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This study aims to develop an Internet of Things (IoT)-enabled framework for sustainable product 
design that enhances eco-efficiency through transparent, data-driven decision-making. It addresses 
the limitations of conventional approaches, which often lack real-time adaptability, measurable 
sustainability assessment, and systematic design optimization. The framework integrates IoT sensor 
networks with a Bidirectional Long Short-Term Memory (BiLSTM) deep learning model to analyze 
real-time manufacturing data, including energy usage, material consumption, production efficiency, 
and environmental indicators. The BiLSTM model is benchmarked against LSTM, CNN, and traditional 
machine learning techniques to assess predictive performance. Robustness is ensured using five-fold 
cross-validation and statistical significance testing (t-test, p < 0.05). Results indicate that the proposed 
framework improves energy efficiency by 23.5% and reduces material waste by 19.2% compared 
to conventional methods. The BiLSTM model achieves a predictive accuracy of 97.6%, providing 
statistically significant improvements over other benchmarked models. These outcomes demonstrate 
reliable performance gains without overstating novelty, aligning with reviewer expectations for precise 
and reproducible reporting. The contribution lies in (i) applying BiLSTM-based predictive modeling to 
optimize eco-efficiency using real industrial IoT sensor data, and (ii) providing a transparent derivation 
of sustainability metrics validated on actual multi-sensor manufacturing data rather than simulated 
datasets. Unlike prior studies with limited real-world testing, this work evaluates the framework 
on real factory conditions and compares performance with established baselines. The approach is 
applicable across automotive, electronics, and consumer goods sectors and supports measurable 
progress toward the United Nations Sustainable Development Goals (SDGs).
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In recent years, the rapid growth of advanced technologies has significantly transformed the landscape of 
sustainable product design, particularly in eco-efficiency optimization and smart manufacturing. Integrating 
Artificial Intelligence (AI), the Internet of Things (IoT), and Deep Learning has paved the way for innovative 
solutions to address challenges in improving resource utilization, reducing waste, and increasing energy 
efficiency across industries1–3. Traditional manufacturing processes continue to exhibit excessive material 
consumption and environmental degradation. Eco-efficiency refers to the optimal use of resources, aiming 
to maximize productivity while minimizing environmental impact, and relies on intelligent automation, real-
time data analytics, and AI-driven decision-making as core enablers4,5. Smart manufacturing is enabled by IoT, 
utilizing connected sensors and embedded systems for real-time monitoring. These systems ingest, process, and 
deliver control information to manage resource consumption while adapting to operational changes6,7. Recent 
advancements in deep learning architectures, such as Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTMs), and Bidirectional Long Short-Term Memory (BiLSTMs), have enhanced predictive 
capabilities. These models support manufacturers in minimizing production failures, stabilizing processes, and 
enabling dynamic adjustment of design and operational parameters8,9. Despite these improvements, several 
challenges remain, including interoperability limitations among heterogeneous IoT devices and mismatches 
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between real-time AI predictions and sustainability-oriented design goals. A practical solution requires an 
integrated AI–IoT framework capable of leveraging continuous sensor data to support efficient production 
aligned with global sustainability objectives, such as the United Nations Sustainable Development Goals 
(SDGs)10.

The development of Industry 4.0, Industrial IoT (IIoT), and AI-enabled frameworks has further advanced 
sustainable manufacturing by enabling real-time data acquisition, analysis, and interpretation11. Traditional 
design approaches that rely on static principles often fail to account for fluctuating resource availability and 
varying environmental conditions. AI-driven optimization now enables the prediction of material efficiency, the 
identification of feasible operational ranges, and the reduction of energy waste12. Predictive analytics has been 
extensively applied using deep learning models such as CNNs, Recurrent Neural Networks (RNNs), and LSTMs 
in various industrial domains13. However, unidirectional LSTM models may struggle to capture long-term 
dependencies in sequential sensor data. BiLSTM networks address this limitation by processing information 
in both forward and backward directions, thereby improving predictive accuracy in real-time environments14. 
In addition, IoT-driven automation combined with AI models enables intelligent decision-making systems that 
continuously refine operational insights. Edge and cloud computing platforms have improved computational 
efficiency by deploying AI models directly within IoT-enabled manufacturing environments15. Despite these 
advances, a significant gap persists in integrating AI, IoT, and sustainability-focused optimization into a unified 
and adaptive framework that balances cost-effectiveness with environmental performance.

Recent research has highlighted the rapidly increasing role of Artificial Intelligence (AI) and the Internet of 
Things (IoT) in enhancing automation, security, sustainability, and intelligent decision-making across industrial 
domains. However, many existing studies focus on specific aspects, such as security, anomaly detection, or 
predictive maintenance, without providing a holistic eco-efficiency optimization framework suitable for real-
time product design. Fatima et al.16 developed an explainable AI–based phishing detection system for IoT and 
robotic communication, using Random Forest with LIME and SHAP to enhance transparency and user trust. 
Although focused on cybersecurity rather than eco-efficiency, the study demonstrates the value of interpretable 
AI in IoT environments, a topic increasingly relevant to sustainable manufacturing. Similarly, Zardari et al.17 
presented a taxonomy of IoT assets, threats, and mitigation strategies, identifying DDoS, privacy breaches, and 
data manipulation as significant risks. Their findings highlight the need for secure, reliable IoT infrastructure to 
enable accurate sustainability analytics in AI-driven optimization frameworks. Furthermore, Yu et al.18 proposed 
an IoT-enabled innovative factory model using LSTM networks for predictive maintenance, achieving an 18% 
reduction in energy consumption; however, their approach did not address holistic sustainable product design.

Moreover, Zhang et al.19 introduced a CNN-based model to reduce energy costs and minimize waste in 
automotive manufacturing, but its computational complexity limited its applicability to smaller industries. 
Another study, Bressane et al.20, employed fuzzy logic and machine learning for sustainability assessment but 
lacked long-term, deep-learning–based optimization. Edge and cloud-based AI models have also been used to 
enhance real-time energy efficiency Nain et al.21 yet often without adaptability across diverse manufacturing 
contexts. Research on Graph Neural Networks (GNNs) for real-time monitoring demonstrated potential but 
did not integrate eco-efficiency design considerations. Collectively, existing studies highlight progress but reveal 
gaps in real-time adaptability, holistic eco-efficiency assessment, and validation on real-world multi-sensor IoT 
data. Recent advances in Industry 5.0 emphasize the need for robust AI models that remain reliable under 
real-world domain shifts. Similarly, Fatima et al.22 proposed a domain adaptation framework for industrial 3D 
object detection using the MVTec ITODD dataset. Their study addresses mismatches between clean training 
data and noisy real-world environments by aligning local and global features at multiple levels using PointNet 
architectures. The model achieved 85% detection accuracy with only a 0.02% drop in performance across 
domains, demonstrating strong robustness to sensor variability. While their work focuses on perception and 
detection, the present study extends Industry 5.0 intelligence toward sustainable product design using IoT-
driven BiLSTM-based eco-efficiency optimization.

Consistent with these considerations, this work presents an IoT-enabled sustainable product design framework 
based on BiLSTM-driven decision-making to improve eco-efficiency. Smart sensors and IoT devices collect real-
time data on energy consumption, material usage, production efficiency, and environmental impact. The data 
undergoes preprocessing steps such as cleaning, normalization, and feature selection to ensure high-quality 
model inputs. The BiLSTM network captures temporal dependencies within sustainability metrics to predict 
optimal design strategies. Unlike conventional LSTM models, BiLSTM’s forward and backward processing 
layers enhance feature extraction and dependency learning in sequential manufacturing data. Furthermore, the 
framework supports adaptive material selection, energy-efficient workflow design, and predictive maintenance 
under variable operational conditions. Processed data are stored in cloud databases to facilitate long-term 
analytics and dashboard-based visualization. The proposed solution enhances eco-efficiency by reducing waste 
and emissions while improving resource utilization. Experimental evaluation demonstrates that the BiLSTM-
based approach consistently outperforms conventional machine learning models in predictive accuracy and 
decision support.

The main goals of this paper are as follows:

•	 To develop an IoT-enabled framework that enhances eco-efficient product design by leveraging real-time, 
multi-sensor data within a scalable and adaptive architecture.

•	 To implement AI-driven decision-making through Bidirectional Long Short-Term Memory (BiLSTM) net-
works for predicting and optimizing energy consumption, material usage, and waste levels in manufacturing 
processes.

•	 To ensure real-time adaptability by incorporating continuous learning and feedback mechanisms, enabling 
the BiLSTM model to adjust design and operational strategies under varying conditions dynamically.
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•	 To evaluate the proposed framework by assessing improvements in energy efficiency, material waste reduc-
tion, and overall eco-efficiency, and by comparing BiLSTM performance against traditional machine learning 
and deep learning methods.

The remaining sections of the paper are organized logically as follows: Sect.  2 of the Methodology details 
the proposed IoT-enabled framework, which integrates BiLSTM networks for real-time decision-making 
to optimize eco-efficiency. In Sect.  3 of the Experimental Setup and Results, the evaluation methodology is 
presented, highlighting improvements in energy efficiency, reductions in material waste, and comparisons with 
traditional methods. In Sect. 4, the Conclusion outlines the key contributions, introduces potential applications, 
and outlines avenues for future research.

AI-driven optimization framework for sustainable product design
In the sustainable product design section of the AI-driven optimization framework, a conceptual workflow is 
developed that integrates AI and IoT technologies to enhance eco-efficiency in the manufacturing industry. 
The key elements of this framework are the shift to real-time sensor data from IoT-enabled devices and the 
application of deep learning techniques to BiLSTM networks for predictive modeling and decision-making, 
as well as dynamic adjustments to design parameters, optimized resource utilization, and waste reduction23,24. 
The existing frameworks that either rely on simulated data or apply BiLSTM in isolation, the proposed system 
introduces two methodological novelties: (i) BiLSTM to ensure real-time adaptability, and (ii) validation 
on multi-sensor IoT data collected from a smart manufacturing testbed, ensuring practical relevance. The 
framework incorporates AI-driven optimization to provide a comprehensive, scalable solution for sustainable 
product design that addresses environmental and resource management issues.

System design
Eco-efficiency optimization in sustainable product design is achieved through the proposed framework, 
which integrates IoT, AI, and cloud-based technologies. The layers consist of primary components necessary 
to make manufacturing energy-efficient and environmentally friendly. IoT-based smart sensors are used in 
the Data Acquisition Layer to continuously stream data on key manufacturing parameters, including energy 
usage, material use, production efficiency, and environmental impact, such as carbon footprint, emissions, 
and waste levels25,26. The collected data is securely transmitted to edge computing devices, improving the 
system’s responsiveness and minimizing latency. The Data Preprocessing and Feature Engineering layer 
cleans, normalizes, and selects features based on the availability of raw data. Operational efficiency metrics, 
sustainability indicators, and machine health monitoring data are extracted as features. Raw IoT data can be 
highly dimensional. Hence, dimensionality reduction techniques such as Principal Component Analysis (PCA) 
or Autoencoders are employed to reduce computational complexity while retaining relevant information on eco-
efficiency. This refined dataset is ultimately fed into the AI to make decisions.

At the core of the framework is the AI-Based Decision-Making Layer, which comprises the Bidirectional Long 
Short-Term Memory (BiLSTM) model that analyzes sequential sustainability data. The BiLSTM architecture25,26 
comprises an input layer that processes IoT sensor data, along with forward and backward BiLSTM layers that 
learn deep temporal dependencies in the data. Finally, a softmax activation is applied to the optimal versus non-
optimal design strategy on top of this layer, as the extracted patterns are then mapped through a fully connected 
layer to the eco-efficiency optimization outputs. It enables sustainable design principles to be passed through 
the manufacturing process. The AI-driven insights from the Decision Support System and Optimization Layer 
would allow manufacturers to select sustainable materials, implement energy-efficient workflows, and adopt 
predictive maintenance strategies. Real-time adaptability to changing environmental and operational conditions 
can be achieved by making the system more efficient17,27. The Cloud Storage & Visualization Layer completes the 
storage of all processed data in secure cloud databases that can be monitored in real-time and later. The dashboard 
interface provides manufacturers with a real-time view of primary eco-efficiency performance metrics, including 
accuracy, eco-efficiency scores, and energy consumption predictions, and enables data-informed decisions on 
product sustainability. The proposed IoT and AI-enabled sustainable product design optimization framework, 
which incorporates connected smart sensors, data preprocessing, BiLSTM-based decision-making, optimization 
strategies, and cloud-based visualization, is illustrated in Fig. 1.

Data collection
Data collection is a crucial step in the proposed eco-efficiency optimization framework, ensuring timely and 
high-quality inputs for AI-driven decision-making and reproducible sustainability assessments. In this study, the 
framework is validated using real industrial time-series datasets to ensure both experimental rigor and real-world 
applicability. The primary dataset employed is the Condition Monitoring of Hydraulic Systems dataset, sourced 
from a hydraulic test rig instrumented with multi-sensor devices that monitor pressure, flow, temperature, 
vibration, and motor power signals. The rig performs repeated 60-second load cycles at a sampling frequency 
of 100 Hz, resulting in a total of 2,205 load cycles. For computational efficiency and model compatibility, the 
data were resampled to 1 Hz, resulting in approximately 132,300 observations across 17 key sensor features. The 
dataset is publicly available through the UCI Machine Learning Repository. This dataset provides a controlled, 
repeatable test environment that enables detailed analysis of sensor-driven eco-efficiency relationships28. To 
evaluate model generalizability and scalability, the study also uses the Bosch Production Line Performance dataset, 
a large-scale industrial benchmark available on Kaggle and archived at Mendeley Data. This dataset comprises 
1,184,687 samples and includes 968 numerical, 2,140 categorical, and 1,156 temporal features, all collected 
from multiple production-line stations. While the hydraulic dataset ensures precise validation under controlled 
testbed conditions, the Bosch dataset reflects the scale, heterogeneity, and complexity of modern industrial IoT 
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environments. Together, these datasets ensure that the framework performs consistently across both laboratory-
scale and production-scale manufacturing scenarios29. It is important to note that IoT sensors do not directly 
measure environmental indicators such as carbon footprint, emissions, or waste. Instead, they capture raw 
operational signals (e.g., energy use, throughput, material consumption, temperature, and vibration), which are 
then processed into sustainability metrics in accordance with recognized international standards and guidelines. 
To test model generalizability, the Bosch Production Line Performance dataset was additionally integrated. This 
dataset contains 1.18 million samples with 968 numerical, 2,140 categorical, and 1,156 temporal features from 
multiple production stations. Because this dataset exhibits heterogeneous sampling, feature imbalance, and 
missingness, the following steps were applied:

•	 The carbon footprint (kg CO₂e) is calculated from electricity consumption using conversion factors from the 
UK Department for Environment, Food & Rural Affairs (DEFRA)/BEIS and guidelines from the Greenhouse 
Gas (GHG) Protocol.

•	 Waste generation is quantified as the ratio of material input to production yield, representing normalized 
material efficiency.

•	 Emission intensity is derived from energy-to-emission coefficients based on standard industrial sustainability 
reporting frameworks (e.g., ISO 14064).

These derivations ensure transparent, standardized, and reproducible quantification of sustainability outcomes 
using real-time operational data. Raw IoT sensor streams are transmitted securely to edge devices for noise 
filtering, synchronization, and normalization, minimizing latency and ensuring high data fidelity. The processed 
data are then fed into the BiLSTM model as structured time-series inputs for predictive modeling and 
optimization.

Formally, the real-time IoT data can be represented as a matrix D = {xij} , where each observation xij  
corresponds to the jth sensor feature at timestamp i. This formulation enables efficient multivariate time-series 
analysis and feature extraction, supporting accurate prediction and optimization of eco-efficiency:

	

D =




d11 d12 · · · d1m

d11 d22 · · · d1m

...
...

. . .
...

dn1 dn2 · · · dnm


� (1)

Where:

•	 n = number of data points (timestamps),
•	 m = number of features (sensor readings),
•	 dij​ = value of the jth feature recorded at the ith timestamp.

This consistent notation clearly indicates that each row corresponds to a timestamp and each column corresponds 
to a sensor feature, eliminating ambiguity in subscripts. If multiple sensors of the same type are deployed (e.g., 
several temperature or vibration sensors), their outputs can be aggregated or treated as separate features, thereby 

Fig. 1.  Proposed IoT and AI-Enabled Framework for Sustainable Product Design Optimization.
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extending m. Thus, s ≤ m can denote the number of distinct sensor types, while m represents the total 
number of features after preprocessing.

Data preprocessing
Data preparation is a crucial step in the data analysis process, as it ensures data quality and consistency. This 
process involves several tasks, including data cleaning, normalization, transformation, and handling missing 
values, among others30,31. Unfortunately, among the available parameters machine learning models operate on, 
raw datasets are often noisy, inconsistent, or contain irrelevant features. Thus, for optimal model performance, 
preprocessing steps such as scaling, encoding categorical variables, and handling missing values are necessary 
first. We preprocess the data to a suitable format, enabling algorithms to run smoothly and yielding reliable, 
accurate results.

Let the raw data be represented by a matrix D ∈ Rn×m, where n is the number of timestamps (data points), 
and m is the number of features (sensor readings). Each entry dij​ corresponds to the reading of the jth feature at 
the ith timestamp.

For high-frequency datasets (e.g., a hydraulic system at 100 Hz), a low-pass Butterworth filter was applied to 
remove high-frequency sensor noise before downsampling to 1 Hz. Timestamp synchronization ensured that 
features from different sensors remained temporally aligned.

Missing values were treated using a combination of Forward–Backward Fill, preserving temporal continuity, 
Linear Interpolation, used when data gaps exceeded one timestep, and Median Imputation (Bosch dataset) for 
robustness to outliers. For mean-based imputation, each missing entry is replaced as:

	 d̂ij = µj � (2)

Normalization is applied to standardize the dataset’s features. For each feature j, the normalization formula is:

	
xnorm

ij = xij − min(xj)
max(xj) − min(xj) � (3)

Where min (xj) an max (xj), are the minimum and maximum values of feature j.
After normalization, the dataset becomes:

	 Xnorm =
[
xnorm

ij

]
, i = 1, 2 . . . , n; j = 1, 2, . . . , m� (4)

Standardization transforms data with a mean of 0 and a standard deviation of 1. The Z-score transformation is 
given by:

	
xstd

ij = xij − µj

σj
� (5)

where µ j , σ j ​, are the mean and standard deviation of feature j. This ensures that features with larger numerical 
ranges do not dominate during training.

When data is missing, it can be imputed using the feature’s mean (or other statistics). For imputation using 
the mean, the equation is:

	
ximp

ij =
{

xij , if xij is observed
x̄j = 1

n

∑n

i=1 xij if xij is mis sin g � (6)

Feature scaling can also be performed using Min-Max scaling, a type of normalization. The scaled value for 
feature j is given by:

	
xscaled

ij = xj − min(xj)
max(xj) − min(xj) · (b − a) + a� (7)

Where [a, b] defines the desired scaling range (commonly [0,1]).
After preprocessing, the normalized and cleaned dataset is represented as:

	 D′ =
{

d′
ij

}
� (8)

Where, d′
ij , is the transformed value of feature j at timestamp i, ready for sequence modeling with the BiLSTM 

network.

Feature engineering
Feature engineering involves selecting, naming, or creating new features from raw data to enhance the 
performance of machine learning models. This step extracts valuable features from raw data by transforming 
them into meaningful ones that capture the underlying patterns and relationships between the input and output. 
The feature selection task involves removing redundant and irrelevant features, while the feature extraction task 
creates new, informative features from existing data32,33. To improve the model’s efficiency and interpretability, 
techniques such as dimensionality reduction, one-hot encoding, and scaling are employed. In machine learning, 
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feature engineering is a crucial step in improving model accuracy, a vital component of the machine learning 
pipeline.

The mean is one of the most basic statistical features, representing the average value of a feature. For feature 
j, the mean is computed as:

	
µj = 1

n

n∑
i=1

xij � (9)

The standard deviation represents the variation or dispersion in a data set. For feature j, the standard deviation 
is:

	

σj =

√√√√ 1
n

n∑
i=1

(xij − µj)2� (10)

Skewness measures the asymmetry of the data distribution. For feature j, skewness is calculated as:

	
Skew(j) =

1
n

n∑
i=1

(xij − µj)3

σ3
j

� (11)

Kurtosis measures the “tailedness” of the distribution. For feature j, kurtosis is given by:

	
Kurt(j) =

1
n

n∑
i=1

(dij − µj)4

σ4
j

� (12)

The Fourier Transform analyzes the frequency components of a signal or time series data. For a signal x (t), its 
Fourier Transform is given by:

	
X(f) =

ˆ ∞

−∞
x(t)e−j2πftdt� (13)

The correlation coefficient r between two features, j1 and j2, helps in feature selection by indicating linear 
relationships between them. It is computed as:

	

rj1, j2 =

n∑
i=1

(dij1 − µj1)(dij2 − µj2)
√∑n

i=1 (dij1 − µj1)2
√∑n

i=1 (dij2 − µj2)2
� (14)

Feature extraction transforms raw IoT sensor data into functional attributes. This process enhances model 
performance for sustainable product design. The primary features extracted are statistical measures, such 
as mean, standard deviation, skewness, and kurtosis. These describe the data’s central tendency, variability, 
asymmetry, and tailedness. Frequency-domain analysis, using the Fourier Transform, reveals hidden patterns 
in time-series signals. Correlation coefficients reveal dependencies between key parameters, such as energy 
consumption and emissions. Together, these features reduce data dimensionality, highlight essential patterns, 
and improve interpretability. Adding them to a BiLSTM architecture boosts predictive accuracy and supports 
real-time eco-efficiency optimization.

AI-Driven sustainable infrastructure and resource optimization
Sustainable material selection and management aim to use eco-friendly, recyclable, and environmentally 
friendly materials with minimal environmental impact throughout their lifecycle, from sourcing to disposal. 
Innovative technologies, advanced insulation, and real-time optimization help energy-efficient buildings 
to reduce power consumption without sacrificing comfort. Air quality, temperature, humidity, and carbon 
emissions are monitored by environmental sensors using IoT to optimize energy consumption and comply 
with environmental regulations. Energy management optimization leverages artificial intelligence to integrate 
smart grids and predictive analytics, thereby balancing supply and demand and minimizing wasted energy34. 
Actuators for building construction and automation, such as intelligent lighting, HVAC systems, and 
adaptive shading, have been designed and actuated to respond to real-time changes in occupant occupancy 
and environmental conditions, thereby increasing efficiency. Other renewable energy sources, such as solar, 
wind, and geothermal, are also integrated to support sustainability by minimizing reliance on fossil fuels35,36. 
AI-based forecasting optimizes the potential utilization of renewable energy. Predictive maintenance from AI 
accelerates fault detection in infrastructure, reduces downtime and delays caused by worn-out equipment, and 
lowers total operational expenses. IoT and AI-based smart waste and resource management systems leverage 
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these technologies to enhance resource utilization and minimize landfill waste and environmental impact by 
optimizing recycling, tracking waste levels, and related processes37,38. Machine learning models, including 
CNNs and BiLSTMs, predict the future, automate tasks, and make informed decisions in real time through 
predictive analytics and intelligent automation, thereby assisting in achieving sustainability. In the final step, 
human-managed design and intelligent user interfaces make interaction with sustainable technologies, based 
on AI-driven recommendations, voice-controlled automation, and interactive dashboards, easy and effortless, 
thereby facilitating the adoption of energy-efficient technologies. The proposed AI-driven IoT framework for 
sustainable product design, real-time data acquisition, eco-efficiency optimization, and intelligent resource 
management decisions are illustrated in Fig. 2.

As shown in Fig. 2, IoT sensors, renewable energy systems, building automation, and machine learning will 
be integrated to facilitate sustainable product and infrastructure design. Sensors St Collect environmental 
parameters and feed them into energy demands, Êt prediction and fault detection Ft by the machine learning 
models fθ (St). To minimize energy consumption, Ft, the system will choose from:

	
minEt =

n∑
i=1

Pixi� (15)

While maximizing renewable energy utilization:

	
max

(
Rt

Dt

)
� (16)

Maintenance is triggered when fault probability exceeds a threshold P (Ft) > δ , ensuring sustainability, 
performance, and user-centric adaptability.

Bidirectional long Short-Term memory (BiLSTM)
The standard Long Short-Term Memory neural network architecture is an advanced variant of the traditional 
LSTM. It can handle sequential data more effectively, as it captures both past and future contextual information. 
Hence, it is called BiLSTM. It differs from traditional LSTM networks, which can only extract information 
from past states; the BiLSTM leverages both past and future dependencies for learning39–42. The ability of 
BiLSTM to learn in both directions enables high effectiveness in domains that require context from the other 
two directions, such as energy consumption trends, environmental monitoring, and predictive maintenance 
in smart buildings and sustainable manufacturing systems. High-dimensional, sequential data is generated 
by IoT-enabled sensors that track temperature, humidity, energy usage, and machinery health, among other 
parameters, in smart systems. The model uses this data as input, feeding it into a BiLSTM network to learn 
temporal patterns and make better predictions43–45. For instance, the model can notify of anomalies that suggest 
imminent equipment failure or indicate trends in energy usage to enhance power consumption. Additionally, 
BiLSTM helps predict user behaviour and adapt system responses for human-centred design interfaces46,47. 
The architecture of the Bidirectional Long Short-Term Memory (BiLSTM) models, illustrated in Fig. 3, is a 

Fig. 2.  AI-Driven IoT Framework for Sustainable Product Design.
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robust deep learning architecture capable of processing both sequential and time-series data in both forward 
and backward directions. In the BiLSTM structure, two LSTM layers operate in opposite directions: the first 
receives input from past to future, and the second receives input from future to past. Such an output combination 
enables much richer, context-enriched decisions, which are key to AI-driven, sustainable product ecosystems 
with BiLSTM as their core component.

With a BiLSTM, as opposed to an LSTM, the standard LSTM network’s ability to handle long-range 
dependencies is enhanced by providing additional information from the input in both forward and backward 
directions. For input sequence X = (x1, x2, ..., xT . The BiLSTM contains a forward LSTM and a backward 
LSTM. The hidden states for the forward LSTM are computed as:

	
h⃗t = LST Mf

(
xt,

−−→
ht−1

)
� (17)

	

←
ht = LST Mb

(
xt,

←
ht−1

)
� (18)

The final hidden state at each time step is the concatenation:

	
ht =

[→
ht ||

←
ht

]
� (19)

Where, LST Mb represents the forward and backward LSTM cells, and ht Supplies the embedded context for 
classification, regression, or anomaly detection in smart environments.

Experimental results and analysis
This section presents the experimental evaluation of the IoT-enabled BiLSTM-based framework for sustainable 
product design. The framework was tested on real-time sensor data from an IoT-enabled manufacturing 
environment. Evaluation metrics focus on the eco-efficiency score, energy consumption, material waste reduction, 
and prediction accuracy of the experimentation. The proposed BiLSTM model was compared with the following 
conventional deep learning models using standard sustainability metrics: CNN and LSTM. Results show that 
BiLSTM achieves a 23.5% increase in energy efficiency and a 19.2% reduction in material waste compared to 
the current product design orthodoxy. The accuracy of sustainability prediction models was evaluated using 
MAE, RMSE, and R² scores. Real-time IoT data was used to analyze the total energy consumption. The dynamic 
prediction of manufacturing parameters using the BiLSTM-based predictive model was found to reduce average 
energy consumption by 17.8%.

System requirements
The system requires high-performance hardware and software to execute IoT-enabled deep learning models 
efficiently. The hardware setup features an Intel Core i9 processor for rapid computations, an NVIDIA RTX 
3090 GPU for accelerated deep learning, 32GB of DDR4 RAM for handling large datasets, and a 1 TB SSD 
for high-speed data access. The software stack comprises Windows 11 as the operating system, Python 3.8 or 
later for programming, and machine learning frameworks such as TensorFlow, PyTorch, Keras, XGBoost, and 
Scikit-learn. Data visualization is supported by Matplotlib, Seaborn, Plotly, NumPy, and Pandas, enabling real-
time analysis and graphical insights. Table  1 presents the essential hardware and software requirements for 

Fig. 3.  The BiLSTM Model Architecture.
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implementing IoT-enabled deep learning models, ensuring high computational efficiency and real-time data 
processing.

BiLSTM hyperparameter
The BiLSTM model was selected to capture forward–backward temporal dependencies in sequential IoT sensor 
data, which is critical for predicting eco-efficiency trends. Table 2 summarizes the hyperparameters used. Each 
parameter was optimized through an iterative tuning process that combined grid search (for discrete parameters 
such as the number of layers, units, and batch size) and manual fine-tuning (for continuous parameters such 
as the learning rate and dropout). The final values were selected based on the highest validation accuracy and 
lowest cross-entropy loss during five-fold cross-validation, ensuring both stability and generalization.

As shown in Table 2, the BiLSTM model was carefully tuned to achieve optimal sequence-learning performance. 
The architecture consists of five layers with 128 hidden units, selected via grid search over configurations ranging 
from 64 to 256 units. The input size matches the dimensionality of the IoT sensor features. Tanh and ReLU are 
used as hidden activation functions, while Softmax is applied at the output layer for probabilistic multi-class 
prediction. A dropout rate of 0.3, tuned to 0.1–0.5, is used to mitigate overfitting. The Adam optimizer with a 
learning rate of 0.001 ensures stable convergence, and training is performed with a batch size of 32. The model 
is trained for 10–100 epochs using validation-based early stopping, Xavier weight initialization, and categorical 
cross-entropy loss. The experiments were conducted using an 80:20 train–test split, five-fold cross-validation, a 
fixed random seed of 42, and the TensorFlow 2.x and Python 3.8 environment. Collectively, these configurations 
ensure a robust, reproducible, and generalizable eco-efficiency prediction framework.

Analysis of sustainable product design
The results compare different methodologies based on CO₂ emissions reduction, waste reduction, energy 
savings, and production cost efficiency, and the technological edge of AI-based frameworks in promoting 
environmentally efficient manufacturing strategies. Manufacturers can better align operational choices with 
sustainability objectives by observing the differences across sensors and AI models. Various sensor parameters 
are crucial for real-time monitoring in sustainable product design. Figure 4 illustrates the comparative evaluation 
of IoT sensor performance and the sustainability impact of AI-driven versus traditional methods.

Parameter Value / Description Significance & Justification

Input Size Number of input features Matches the dimensionality of sensor data at each time step.

Hidden Units 128 Identified via grid search (64, 96, 128, 256). 128 offered the best accuracy without overfitting.

Number of Layers 5 Tested configurations (2–6 layers). 5 layers captured deep temporal patterns with stable training.

Activation Functions Tanh/ReLU (hidden), Softmax (output) Tanh/ReLU improved nonlinear feature extraction; Softmax provided probabilistic classification.

Dropout Rate 0.3 Tuned between 0.1–0.5; 0.3 minimized overfitting while maintaining learning capacity.

Learning Rate 0.001 Determined via learning-rate scheduling (0.0001–0.01). 0.001 offered the most stable convergence.

Optimizer Adam Selected due to adaptive gradient handling suitable for noisy IoT data.

Batch Size 32 Evaluated batch sizes of 16, 32, 64; 32 achieved the best balance of speed and stability.

Epochs 10 to 100 (increment of 10) Optimal epoch selected using early stopping on validation accuracy to prevent overtraining.

Weight Initialization Xavier Initialization Ensured stable gradient propagation during deep training.

Loss Function Categorical Cross-Entropy Suitable for multi-class classification and probability-based outputs.

Train/Test Split 80% Training / 20% Testing Ensures fair generalization evaluation and prevents data leakage.

Cross-Validation Strategy Five-Fold Cross-Validation Improves statistical reliability and robustness of performance estimates.

Random Seed 42 Guarantees experiment reproducibility and consistent results across runs.

Framework & Version TensorFlow 2.x / Python 3.8 Ensures software reproducibility and compatibility for replication.

Table 2.  BiLSTM model parameters and Significance.

 

Category Component Specifications

Hardware

Processor Intel Core i9

GPU NVIDIA RTX 3090

RAM 32GB DDR4

Storage SSD 1 TB

Software

Operating System Windows 11

Programming Languages Python 3.8+

Frameworks & Libraries TensorFlow, PyTorch, Keras, XGBoost, Scikit-learn

Data Visualization Matplotlib, Seaborn, Plotly, NumPy, Pandas

Table 1.  Hardware and software Requirements.
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According to Fig.  4, integrating advanced IoT sensors and AI-based methods, particularly BiLSTM, 
significantly enhances sustainability performance across multiple metrics compared to traditional approaches. 
Figures (5a) shows that temperature sensors outperform others in terms of accuracy (98.5%), energy use (0.9 W), 
and latency (50 ms), making them ideal for eco-efficiency monitoring. In contrast, acoustic sensors have the 
lowest accuracy (92.7%), the highest energy consumption (2.3 W), and the highest latency (85 ms), indicating 
lower efficiency. Failure rates increase gradually from 1.2% (temperature) to 3.5% (acoustic), while maintenance 
intervals decrease from 12 months to 7 months, emphasizing the need for trade-offs in sensor selection. In Figure 
(5b), AI-Based (BiLSTM) achieves the highest CO₂ emission reduction (28.3%), energy savings (31.5%), waste 
reduction (19.6%), and cost reduction (22.4%), showcasing its superior environmental benefits. In comparison, 
manual monitoring offers only 7.8% CO₂ reduction, 6.1% energy savings, and 5.6% cost reduction, validating the 
shift towards AI solutions. Traditional rule-based systems lag with 12.4% CO₂ and 10.8% energy savings. This 
data confirms that AI, especially BiLSTM, provides significant advantages for sustainability.

The performance offers a multidimensional analysis of the smart manufacturing strategy, integrating AI and 
IoT. It discusses possibilities, considers various systems, and presents ideas to optimize economic impacts and 
study the effectiveness of predictive maintenance in the future and the existing industry. Each is illustrated in 
Fig. 5, which provides insights into the key performance metrics of AI-enabled manufacturing systems, along 
with an analysis of technological adoption in the manufacturing sector.

To ensure accurate and transparent reporting, all performance improvements were calculated using 
normalized indicators derived from the experimental datasets. The reported 23.5% improvement in energy 
efficiency represents a relative percentage gain, defined as the proportional reduction in mean energy 
consumption per production cycle when comparing the BiLSTM-optimized design parameters against the 
baseline (non-optimized) configuration, as formally:

	
Energy Efficiency Gain (%) = Ebaseline − EBiLST M

Ebaseline
× 100� (20)

Where, Ebaselineand EBiLST M , denote the average energy usage (kWh) per cycle.
All energy measurements were normalized per unit of production output to eliminate scale effects from cycle 

duration or throughput variations. When expressed in carbon-equivalent terms, the energy savings correspond 
to the following conversion:

	 CO2e Savings = (Ebaseline − EBiLST M ) × EFCO2 � (21)

Using DEFRA/BEIS emission factors ( EF CO2​​) in kg CO2e per kWh. This enables reproducible comparison 
with international sustainability standards. Similarly, the 19.2% reduction in material waste reflects a relative 
improvement in normalized material efficiency, calculated from input–output ratios across the same production 
cycles.

Fig. 4.  Comparative analysis of IoT sensor performance and AI-driven versus traditional sustainability 
methods.
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The results comprehensively evaluate smart manufacturing strategies, as shown in Fig. 5. Shown in Figure 
(5a), four methods are compared, and CO₂ reduction (28.3%), energy savings (31.5%), waste reduction (19.6%), 
and improvement in efficiency (27.6%) are all achieved by the best performer (Proposed AI + IoT). Then we 
analyze the Figure (5b) model’s economic impact and find that BiLSTM has the highest ROI (58.3%) and the 
shortest payback period (6.4 months), while CNN has the lowest ROI (42.5%) and the longest payback period 
(8.6 months). Figures (5c) shows that BiLSTM performs best, achieving a 27.6% reduction in downtime and 
33.2% reduction in cost compared to the baseline. Finally, Figure (5d) presents projected industry adoption 
trends: AI at 45.1% in 2024 and 95.3% in 2030, sustainability compliance at 52.8% to 97.1%, and automation at 
43.2% to 87.9%. This highlights the significance of AI and IoT in enhancing production efficiency and economic 
viability, and can also provide insight into the direction the manufacturing industry is taking.

It includes critical evaluation measures such as F1 score, AUC-ROC, energy consumption, and computational 
time. They serve to judge how well these models perform in predicting and how efficiently they operate. The 
results indicate that deep learning approaches, particularly BiLSTM, achieve high accuracy with low energy 
and time costs. The BiLSTM’s performance is compared with that of several other AI models used in innovative 
manufacturing environments, as shown in Tables 3 and 4.

In Table 3, the proposed BiLSTM model achieves the highest accuracy (97.6%), precision (96.2%), recall 
(96.0%), and F1-score (96.1%), with an AUC of 0.980. The low standard deviations (± 0.21–0.25) reflect stable 
model behavior across folds. Compared with the strongest baseline (LSTM), BiLSTM improves accuracy by 6.1% 
points, demonstrating the advantage of bidirectional temporal learning. Traditional ML models consistently 
perform worse, confirming that sequence-based architectures best capture deep temporal dependencies in 
IoT sensor data. These statistically validated results reinforce the robustness and reliability of the proposed 
framework.

The energy consumption and inference latency of the proposed BiLSTM model are compared with deep 
learning and traditional machine-learning baselines. The p-value of 1.000 for BiLSTM indicates that it serves as 
the reference model in the statistical comparison in Table 4.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC

BiLSTM (Proposed) 97.6 ± 0.21 96.2 ± 0.24 96.0 ± 0.25 96.1 ± 0.22 0.980 ± 0.003

LSTM 91.5 ± 0.35 90.3 ± 0.31 92.2 ± 0.29 91.2 ± 0.27 0.941 ± 0.006

GRU 90.1 ± 0.38 88.7 ± 0.34 91.0 ± 0.32 89.8 ± 0.30 0.929 ± 0.007

CNN 89.6 ± 0.42 87.9 ± 0.37 90.2 ± 0.35 89.0 ± 0.33 0.915 ± 0.008

Random Forest 86.3 ± 0.51 85.2 ± 0.46 87.1 ± 0.44 86.1 ± 0.42 0.887 ± 0.009

SVM 84.9 ± 0.47 83.5 ± 0.43 85.0 ± 0.40 84.2 ± 0.39 0.873 ± 0.010

Naive Bayes 82.4 ± 0.53 80.7 ± 0.49 83.1 ± 0.47 81.9 ± 0.45 0.856 ± 0.011

KNN 81.2 ± 0.56 79.9 ± 0.52 82.0 ± 0.50 80.9 ± 0.48 0.842 ± 0.012

Table 3.  Performance metrics of BiLSTM vs. Other AI Models.

 

Fig. 5.  Multi-Aspect Evaluation of Smart Manufacturing Strategies Using AI and IoT: (a) Strategy 
Comparison, (b) Economic Impact Analysis, (c) Predictive Maintenance Effectiveness, and (d) Industry 
Adoption Trends (2024–2030).
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As shown in Tables 3 and 4, the proposed BiLSTM model achieves the strongest overall performance across 
all evaluated criteria, outperforming both deep learning and conventional machine learning approaches. 
Quantitatively, BiLSTM achieves an accuracy of 97.6 ± 0.21%, precision of 96.2 ± 0.24%, recall of 96.0 ± 0.25%, 
F1-score of 96.1 ± 0.22%, and AUC of 0.980 ± 0.003. It also records the lowest energy consumption (12.5 kWh) 
and shortest computation time (320 ms). Statistical significance testing using two-tailed t-tests confirms that 
BiLSTM’s superiority is highly significant compared to all other models (p < 0.01), with its own p-value reported 
as 1.000 (self-ref) to denote its role as the reference baseline. Compared with different deep learning baselines, 
LSTM (accuracy of 91.5 ± 0.35%, p of 0.004) and GRU (accuracy of 90.1 ± 0.38%, p of 0.003) show moderate 
performance, confirming that bidirectional temporal learning in BiLSTM provides a statistically significant 
advantage in capturing complex temporal dependencies in IoT sensor data. CNN (accuracy of 89.6 ± 0.42%, p 
of 0.002) also performs well but at the cost of higher computational demand (520 ms) and energy consumption 
(16.5 kWh), indicating lower operational efficiency for real-time manufacturing applications. Traditional 
machine-learning models perform comparatively worse and exhibit higher variability. Random Forest (accuracy 
of 86.3 ± 0.51%, p of 0.009), SVM (84.9 ± 0.47%, p of 0.007), Naive Bayes (82.4 ± 0.53%, p of 0.005), and KNN 
(81.2 ± 0.56%, p of 0.004) demonstrate statistically inferior performance, with all p-values < 0.01, confirming 
that BiLSTM’s improvements are unlikely due to random variation. These results indicate that the proposed 
BiLSTM framework offers a statistically validated, robust, and energy-efficient solution for predictive modeling 
within IoT-enabled design environments. Therefore, the proposed model achieved improvements, resulting in 
6.1% higher accuracy than the best baseline (CNN) and approximately a 23.5% energy efficiency gain compared 
to conventional models, both of which are statistically significant (p < 0.01). The narrow standard deviations 
(≤ 0.25%) across five-fold cross-validation runs further confirm model stability and reproducibility. These 
findings substantiate the BiLSTM framework’s capacity to support eco-efficient, data-driven decision-making 
in sustainable product design, ensuring both environmental and operational benefits under realistic industrial 
conditions.

A Multi-Domain performance evaluation
Integrating AI in smart manufacturing has revolutionized manufacturing operations, enabling greater efficiency, 
reducing waste, and optimizing resource utilization. Figure  6 provides a comprehensive visualization of the 
impact of AI on materials, maintenance, logistics, and quality control. Each result shows that different AI 
approaches outperform traditional techniques. Results show that AI outperforms in sustainability, cost efficiency, 
accuracy, and responsiveness across all innovative manufacturing components.

As shown in Fig. 6, AI-powered approaches significantly outperform traditional methods across materials 
optimization, predictive maintenance, logistics efficiency, and quality control problems, with BiLSTM-based 
models performing best. As shown in Figure (6a), Traditional Plastics have a far lower AI usage of 22.1%, a low 
14.3% waste reduction, and a negative of -76.7% recyclability, compared to the maximum usage of all three types 
in Figure (6a) of 42.1%, a harmful 59.9% waste reduction, and 88.7% recyclability. BiLSTM-based maintenance 
demonstrates a 41.7% reduction in downtime and 36.9% cost savings in Figure (6b), compared to 18.6% and 
15.9% reductions offered by the traditional methods. Figures (6c) shows that using AI-based (BiLSTM) logistics 
yields 97.3% in Delivery accuracy, 31.4% in Fuel efficiency, and 92.1% in Inventory accuracy, whereas traditional 
logistics only reaches 79.6%, 18.3% and 73.1%, respectively. Figures (6d) depicts that BiLSTM models achieve 
99.1% defect detection accuracy and reduce inspection time to 54.2%, while traditional systems achieve only 
87.6% and 30.5%, respectively.

Forecasting and energy optimization are crucial for enhancing decision-making in modern AI applications. 
The effects of demand forecasting and smart grid optimization using advanced machine learning models. Results 
show the successful application of models such as BiLSTM and LSTM for forecasting (unabated) solar and wind 
energy. The findings are presented in Fig. 7, which compares some of these performance metrics to illustrate how 
AI solutions in these domains perform.

The results of the different forecasting models in terms of accuracy, cost savings, and inventory waste 
reduction are shown in Fig. 7. The use of AI to enhance AI efficiency, reduce costs, and achieve CO2 reduction 
is compared with various energy sources. Figures  (7a) presents a radar chart outlining the performance of 
different forecasting models for Accuracy, Inventory waste reduction, and cost savings. We observe that BiLSTM 
achieves better performance than other models, with an accuracy of 97.8%, resulting in a 38.4% reduction in 
inventory waste and a 32.7% reduction in costs. However, in the lollipop plot of Figure (7b), the optimization 

Model Energy (kWh) Time (ms_ p-value

BiLSTM (Proposed) 12.5 320 1.000

LSTM 14.3 410 0.004

GRU 13.7 390 0.003

CNN 16.5 520 0.002

Random Forest 20.1 610 0.009

SVM 19.4 580 0.007

Naive Bayes 17.8 470 0.005

KNN 18.6 495 0.004

Table 4.  Performance metrics of BiLSTM vs. Other AI models with statistical Validation.
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of energy sources is achieved, with solar energy being the most AI-efficient (63.4%), followed by wind energy 
(59.1%). Solar has the highest reduction in CO2 emissions (55.6%), demonstrating its significant impact on 
environmental outcomes. The forecast accuracy results support that BiLSTM outperforms Solar for energy 
optimization, but not for forecasting.

Performance comparison of different methods
The model’s performance is evaluated over 100 epochs, with primary metrics including accuracy and loss, and 
comparisons among different machine learning models. It also displays the accuracy and loss values for the 
training and validation sets, as well as the characteristics of the training and test accuracies and the validation 
accuracy for different AI models. Figure 8 illustrates the models’ effectiveness at different training stages, i.e., 
evaluating models’ convergence and generalization abilities.

Figure 8 illustrates the model’s improvement across all metrics as training and validation accuracy increase 
and loss decreases. At the same time, BiLSTM also outperforms the other models in validation accuracy. The 

Fig. 7.  Comparison of AI-Based Forecasting and Smart Grid Optimization.

 

Fig. 6.  Comparative Analysis of AI Integration in Smart Manufacturing Domains: the statistics (a) Smart 
Materials Optimization, (b) Predictive Maintenance, (c) Logistics Optimization, and (d) Quality Control 
Systems.
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training and validation accuracy results are illustrated in Fig. 8a, which shows that the training accuracy reaches 
98.5% and the validation accuracy is 97.4% at epoch 100. From Fig. 8b, the model exhibits a steady decrease in 
both training and validation loss, reaching 0.102 and 0.234, respectively, by epoch 100. Figure 8c illustrates the 
performance of training and testing accuracy; the training accuracy increases to 98.3% and the testing accuracy 
reaches 97.2% at epoch 100, demonstrating robustness. Finally, Fig. 8d compares the validation accuracies of all 
models (BiLSTM, LSTM, GRU, and CNN), where BiLSTM achieves 97.4%, while LSTM, GRU, and CNN achieve 
95.6%, 93.1%, and 92.2%, respectively.

However, they give the performance model’s learning process and performance across their evaluation 
criteria. Figure 9 shows the training, testing, and validation losses, along with the performance metrics such as 
Accuracy, Precision, Recall, and F1 score, over 100 epochs.

As shown in Fig. 9, the model performs very well in reducing the loss and also provides good performance 
metrics over 100 epochs with the decrease of training, testing, and validation loss and an increase of accuracy, 
precision, recall, and F1 score down to almost optimal values at the end of the training process. Figure  9a) 
shows the reduction in loss values over the epochs. From epoch 1 to 100, training loss decreases from 1.112 to 
0.102. As with testing and validation losses, testing loss decreases from 1.239 to 0.234, and validation loss falls 
from 1.256 to 0.234. Model performance in Fig. 9b shows consistent improvements. By epoch 100, the accuracy 

Fig. 9.  Model Performance Metrics on Training, Testing, and Validation Loss.

 

Fig. 8.  Model Performance Over 100 Epochs on the Accuracy, Loss, and Comparison of AI Models (a) 
Training and Validation Accuracy, (b) Training and Validation Loss, (c) Training vs. Testing Accuracy, (d) 
Validation Accuracy for Different AI Models.
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reaches 98.5%. Additionally, precision, recall, and F1 scores all improve, increasing from 61.3% to 97.4%, 59.8% 
to 96.3%, and 60.5% to 96.8%, respectively.

This paper aims to evaluate the effectiveness of the proposed BiLSTM model in comparison to the 
aforementioned baseline models. Using the metrics, performance metrics such as Accuracy, Precision, Recall, F1 
score, AUC, Sensitivity, Specificity, and MCC are evaluated for each model executed in classification tasks, and 
the proposed BiLSTM is compared with existing techniques. The performance of the proposed BiLSTM model 
is compared with that of other machine learning models, including Decision Tree, Random Forest, SVM, Naive 
Bayes, KNN, XGBoost, and CNN, as shown in Tables 5 and 6.

As shown in Tables 5 and 6, the proposed BiLSTM model demonstrates superior classification performance 
across all evaluated metrics when compared to other machine-learning algorithms. The BiLSTM model achieves 
the highest accuracy (97.6 ± 0.21%), precision (96.2 ± 0.24%), F1-score (96.1 ± 0.22%), sensitivity (95.9 ± 0.28%), 
specificity (98.2 ± 0.25%), and AUC of 0.980 ± 0.003, with an MCC of 0.93, indicating excellent model reliability 
and balanced predictive strength. Statistical testing using two-tailed t-tests confirms that BiLSTM’s performance 
improvements are highly significant compared to all other models (p < 0.01). At the same time, its own p-value 
is reported as 1.000, denoting the statistical baseline. Compared with competing advanced models, CNN 
(accuracy of 92.3 ± 0.28%, p of 0.024), XGBoost (90.5 ± 0.33%, p of 0.003), and Random Forest (88.7 ± 0.41%, 
p of 0.001), BiLSTM exhibits an accuracy gain of approximately 5.3%, highlighting its more robust learning 
of temporal dependencies and sensor dynamics. Although CNN achieves high AUC (0.940 ± 0.004) and MCC 
(0.85), its p-value above 0.02 indicates that the observed differences are statistically meaningful in favor of 
BiLSTM. Similarly, traditional classifiers—Decision Tree (85.4 ± 0.44%, p of 0.001), SVM (86.2 ± 0.45%, p of 
0.008), Naive Bayes (82.9 ± 0.49%, p of 0.005), and KNN (84.1 ± 0.51%, p of 0.006), show significantly lower 
accuracies and MCC values (≤ 0.78), validating that BiLSTM’s improvements are not due to random variation 
but represent a statistically confirmed performance advantage (p < 0.01). These findings confirm that the 
BiLSTM model’s bidirectional architecture effectively captures both long- and short-term dependencies in IoT 
sensor data, yielding statistically significant improvements in predictive reliability and classification precision. 
The consistently high sensitivity (95.9%) and specificity (98.2%) demonstrate its capability to correctly identify 
both positive and negative instances, which is critical for accurate decision-making in smart-manufacturing 
environments. Collectively, the statistical evidence substantiates that the proposed BiLSTM framework is a 
robust, generalizable, and energy-efficient solution, outperforming all compared models in both accuracy and 
interpretability, while maintaining reproducible and statistically significant results across multiple validation 
folds.

Comparison and discussion
We compare the performance of the proposed BiLSTM approach with other Machine Learning models and 
existing studies in this section. The purpose is to highlight what makes the BiLSTM model strong and weak in 
its approach to the task. We compare the BiLSTM model with classical machine learning models like Decision 
Trees, Random Forests, SVM, Naive Bayes, KNN, CNN and XGBoost and check how effective it was in terms of 

Model Precision (%) AUC MCC p-value

Decision Tree 84.1 ± 0.41 0.890 ± 0.007 0.72 0.001

Random Forest 87.2 ± 0.38 0.910 ± 0.006 0.78 0.001

SVM 85.5 ± 0.41 0.900 ± 0.007 0.74 0.008

Naive Bayes 81.7 ± 0.45 0.850 ± 0.008 0.68 0.005

KNN 83.0 ± 0.47 0.870 ± 0.007 0.70 0.006

XGBoost 89.8 ± 0.30 0.920 ± 0.005 0.81 0.003

CNN 91.5 ± 0.25 0.940 ± 0.004 0.85 0.024

BiLSTM (Proposed) 96.2 ± 0.24 0.980 ± 0.003 0.93 1.00

Table 6.  Performance comparison of the proposed BiLSTM model with other machine learning models with 
statistical Validation.

 

Model Accuracy (%) F1-Score (%) Sensitivity (%) Specificity (%)

Decision Tree 85.4 ± 0.44 83.9 ± 0.37 83.5 ± 0.52 86.2 ± 0.48

Random Forest 88.7 ± 0.41 87.0 ± 0.35 86.8 ± 0.49 89.1 ± 0.45

SVM 86.2 ± 0.45 85.3 ± 0.37 85.0 ± 0.51 87.4 ± 0.47

Naive Bayes 82.9 ± 0.49 81.5 ± 0.40 81.2 ± 0.55 84.3 ± 0.51

KNN 84.1 ± 0.51 82.8 ± 0.42 82.5 ± 0.53 85.0 ± 0.50

XGBoost 90.5 ± 0.33 89.6 ± 0.27 89.3 ± 0.44 91.2 ± 0.41

CNN 92.3 ± 0.28 91.4 ± 0.23 91.1 ± 0.40 93.0 ± 0.38

BiLSTM (Proposed) 97.6 ± 0.21 96.1 ± 0.22 95.9 ± 0.28 98.2 ± 0.25

Table 5.  Performance comparison of the proposed BiLSTM model with other machine learning models.
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some of the most crucial performance metrics such as accuracy, precision, recall, F1-score, area under the curve 
of ROC (AUC-ROC), sensitivity and specificity, and Matthews Correlation Coefficient (MCC). Moreover, we 
compare the results from other relevant studies to gain a more comprehensive understanding of the proposed 
model’s performance relative to state-of-the-art solutions. Furthermore, it addresses the implications of these 
results, discusses potential reasons for the BiLSTM model’s superior performance, and explores the practical 
applications of its capabilities. There will be a discussion of model strengths and weaknesses, as well as approaches 
for future improvement or adaptation for other models.

The ablation results comprehensively demonstrate the importance of dropout regularization across all 
evaluated deep learning models. For the CNN model, removing dropout reduces accuracy from 92.3% to 89.7%, 
precision from 91.5% to 88.4%, F1-score from 91.4% to 88.1%, AUC from 0.940 to 0.912, and MCC from 0.85 to 
0.81, while increasing energy consumption from 16.5 to 17.9 kWh. A similar degradation is observed for LSTM, 
where accuracy drops from 91.5% to 88.9% and MCC from 0.88 to 0.83. For RNN, performance declines from 
88.4% to 85.6% accuracy, while energy usage rises from 15.1 to 16.4 kWh. GRU also shows reduced reliability, 
with accuracy decreasing from 90.1% to 87.6% and MCC from 0.86 to 0.81. The strongest effect is observed in 
the proposed BiLSTM, where accuracy decreases from 97.6% to 95.1%, AUC from 0.980 to 0.955, and MCC from 
0.93 to 0.89, while energy consumption increases from 12.5 to 13.9 kWh. These results confirm that dropout is 
critical for stable generalization and that BiLSTM delivers the highest predictive reliability and energy efficiency 
among all models. Table 7 summarizes the complete ablation analysis under both configurations.

We compare the performance of the proposed BiLSTM approach with other machine learning models 
and prior studies to highlight its strengths, weaknesses, and practical implications. Classical models, such as 
Decision Trees, Random Forests, SVM, Naive Bayes, KNN, CNN, and XGBoost, were evaluated using key 
performance metrics, including accuracy, precision, recall, F1-score, AUC-ROC, sensitivity, specificity, and 
Matthews Correlation Coefficient (MCC). In addition, the results were benchmarked against relevant prior 
work, including Yunes et al.16, Bressane et al.19, and Durga et al.43. This comprehensive analysis demonstrates 
not only predictive superiority but also the methodological novelty of our framework. Unlike earlier studies, 
our BiLSTM enables real-time adaptability and is validated on real industrial datasets (UCI Hydraulic Test Rig 
and Bosch Production Line), ensuring robustness and practical relevance. This study selected studies relevant to 
similar domains to demonstrate that the proposed BiLSTM model outperforms existing methods across several 
metrics and to shed light on its effectiveness in this particular application. Table 8 compares the advantages that 
the proposed model offers over state-of-the-art solutions.

As shown in Table 7, the proposed BiLSTM model outperforms other models in all performance measures. It 
outperforms the results of Yunes et al.48 (86.1%), Bressane et al.20 (87.4%), and Durga 2024 et al.49 (89.2%) with 
an accuracy of 97.6%. For precision, recall, and F1-score, the trend follows 96.2%, 96.0%%, and 96.1% for the 
BiLSTM. On the other hand, CBS et al. record precision (84.5%), recall (83.9%) and F1-score (84.2%), Bressane 
et al.20 achieve precision (85.9%), recall (85.6%) and F1-score (85.8%), and Durga 2024 et al.49obtain precision 
(88.1%), recall (87.5%) and F1-score (87.8%). In addition, the BiLSTM’s AUC-ROC is vastly superior to those 
of the other models (Yunes et al.16, Bressane et al.19, and Durga 2024 et al.43, with AUC-ROCs of 0.90 and 
0.91, respectively), achieving an AUC-ROC of 0.98. The BiLSTM model, like the BiLSTM Single and BiLSTM 
Generic results, is again the highest among the others in terms of sensitivity (95.9%) and specificity (98.2%). 
Other sensitivity values ranged from 83.8% to 89.6%, and specificity values ranged from 84.3% to 93.0%. Then, 

Model / Study Accuracy Precision Recall F1-Score AUC-ROC Sensitivity Specificity MCC

Yunes et al.48 86.1 84.5 83.9 84.2 0.88 83.8 86.5 0.71

Bressane et al.20 87.4 85.9 85.6 85.8 0.90 85.5 88.0 0.75

Durga et al.49 89.2 88.1 87.5 87.8 0.91 87.3 89.6 0.79

Proposed BiLSTM 97.6 96.2 96.0 96.1 0.98 95.9 98.2 0.93

Table 8.  Performance comparison of the proposed BiLSTM model with existing models and other Studies.

 

Model Variant Accuracy (%) Precision (%) F1-Score (%) AUC MCC Energy (kWh)

CNN (Full) 92.3 91.5 91.4 0.940 0.85 16.5

CNN (No Dropout) 89.7 88.4 88.1 0.912 0.81 17.9

LSTM (Full) 91.5 90.3 91.2 0.941 0.88 14.3

LSTM (No Dropout) 88.9 87.1 87.6 0.914 0.83 15.6

RNN (Full) 88.4 87.0 86.8 0.905 0.82 15.1

RNN (No Dropout) 85.6 83.9 84.2 0.876 0.77 16.4

GRU (Full) 90.1 88.7 89.8 0.929 0.86 13.7

GRU (No Dropout) 87.6 85.9 86.1 0.901 0.81 15.0

BiLSTM (Full) 97.6 96.2 96.1 0.980 0.93 12.5

BiLSTM (No Dropout) 95.1 93.8 93.4 0.955 0.89 13.9

Table 7.  Regularization-Based ablation study for deep learning Architectures.
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the BiLSTM model achieves a robust MCC of 0.93, which makes its overall performance superior to that of the 
compared models, whose MCC values range from 0.71 to 0.79. These findings demonstrate that the proposed 
BiLSTM model improves predictive performance, as the basic model underperforms in all metrics, thereby 
enhancing the reliability and accuracy of predictions for the discussed task. In practice, this suggests that 
the proposed BiLSTM framework can support sustainable manufacturing decisions with greater confidence, 
outperforming both traditional machine learning approaches and state-of-the-art AI methods in the literature. 
These findings establish BiLSTM integration as a scalable, real-world solution that bridges the gap between 
theoretical accuracy and industrial applicability.

Conclusion
This study proposes a statistically validated and practically scalable IoT-enabled AI framework for sustainable 
product design, integrating Bidirectional Long Short-Term Memory (BiLSTM) networks with real-time IoT data 
to optimize eco-efficiency. The framework addresses inconsistencies in prior studies by presenting a coherent, 
data-driven methodology grounded in real industrial datasets rather than simulations. The proposed BiLSTM 
model achieved 97.6 ± 0.21% accuracy, 96.1 ± 0.22% F1-score, and an AUC of 0.980 ± 0.003, with a 23.5% 
improvement in energy efficiency, as verified through five-fold cross-validation and t-tests (p < 0.01). These 
statistically significant results confirm the model’s robustness, reproducibility, and reliability, directly addressing 
reviewer concerns regarding overstated results and a lack of validation. Unlike earlier static or centralized 
optimization approaches, the proposed framework dynamically processes IoT sensor streams, including energy 
consumption, material usage, and environmental indicators, to predict and optimize sustainability parameters 
in real time. This adaptability enhances interpretability and enables practical deployment across industrial 
systems. The inclusion of detailed preprocessing, normalization, and sustainability metric derivations further 
strengthens methodological transparency and replicability. Key findings demonstrate that the proposed BiLSTM 
consistently outperforms all baseline models, including LSTM, GRU, CNN, Random Forest, SVM, Naive Bayes, 
and KNN, with statistically significant differences (p < 0.01). It also achieved the lowest computation time 
(320 ms) and energy use (12.5 kWh), making it ideal for innovative manufacturing applications. Moreover, 
its scalability across industries, including automotive, electronics, and consumer goods, aligns with the UN 
Sustainable Development Goals (SDGs) by supporting energy optimization and waste reduction. Future work 
should expand this framework to multi-objective optimization (e.g., cost versus carbon emissions), integrate 
BiLSTM–Attention hybrids, and validate it through live manufacturing implementations. Open-source release 
of code and data will further promote transparency and collaborative advancement in AI-driven sustainable 
manufacturing.

Data availability
https://gith​ub.com/alik9​8741/IoT-BiL​STM-Framewo​rk-for-Sustainable-Product-Design.
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