedicated to recovering fine-grained boundary structures.
Instead of relying on fixed gradient filters, LEGD employs Learnable Edge Filters, whose weights are initialized
with classical Sobel and Scharr kernels to provide strong edge-detection priors at the early stage of training.
During optimization, these filters are updated as trainable parameters, enabling adaptive extraction of boundary
responses tailored to medical imaging data. The resulting edge strength maps are not only used as auxiliary
boundary features but also injected into the attention mechanism as logits bias, explicitly guiding the decoder to
emphasize boundary regions of organs and lesions.

By integrating KSSDA in the encoder for sparse and efficient feature extraction and LEGD in the decoder
for boundary-aware refinement, the proposed architecture achieves a favorable balance between computational
efficiency and segmentation accuracy, delivering precise structural delineation with enhanced boundary quality.

KSSDA transformer

In the preceding section, we described the overall network design. Here, we provide a detailed account of the
proposed Key-Semantic Sparse Dictionary Attention Transformer, as illustrated in Fig. 2, which aims to reduce
the computational burden of conventional self-attention while maintaining strong global modeling capability
for medical image segmentation. Standard self-attention constructs a full pairwise similarity matrix of size
R™*™, requiring quadratic complexity O(n?) in both computation and memory, where # is the number of
tokens. When applied to high-resolution medical images, this quickly becomes a computational bottleneck.
Furthermore, the dense matrix often encodes numerous redundant or irrelevant token interactions, which
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Fig. 1. The overall structure of our network.

consume resources without contributing to meaningful representation learning. This motivates the development
of a sparse mechanism that selectively preserves only the most semantically relevant dependencies.

To address this issue, we introduce a frequency-domain approach for token similarity estimation. Let the
feature sequence at the -th stage be defined as in Eq. (1):

X = (A7 557, f) e e X )

Each token vector fi(s) is transformed into the frequency domain using a one-dimensional Fourier transform,
after which the normalized amplitude spectrum is obtained, as shown in Eq. (2):

7))

AP = L
[E<E2
2

i=1,...,n (2)

The correlation between tokens is then measured by cosine similarity in the amplitude spectrum space in Eq. (3):

L, (AP A
Sim{? = <(Z)’7ﬂﬁm<s> € R Xns -
APy AW,

Compared with spatial-domain similarity, amplitude-based similarity is invariant to phase shifts and local
misalignments, thus offering a more stable and robust measure of structural and textural relationships in
medical images.

From the similarity matrix, each token retains only its top-k most relevant neighbors in Eq. (4):

T (i) = TopK(Sim'*), k) (4)

This selection defines a KSD that serves as a sparse mask in Eq. (5):
KSD® € {0,1}" ", KSD{¥ =1{j € 7 (i)} (5)
The dictionary is shared across all layers and attention heads within a stage, ensuring semantic consistency

and reducing redundant computations. With the KSD mask, attention computation no longer operates over all
tokens. The conventional self-attention can be written as as Eq. (6):

Attn(Q, K, V') = Softmax (QKT) Vv (6)
) ) /idh
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where Q, K,V € R™*? In KSSDA, the operation becomes, as shown in Eq. (7):
QKT )
Attnksspa (@, K, V) = Softmax ( + M 14 (7)
(@51 Var

with M) € {0, —00}™**"* representing the mask derived from the dictionary. This ensures that only the
top-k positions for each query participate in softmax normalization, while the remaining entries are effectively
ignored. Equivalently, each query, can directly gather its k neighbors in Eq. (8):

qgs,h)f(’vi(s,h)-r )

= AL (8)
V Uh

k3

Y™ = Softmax (

where K i(s’h), f/i(s’h) € RF*4h In this way, the normalization domain of softmax is explicitly
reduced from ns to k.This sparsification leads to significant computational savings. The complexity
of standard attention is O(H -n?-dp) =~ O(n2). while the proposed KSSDA reduces it to
O(H -ns - k-dp) + O(ns - ds - logds) = O(kns), where the second term corresponds to the Fourier
transform required to build the dictionary. Since this cost is shared within a stage, its impact is minor. Importantly,
because k < ns, the overall savings in both computation and memory are substantial.
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LEGD module
To enhance the capability of the segmentation network in modeling boundary regions of medical images,
we propose a LEGD module as shown in Fig. 3. In medical imaging, organ and lesion boundaries are often
characterized by abrupt voxel intensity changes or discontinuous textures, making edge information particularly
critical for accurate delineation. However, conventional Transformer decoders typically struggle to reconstruct
fine-grained contours, resulting in blurred or shifted boundaries. To address this issue, LEGD introduces edge-
aware bias into the attention mechanism, explicitly reinforcing structural boundary modeling and thereby
improving reconstruction accuracy.

Unlike traditional edge detectors with fixed kernels, the convolution filters in LEGD are defined as trainable
three-dimensional parameters. For initialization, they are assigned the weights of classical Sobel and Scharr
operators, which are designed to extract gradient information along the x, y, and z directions. For example, the

Sobel kernels are initialized as:

[-1 0 1] -1 -2 -1] -1 -2 -1]

@iobel _ [_2 0 2] G')SObel _ [0 0 0] egobel _ [0 0 O}
-1 0 (1 2 1] 1 2 1]

et

Similarly, the Scharr kernels are initialized as:

-3 0 3 -3 —10 -3] -3 —10 -3
eicharr — [_10 0 10] e;eharr _ [0 0 0] efcharr _ [0 0 0]
-3 0 3] 3 10 3 3 10 3

During training, these convolutional kernels are updated through backpropagation, enabling them to evolve
from classical operators into adaptive filters specialized for medical imaging. The use of Sobel and Scharr for
initialization leverages their complementary strengths: Sobel is robust to noise and effective for detecting low-
contrast boundaries, while Scharr offers improved rotational invariance and sensitivity to structural details,
which is advantageous for delineating irregular anatomical regions. This initialization allows the model to
inherit useful priors while retaining adaptability during optimization, thereby improving its applicability across
different modalities and organs. Extending the design into three dimensions further strengthens boundary
modeling, where kernels in the x direction capture vertical gradients, those in the y direction highlight horizontal

Norm Norm
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Fig. 3. The structure of the LEGD module.
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structures, and those in the z direction account for inter-slice variations, ensuring consistency and continuity in
volumetric CT and MRI data.

Formally, given an input feature map ' ¢ R™*¢, the edge responses along the three axes are defined as
shown in Eq. (9):

Ke=F+0, K,=F+0,, K. =F=x0.. (9)

The directional responses obtained from the x, y, and z kernels provide complementary information about
gradient variations along different spatial axes. To achieve a coherent representation of boundary strength, these
components are combined into a single edge magnitude by aggregating their squared values. This fusion not
only preserves directional sensitivity but also produces a rotation-invariant measure of edge intensity as shown
in Eq. (10):

Output = /K2 + K2 + K? (10)

Followed by normalization to produce an edge strength map in Eq. (11):

M = o(Output) (11)

This edge strength map is subsequently incorporated into the attention mechanism as a logits bias, imposing
an explicit constraint on boundary-related regions during the computation of attention weights. As shown
in Eq. (12), this bias term adjusts the attention distribution to emphasize edge-sensitive regions, thereby
encouraging the model to capture fine structural variations more effectively. This design not only enhances the
network’s responsiveness to complex and irregular boundaries but also alleviates the common issues of blurred
or shifted contours observed in conventional decoders.

QK"
Vd

LEGD-Attn(Q, K, V) = Softmax ( + AM) 1% (12)

Through this design, the LEGD module integrates the advantages of Sobel and Scharr initialization with the
adaptability of learnable filters, enabling stronger edge sensitivity. This approach preserves the global modeling
capability of the decoder while significantly improving the precision and fidelity of reconstructed anatomical
boundaries, particularly for complex structures in volumetric CT and MRI data.

Evaluation metrics and loss function

To comprehensively evaluate the segmentation performance on ACDC, ISIC 2018, and Synapse, we select a set of
complementary metrics. Dice and mIoU are used to measure region overlap and global segmentation accuracy,
while HD assesses boundary precision, which is crucial in clinical practice. For ISIC 2018, additional metrics
including SE, SP, ACC, and Recall are reported to better reflect performance under class imbalance, ensuring
both sensitivity to lesions and robustness against false positives. Together, these metrics provide a balanced
evaluation of accuracy, boundary quality, and clinical reliability. To comprehensively assess segmentation
performance, we adopt a set of complementary evaluation metrics that jointly capture region overlap, boundary
precision, and class-level discriminability. The Dice coefficient is used to quantify the spatial overlap between the
predicted mask and the ground truth, formulated as shown in Eq. (13):

2-TP

Dice = 13
= S TP FP+ FN (13)

where TP, FP, and FN denote true positives, false positives, and false negatives. To evaluate the accuracy of
contour alignment, the Hausdorff Distance (HD) is employed, defined by Eq. (14):

HD(z,y) = max{sup inf D(a,b), sup inf D(a,b)} (14)
acx bEY bey a€®
where x and y are the ground-truth and predicted contours, and D(, -) represents the Euclidean distance. For

ISIC 2018, which involves lesion detection under class imbalance, we additionally report classification-oriented
metrics. Sensitivity (SE) measures the ability to correctly identify positive samples in Eq. (15):

TP
= TP EN =
while Specificity (SP) evaluates the correct identification of negative samples in Eq. (16):
TN
P=——— 16
s TN + FP (16)
The overall Accuracy (ACC) is expressed as shown in Eq. (17):
ACC — TP+ TN (17)

TP+TN+ FP+ FN
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Recall, which is equivalent to sensitivity in binary cases, is given by Eq. (18):

TP
— - 1
Recall TP+ FN (18)

Finally, the mean Intersection over Union (mIoU) provides an average IoU score across categories in Eq. (19) :

c
TP,

1
miol =7 Zl TP. + FP. + FN, (19)

where C is the total number of classes. Collectively, these metrics provide a comprehensive and balanced
evaluation, covering regional overlap, contour fidelity, and classification reliability.

Since the ACDC, ISIC 2018, and Synapse datasets involve multi-label medical image segmentation tasks,
we employ the Dice loss to guide the overall optimization of the network by enforcing region-level overlap
consistency between predictions and ground truth. To further mitigate class imbalance across different categories,
we incorporate the Binary Cross-Entropy (BCE) loss as an auxiliary term. The final combined objective is
formulated in Eq. (20), which integrates both Dice and BCE components to achieve stable and balanced training.

L=X-Lgce+(1—2X)-Lpice (20)

Result

Implementation detail

Our model was implemented using PyTorch 2.0.1, and all experiments were carried out on a cloud computing
platform equipped with four NVIDIA A100 GPUs. Throughout the training process, we employed the AdamW
optimizer to update parameters, with the initial learning rate set to le-3, a weight decay of le-5, and the number
of training epochs fixed at 500. In our experiments, we employed ITK-SNAP for result visualization, which can
be freely obtained from the official website at https://www.itksnap.org/pmwiki/pmwiki.php? n=Downloads.SN
AP4.

ACDC dataset comparison experiment

To assess the segmentation capability of our proposed model, we first conducted experiments on the ACDC
dataset. Under identical experimental settings, we further compared our method against six state-of-the-art
medical image segmentation models, including TransUNet, MISSFormer, Swin-Unet, LeViT-Unet, MedFormer,
and LaplacianFormer. All models were trained and evaluated using the same preprocessing pipeline, training
configurations, and evaluation metrics, ensuring a fair and consistent comparison.

The quantitative results are summarized in Table 2, which reports the performance of our model against
several representative segmentation approaches across multiple evaluation metrics, including mean Dice
coefficient (Dice), mean Intersection-over-Union (mlIoU), and Hausdorff Distance (HD). As shown, our
method consistently achieves superior segmentation accuracy. Specifically, it attains Dice scores of 96.62 for
the left ventricle (LV), 90.95 for the right ventricle (RV), and 90.03 for the myocardium (MYO), surpassing all
competing methods. Notably, in the critical LV segmentation task, our model outperforms TransUNet, Swin-
Unet, LeViT-Unet, and MedFormer by absolute Dice gains of 1.25%, 0.79%, 1.00%, and 1.12%, respectively,
while also exceeding the LaplacianFormer by 0.88%. In terms of mIoU, our model achieves class-wise scores of
93.35 (LV), 89.05 (RV), and 84.69 (MYO), yielding an average of 89.03, further confirming its robustness across
multiple cardiac structures.

In terms of boundary accuracy measured by the Hausdorff Distance (HD), our model demonstrates
remarkable performance. For the segmentation of the left ventricle (LV), right ventricle (RV), and myocardium
(MYO), the HD values achieved are 7.11 mm, 8.71 mm, and 9.55 mm, respectively. Compared with the state-of-
the-art LaplacianFormer, which reports HD values of 8.43 mm, 9.98 mm, and 11.32 mm, our method reduces
the error by 15.6%, 12.7%, and 15.6%, respectively. These results indicate that introducing the LEGD module

Dice mloU HD
Models LV |RV |MYO |[LV |RV |MYO |LV |RV |MYO
TransUNet’ 95.37 | 87.86 | 84.03 |88.11 | 81.18 | 76.70 | 9.97 | 14.24 | 11.41
MISSFormer? 94.99 | 88.55 | 87.54 | 88.31 | 83.33 | 77.40 | 9.76 | 13.60 | 9.32
Swin-Unet'° 95.83 | 89.55 | 85.62 |89.20 | 81.16 | 78.18 | 9.29 | 1535 | 12.03
LeViT-Unet* 95.62 | 86.64 | 89.04 | 89.81 | 87.10 | 79.75 | 9.81 | 15.34 | 12.30
MedFormer** 95.50 | 88.90 | 89.87 | 91.37 | 86.20 | 83.52 | 10.62 | 10.81 | 11.71
LaplacianFormer® | 95.74 | 90.65 | 89.68 |92.09 | 86.95 | 79.80 | 8.43 | 9.98 | 11.32
MT-UNet*® 95.62 | 86.64 | 89.04 | 87.04 | 81.12 | 79.85 | 9.74 | 13.87 | 9.27
PVT-CASCADE* | 95.50 | 88.90 | 89.97 |89.05 | 83.17 | 78.12 | 9.54 | 15.14 | 9.95
Our Model 96.62 | 90.95 | 90.03 | 93.35 | 89.05 | 84.69 | 7.11 | 8.71 | 9.55

Table 2. Comparison of experimental results on ACDC dataset.
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into the decoder effectively handles challenging boundary regions. Overall, on the high-quality ACDC dataset,
our approach delivers stronger segmentation performance than other leading methods.

Figure 4 presents the visual comparison of segmentation results on the ACDC dataset across our model and
six competing methods. Specifically, (a) shows the short-axis view of a representative original MRI slice, (b)
depicts the expert manual annotation, and (c-i) illustrate the predictions of the seven segmentation models.
The yellow boxes highlight regions where the model outputs deviate from the ground-truth labels. As observed
in Fig. 4, our method not only achieves substantial improvements in quantitative metrics but also delivers
visually more precise segmentations, particularly along the boundaries of the myocardium and right ventricle.
Comparative analysis of panels (c-i) further demonstrates that, in segmenting key cardiac anatomical structures,
our model which integrating a sparse attention mechanism with a learnable edge-guided decoding module
shows clear advantages in terms of regional consistency, boundary delineation, fine-grained detail recognition,
and robustness against misclassification.

ISIC 2018 dataset comparison experiment

Table 3 reports the experimental results of our method compared with seven state-of-the-art models on the
ISIC 2018 dataset. As shown, our model achieves scores of 92.90 (SE), 97.98 (SP), 84.32 (mIoU), 91.04 (Dice),
and 96.26 (ACC), demonstrating strong robustness across different datasets. In particular, our method achieves
a 0.37% relative improvement in mlIoU, 1.73% in Dice, and 1.46% in ACC over the second-best MedFormer,
further confirming its superior segmentation capability.

(e)SwinUnet

Right

Ventricle

(DLeVit-Unet  (g)MedFormer (h)Laplacian Former (i)Our Model

Fig. 4. (a) Short-axis view of a representative original MRI slice. (b) Expert manual segmentation result. (c-i)
Visualization of the prediction results from seven segmentation models. The yellow rectangular box represents
the areas where the segmentation model’s result image differs significantly from the standard label image.
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Models Params (M) | SE SP mloU | Dice | ACC
MedT? 15.50 79.98 | 97.76 | 80.34 |86.29 | 94.91
TransUNet’ 105 82.63 | 95.77 | 79.05 | 81.23 | 92.07
Swin-Unet!? 27.17 90.56 | 97.35 | 81.78 | 89.46 | 96.05
HiFormer*” 25.51 87.14 | 97.03 | 81.45 | 84.69 | 92.47
BRAUNet++3 | 14.39 81.76 | 96.98 | 84.10 | 90.03 | 95.16
MISSFormer? | 42.46 90.01 | 97.11 | 81.54 |88.92 | 94.18
MedFormer® | 12.48 91.38 | 97.25 | 84.01 |89.49 | 94.87
Our Model 11.77 92.90 | 97.98 | 84.32 | 91.04 | 96.26

Table 3. Comparison of experimental results on ISIC 2018 dataset.

(a)Raw Data

(b)GT (c)Swin-Unet (d)MedFormer (¢)BRAUNet++ (f)Our Model

Fig. 5. Comparison of segmentation performance among the top four Dice-scoring models on the ISIC 2018
dataset. Columns (a)-(f) present the original image, ground-truth, and the predicted results from Swin-UNet,
MedFormer, BRAU-Net++, and our model, respectively.

We further introduced the number of parameters as an additional evaluation metric to highlight the
lightweight nature of our model. As shown in the Table 3, TransUNet has the largest parameter size, reaching
105 M, which makes it a considerably heavy architecture. In contrast, MedFormer (12.48 M) and BRAU-Net++
(14.39 M) can already be regarded as relatively compact designs. Remarkably, our model contains only 11.77 M
parameters, the smallest among all compared approaches, approximately 1/9 of TransUNet, and even lower than
many existing lightweight frameworks. Despite its extremely small parameter count, our method still surpasses
mainstream models in key metrics such as mIoU, Dice, and ACC. This demonstrates that by constructing a
semantic sparse dictionary in the frequency domain, our approach effectively reduces redundant connections
and mitigates the interference of irrelevant tokens commonly encountered in global Self-Attention. These results
confirm that our model achieves high segmentation accuracy while maintaining a lightweight architecture.

Among the compared approaches, the four models with the highest Dice scores are our model with a Dice
of 91.04%, BRAU-Net + + reaching 90.03%, MedFormer achieving 89.49%, and Swin-UNet with 89.46%, as
shown in Fig. 5. Although these architectures employ strong multi-scale designs or attention mechanisms, our
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method still delivers the highest segmentation accuracy. This improvement is largely attributed to the frequency-
domain semantic sparse dictionary, which suppresses redundant token interactions and reduces background
interference that frequently appears in dermoscopic images. As a result, the model extracts more discriminative
lesion features and produces clearer and more stable boundary representations. Notably, the model reaches this
performance with roughly twelve million parameters, significantly smaller than most lightweight competitors
and less than one-ninth of the heaviest baseline. Despite its compact size, the method consistently outperforms
mainstream models, demonstrating the effectiveness of the proposed sparse representation strategy.

Synapse dataset comparison experiment

To further validate the generalization ability of our model across different imaging modalities, we conducted not
only performance evaluations on the ACDC and ISIC 2018 datasets, but also extensive comparative experiments
on the Synapse multi-organ abdominal CT dataset. These experiments were designed to assess the robustness
and accuracy of our method under diverse medical imaging scenarios.

The experimental results are summarized in Table 4, which compares our model with several representative
segmentation methods across multiple evaluation metrics. Specifically, the table reports the overall Dice score
and Hausdorff Distance (HD), as well as the Dice scores for individual organs, including the aorta, gallbladder,
left and right kidneys, liver, pancreas, spleen, and stomach. As shown, our method achieves an average Dice
of 84.54 and an HD of 14.59, representing an improvement of approximately 8.36% in Dice and a reduction
of about 52.46% in HD compared with TransUNet. Notably, our approach obtains the lowest HD among all
methods, indicating that it not only maintains high segmentation accuracy but also substantially enhances
boundary consistency.

For several key organs, including the liver (95.83), spleen (92.86), and stomach (86.03), our model achieves
the best or near-best segmentation accuracy. For more challenging organs such as the aorta and pancreas,
although RWKV-Unet shows competitive performance with local advantages, our method still demonstrates
superior overall performance in terms of both mean Dice and HD, further confirming its robustness in handling
complex anatomical boundaries. Taken together, these results highlight that our method delivers a globally
optimal balance, ensuring both high segmentation accuracy and stable performance across organs.

In addition, we compared the visualization results of the top four models, including (c) MISSFormer, (d)
RWKYV-Unet, (e) EMCAD and (f) Our Model, ranked by Dice score against the (a) Raw Data and (b) Ground
Truth annotations, as illustrated in Fig. 6. The figure clearly shows that our method provides more accurate and
continuous delineation of organ boundaries, particularly for challenging structures such as the pancreas and
gallbladder, where it preserves structural integrity better than other high-performing models. These observations
are consistent with the quantitative results in Table 4, where our approach achieves the best performance in
terms of both mean Dice and HD, underscoring its superior robustness in segmenting complex multi-organ
anatomical regions.

Ablation experiment

To evaluate the effectiveness of the KSSDA and LEGD modules, we conducted ablation studies on three datasets:
the ACDC cardiac dataset, the ISIC 2018 skin lesion dataset, and the Synapse multi-organ abdominal dataset,
with the results summarized in Tables 5 and 6, and 7.

As shown in Table 5, when employing Self-Attention or Linformer, the overall segmentation accuracy drops
notably, with mean Dice scores of 85.56 and 86.53, and HD values of 22.16 mm and 12.78 mm, respectively. This
indicates that under constrained computational budgets, Self-Attention and Linformer are limited in their ability
to capture long-range dependencies, resulting in inferior segmentation performance. In contrast, incorporating
the KSSDA module into the encoder significantly boosts Dice scores, particularly for the LV (95.25) and RV
(88.72) regions. Furthermore, introducing the Learnable Edge-Guided Decoding (LEGD) module in the
decoder notably improves boundary accuracy, as reflected by a substantial reduction in HD, achieving even
lower values than the full model, which demonstrated the LEGD’s positive effect on boundary reconstruction
and contour precision. While LEGD alone achieves a slightly lower HD, the full model yields the best overall
balance across Dice and boundary metrics. The complete model achieves the best overall performance, with

Average Dice

Models Dice |HD |Aorta [GB |KL |KR |Liver |[PC |SP SM

TransUNet’ 78.02 | 30.69 | 87.23 | 63.13 | 81.87 | 77.02 | 94.08 | 58.04 | 87.06 | 75.75
TransCASCADE*® | 81.88 | 18.05 | 86.89 | 68.75 | 85.31 | 82.05 | 94.21 | 65.77 | 91.62 | 80.41
Swin-Unet'? 77.55 | 27.42 | 81.66 | 65.85 |82.42 |79.32 | 93.63 | 53.71 | 88.14 | 75.69
RWKV-Unet* 82.71 | 17.24 | 86.73 | 68.38 | 87.76 | 84.56 | 94.53 | 65.44 | 90.89 | 83.41
VM-Unet>® 81.15 | 19.41 | 86.47 | 69.31 | 86.56 | 82.76 | 94.27 | 58.90 | 89.42 | 81.50
EMCAD?! 83.68 | 15.58 | 88.24 | 68.97 | 88.18 | 84.2 |95.36 |68.61 |92.07 | 83.82
MISSFormer?’ 82.56 | 15.8 |89.46 |67.59 |84.21 | 79.16 | 95.47 | 69.28 | 90.95 | 84.39
MT-UNet*® 78.59 | 26.59 | 87.92 | 64.99 |81.47 | 77.29 | 93.06 | 59.46 | 87.75 | 76.81
PVT-CASCADE"? | 81.06 | 20.23 | 83.01 | 70.59 | 82.23 | 80.37 | 94.08 | 64.43 | 90.10 | 83.69
Our Model 84.54 | 14.59 | 88.31 | 71.34 | 88.22 | 84.73 | 95.83 | 68.96 | 92.86 | 86.03

Table 4. Comparison of experimental results on synapse dataset.
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Fig. 6. (a) Axial view of a representative CT slice. (b) Expert manual segmentation result. (c—f) The
visualization results of the four models with the highest Dice scores, from left to right, are MISSFormer,
RWKV-Unet, EMCAD, and our model.

mean Dice of 92.53, and Dice scores of 96.62, 90.95, and 90.03 for LV, RV, and MYO, respectively, while reducing
HD to 8.45 mm. These results highlight that the combination of spectral feature embedding and edge-guided
mechanisms provides complementary advantages, enabling not only high segmentation accuracy but also
improved boundary consistency.

From the ablation results on the ISIC 2018 dataset shown in Table 6, it can be observed that using conventional
self-attention alone leads to a large parameter size (29.13 M) while yielding limited segmentation performance
(Dice of only 84.09). When replacing it with Linformer, the parameter count decreases to 15.24 M, and the
Dice score improves to 89.74, suggesting that linear attention offers a better trade-off between efficiency and
accuracy. Incorporating the KSSDA module further reduces the parameter size to 9.06 M and enhances overall
performance, achieving 87.41 of SE, 97.35 of SP, 88.24 of Dice, and 93.07 of ACC. Adding the LEGD module
yields an additional Dice gain of approximately 7.27% compared with the fixed-operator setting, indicating
that LEGD effectively strengthens boundary representation and alleviates mis-segmentation in ambiguous
regions. By combining both KSSDA and LEGD, the complete model leverages their complementary strengths
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Dice
ACDC | Methods Avg | LV RV | MYO |HD

w/Self-Attention | 85.56 | 91.11 | 81.38 | 84.19 | 22.16
w/Linformer 86.53 | 91.85 | 82.52 | 85.23 | 12.78

w/KSSDA 90.45 | 95.25 | 88.72 | 87.39 | 15.29
w/Scharr 88.22 | 92.08 | 86.38 | 86.21 | 10.34
w/LEGD 90.79 | 93.78 | 89.46 | 89.14 | 8.95
Our Model 92.53 | 96.62 | 90.95 | 90.03 | 8.45

Table 5. Results of ablation experiments on the ACDC dataset.

ISIC 2018 | Methods Params(M) | SE Sp Dice | ACC
w/Self-Attention | 29.13 82.56 | 92.01 | 84.09 | 91.22
w/Linformer 15.24 85.98 | 95.48 | 89.74 | 92.65
w/KSSDA 9.06 87.41 | 97.35 | 88.24 | 93.07
w/Scharr 11.45 90.56 | 96.37 | 84.05 | 91.21
w/LEGD 10.76 91.11 | 97.49 | 90.16 | 92.13
Our Model 11.77 92.90 | 97.98 | 91.04 | 96.26

Table 6. Results of ablation experiments on the ISIC 2018 dataset.

Synapse | Methods Dice | HD | Params(M)
w/Self-Attention | 76.85 | 33.45 | 66.80
w/Linformer 77.98 | 33.95 | 30.65

w/KSSDA 82.27 | 26.47 | 9.04
w/Scharr 80.67 |20.89 | 27.84
w/LEGD 82.98 | 16.03 | 25.23
Our Model 84.54 | 14.59 | 11.91

Table 7. Results of ablation experiments on the synapse dataset.

to jointly capture global semantics and local structural details in skin lesion segmentation. This integration of
linear attention mechanisms with dynamic learning strategies not only enhances segmentation accuracy but also
substantially reduces the overall parameter count.

The boundary heatmap comparisons in Fig. 7 provide clear evidence of the effectiveness of the proposed
boundary-enhanced mechanism.

Specifically, Swin-UNet and MedFormer often produce diffuse or unstable boundary activations, indicating
that their feature extractors struggle to localize fine-scale contour transitions. Although BRAUNet + + sharpens
certain edge regions, its responses remain inconsistent and tend to break around irregular lesion shapes or low-
contrast boundaries.In contrast, our model yields uniformly concentrated and structurally coherent boundary
responses. The activation maps tightly adhere to the true lesion outline, capturing subtle curvature changes and
avoiding the fragmented or noisy patterns observed in other models. This demonstrates that the integration of
KSSDA and LEGD enables the network to effectively suppress irrelevant background signals while selectively
enhancing edge-related tokens. Overall, the visual evidence confirms that the proposed boundary-aware
modules not only strengthen contour representation but also improve robustness across diverse lesion types.

To further examine the contributions of the KSSDA and LEGD modules, we performed ablation studies on
the Synapse dataset, with the results summarized in Table 7. Comparing Self- Attention, Linformer, and KSSDA,
it can be observed that incorporating KSSDA achieves the most substantial parameter reduction, requiring
only 9.04 M parameters, which is approximately 86.46% fewer than Self-Attention (66.80 M), highlighting
the advantage of sparse attention. On the other hand, contrasting the Scharr operator with the LEGD module
demonstrates that LEGD is particularly effective for boundary refinement, improving the Dice score to 82.98
and reducing HD to 16.03. As shown in Table 7, the complete model achieves the best overall performance, with
84.54 of Dice, 14.59 of HD, and only 11.91 M parameters, confirming the effectiveness of the proposed approach.

To further isolate the individual contributions of the KSSDA and LEGD modules, we conducted module-
wise ablation experiments on both the ACDC and Synapse datasets, as summarized in Table 8. The baseline
model without either component yields limited performance on both benchmarks. Introducing KSSDA alone
provides substantial gains in global semantic modeling, improving Dice by 4.89% on ACDC and 5.42% on
Synapse, while reducing HD by 6.87 mm and 6.98 mm, respectively. In contrast, enabling LEGD alone primarily
strengthens boundary localization, improving HD by 13.21 mm on ACDC and 17.42 mm on Synapse. When
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(a)Raw Data (b)GT (¢)Swin-Unet (d)MedFormer (¢)BRAUNet++ (£)Our Model

Fig. 7. Qualitative comparison of segmentation boundary heatmaps among the top four Dice-performing
models on the ISIC 2018 dataset. Columns (a)-(f) show the raw image, ground truth, and the predictions of
Swin-UNet, MedFormer, BRAUNet++, and our model, respectively.

ACDC | ACDC | Synapse | Synapse
Variant KSSDA | LEGD | Dicet | HD| |Dicet |HDJ
Baseline x x 85.56 |22.16 |76.85 33.45
+KSSDA only |V X 9045 | 1529 |8227 26.47
+LEGD only | x V 90.79 | 895 |82.98 16.03
Full Model Y V 92.53 845 | 84.54 14.59

Table 8. Module-wise ablation of KSSDA and LEGD on ACDC and synapse datasets.

both modules are combined, the full model achieves the highest accuracy across both datasets, with Dice scores
of 92.53 on ACDC and 84.54 on Synapse, accompanied by the lowest HD values. These findings demonstrate
that KSSDA and LEGD offer complementary benefits, KSSDA enhances long-range semantic dependencies,
while LEGD refines boundary structures, jointly enabling substantial improvements in segmentation accuracy
and contour precision.

As shown in Table 9, the proposed KSSDA module achieves a favorable balance between inference speed,
training efficiency, and memory consumption. Compared with standard self-attention, KSSDA reduces inference
time from 2.48 s/iter to 1.85 s/iter, decreases training time from 2.73 s/iter to 1.67 s/iter, and lowers memory
usage by approximately 31%. Moreover, KSSDA provides competitive efficiency relative to other linear-attention
variants such as Linformer, Performer, and Linear Transformer, while maintaining lower memory consumption
than all of them. These results demonstrate that the sparsity-driven design of KSSDA effectively improves
computational efficiency without sacrificing segmentation performance.
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Method Inference Time (s/iter) | Training Time (s/iter) | GPU Memory(MB)
Self-Attention 2.4821 2.7314 9325.17
Linformer™® 1.7183 1.8924 10414.08
Performer®® 1.8672 1.9541 6989.33
Linear Transformer® | 1.8891 2.0135 7902.25
KSSDA (Ours) 1.8469 1.6742 6430.84

Table 9. Computational efficiency comparison on the synapse dataset (224 x 224).
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Fig. 8. Dice scores under different spectral dimensions k on ACDC and Synapse.

We further investigated the impact of the parameter k in the frequency-domain similarity-based sparse
attention mechanism. Optimization experiments were conducted on the ACDC and Synapse datasets, with the
results presented in Figs. 8 and 9.

Results in Figs. 8 and 9 are obtained from k-only ablations on validation folds, which may differ from the final
test-set metrics reported in Tables 2 and 4.

We first conducted experiments on the ACDC dataset to determine the optimal value of k. As shown in Fig. 8,
the best performance was achieved when k =n/3, yielding a Dice of 90.5. This suggests that at an optimal spectral
dimension, the model effectively balances global and local feature representations, thereby improving region
overlap. In contrast, when k=n/8 or k=n, the Dice drops significantly, indicating that excessive compression
results in insufficient structural information, while over-expansion may introduce noise and redundant features,
both of which degrade segmentation quality. On the Synapse dataset, the best result occurs at k=2n/3, where the
Dice reaches 89.5, suggesting that this dataset is more sensitive to mid-to-high dimensional spectral embeddings,
and that moderately increasing the feature dimension can enhance the representation of complex abdominal
structures.

The variation trend of HD95 is consistent with that of the Dice, further validating the findings. On the
ACDC dataset, the lowest HD95 of 2.0 mm occurs when k=n/3, confirming that this spectral configuration
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Fig. 9. HD95 scores under different spectral dimensions k on ACDC and Synapse.

also provides the most accurate boundary localization. Similarly, on the Synapse dataset, the HD95 reaches its
minimum value of 2.0 mm at k=2n/3, indicating that an appropriate choice of k benefits boundary delineation.
In contrast, as illustrated in the Fig. 9, when k=n/8 or k=n, the HD95 values increase, suggesting that selecting
k either smaller or larger than two-thirds compromises the robustness of boundary segmentation.

The two sets of experiments consistently demonstrate that selecting an appropriate range of k enables a better
trade-off between regional consistency and boundary accuracy. The ACDC dataset tends to achieve optimal
performance at moderate spectral dimensions, whereas the Synapse dataset benefits more from higher, yet not
excessive, dimensional settings. These findings indicate that while different datasets vary in their sensitivity to
spectral space scaling, the overall trend remains consistent: neither excessive compression nor full preservation
of all features is desirable.

Summary

This study introduces a boundary-aware sparse Transformer architecture for medical image segmentation,
aiming to overcome two persistent issues in existing Transformer-based models: the computational expense of
dense global self-attention and the insufficient recovery of detailed boundaries. To address the first challenge,
the encoder employs a Key-Semantic Sparse Dictionary Attention mechanism, where token correlations are
computed in the frequency domain through amplitude spectrum cosine similarity, producing stage-wise sparse
attention that reduces redundancy while maintaining semantic fidelity. For boundary refinement, the decoder
integrates a Learnable Edge-Guided Decoding module, which utilizes trainable filters initialized from Sobel and
Scharr operators to dynamically capture edge information. These edge features are injected into the attention
process as bias, guiding more accurate contour reconstruction. Evaluations on three public datasets ACDC,
ISIC 2018, and Synapse show that the proposed framework consistently improves segmentation accuracy
and boundary quality, while also achieving substantial reductions in parameters and computational cost,
underscoring its efficiency and generalizability across imaging modalities.

Data availability
The ACDC, ISIC 2018, and Synapse datasets are publicly available and can be accessed at https://www.creatis.in
sa-lyon.fr/Challenge/acdc/, https://challenge.isic-archive.com/data/, and https://www.synapse.org/, respectively.
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