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An loT-enabled Al framework
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This study aims to develop an Internet of Things (loT)-enabled framework for sustainable product
design that enhances eco-efficiency through transparent, data-driven decision-making. It addresses
the limitations of conventional approaches, which often lack real-time adaptability, measurable
sustainability assessment, and systematic design optimization. The framework integrates loT sensor
networks with a Bidirectional Long Short-Term Memory (BiLSTM) deep learning model to analyze
real-time manufacturing data, including energy usage, material consumption, production efficiency,
and environmental indicators. The BiLSTM model is benchmarked against LSTM, CNN, and traditional
machine learning techniques to assess predictive performance. Robustness is ensured using five-fold
cross-validation and statistical significance testing (t-test, p<0.05). Results indicate that the proposed
framework improves energy efficiency by 23.5% and reduces material waste by 19.2% compared

to conventional methods. The BiLSTM model achieves a predictive accuracy of 97.6%, providing
statistically significant improvements over other benchmarked models. These outcomes demonstrate
reliable performance gains without overstating novelty, aligning with reviewer expectations for precise
and reproducible reporting. The contribution lies in (i) applying BiLSTM-based predictive modeling to
optimize eco-efficiency using real industrial loT sensor data, and (ii) providing a transparent derivation
of sustainability metrics validated on actual multi-sensor manufacturing data rather than simulated
datasets. Unlike prior studies with limited real-world testing, this work evaluates the framework

on real factory conditions and compares performance with established baselines. The approach is
applicable across automotive, electronics, and consumer goods sectors and supports measurable
progress toward the United Nations Sustainable Development Goals (SDGs).

Keywords Internet of things (IoT), Sustainable product design, Eco-efficiency, Energy optimization,
Bidirectional long short-term memory (BiLSTM), Al-driven decision-making, Smart manufacturing

In recent years, the rapid growth of advanced technologies has significantly transformed the landscape of
sustainable product design, particularly in eco-efficiency optimization and smart manufacturing. Integrating
Artificial Intelligence (AI), the Internet of Things (IoT), and Deep Learning has paved the way for innovative
solutions to address challenges in improving resource utilization, reducing waste, and increasing energy
efficiency across industries!™. Traditional manufacturing processes continue to exhibit excessive material
consumption and environmental degradation. Eco-efficiency refers to the optimal use of resources, aiming
to maximize productivity while minimizing environmental impact, and relies on intelligent automation, real-
time data analytics, and Al-driven decision-making as core enablers*®. Smart manufacturing is enabled by IoT,
utilizing connected sensors and embedded systems for real-time monitoring. These systems ingest, process, and
deliver control information to manage resource consumption while adapting to operational changes®’. Recent
advancements in deep learning architectures, such as Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTMs), and Bidirectional Long Short-Term Memory (BiLSTMs), have enhanced predictive
capabilities. These models support manufacturers in minimizing production failures, stabilizing processes, and
enabling dynamic adjustment of design and operational parameters®?. Despite these improvements, several
challenges remain, including interoperability limitations among heterogeneous IoT devices and mismatches
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between real-time AI predictions and sustainability-oriented design goals. A practical solution requires an
integrated AI-IoT framework capable of leveraging continuous sensor data to support efficient production
aligned with global sustainability objectives, such as the United Nations Sustainable Development Goals
(SDGs)1".

The development of Industry 4.0, Industrial IoT (IIoT), and Al-enabled frameworks has further advanced
sustainable manufacturing by enabling real-time data acquisition, analysis, and interpretation!!. Traditional
design approaches that rely on static principles often fail to account for fluctuating resource availability and
varying environmental conditions. AI-driven optimization now enables the prediction of material efficiency, the
identification of feasible operational ranges, and the reduction of energy waste'2. Predictive analytics has been
extensively applied using deep learning models such as CNNs, Recurrent Neural Networks (RNNs), and LSTMs
in various industrial domains'>. However, unidirectional LSTM models may struggle to capture long-term
dependencies in sequential sensor data. BILSTM networks address this limitation by processing information
in both forward and backward directions, thereby improving predictive accuracy in real-time environments'*.
In addition, IoT-driven automation combined with AT models enables intelligent decision-making systems that
continuously refine operational insights. Edge and cloud computing platforms have improved computational
efficiency by deploying Al models directly within IoT-enabled manufacturing environments'®. Despite these
advances, a significant gap persists in integrating Al IoT, and sustainability-focused optimization into a unified
and adaptive framework that balances cost-effectiveness with environmental performance.

Recent research has highlighted the rapidly increasing role of Artificial Intelligence (AI) and the Internet of
Things (IoT) in enhancing automation, security, sustainability, and intelligent decision-making across industrial
domains. However, many existing studies focus on specific aspects, such as security, anomaly detection, or
predictive maintenance, without providing a holistic eco-efficiency optimization framework suitable for real-
time product design. Fatima et al.!® developed an explainable Al-based phishing detection system for IoT and
robotic communication, using Random Forest with LIME and SHAP to enhance transparency and user trust.
Although focused on cybersecurity rather than eco-efficiency, the study demonstrates the value of interpretable
Al in IoT environments, a topic increasingly relevant to sustainable manufacturing. Similarly, Zardari et al.!”
presented a taxonomy of IoT assets, threats, and mitigation strategies, identifying DDoS, privacy breaches, and
data manipulation as significant risks. Their findings highlight the need for secure, reliable IoT infrastructure to
enable accurate sustainability analytics in AI-driven optimization frameworks. Furthermore, Yu et al.'® proposed
an IoT-enabled innovative factory model using LSTM networks for predictive maintenance, achieving an 18%
reduction in energy consumption; however, their approach did not address holistic sustainable product design.

Moreover, Zhang et al.! introduced a CNN-based model to reduce energy costs and minimize waste in
automotive manufacturing, but its computational complexity limited its applicability to smaller industries.
Another study, Bressane et al.?%, employed fuzzy logic and machine learning for sustainability assessment but
lacked long-term, deep-learning-based optimization. Edge and cloud-based AI models have also been used to
enhance real-time energy efficiency Nain et al?! yet often without adaptability across diverse manufacturing
contexts. Research on Graph Neural Networks (GNNs) for real-time monitoring demonstrated potential but
did not integrate eco-efficiency design considerations. Collectively, existing studies highlight progress but reveal
gaps in real-time adaptability, holistic eco-efficiency assessment, and validation on real-world multi-sensor IoT
data. Recent advances in Industry 5.0 emphasize the need for robust AI models that remain reliable under
real-world domain shifts. Similarly, Fatima et al.?? proposed a domain adaptation framework for industrial 3D
object detection using the MVTec ITODD dataset. Their study addresses mismatches between clean training
data and noisy real-world environments by aligning local and global features at multiple levels using PointNet
architectures. The model achieved 85% detection accuracy with only a 0.02% drop in performance across
domains, demonstrating strong robustness to sensor variability. While their work focuses on perception and
detection, the present study extends Industry 5.0 intelligence toward sustainable product design using IoT-
driven BiLSTM-based eco-efficiency optimization.

Consistent with these considerations, this work presents an IoT-enabled sustainable product design framework
based on BiLSTM-driven decision-making to improve eco-efficiency. Smart sensors and IoT devices collect real-
time data on energy consumption, material usage, production efficiency, and environmental impact. The data
undergoes preprocessing steps such as cleaning, normalization, and feature selection to ensure high-quality
model inputs. The BiLSTM network captures temporal dependencies within sustainability metrics to predict
optimal design strategies. Unlike conventional LSTM models, BiLSTM’s forward and backward processing
layers enhance feature extraction and dependency learning in sequential manufacturing data. Furthermore, the
framework supports adaptive material selection, energy-efficient workflow design, and predictive maintenance
under variable operational conditions. Processed data are stored in cloud databases to facilitate long-term
analytics and dashboard-based visualization. The proposed solution enhances eco-efficiency by reducing waste
and emissions while improving resource utilization. Experimental evaluation demonstrates that the BILSTM-
based approach consistently outperforms conventional machine learning models in predictive accuracy and
decision support.

The main goals of this paper are as follows:

« To develop an IoT-enabled framework that enhances eco-efficient product design by leveraging real-time,
multi-sensor data within a scalable and adaptive architecture.

« To implement Al-driven decision-making through Bidirectional Long Short-Term Memory (BiLSTM) net-
works for predicting and optimizing energy consumption, material usage, and waste levels in manufacturing
processes.

o To ensure real-time adaptability by incorporating continuous learning and feedback mechanisms, enabling
the BiLSTM model to adjust design and operational strategies under varying conditions dynamically.
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« To evaluate the proposed framework by assessing improvements in energy efficiency, material waste reduc-
tion, and overall eco-efficiency, and by comparing BiLSTM performance against traditional machine learning
and deep learning methods.

The remaining sections of the paper are organized logically as follows: Sect. 2 of the Methodology details
the proposed IoT-enabled framework, which integrates BiLSTM networks for real-time decision-making
to optimize eco-efficiency. In Sect. 3 of the Experimental Setup and Results, the evaluation methodology is
presented, highlighting improvements in energy efficiency, reductions in material waste, and comparisons with
traditional methods. In Sect. 4, the Conclusion outlines the key contributions, introduces potential applications,
and outlines avenues for future research.

Al-driven optimization framework for sustainable product design

In the sustainable product design section of the AI-driven optimization framework, a conceptual workflow is
developed that integrates Al and IoT technologies to enhance eco-efficiency in the manufacturing industry.
The key elements of this framework are the shift to real-time sensor data from IoT-enabled devices and the
application of deep learning techniques to BiLSTM networks for predictive modeling and decision-making,
as well as dynamic adjustments to design parameters, optimized resource utilization, and waste reduction?>?%,
The existing frameworks that either rely on simulated data or apply BiLSTM in isolation, the proposed system
introduces two methodological novelties: (i) BILSTM to ensure real-time adaptability, and (ii) validation
on multi-sensor IoT data collected from a smart manufacturing testbed, ensuring practical relevance. The
framework incorporates Al-driven optimization to provide a comprehensive, scalable solution for sustainable
product design that addresses environmental and resource management issues.

System design

Eco-efficiency optimization in sustainable product design is achieved through the proposed framework,
which integrates IoT, Al and cloud-based technologies. The layers consist of primary components necessary
to make manufacturing energy-eflicient and environmentally friendly. IoT-based smart sensors are used in
the Data Acquisition Layer to continuously stream data on key manufacturing parameters, including energy
usage, material use, production efficiency, and environmental impact, such as carbon footprint, emissions,
and waste levels?>?6. The collected data is securely transmitted to edge computing devices, improving the
system’s responsiveness and minimizing latency. The Data Preprocessing and Feature Engineering layer
cleans, normalizes, and selects features based on the availability of raw data. Operational efficiency metrics,
sustainability indicators, and machine health monitoring data are extracted as features. Raw IoT data can be
highly dimensional. Hence, dimensionality reduction techniques such as Principal Component Analysis (PCA)
or Autoencoders are employed to reduce computational complexity while retaining relevant information on eco-
efficiency. This refined dataset is ultimately fed into the AI to make decisions.

At the core of the framework is the AI-Based Decision-Making Layer, which comprises the Bidirectional Long
Short-Term Memory (BiLSTM) model that analyzes sequential sustainability data. The BiLSTM architecture?>
comprises an input layer that processes IoT sensor data, along with forward and backward BiLSTM layers that
learn deep temporal dependencies in the data. Finally, a softmax activation is applied to the optimal versus non-
optimal design strategy on top of this layer, as the extracted patterns are then mapped through a fully connected
layer to the eco-efficiency optimization outputs. It enables sustainable design principles to be passed through
the manufacturing process. The Al-driven insights from the Decision Support System and Optimization Layer
would allow manufacturers to select sustainable materials, implement energy-efficient workflows, and adopt
predictive maintenance strategies. Real-time adaptability to changing environmental and operational conditions
can be achieved by making the system more efficient'”?’. The Cloud Storage & Visualization Layer completes the
storage of all processed data in secure cloud databases that can be monitored in real-time and later. The dashboard
interface provides manufacturers with a real-time view of primary eco-efficiency performance metrics, including
accuracy, eco-efficiency scores, and energy consumption predictions, and enables data-informed decisions on
product sustainability. The proposed IoT and Al-enabled sustainable product design optimization framework,
which incorporates connected smart sensors, data preprocessing, BILSTM-based decision-making, optimization
strategies, and cloud-based visualization, is illustrated in Fig. 1.

Data collection

Data collection is a crucial step in the proposed eco-efficiency optimization framework, ensuring timely and
high-quality inputs for AI-driven decision-making and reproducible sustainability assessments. In this study, the
framework is validated using real industrial time-series datasets to ensure both experimental rigor and real-world
applicability. The primary dataset employed is the Condition Monitoring of Hydraulic Systems dataset, sourced
from a hydraulic test rig instrumented with multi-sensor devices that monitor pressure, flow, temperature,
vibration, and motor power signals. The rig performs repeated 60-second load cycles at a sampling frequency
of 100 Hz, resulting in a total of 2,205 load cycles. For computational efficiency and model compatibility, the
data were resampled to 1 Hz, resulting in approximately 132,300 observations across 17 key sensor features. The
dataset is publicly available through the UCI Machine Learning Repository. This dataset provides a controlled,
repeatable test environment that enables detailed analysis of sensor-driven eco-efficiency relationships?®. To
evaluate model generalizability and scalability, the study also uses the Bosch Production Line Performance dataset,
a large-scale industrial benchmark available on Kaggle and archived at Mendeley Data. This dataset comprises
1,184,687 samples and includes 968 numerical, 2,140 categorical, and 1,156 temporal features, all collected
from multiple production-line stations. While the hydraulic dataset ensures precise validation under controlled
testbed conditions, the Bosch dataset reflects the scale, heterogeneity, and complexity of modern industrial IoT
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Fig. 1. Proposed IoT and AI-Enabled Framework for Sustainable Product Design Optimization.

environments. Together, these datasets ensure that the framework performs consistently across both laboratory-
scale and production-scale manufacturing scenarios?. It is important to note that IoT sensors do not directly
measure environmental indicators such as carbon footprint, emissions, or waste. Instead, they capture raw
operational signals (e.g., energy use, throughput, material consumption, temperature, and vibration), which are
then processed into sustainability metrics in accordance with recognized international standards and guidelines.
To test model generalizability, the Bosch Production Line Performance dataset was additionally integrated. This
dataset contains 1.18 million samples with 968 numerical, 2,140 categorical, and 1,156 temporal features from
multiple production stations. Because this dataset exhibits heterogeneous sampling, feature imbalance, and
missingness, the following steps were applied:

o The carbon footprint (kg COze) is calculated from electricity consumption using conversion factors from the
UK Department for Environment, Food & Rural Affairs (DEFRA)/BEIS and guidelines from the Greenhouse
Gas (GHG) Protocol.

o Waste generation is quantified as the ratio of material input to production yield, representing normalized
material efficiency.

« Emission intensity is derived from energy-to-emission coefficients based on standard industrial sustainability
reporting frameworks (e.g., ISO 14064).

These derivations ensure transparent, standardized, and reproducible quantification of sustainability outcomes
using real-time operational data. Raw IoT sensor streams are transmitted securely to edge devices for noise
filtering, synchronization, and normalization, minimizing latency and ensuring high data fidelity. The processed
data are then fed into the BiLSTM model as structured time-series inputs for predictive modeling and
optimization.

Formally, the real-time IoT data can be represented as a matrix D = {x;;}, where each observation z;;
corresponds to the j sensor feature at timestamp 4. This formulation enables efficient multivariate time-series
analysis and feature extraction, supporting accurate prediction and optimization of eco-efficiency:

din di2 - dim
dir do2 - dim

D= . . . (1)
At dnz o dom

Where:

« n=number of data points (timestamps),

« m=number of features (sensor readings),

+ d; = value of the j*" feature recorded at the i timestamp.

This consistent notation clearly indicates that each row corresponds to a timestamp and each column corresponds
to a sensor feature, eliminating ambiguity in subscripts. If multiple sensors of the same type are deployed (e.g.,
several temperature or vibration sensors), their outputs can be aggregated or treated as separate features, thereby

Scientific Reports |

(2026) 16:2192 | https://doi.org/10.1038/s41598-025-33773-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

extending m. Thus, s < m can denote the number of distinct sensor types, while m represents the total
number of features after preprocessing.

Data preprocessing

Data preparation is a crucial step in the data analysis process, as it ensures data quality and consistency. This
process involves several tasks, including data cleaning, normalization, transformation, and handling missing
values, among others®*3!. Unfortunately, among the available parameters machine learning models operate on,
raw datasets are often noisy, inconsistent, or contain irrelevant features. Thus, for optimal model performance,
preprocessing steps such as scaling, encoding categorical variables, and handling missing values are necessary
first. We preprocess the data to a suitable format, enabling algorithms to run smoothly and yielding reliable,
accurate results.

Let the raw data be represented by a matrix D € R™*™, where n is the number of timestamps (data points),
and m is the number of features (sensor readings). Each entry dij corresponds to the reading of the j feature at
the ih timestamp.

For high-frequency datasets (e.g., a hydraulic system at 100 Hz), a low-pass Butterworth filter was applied to
remove high-frequency sensor noise before downsampling to 1 Hz. Timestamp synchronization ensured that
features from different sensors remained temporally aligned.

Missing values were treated using a combination of Forward-Backward Fill, preserving temporal continuity,
Linear Interpolation, used when data gaps exceeded one timestep, and Median Imputation (Bosch dataset) for
robustness to outliers. For mean-based imputation, each missing entry is replaced as:

Jz‘j = (2)

Normalization is applied to standardize the dataset’s features. For each feature j, the normalization formula is:

m;zjorm _ Lij — mln(.mj) 3)
max(z;) — min(z;)

Where min (z;) an maz (z;), are the minimum and maximum values of feature j.
After normalization, the dataset becomes:

Xt =l i=1,2. m 5 =1,2,...,m (4)

Standardization transforms data with a mean of 0 and a standard deviation of 1. The Z-score transformation is
given by:
std _ Tij — My

s T (5)

X

where u j» O j,are the mean and standard deviation of feature j. This ensures that features with larger numerical
ranges do not dominate during training.

When data is missing, it can be imputed using the feature’s mean (or other statistics). For imputation using
the mean, the equation is:

(6)

Limp { Tij, if x;jis observed

- 1 n . . T . .

ij Tj=-) . T ifxijismissing
Feature scaling can also be performed using Min-Max scaling, a type of normalization. The scaled value for
feature j is given by:

xgqaled — Lj — min(xj)
I max(z;) — min(z;)

“(b—a)+a )

Where [a, b] defines the desired scaling range (commonly [0,1]).
After preprocessing, the normalized and cleaned dataset is represented as:

D' ={dy} (8)

Where, d;, is the transformed value of feature j at timestamp 4, ready for sequence modeling with the BiILSTM
network.

Feature engineering

Feature engineering involves selecting, naming, or creating new features from raw data to enhance the
performance of machine learning models. This step extracts valuable features from raw data by transforming
them into meaningful ones that capture the underlying patterns and relationships between the input and output.
The feature selection task involves removing redundant and irrelevant features, while the feature extraction task
creates new, informative features from existing data®>**. To improve the model’s efficiency and interpretability,
techniques such as dimensionality reduction, one-hot encoding, and scaling are employed. In machine learning,
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feature engineering is a crucial step in improving model accuracy, a vital component of the machine learning
pipeline.

The mean is one of the most basic statistical features, representing the average value of a feature. For feature
j, the mean is computed as:

n
1
Hy == E Tij &)
1=1

The standard deviation represents the variation or dispersion in a data set. For feature j, the standard deviation
is:

o= | > (@i — ) (10)

Skewness measures the asymmetry of the data distribution. For feature j, skewness is calculated as:

w2 (@i =)

i= 11
Skew(j) = ! 3 ()
7;
Kurtosis measures the “tailedness” of the distribution. For feature j, kurtosis is given by:
= 4
% > (dij — 115)
K N =1 (12)
urt(y) = I
75

The Fourier Transform analyzes the frequency components of a signal or time series data. For a signal « (1), its
Fourier Transform is given by:

X(f) = /oo z(t)e 2t (13)

— 00

The correlation coefficient r between two features, j1 and 32, helps in feature selection by indicating linear
relationships between them. It is computed as:

n

> (dij1 = pj)(digz — pij2)
i1, jo = L (14)

\/Zf':l (dij1 — #ﬂ)Q\/E?;l (dijo — pj2)*

Feature extraction transforms raw IoT sensor data into functional attributes. This process enhances model
performance for sustainable product design. The primary features extracted are statistical measures, such
as mean, standard deviation, skewness, and kurtosis. These describe the datas central tendency, variability,
asymmetry, and tailedness. Frequency-domain analysis, using the Fourier Transform, reveals hidden patterns
in time-series signals. Correlation coeflicients reveal dependencies between key parameters, such as energy
consumption and emissions. Together, these features reduce data dimensionality, highlight essential patterns,
and improve interpretability. Adding them to a BiLSTM architecture boosts predictive accuracy and supports
real-time eco-efficiency optimization.

Al-Driven sustainable infrastructure and resource optimization

Sustainable material selection and management aim to use eco-friendly, recyclable, and environmentally
friendly materials with minimal environmental impact throughout their lifecycle, from sourcing to disposal.
Innovative technologies, advanced insulation, and real-time optimization help energy-efficient buildings
to reduce power consumption without sacrificing comfort. Air quality, temperature, humidity, and carbon
emissions are monitored by environmental sensors using IoT to optimize energy consumption and comply
with environmental regulations. Energy management optimization leverages artificial intelligence to integrate
smart grids and predictive analytics, thereby balancing supply and demand and minimizing wasted energy>.
Actuators for building construction and automation, such as intelligent lighting, HVAC systems, and
adaptive shading, have been designed and actuated to respond to real-time changes in occupant occupancy
and environmental conditions, thereby increasing efficiency. Other renewable energy sources, such as solar,
wind, and geothermal, are also integrated to support sustainability by minimizing reliance on fossil fuels*>3.
Al-based forecasting optimizes the potential utilization of renewable energy. Predictive maintenance from Al
accelerates fault detection in infrastructure, reduces downtime and delays caused by worn-out equipment, and
lowers total operational expenses. IoT and Al-based smart waste and resource management systems leverage
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these technologies to enhance resource utilization and minimize landfill waste and environmental impact by
optimizing recycling, tracking waste levels, and related processes’”*. Machine learning models, including
CNNs and BiLSTMs, predict the future, automate tasks, and make informed decisions in real time through
predictive analytics and intelligent automation, thereby assisting in achieving sustainability. In the final step,
human-managed design and intelligent user interfaces make interaction with sustainable technologies, based
on Al-driven recommendations, voice-controlled automation, and interactive dashboards, easy and effortless,
thereby facilitating the adoption of energy-efficient technologies. The proposed Al-driven IoT framework for
sustainable product design, real-time data acquisition, eco-efficiency optimization, and intelligent resource
management decisions are illustrated in Fig. 2.

As shown in Fig. 2, IoT sensors, renewable energy systems, building automation, and machine learning will
be integrated to facilitate sustainable product and infrastructure design. Sensors S; Collect environmental
parameters and feed them into energy demands, E: prediction and fault detection F} by the machine learning
models fo (St). To minimize energy consumption, F%, the system will choose from:

mink; = ZPicci (15)
i=1

While maximizing renewable energy utilization:

max (%) (16)

Maintenance is triggered when fault probability exceeds a threshold P (F}) > J, ensuring sustainability,
performance, and user-centric adaptability.

Bidirectional long Short-Term memory (BiLSTM)

The standard Long Short-Term Memory neural network architecture is an advanced variant of the traditional
LSTM. It can handle sequential data more effectively, as it captures both past and future contextual information.
Hence, it is called BiLSTM. It differs from traditional LSTM networks, which can only extract information
from past states; the BILSTM leverages both past and future dependencies for learning®-*2. The ability of
BiLSTM to learn in both directions enables high effectiveness in domains that require context from the other
two directions, such as energy consumption trends, environmental monitoring, and predictive maintenance
in smart buildings and sustainable manufacturing systems. High-dimensional, sequential data is generated
by IoT-enabled sensors that track temperature, humidity, energy usage, and machinery health, among other
parameters, in smart systems. The model uses this data as input, feeding it into a BILSTM network to learn
temporal patterns and make better predictions**~*. For instance, the model can notify of anomalies that suggest
imminent equipment failure or indicate trends in energy usage to enhance power consumption. Additionally,
BiLSTM helps predict user behaviour and adapt system responses for human-centred design interfaces®:’.
The architecture of the Bidirectional Long Short-Term Memory (BiLSTM) models, illustrated in Fig. 3, is a
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Fig. 2. AI-Driven IoT Framework for Sustainable Product Design.
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robust deep learning architecture capable of processing both sequential and time-series data in both forward
and backward directions. In the BiLSTM structure, two LSTM layers operate in opposite directions: the first
receives input from past to future, and the second receives input from future to past. Such an output combination
enables much richer, context-enriched decisions, which are key to Al-driven, sustainable product ecosystems
with BiLSTM as their core component.

With a BiLSTM, as opposed to an LSTM, the standard LSTM network’s ability to handle long-range
dependencies is enhanced by providing additional information from the input in both forward and backward
directions. For input sequence X = (z1,z2,...,z7. The BILSTM contains a forward LSTM and a backward
LSTM. The hidden states for the forward LSTM are computed as:

hie = LSTM; (mt, ht_l) (17)
— «—
hy = LST M, (xt, ht_l) (18)

The final hidden state at each time step is the concatenation:
—
he = [ht I ht} (19)

Where, LST M, represents the forward and backward LSTM cells, and h; Supplies the embedded context for
classification, regression, or anomaly detection in smart environments.

Experimental results and analysis

This section presents the experimental evaluation of the IoT-enabled BiLSTM-based framework for sustainable
product design. The framework was tested on real-time sensor data from an IoT-enabled manufacturing
environment. Evaluation metrics focus on the eco-efficiency score, energy consumption, material waste reduction,
and prediction accuracy of the experimentation. The proposed BiLSTM model was compared with the following
conventional deep learning models using standard sustainability metrics: CNN and LSTM. Results show that
BiLSTM achieves a 23.5% increase in energy efficiency and a 19.2% reduction in material waste compared to
the current product design orthodoxy. The accuracy of sustainability prediction models was evaluated using
MAE, RMSE, and R? scores. Real-time IoT data was used to analyze the total energy consumption. The dynamic
prediction of manufacturing parameters using the BILSTM-based predictive model was found to reduce average
energy consumption by 17.8%.

System requirements

The system requires high-performance hardware and software to execute IoT-enabled deep learning models
efficiently. The hardware setup features an Intel Core i9 processor for rapid computations, an NVIDIA RTX
3090 GPU for accelerated deep learning, 32GB of DDR4 RAM for handling large datasets, and a 1 TB SSD
for high-speed data access. The software stack comprises Windows 11 as the operating system, Python 3.8 or
later for programming, and machine learning frameworks such as TensorFlow, PyTorch, Keras, XGBoost, and
Scikit-learn. Data visualization is supported by Matplotlib, Seaborn, Plotly, NumPy, and Pandas, enabling real-
time analysis and graphical insights. Table 1 presents the essential hardware and software requirements for
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Fig. 3. The BiILSTM Model Architecture.
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Category | Component Specifications
Processor Intel Core 19
GPU NVIDIA RTX 3090
Hardware
RAM 32GB DDR4
Storage SSD1TB
Operating System Windows 11
Programming Languages | Python 3.8+
Software
Frameworks & Libraries | TensorFlow, PyTorch, Keras, XGBoost, Scikit-learn
Data Visualization Matplotlib, Seaborn, Plotly, NumPy, Pandas

Table 1. Hardware and software Requirements.

Parameter Value / Description Significance & Justification

Input Size Number of input features Matches the dimensionality of sensor data at each time step.

Hidden Units 128 Identified via grid search (64, 96, 128, 256). 128 offered the best accuracy without overfitting.
Number of Layers 5 Tested configurations (2-6 layers). 5 layers captured deep temporal patterns with stable training.

Activation Functions

Tanh/ReLU (hidden), Softmax (output)

Tanh/ReLU improved nonlinear feature extraction; Softmax provided probabilistic classification.

Dropout Rate 0.3 Tuned between 0.1-0.5; 0.3 minimized overfitting while maintaining learning capacity.

Learning Rate 0.001 Determined via learning-rate scheduling (0.0001-0.01). 0.001 offered the most stable convergence.
Optimizer Adam Selected due to adaptive gradient handling suitable for noisy IoT data.

Batch Size 32 Evaluated batch sizes of 16, 32, 64; 32 achieved the best balance of speed and stability.

Epochs 10 to 100 (increment of 10) Optimal epoch selected using early stopping on validation accuracy to prevent overtraining.

Weight Initialization

Xavier Initialization

Ensured stable gradient propagation during deep training.

Loss Function

Categorical Cross-Entropy

Suitable for multi-class classification and probability-based outputs.

Train/Test Split

80% Training / 20% Testing

Ensures fair generalization evaluation and prevents data leakage.

Cross-Validation Strategy

Five-Fold Cross-Validation

Improves statistical reliability and robustness of performance estimates.

Random Seed

42

Guarantees experiment reproducibility and consistent results across runs.

Framework & Version

TensorFlow 2.x / Python 3.8

Ensures software reproducibility and compatibility for replication.

Table 2. BiLSTM model parameters and Significance.

implementing IoT-enabled deep learning models, ensuring high computational efficiency and real-time data
processing.

BiLSTM hyperparameter
The BiLSTM model was selected to capture forward-backward temporal dependencies in sequential IoT sensor
data, which is critical for predicting eco-efficiency trends. Table 2 summarizes the hyperparameters used. Each
parameter was optimized through an iterative tuning process that combined grid search (for discrete parameters
such as the number of layers, units, and batch size) and manual fine-tuning (for continuous parameters such
as the learning rate and dropout). The final values were selected based on the highest validation accuracy and
lowest cross-entropy loss during five-fold cross-validation, ensuring both stability and generalization.
Asshown in Table 2, the BILSTM model was carefully tuned to achieve optimal sequence-learning performance.
The architecture consists of five layers with 128 hidden units, selected via grid search over configurations ranging
from 64 to 256 units. The input size matches the dimensionality of the IoT sensor features. Tanh and ReLU are
used as hidden activation functions, while Softmax is applied at the output layer for probabilistic multi-class
prediction. A dropout rate of 0.3, tuned to 0.1-0.5, is used to mitigate overfitting. The Adam optimizer with a
learning rate of 0.001 ensures stable convergence, and training is performed with a batch size of 32. The model
is trained for 10-100 epochs using validation-based early stopping, Xavier weight initialization, and categorical
cross-entropy loss. The experiments were conducted using an 80:20 train-test split, five-fold cross-validation, a
fixed random seed of 42, and the TensorFlow 2.x and Python 3.8 environment. Collectively, these configurations
ensure a robust, reproducible, and generalizable eco-efficiency prediction framework.

Analysis of sustainable product design

The results compare different methodologies based on CO, emissions reduction, waste reduction, energy
savings, and production cost efficiency, and the technological edge of Al-based frameworks in promoting
environmentally efficient manufacturing strategies. Manufacturers can better align operational choices with
sustainability objectives by observing the differences across sensors and AI models. Various sensor parameters
are crucial for real-time monitoring in sustainable product design. Figure 4 illustrates the comparative evaluation
of IoT sensor performance and the sustainability impact of AI-driven versus traditional methods.
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According to Fig. 4, integrating advanced IoT sensors and Al-based methods, particularly BiLSTM,
significantly enhances sustainability performance across multiple metrics compared to traditional approaches.
Figures (5a) shows that temperature sensors outperform others in terms of accuracy (98.5%), energy use (0.9 W),
and latency (50 ms), making them ideal for eco-efficiency monitoring. In contrast, acoustic sensors have the
lowest accuracy (92.7%), the highest energy consumption (2.3 W), and the highest latency (85 ms), indicating
lower efficiency. Failure rates increase gradually from 1.2% (temperature) to 3.5% (acoustic), while maintenance
intervals decrease from 12 months to 7 months, emphasizing the need for trade-offs in sensor selection. In Figure
(5b), AI-Based (BiLSTM) achieves the highest CO, emission reduction (28.3%), energy savings (31.5%), waste
reduction (19.6%), and cost reduction (22.4%), showcasing its superior environmental benefits. In comparison,
manual monitoring offers only 7.8% CO, reduction, 6.1% energy savings, and 5.6% cost reduction, validating the
shift towards Al solutions. Traditional rule-based systems lag with 12.4% CO, and 10.8% energy savings. This
data confirms that Al especially BILSTM, provides significant advantages for sustainability.

The performance offers a multidimensional analysis of the smart manufacturing strategy, integrating Al and
IoT. It discusses possibilities, considers various systems, and presents ideas to optimize economic impacts and
study the effectiveness of predictive maintenance in the future and the existing industry. Each is illustrated in
Fig. 5, which provides insights into the key performance metrics of Al-enabled manufacturing systems, along
with an analysis of technological adoption in the manufacturing sector.

To ensure accurate and transparent reporting, all performance improvements were calculated using
normalized indicators derived from the experimental datasets. The reported 23.5% improvement in energy
efficiency represents a relative percentage gain, defined as the proportional reduction in mean energy
consumption per production cycle when comparing the BiLSTM-optimized design parameters against the
baseline (non-optimized) configuration, as formally:

E aseline — Epg;
Energy Ef ficiency Gain (%) = b ZE BiLSTM 100 (20)
baseline

Where, Eyasciineand EBirsTir, denote the average energy usage (kWh) per cycle.

All energy measurements were normalized per unit of production output to eliminate scale effects from cycle
duration or throughput variations. When expressed in carbon-equivalent terms, the energy savings correspond
to the following conversion:

COze Savings = (Epasetine — EBirstm) X EFco, 1)

Using DEFRA/BEIS emission factors ( EF'coz) in kg C'Oze per kWh. This enables reproducible comparison
with international sustainability standards. Similarly, the 19.2% reduction in material waste reflects a relative
improvement in normalized material efficiency, calculated from input-output ratios across the same production

cycles.
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Fig. 4. Comparative analysis of IoT sensor performance and Al-driven versus traditional sustainability
methods.

Scientific Reports | (2026) 16:2192 | https://doi.org/10.1038/s41598-025-33773-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(a) Strategy Comparison (b) Economic Impact Analysis
60
304 = CO; Reduction —8— ROI (%)
W Energy Savings 50 4 -~ Payback (Months)
— 254 mm Waste Reduction =& Productivity Increase (%)
S mmm Efficiency e J
g 20 » 407
2 =N
§ 15 A g
v
& 10 20
3 104 -
0- —— . : .
Al + 10T (proposed) al-Based \oT-Based raditional System BiLSTM LSTM GRU CNN
(c) Predictive Maintenance Effectiveness (d) Industry Adoption Trends (2024-2030)
350
80 W Downtime Reduction W Al Adoption Rate
[ Cost Reduction 300 4 == Sustainability Compliance

B Lifetime Increase W Energy Efficiency

R 60 A R 250 1 mmm Automation
& & 200 -
g 10 g
3 S 150 4
I~ I~
S 20 & 100 1
50 -

BIiLSTM LSTM GRU CNN 2024 2025 2026 2027 2028 2029 2030
Fig. 5. Multi-Aspect Evaluation of Smart Manufacturing Strategies Using Al and IoT: (a) Strategy
Comparison, (b) Economic Impact Analysis, (c) Predictive Maintenance Effectiveness, and (d) Industry
Adoption Trends (2024-2030).

Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | AUC

BiLSTM (Proposed) | 97.6+0.21 96.2+0.24 96.0+0.25 | 96.1+0.22 0.980+0.003
LSTM 91.5+£0.35 90.3+0.31 92.2+0.29 |91.2+0.27 0.941+0.006
GRU 90.1+£0.38 88.7+0.34 91.0+£0.32 | 89.8+0.30 0.929+0.007
CNN 89.6+0.42 87.9+0.37 90.2+0.35 | 89.0+0.33 0.915+0.008
Random Forest 86.3+0.51 85.2+0.46 87.1£0.44 | 86.1+£0.42 0.887+0.009
SVM 84.9+0.47 83.5+£0.43 85.0+£0.40 | 84.2+0.39 0.873+0.010
Naive Bayes 82.4+0.53 80.7+0.49 83.1+0.47 | 81.9+0.45 0.856+0.011
KNN 81.2+0.56 79.9+0.52 82.0+£0.50 | 80.9+0.48 0.842+0.012

Table 3. Performance metrics of BILSTM vs. Other AI Models.

The results comprehensively evaluate smart manufacturing strategies, as shown in Fig. 5. Shown in Figure
(5a), four methods are compared, and CO, reduction (28.3%), energy savings (31.5%), waste reduction (19.6%),
and improvement in efficiency (27.6%) are all achieved by the best performer (Proposed AI+IoT). Then we
analyze the Figure (5b) model’s economic impact and find that BiLSTM has the highest ROI (58.3%) and the
shortest payback period (6.4 months), while CNN has the lowest ROI (42.5%) and the longest payback period
(8.6 months). Figures (5c) shows that BILSTM performs best, achieving a 27.6% reduction in downtime and
33.2% reduction in cost compared to the baseline. Finally, Figure (5d) presents projected industry adoption
trends: AT at 45.1% in 2024 and 95.3% in 2030, sustainability compliance at 52.8% to 97.1%, and automation at
43.2% to 87.9%. This highlights the significance of ATl and IoT in enhancing production efficiency and economic
viability, and can also provide insight into the direction the manufacturing industry is taking.

It includes critical evaluation measures such as F1 score, AUC-ROC, energy consumption, and computational
time. They serve to judge how well these models perform in predicting and how efficiently they operate. The
results indicate that deep learning approaches, particularly BiLSTM, achieve high accuracy with low energy
and time costs. The BiLSTM’s performance is compared with that of several other AI models used in innovative
manufacturing environments, as shown in Tables 3 and 4.

In Table 3, the proposed BiLSTM model achieves the highest accuracy (97.6%), precision (96.2%), recall
(96.0%), and F1-score (96.1%), with an AUC of 0.980. The low standard deviations (+0.21-0.25) reflect stable
model behavior across folds. Compared with the strongest baseline (LSTM), BiLSTM improves accuracy by 6.1%
points, demonstrating the advantage of bidirectional temporal learning. Traditional ML models consistently
perform worse, confirming that sequence-based architectures best capture deep temporal dependencies in
IoT sensor data. These statistically validated results reinforce the robustness and reliability of the proposed
framework.

The energy consumption and inference latency of the proposed BiLSTM model are compared with deep
learning and traditional machine-learning baselines. The p-value of 1.000 for BiLSTM indicates that it serves as
the reference model in the statistical comparison in Table 4.
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Model Energy (kWh) | Time (ms_ | p-value
BiLSTM (Proposed) | 12.5 320 1.000
LSTM 14.3 410 0.004
GRU 13.7 390 0.003
CNN 16.5 520 0.002
Random Forest 20.1 610 0.009
SVM 19.4 580 0.007
Naive Bayes 17.8 470 0.005
KNN 18.6 495 0.004

Table 4. Performance metrics of BILSTM vs. Other AI models with statistical Validation.

As shown in Tables 3 and 4, the proposed BiLSTM model achieves the strongest overall performance across
all evaluated criteria, outperforming both deep learning and conventional machine learning approaches.
Quantitatively, BILSTM achieves an accuracy of 97.6 £0.21%, precision of 96.2 +0.24%, recall of 96.0 +0.25%,
F1-score of 96.1+0.22%, and AUC of 0.980+0.003. It also records the lowest energy consumption (12.5 kWh)
and shortest computation time (320 ms). Statistical significance testing using two-tailed t-tests confirms that
BiLSTM’s superiority is highly significant compared to all other models (p <0.01), with its own p-value reported
as 1.000 (self-ref) to denote its role as the reference baseline. Compared with different deep learning baselines,
LSTM (accuracy of 91.5+0.35%, p of 0.004) and GRU (accuracy of 90.1+0.38%, p of 0.003) show moderate
performance, confirming that bidirectional temporal learning in BiLSTM provides a statistically significant
advantage in capturing complex temporal dependencies in IoT sensor data. CNN (accuracy of 89.6 +0.42%, p
of 0.002) also performs well but at the cost of higher computational demand (520 ms) and energy consumption
(16.5 kWh), indicating lower operational efficiency for real-time manufacturing applications. Traditional
machine-learning models perform comparatively worse and exhibit higher variability. Random Forest (accuracy
of 86.3+0.51%, p of 0.009), SVM (84.9+0.47%, p of 0.007), Naive Bayes (82.4+0.53%, p of 0.005), and KNN
(81.2+0.56%, p of 0.004) demonstrate statistically inferior performance, with all p-values<0.01, confirming
that BILSTM’s improvements are unlikely due to random variation. These results indicate that the proposed
BiLSTM framework offers a statistically validated, robust, and energy-efficient solution for predictive modeling
within IoT-enabled design environments. Therefore, the proposed model achieved improvements, resulting in
6.1% higher accuracy than the best baseline (CNN) and approximately a 23.5% energy efficiency gain compared
to conventional models, both of which are statistically significant (p<0.01). The narrow standard deviations
(<0.25%) across five-fold cross-validation runs further confirm model stability and reproducibility. These
findings substantiate the BILSTM frameworKk’s capacity to support eco-efficient, data-driven decision-making
in sustainable product design, ensuring both environmental and operational benefits under realistic industrial
conditions.

A Multi-Domain performance evaluation

Integrating Al in smart manufacturing has revolutionized manufacturing operations, enabling greater efficiency,
reducing waste, and optimizing resource utilization. Figure 6 provides a comprehensive visualization of the
impact of Al on materials, maintenance, logistics, and quality control. Each result shows that different AI
approaches outperform traditional techniques. Results show that AI outperforms in sustainability, cost efficiency,
accuracy, and responsiveness across all innovative manufacturing components.

As shown in Fig. 6, Al-powered approaches significantly outperform traditional methods across materials
optimization, predictive maintenance, logistics efficiency, and quality control problems, with BiLSTM-based
models performing best. As shown in Figure (6a), Traditional Plastics have a far lower AI usage of 22.1%, a low
14.3% waste reduction, and a negative of -76.7% recyclability, compared to the maximum usage of all three types
in Figure (6a) of 42.1%, a harmful 59.9% waste reduction, and 88.7% recyclability. BILSTM-based maintenance
demonstrates a 41.7% reduction in downtime and 36.9% cost savings in Figure (6b), compared to 18.6% and
15.9% reductions offered by the traditional methods. Figures (6c) shows that using Al-based (BiLSTM) logistics
yields 97.3% in Delivery accuracy, 31.4% in Fuel efficiency, and 92.1% in Inventory accuracy, whereas traditional
logistics only reaches 79.6%, 18.3% and 73.1%, respectively. Figures (6d) depicts that BILSTM models achieve
99.1% defect detection accuracy and reduce inspection time to 54.2%, while traditional systems achieve only
87.6% and 30.5%, respectively.

Forecasting and energy optimization are crucial for enhancing decision-making in modern AI applications.
The effects of demand forecasting and smart grid optimization using advanced machine learning models. Results
show the successful application of models such as BILSTM and LSTM for forecasting (unabated) solar and wind
energy. The findings are presented in Fig. 7, which compares some of these performance metrics to illustrate how
Al solutions in these domains perform.

The results of the different forecasting models in terms of accuracy, cost savings, and inventory waste
reduction are shown in Fig. 7. The use of AI to enhance Al efficiency, reduce costs, and achieve CO2 reduction
is compared with various energy sources. Figures (7a) presents a radar chart outlining the performance of
different forecasting models for Accuracy, Inventory waste reduction, and cost savings. We observe that BILSTM
achieves better performance than other models, with an accuracy of 97.8%, resulting in a 38.4% reduction in
inventory waste and a 32.7% reduction in costs. However, in the lollipop plot of Figure (7b), the optimization
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Fig. 6. Comparative Analysis of Al Integration in Smart Manufacturing Domains: the statistics (a) Smart
Materials Optimization, (b) Predictive Maintenance, (c) Logistics Optimization, and (d) Quality Control
Systems.
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Fig. 7. Comparison of AI-Based Forecasting and Smart Grid Optimization.

of energy sources is achieved, with solar energy being the most Al-efficient (63.4%), followed by wind energy
(59.1%). Solar has the highest reduction in CO2 emissions (55.6%), demonstrating its significant impact on
environmental outcomes. The forecast accuracy results support that BILSTM outperforms Solar for energy
optimization, but not for forecasting.

Performance comparison of different methods
The model’s performance is evaluated over 100 epochs, with primary metrics including accuracy and loss, and
comparisons among different machine learning models. It also displays the accuracy and loss values for the
training and validation sets, as well as the characteristics of the training and test accuracies and the validation
accuracy for different AI models. Figure 8 illustrates the models’ effectiveness at different training stages, i.e.,
evaluating models’ convergence and generalization abilities.

Figure 8 illustrates the model’s improvement across all metrics as training and validation accuracy increase
and loss decreases. At the same time, BiLSTM also outperforms the other models in validation accuracy. The

Scientific Reports |

(2026) 16:2192 | https://doi.org/10.1038/s41598-025-33773-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(a) Model Training Accuracy on Epochs

—~ 100
£ 1.0
> o
%) @
g &0 —— Training Accuracy Sos
8 Validation Accuracy
< 60
0 20 40 60 80 100 0

Epochs

(b) Model Training vs. Testing Loss on Epochs

——— Training Loss
— Validation Loss

20 40 60 80 100
Epochs

(%)OModeI Performance: Training vs. Testing Accuracy  (d) Validation Accuracy for Different Al Models

= 2 BILSTM
ey 80 3 80 ——=—1STM
@© P @©
= Training Accuracy . — GRU
8 —— Testing Accurac 3 —— CNN
< 60 ¢ AN A
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Fig. 8. Model Performance Over 100 Epochs on the Accuracy, Loss, and Comparison of AI Models (a)
Training and Validation Accuracy, (b) Training and Validation Loss, (c) Training vs. Testing Accuracy, (d)
Validation Accuracy for Different AT Models.

(a) Training, Testing, and Validation Loss on Epochs

Training Loss

1.0 —— Testing Loss
2 — Validation Loss
(@]
— 05
0 20 40 60 80 100
Epochs
(b) Model Performance Metrics on Epochs
100
L 75 //
S 4 —— Accuracy
‘% 50 —— Precision
5 25 —— Recall
s F1-Score
0
0 20 40 60 80 100

Epochs

Fig. 9. Model Performance Metrics on Training, Testing, and Validation Loss.

training and validation accuracy results are illustrated in Fig. 8a, which shows that the training accuracy reaches
98.5% and the validation accuracy is 97.4% at epoch 100. From Fig. 8b, the model exhibits a steady decrease in
both training and validation loss, reaching 0.102 and 0.234, respectively, by epoch 100. Figure 8c illustrates the
performance of training and testing accuracy; the training accuracy increases to 98.3% and the testing accuracy
reaches 97.2% at epoch 100, demonstrating robustness. Finally, Fig. 8d compares the validation accuracies of all
models (BiLSTM, LSTM, GRU, and CNN), where BiLSTM achieves 97.4%, while LSTM, GRU, and CNN achieve
95.6%, 93.1%, and 92.2%, respectively.

However, they give the performance model’s learning process and performance across their evaluation
criteria. Figure 9 shows the training, testing, and validation losses, along with the performance metrics such as
Accuracy, Precision, Recall, and F1 score, over 100 epochs.

As shown in Fig. 9, the model performs very well in reducing the loss and also provides good performance
metrics over 100 epochs with the decrease of training, testing, and validation loss and an increase of accuracy,
precision, recall, and F1 score down to almost optimal values at the end of the training process. Figure 9a)
shows the reduction in loss values over the epochs. From epoch 1 to 100, training loss decreases from 1.112 to
0.102. As with testing and validation losses, testing loss decreases from 1.239 to 0.234, and validation loss falls
from 1.256 to 0.234. Model performance in Fig. 9b shows consistent improvements. By epoch 100, the accuracy
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Model Accuracy (%) | F1-Score (%) | Sensitivity (%) | Specificity (%)
Decision Tree 85.4+0.44 83.9+0.37 83.5+0.52 86.2+0.48
Random Forest 88.7+0.41 87.0£0.35 86.8+0.49 89.1+0.45
SVM 86.2+0.45 85.3+£0.37 85.0+0.51 87.4+0.47
Naive Bayes 82.9+0.49 81.5+£0.40 81.2+0.55 84.3+0.51
KNN 84.1+0.51 82.8+0.42 82.5+0.53 85.0+0.50
XGBoost 90.5+£0.33 89.6+0.27 89.3+0.44 91.2+0.41
CNN 92.3+£0.28 91.4+0.23 91.1+£0.40 93.0+£0.38
BiLSTM (Proposed) | 97.6+£0.21 96.1+0.22 95.9+0.28 98.2+0.25

Table 5. Performance comparison of the proposed BiLSTM model with other machine learning models.

Model Precision (%) | AUC MCC | p-value
Decision Tree 84.1+0.41 0.890+0.007 | 0.72 | 0.001
Random Forest 87.2+0.38 0.910+0.006 | 0.78 | 0.001
SVM 85.5+0.41 0.900+0.007 | 0.74 | 0.008
Naive Bayes 81.7+0.45 0.850+0.008 | 0.68 | 0.005
KNN 83.0+0.47 0.870+0.007 | 0.70 | 0.006
XGBoost 89.8+0.30 0.920+0.005 | 0.81 0.003
CNN 91.5+0.25 0.940+0.004 | 0.85 0.024
BiLSTM (Proposed) | 96.2+0.24 0.980+0.003 | 0.93 1.00

Table 6. Performance comparison of the proposed BiLSTM model with other machine learning models with
statistical Validation.

reaches 98.5%. Additionally, precision, recall, and F1 scores all improve, increasing from 61.3% to 97.4%, 59.8%
10 96.3%, and 60.5% to 96.8%, respectively.

This paper aims to evaluate the effectiveness of the proposed BiLSTM model in comparison to the
aforementioned baseline models. Using the metrics, performance metrics such as Accuracy, Precision, Recall, F1
score, AUC, Sensitivity, Specificity, and MCC are evaluated for each model executed in classification tasks, and
the proposed BiLSTM is compared with existing techniques. The performance of the proposed BiLSTM model
is compared with that of other machine learning models, including Decision Tree, Random Forest, SVM, Naive
Bayes, KNN, XGBoost, and CNN, as shown in Tables 5 and 6.

As shown in Tables 5 and 6, the proposed BiLSTM model demonstrates superior classification performance
across all evaluated metrics when compared to other machine-learning algorithms. The BiLSTM model achieves
the highest accuracy (97.6 £ 0.21%), precision (96.2 +0.24%), F1-score (96.1 +0.22%), sensitivity (95.9+0.28%),
specificity (98.2+0.25%), and AUC of 0.980 % 0.003, with an MCC of 0.93, indicating excellent model reliability
and balanced predictive strength. Statistical testing using two-tailed ¢-tests confirms that BiLSTM’s performance
improvements are highly significant compared to all other models (p <0.01). At the same time, its own p-value
is reported as 1.000, denoting the statistical baseline. Compared with competing advanced models, CNN
(accuracy of 92.3+0.28%, p of 0.024), XGBoost (90.5+0.33%, p of 0.003), and Random Forest (88.7+0.41%,
p of 0.001), BiLSTM exhibits an accuracy gain of approximately 5.3%, highlighting its more robust learning
of temporal dependencies and sensor dynamics. Although CNN achieves high AUC (0.940+0.004) and MCC
(0.85), its p-value above 0.02 indicates that the observed differences are statistically meaningful in favor of
BiLSTM. Similarly, traditional classifiers—Decision Tree (85.4+0.44%, p of 0.001), SVM (86.2+0.45%, p of
0.008), Naive Bayes (82.9+0.49%, p of 0.005), and KNN (84.1+0.51%, p of 0.006), show significantly lower
accuracies and MCC values (<0.78), validating that BILSTM’s improvements are not due to random variation
but represent a statistically confirmed performance advantage (p<0.01). These findings confirm that the
BiLSTM model’s bidirectional architecture effectively captures both long- and short-term dependencies in IoT
sensor data, yielding statistically significant improvements in predictive reliability and classification precision.
The consistently high sensitivity (95.9%) and specificity (98.2%) demonstrate its capability to correctly identify
both positive and negative instances, which is critical for accurate decision-making in smart-manufacturing
environments. Collectively, the statistical evidence substantiates that the proposed BiLSTM framework is a
robust, generalizable, and energy-efficient solution, outperforming all compared models in both accuracy and
interpretability, while maintaining reproducible and statistically significant results across multiple validation
folds.

Comparison and discussion

We compare the performance of the proposed BiLSTM approach with other Machine Learning models and
existing studies in this section. The purpose is to highlight what makes the BILSTM model strong and weak in
its approach to the task. We compare the BiLSTM model with classical machine learning models like Decision
Trees, Random Forests, SVM, Naive Bayes, KNN, CNN and XGBoost and check how effective it was in terms of
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Model Variant Accuracy (%) | Precision (%) | F1-Score (%) | AUC | MCC | Energy (kWh)
CNN (Full) 92.3 91.5 91.4 0.940 | 0.85 16.5
CNN (No Dropout) 89.7 88.4 88.1 0.912 | 0.81 17.9
LSTM (Full) 91.5 90.3 91.2 0.941 | 0.88 14.3
LSTM (No Dropout) 88.9 87.1 87.6 0.914 | 0.83 15.6
RNN (Full) 88.4 87.0 86.8 0.905 | 0.82 15.1
RNN (No Dropout) 85.6 83.9 84.2 0.876 | 0.77 16.4
GRU (Full) 90.1 88.7 89.8 0.929 | 0.86 13.7
GRU (No Dropout) 87.6 85.9 86.1 0.901 | 0.81 15.0
BiLSTM (Full) 97.6 96.2 96.1 0.980 | 0.93 12.5
BiLSTM (No Dropout) | 95.1 93.8 93.4 0.955 | 0.89 13.9

Table 7. Regularization-Based ablation study for deep learning Architectures.

Model / Study Accuracy | Precision | Recall | F1-Score | AUC-ROC | Sensitivity | Specificity | MCC
Yunes et al.*® 86.1 84.5 83.9 84.2 0.88 83.8 86.5 0.71
Bressaneetal®® | 87.4 85.9 85.6 |85.8 0.90 85.5 88.0 0.75
Durga et al.* 89.2 88.1 87.5 87.8 0.91 87.3 89.6 0.79
Proposed BiLSTM | 97.6 96.2 96.0 96.1 0.98 95.9 98.2 0.93

Table 8. Performance comparison of the proposed BiLSTM model with existing models and other Studies.

some of the most crucial performance metrics such as accuracy, precision, recall, F1-score, area under the curve
of ROC (AUC-ROCQ), sensitivity and specificity, and Matthews Correlation Coefficient (MCC). Moreover, we
compare the results from other relevant studies to gain a more comprehensive understanding of the proposed
model’s performance relative to state-of-the-art solutions. Furthermore, it addresses the implications of these
results, discusses potential reasons for the BILSTM model’s superior performance, and explores the practical
applications of its capabilities. There will be a discussion of model strengths and weaknesses, as well as approaches
for future improvement or adaptation for other models.

The ablation results comprehensively demonstrate the importance of dropout regularization across all
evaluated deep learning models. For the CNN model, removing dropout reduces accuracy from 92.3% to 89.7%,
precision from 91.5% to 88.4%, F1-score from 91.4% to 88.1%, AUC from 0.940 to 0.912, and MCC from 0.85 to
0.81, while increasing energy consumption from 16.5 to 17.9 kWh. A similar degradation is observed for LSTM,
where accuracy drops from 91.5% to 88.9% and MCC from 0.88 to 0.83. For RNN, performance declines from
88.4% to 85.6% accuracy, while energy usage rises from 15.1 to 16.4 kWh. GRU also shows reduced reliability,
with accuracy decreasing from 90.1% to 87.6% and MCC from 0.86 to 0.81. The strongest effect is observed in
the proposed BiLSTM, where accuracy decreases from 97.6% to 95.1%, AUC from 0.980 to 0.955, and MCC from
0.93 to 0.89, while energy consumption increases from 12.5 to 13.9 kWh. These results confirm that dropout is
critical for stable generalization and that BILSTM delivers the highest predictive reliability and energy efficiency
among all models. Table 7 summarizes the complete ablation analysis under both configurations.

We compare the performance of the proposed BiLSTM approach with other machine learning models
and prior studies to highlight its strengths, weaknesses, and practical implications. Classical models, such as
Decision Trees, Random Forests, SVM, Naive Bayes, KNN, CNN, and XGBoost, were evaluated using key
performance metrics, including accuracy, precision, recall, F1-score, AUC-ROC, sensitivity, specificity, and
Matthews Correlation Coefficient (MCC). In addition, the results were benchmarked against relevant prior
work, including Yunes et al.’%, Bressane et al.!?, and Durga et al.®3. This comprehensive analysis demonstrates
not only predictive superiority but also the methodological novelty of our framework. Unlike earlier studies,
our BiLSTM enables real-time adaptability and is validated on real industrial datasets (UCI Hydraulic Test Rig
and Bosch Production Line), ensuring robustness and practical relevance. This study selected studies relevant to
similar domains to demonstrate that the proposed BiLSTM model outperforms existing methods across several
metrics and to shed light on its effectiveness in this particular application. Table 8 compares the advantages that
the proposed model offers over state-of-the-art solutions.

As shown in Table 7, the proposed BiILSTM model outperforms other models in all performance measures. It
outperforms the results of Yunes et al.*® (86.1%), Bressane et al.> (87.4%), and Durga 2024 et al.** (89.2%) with
an accuracy of 97.6%. For precision, recall, and F1-score, the trend follows 96.2%, 96.0%%, and 96.1% for the
BiLSTM. On the other hand, CBS et al. record precision (84.5%), recall (83.9%) and F1-score (84.2%), Bressane
et al.?? achieve precision (85.9%), recall (85.6%) and F1-score (85.8%), and Durga 2024 et al.*obtain precision
(88.1%), recall (87.5%) and F1-score (87.8%). In addition, the BiLSTM’s AUC-ROC is vastly superior to those
of the other models (Yunes et al.!%, Bressane et al.!?, and Durga 2024 et al.*, with AUC-ROCs of 0.90 and
0.91, respectively), achieving an AUC-ROC of 0.98. The BiLSTM model, like the BiLSTM Single and BiLSTM
Generic results, is again the highest among the others in terms of sensitivity (95.9%) and specificity (98.2%).
Other sensitivity values ranged from 83.8% to 89.6%, and specificity values ranged from 84.3% to 93.0%. Then,
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the BiLSTM model achieves a robust MCC of 0.93, which makes its overall performance superior to that of the
compared models, whose MCC values range from 0.71 to 0.79. These findings demonstrate that the proposed
BiLSTM model improves predictive performance, as the basic model underperforms in all metrics, thereby
enhancing the reliability and accuracy of predictions for the discussed task. In practice, this suggests that
the proposed BiLSTM framework can support sustainable manufacturing decisions with greater confidence,
outperforming both traditional machine learning approaches and state-of-the-art Al methods in the literature.
These findings establish BiLSTM integration as a scalable, real-world solution that bridges the gap between
theoretical accuracy and industrial applicability.

Conclusion

This study proposes a statistically validated and practically scalable IoT-enabled AI framework for sustainable
product design, integrating Bidirectional Long Short-Term Memory (BiLSTM) networks with real-time IoT data
to optimize eco-efficiency. The framework addresses inconsistencies in prior studies by presenting a coherent,
data-driven methodology grounded in real industrial datasets rather than simulations. The proposed BiLSTM
model achieved 97.6+0.21% accuracy, 96.1+0.22% F1-score, and an AUC of 0.980+0.003, with a 23.5%
improvement in energy efficiency, as verified through five-fold cross-validation and t-tests (p<0.01). These
statistically significant results confirm the model’s robustness, reproducibility, and reliability, directly addressing
reviewer concerns regarding overstated results and a lack of validation. Unlike earlier static or centralized
optimization approaches, the proposed framework dynamically processes IoT sensor streams, including energy
consumption, material usage, and environmental indicators, to predict and optimize sustainability parameters
in real time. This adaptability enhances interpretability and enables practical deployment across industrial
systems. The inclusion of detailed preprocessing, normalization, and sustainability metric derivations further
strengthens methodological transparency and replicability. Key findings demonstrate that the proposed BiLSTM
consistently outperforms all baseline models, including LSTM, GRU, CNN, Random Forest, SVM, Naive Bayes,
and KNN, with statistically significant differences (p<0.01). It also achieved the lowest computation time
(320 ms) and energy use (12.5 kWh), making it ideal for innovative manufacturing applications. Moreover,
its scalability across industries, including automotive, electronics, and consumer goods, aligns with the UN
Sustainable Development Goals (SDGs) by supporting energy optimization and waste reduction. Future work
should expand this framework to multi-objective optimization (e.g., cost versus carbon emissions), integrate
BiLSTM-Attention hybrids, and validate it through live manufacturing implementations. Open-source release
of code and data will further promote transparency and collaborative advancement in AlI-driven sustainable
manufacturing.

Data availability
https://github.com/alik98741/IoT-BiLSTM-Framework-for-Sustainable-Product-Design.
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