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Utilizing fractional-order operator
to Alzheimer’s disease dynamics

Kottakkaran Sooppy Nisar'™* & Muhammad Farman?3

Fractional derivative modeling has become an important tool for studying and forecasting disease
transmission dynamics. We propose a new mathematical model for Alzheimer’s disease, a condition
in which dying and malfunctioning neurons impair memory. The model has a five-dimensional set
of nonlinear fractional differential equations for microglia, amyloid-beta, tau protein, infected
neurons, and functioning neurons. To further understand the dynamics of the proposed model, we
demonstrated the solutions’ existence, uniqueness, positivity, and feasible domain. We used the
next-generation technique to calculate the fundamental reproduction number (%), the threshold
parameter of Alzheimer’s disease transmission. Two model equilibrium points have been found.
The reproductive number parameters are subjected to sensitivity analysis in order to show how

X, responds to parameter changes. The Ulam-Hyers-Rassias stability requirements have been
confirmed. The suggested model is solved using the Newton polynomial interpolation method with
the discretization of the Caputo fractional-order operator. Lastly, simulations are made to investigate
the potential effects of factors that prevent the incidence of Alzheimer’s disease. The findings show
how the proposed method may be able to provide deeper and possibly accurate predictions for the
dynamics of Alzheimer’s disease, thus leading to more successful public health campaigns.

Keywords Alzheimer’s disease, Fractional-order model, Caputo operator, Sensitivity of parameters, ULAM-
Hyers-Rassias stability

Brain research is vital for understanding brain disease pathophysiology, which represents 35% of disorders in
Europe. Key challenges include assessing disability-adjusted life years'. Brain tumors arise from uncontrolled cell
growth, emphasizing the need for early detection and targeted therapies. Mathematical models for evaluating
solid tumors, such as those addressing proliferation and cellular motility, enhance our understanding of brain
tumors, particularly gliomas due to their invasive characteristics>. Millions of people worldwide suffer from
neurodegenerative diseases, which mostly cause cognitive and behavioral impairments. The creation of successful
treatments and a deeper comprehension of their mechanisms are crucial®. Variations in mitochondrial viscosity
are associated with a number of cellular functions and illnesses. The fluorescent probes used today to detect
mitochondrial viscosity are not photostable or permeable. Mito-DDP successfully penetrated cell membranes
and dyed the cells, demonstrating its potential practical applications, according to confocal laser scanning
microscopy°. Alzheimer’s disease is a neurodegenerative disorder characterized by memory deterioration due to
the dysfunction and death of neurons. It influences neuronal and synaptic function, causing abnormalities such
as amyloid-beta buildup and tau tangles, which impair synaptic activity and lead to significant brain atrophy®.
Often viewed as a consequence of aging, it has become a major public health concern due to its socioeconomic
impacts and the rising number of cases. Alois Alzheimer’s 1906 description highlights pathological signs and
disorientation’. The US government invested 226 million in 2015 to address Alzheimer’s disease, which is
expected to impact 131 million people worldwide by 2050, particularly in middle and low-income nations, with
annual health care costs surpassing those of cancer and cardiovascular diseases®.

A mathematical model in® explains Alzheimer’s disease pathophysiology using differential rate equations,
including microglia, astrocytes, neurons, and amyloid-beta, involving seven species and intercellular signaling
influences. A prospective cohort study'® aimed to develop a multiattribute model of the progression of Alzheimer’s
disease (AD) from moderate to fatal. Researchers analyzed 91 proteins in cerebral fluid or plasma of Alzheimer’s
patients and cognitively normal controls to mathematically describe disease-specific molecular characteristics'!.
They found a limited number of signaling proteins that can identify Alzheimer’s disease and model pathological
markers like tau and amyloid-beta levels. Alzheimer’s disease patients have decreased expression of brain-derived
neurotrophic factor, an essential neurotrophic factor present throughout the brain!2 The study'? highlights the
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use of data-driven computer models in Alzheimer’s disease research, which are based on experimental data,
providing quick insights and testable predictions. These models are continuously developed and improved to
capture a significant portion of existing knowledge. The study'* proposed a mathematical model concentrating
on the function of prions in memory impairment, utilizing differential equations to describe the dynamic
production of amyloid plaques. The model works with four distinct species. Researchers used transport and
diffusion equations to develop a mathematical model for Alzheimer’s disease!®. Gastrodin has antioxidant
qualities, protects neurons, and improves brain function. Its effects and mechanisms on Parkinson’s disease
in a rat model'® were examined in a study. Another study'” looked at the role of ceramide in Alzheimer’s
disease and neuronal aging as well as icariin’s possible mitigating effect. Some other contributions related to the
mathematical modeling approach for brain disorders are discussed in'#-2, optimizing the treatments and results
of brain disorders derived in*"*2.

Fractional operators are now widely used as a common methodology for investigating the spread of
epidemics and as a way to solve real-world problems. Fractional calculus has been the subject of numerous
published studies, with new developments improving its theoretical and practical aspects. Fractional calculus
is a quickly expanding branch of mathematics and is used to model various biological phenomena for disease
models, fractional approaches, and modeling concepts for various diseases discussed in?*-2>. In?%, the authors
studied the dynamics of hepatitis B transmission with real data. Because of the order of differential equations,
it overcomes the drawbacks of classical models based on derivatives and incorporates intricate real-world
dynamics. Researchers are increasingly utilizing fractional calculus to tackle these issues. The fractional order
model for Parkinson’s disease patients is examined in the paper?’, which also suggests an identification method
based on the frequency behavior of wheelchair movements.

The fractional dynamic model of a “disabled man-wheelchair” system is also covered in the essay, along with
a control technique that takes into account the wheelchair driver’s impairment3!. offers a mathematical model
of Alzheimer’s disease that takes gender disparities into consideration. Using variable-order fractional temporal
derivatives, the model illustrates how cells and aggregation-prone amyloid fibrils change over time. The model
also accounts for neuroprotective memory loss, which is particularly common in postmenopausal women due
to the dramatic drop in estrogen levels. The study®? proposed a simpler and more efficient fractional order-based
convolutional neural network model that integrates an improved attention mechanism and a new optimization
strategy to accurately and effectively classify Alzheimer’s disease. Some of the recent research comes up with the
artificial neural network techniques to solve various disease models?®-3°.

Our research incorporates the amyloid-beta, tau protein, and microglia compartments that contribute to
the transmission of Alzheimer’s disease, drawing inspiration from the aforementioned publications. This study
introduces a novel model that categorizes neurons into functioning and infected types, incorporating the roles of
tau protein, amyloid beta, and microglia in neuronal functionality. Notably, this model has not been previously
addressed in existing literature. Introducing fractional calculus into Alzheimer’s disease mathematical models
addresses research deficiencies by accommodating the disease’s memory and hereditary characteristics. Unlike
standard integer-order models, fractional models accurately represent the non-local and cumulative impacts of
Alzheimer’s, offering deeper insights into the complex biological processes involved. This paper’s structure is as
follows: In Sect. 2, we go over the Caputo fractional derivative and review the essential mathematical principles.
We describe the development of the suggested fractional order Alzheimer’s disease model in Sect. 3. In order
to guarantee biological viability and practicality, Sect. 4 provides a thorough analysis that proves the solutions’
existence, uniqueness, boundedness, and positivity. The calculation of the basic reproduction number and
equilibrium points is examined in Sect. 5. We do sensitivity analysis of several factors in relation to the model’s
basic reproduction number in Sect. 6. The model is extended to chaos control in Sect. 7. The numerical method
is presented in Sect. 7, while the numerical simulations and comments are presented in Sect. 8. The conclusion
is finally given in Sect. 9.

Key definitions
Definition 2.1 333 Consider the function Q(f), which is differentiable to the j** derivative. The definition of the
Caputo derivative of Q(#) of order 0 < o < 1 is as follows:

o 1 t_ Qi) Y .
(C)DgQ(t) — i (t) — [‘(j,o-) fO (t—g)"'_.7+1 d§7 o c (.7 17.7)7 t > 07 ] S N, (1)
dt” Q (1), o=
The Caputo fractional derivative of a constant k is zero, specifically C‘li%k = 0 and ensures:
d’ Oa ] S g — 17
—t rne— 2
dte {%7 j>o—1 @
At j = 1, the Eq. (1) is reduced to
D7) = oy [ -9 Q ®
o= A gya J, TS K

Remark 2.1 The Caputo fractional derivative is an ordinary derivative if o = 1. Consequently, the ordinary
derivative is generalized by the Caputo fractional derivative.

Definition 2.2 The corresponding fractional integral operator is given by’
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Q) = ﬁ/o (t =<)"Y Q(<)ds. (4)

Lemma 2.1 3 The solution to the cauchy problem:
SDFQU) = B(LQD)., D<o <l t>0, .
{ Q(0) = Qo, (5)

is given by
I —1

Q) = Qo+ 5755 | (1906, Q). ©

0

Alzheimer’s disease model formulation

There are two primary proteins believed to disrupt communication between brain cells: tau and amyloid. This
disruption instigates a positive feedback loop that results in increased production of amyloid-beta and abnormal
tau®’. Both amyloid-beta plaques and tau tangles contribute to neuro-inflammation, which can also be triggered
by various microbes, including bacteria and viruses®. Microglia, the resident innate immune cells of the central
nervous system, play a role in disease progression by modifying their physiological functions and activating
inflammatory pathways. The presence of toxic amyloid-beta and tau proteins is believed to activate microglia®.
Microglia tries to clear the toxic proteins as well as widespread debris from dead and dying cells. Chronic
inflammation may set in when microglia cannot keep up with all that needs to be cleared, resulting in neuronal
dysfunction, injury, and loss.

Based on previous studies, we develop a new mathematical model of Alzheimer’s disease including:

« Fx(t): Functioning neurons;
« In(t): Infected neurons;
o Ap(t): Amyloid-beta;
T, (t): Tau protein; and
o Ms;(t): Microglia.

We assume that the density of functioning neurons rises with the brain’s neuron production rate of IIy and
falls with the proliferation of neurons in the amyloid-beta cascade at a rate of & and due to the natural death of
neurons at a rate of ¢1. In Alzheimer’s disease, the amyloid-beta peptide forms aggregates that deposit as plaques
around neuronal cells and brain vasculature. This deposition is associated with the degradation of neuronal
function, leading to impaired memory and cognition, such as compromised thinking, speaking, writing, and
other day-to-day activities*’. Beyond innate immunity, microglia, the central nervous system’s macrophages,
play critical roles in brain growth, preservation, homeostasis, and restoration. Through a variety of interactions,
they not only serve as phagocytes but also influence how neurons and glial cells operate. Understanding the
mechanisms underlying the early pathophysiology of neurodevelopmental diseases requires an understanding
of the factors influencing microglial homeostasis and diversity throughout normal brain development?!. To
illustrate the possible impact of microglia on the development of functional neurons, we introduced a parameter
v. Consequently, the dynamic of active neurons at time ¢ is given by

FN(t)IHN—‘rpTM—aFNAB—(blFN‘ (7)

Amyloid-beta plaques around brain vasculature and neuronal cells are linked to the deterioration of neuronal
function. Beta-amyloids are released into plasma and cerebrospinal fluid when secretases cleave the Amyloid-
beta protein, which is found on different cell membranes. These beta-amyloids are ingested and misfolded into
beta-folded designs, which eventually develop into fibrils and aggregates known as plaques after adhering to
neuronal and glial cell receptors at nanomolar concentrations. Beta-amyloids affect brain signaling and memory
function as monomers, dimers, or multimers on cell membranes prior to plaque accumulation??. Microglia
kill the infected neurons at the rate of 1. Amyloid-beta clears a percentage of infected neurons at a -y rate.
Additionally, the normal death rate of ¢2 reduces the number of infected neurons. Therefore, we have

In(t) = aFNAg — B1InMs — (7 + ¢2)In. (8)

By eliminating amyloid-beta, microglia act as the brain’s main immune cells, avoiding the plaque development
that can damage neurons. We assume that microglia clean amyloid-beta at a rate of $2. A wide range of
peptidases and proteinases, collectively referred to as amyloid-beta-degrading proteases (ASDPs), are capable
of proteolytically breaking down the amyloid-beta protein. These proteases are crucial in controlling the levels
of endogenous cerebral amyloid-beta under various physiological and pathological circumstances*. Amyloid-
beta clusters appear first and are followed by a surge in abnormal tau once amyloid-beta has accumulated to a
certain level. We suppose that the proteolytic degradation rate of dg and the tau protein initialization rate of x
by amyloid-beta also reduce the density of amyloid-beta. Consequently, the amyloid-beta density at time t is
given by

Ap(t) =vIn — B2AsMs — (ds + K)Ap. )
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Tau protein is triggered by amyloid-beta at a x rate. By internalizing and breaking down tau seeds, microglia
perform protective roles that slow the proliferation of tau. We assume that microglia reduce the density of tau
protein at a rate of 3. Cellular mechanisms, such as the ubiquitin-proteasome system, which mostly breaks
down soluble tau, control the degradation of tau proteins. Because tau aggregates into toxic structures like
tangles and oligomers, which are detrimental to neurons, neurodegeneration results in decreased functional
tau concentrations. Therefore, we suppose that the natural rate of tau protein degradation (d,) and neuro-
degeneration also cause a decrease in tau protein concentration. Consequently, tau protein density is expressed
as

Tu(t) = sAp — BsTuMs — (du + p) Ty (10)

Microglia are triggered by tau protein, amyloid beta, and infected neurons. By removing protein clumps and
pruning malfunctioning synapses, microglia first defend the nervous system. Chronic activation, on the other
hand, turns them into a pro-inflammatory state that leads to increased toxic factors, synapse loss, and neuronal
death. Apoptosis and necroptosis are two natural cell death processes that microglia experience, which contribute
to a constant turnover necessary for preserving brain health. Despite the extended lifespans of microglia, illness
can speed up this sluggish pace of cell renewal. We suppose that, at a rate of ¢3, natural death lowers the density
of microglia. Consequently, the following represents the microglia concentration at time ¢:

M;(t) = (Biln + B2Ap + B3T)Ms — ¢sMs. (11)

Figure 1 describes the dynamics of Alzheimer’s disease based on the stated assumptions.

Memory effects in physical system models are crucial for assessing non-local effects, with integer order
differential equations being limited in this regard. Fractional order derivatives, featuring power-law memory
kernels, provide a better representation as they account for a state variable’s rate of change based on its entire
past behavior. The key difference lies in accuracy, where lower fractional order values signify more pronounced
memory effects. The Caputo derivative offers a key advantage over the Riemann-Liouville derivative due to
its compatibility with standard initial conditions, while the latter requires initial conditions to be expressed in
fractional integral form, which is often impractical for various physical systems. Additionally, the Atangana-
Baleanu derivative utilizes a non-singular kernel, specifically the Mittag-Leffler function, effectively addressing
the singularity issues that arise with the kernels of the Caputo and Riemann-Liouville derivatives. The Caputo
fractional derivative is suited for systems with well-defined initial conditions, as it incorporates past states and
non-local interactions, thereby integrating memory effects. Its power-law memory kernels improve system
stability and numerical simulations. Additionally, it introduces a new parameter allowing for real number orders
of derivatives in fractional order systems. Therefore, we examine the Caputo operator model in order to take
these dynamical aspects into account. Using first-order Caputo derivatives of order 0,0 < o < 1, the fractional-
order model is introduced as a nonlinear system.

oD{Fn(t) =N +vMs — aFNyAg — ¢1F N,

0D7In(t) = aFNAg — BiInMs — (v + é2)In,

oD7 Ap(t) = ~vIn — B2AgMs — (dg + K)Ag, (12)
0D Tu(t) = kAg — B3TuMs — (du + p) T,

0DYMs(t) = (Brln + B2Ap + B3T)Ms — ¢3Ms,

dp
i aFyAp I (t) - ‘
I vIy
-
= B2AgMs
Fy(t) <

Fig. 1. Flowchart of dynamical system.
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where o € (0, 1] is the derivative order and ©D is the Caputo fractional derivative.
The initial condition: A = {A1, A2, As, A4, A5} is stated in the space:

Cy={AeC(0,T],R}) | Ay =Fn(r), Ar =1In(7), Az = Ag(7), As=T,u(r), As =Ms()}, (13)

where Fi(0) > 0, In(0) > 0, Ag(0) > 0, T,(0) > 0, Ms(0) > 0. Also, 7 € C[0, T] and
AI(T) 2 07 AZ(T) 2 07 AS(T) 2 07 A4(T) 2 07 A5(T) 2 0. (14)

C+ denotes the Banach space of continuous functions in the domain [0, T] — R%}, with an appropriate sub-
norm and

S ={Fn,In,As, Ty, Ms},  Fn,In,Ag Ty, Ms > 0. (15)
Parameters values are given in the Table 1.

Key features analysis
The existence, uniqueness, non-negativity, and boundedness of the suggested model are all investigated in this
section.

Existence and uniqueness
Theorem 4.1 *© There exists a unique solution for every non-negative initial condition in the suggested model
(12).

Proof We are evaluating the given model (12)’s solutions for their existence and uniqueness in the region
Q x [0, T], where

Q= (Fn,Iv,Ap, Ty, Ms) € R” : max (|En|l, [Lll, [|Ag]l, [ITull, [IMs]]) - (16)

We define the mapping:
X(H) = (Xl(H)7X2(H)7X3(H)7X4(H)7X5(H))7 (17)

where H = (Fn,In,Ag, T\, Ms) and

Parameter | Description Value Unit Source

Fn Functioning brain neurons 0.14 g/ml 4

In Infected brain neurons 0 g/ml “

Ap Amyloid-beta concentration in brain 0.000001 | g/ml “

Ty Tau protein concentration in brain 0.000001 | g/ml Assumed

Ms Microglia concentration in brain 0.02 g/ml “

IIn Rate of neuron production in brain 1 Per day | Assumed
Input of microglia on neurons development 0.025 g/ml Assumed

« Rate of Amyloid-beta cascade growth in neurons | 0.08 Per day | %

1 Natural death rate of neurons in brain 0.08 Per day | Assumed

B1 Killing rate of infected neurons by Microglia 0.06 Per day | **

~ Clearance of neurons by Amyloid-beta 0.00017 | Per day | **

b2 Death rate of infected neurons 0.00019 | Per day | *

B2 Clearance rate of Amyloid-beta by Microglia 0.002 Per day 4

dg Proteolytic degradation rate of Amyloid-beta 9.51 Per day | **

K Initiating rate of Tau protein by Amyloid-beta 0.025 Per day | *°

Bs Clearance rate of Tau protein by Microglia 0.001 Per day | Assumed

P Rate of Neuro-degeneration from Tau protein 0.025 Per day | *°

dy Natural degradation rate of tau protein 0.277 Per day | **

o3 Death rate of Microglia 0.015 Per day | **

Table 1. Initial variables’ states and parameters values.
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(H)
(H)
X3(H) = vIn — B2AsM;s — (dg + k) Ag, (18)
(H)
(H)

Let H = (F;V,I;v,gg,fu,Mg),then

IX(H) = X(H)| = [X0(H) = X1 (H)| + [X2(H) = Xo(H)| + [Xs(H) — X3(H)| + [Xa(H) — Xa(H)|
+ [Xs(H) — Xs5(H)|
< —(Ap + 1)|[Fn —Fn| = (v + ¢2)[In — In| — (aFn +ds + £)[Ap — Ag|

_ Z (19)
= (du +p)| Ty = Tul — ¢3|Ms — M|
<Xy|H — H|+X2|H — H|+X3|H — H| +X4|H — H| + X5|H — H|
<X|H - H],
where X = max {X1, X2, X3, X4, X5} and

X1 = —OzAg — ¢1,
X2 = =7 — ¢27
X3 = 7CMFN — dﬁ — KR, (20)
X4 = _dﬂ )
X5 = —¢3.

The existence and uniqueness of the proposed fractional-order system (12) are thus guaranteed since X(H)
meets the Lipschitz condition. [J

Biological feasibility
Examine the closed set €2 for the system (12), which is defined by

Q= {(X1,X2,X3,X4,X5) ERT : Xi(t),Xa(t), Xs(t), Xa(t), Xs(t) > 0}, (21)
is biological feasible.

Lemma 4.2 Y Let q(t) € C[0, T]and §D7 q(t) € C[0, T] for o € (0, 1]. Then, we have

g(t) = q(0) + ﬁstqu)(t pts (22)

where ¢ € [0,t] forallt < T.

Remark 4.1 Let q(t) € C[0,T]. and §D? q(t) > 0 for all t € (0, T] and o € (0, 1], it results from Lemma 4.2
that q(¢) is non-decreasing for all ¢ € [0, T].

Theorem 4.3 47t > 0, the solution of the system (12), starting in ]Ri and with initial conditions, is constrained
and positive invariant.

Proof First, we show the positive invariance of the set €2. For this reason, it is developed from system (12) that

SDQ’FN(t) =1y +vM;s >0,
Fn=0, T, >0
(C)Df-IN(t) = aFNAg >0,
InN=0, FNy2>0, Ag>0
oD7 Ap(t) =7Iy >0, (23)
Ag=0, INn>0
(C)DfTu(t) =krAg >0,
T,=0, Ag>0
0D7 M5 (t) =0.
Ms=0

Our conclusion is that the set €2 is positive invariant with respect to model (12) since Lemma 4.2 and system (23)
hold for all points of €2. Next, we establish the boundedness of the set {2. Adding all of the model’s Eq. (12) yields
the fractional derivative of the entire population N(¢), namely

oD{N(t) =lIxy — 1 Fn — ¢2ln — dpAp — dp Ty — ¢psMs. (29)
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Let

oD/ N(t) = IIn — ¢«N, (25)

The problem is reformulated as the subsequent initial value problem:

{ RoENE 9N = Ty,

N(0) = No. (26)

When we apply the Laplace transform on both sides, we get
Z[N(t) + ¢ N] = Z [IIN]. (27)

We get

Sil(HN + SUN())

N(s) = =S

From inverse Laplace transform, we get

N(t) = Ont Eo,o+1(—¢t7) + NoEg, o1 (—¢t7)
1IN

< =5 [ Eeori(=97)] + Eoora(=9t7)

J v 1Oy
T eI T ¢

(29)

where E; -1 represents Mittag-LefHler function.
Because the entire population is bounded, the sub-populations are as well, completing the proof. [J

Qualitative analysis
Equilibrium points and reproductive number
Lemma 5.1 The equilibrium point of (12) is the solution to the
IIny + vMs — OZFNA[; — ¢1FN = Oa
CMFNA/g — ,31INM5 - (’Y + 9252)11\1 = 07
YN = B2A5Ms — (ds + )Ap = 0, (30)
kAp — 3T Ms — (du + p) Ty =0,
(Biln + B2Ap + 53T )Ms — ¢p3Ms = 0.

If every eigenvalue (zw;) of the Jacobian matrix evaluated at the equilibrium point satisfies

[y

|arg(w)| > T,

then the equilibrium point is locally asymptotically stable.
According to the Lemma 5.1, Eq. (12)’s disease-free equilibrium point is

P’ = {F}, 1Y, A, Tj, Mg} = {?,0,0,0,0}. (31)
1

Next, the next-generation matrix approach?®*® is used to calculate the basic reproduction number (%) of Eq.

(12). The number of secondary instances of the primary cases that occur during the infectious period as a result
of the infection type is known as the basic reproduction number. For this purpose, consider the system

oD In(t) = aFNnAg — B1InMs — (v + ¢2)1w,
0D7 Ap(t) = vIn — B2AsMs — (ds + K)As, (32)
oD7 Tu(t) = kAp — B3TuMs — (d + p) Ty

The associated transition matrix (V) and incidence matrix (F) for the system (12), at P°, are obtained as follows,

respectively:
0 2x 0 Y+¢a 0 0
={ 0 o 0], V= -y  dg+k 0 . (33)
0 0 0 0 -k  du+p

Then, from spectral radius of FV ™!, we have the reproductive number (%) as:
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aylly

o= S on)ds TR

(34)

One important epidemiological statistic that is connected to cognitive capacities and the likelihood of incident
Alzheimer’s disease is the fundamental reproduction number Zo. The risk of incident Alzheimer’s disease
will be higher if Zo > 1 and lower if Zo < 1. In terms of biology, the term “reproductive number (%))” in
Alzheimer’s refers to the transmission of misfolded proteins and illness from neuron to neuron or from region
to region rather than from person to person. The average number of new neurons or brain regions infected by a
pathogenic protein, like tau, that originate from a single infected neuron or region during its infectious phase is
indicated here by Zo. When the %o > 1, it means that the pathology is gradually expanding and advancing the
disease. On the other hand, Zo < 1 indicates that the pathology is contained and cannot spread further, which
could lead to a very sluggish or non-progressive disease state.
Equation (12)’s endemic equilibrium point is P* = {F},, Iy, A%, T}, Mj}, where

* HN +’UM§ * aF}‘VAZ
FN = A* ) N = * )
a 5+¢>1 BiM5 + v + ¢2
. 2Tx . kA
VAL AR A — - 35
BN tdst R M BMitdptp (35)

M? — oFNAL — (v + ¢2)Iv AN — (ds +K)AE KA — (du +p)T),
s —max + 5 * ) * :
Puly B2Aj BsTy,

P~ exists when %, > 1.

Sensitivity of Z,'s parameters
The sensitivity analysis of the Zo to the parameters in Eq. (38) is presented in this subsection. This analysis’s goal
is to quantify the factors that most affect %o. We use normalized sensitivity index™ and the following formula
can be used to get the index of each parameter involved in Zo:

aZo _

S aﬂoi
z - 82’ e%ﬂ’

(36)

where 20 is the normalized sensitivity index formula in which z represents the parameter to be analyzed. Table
2 displays the findings of the sensitivity index calculation on the model parameters.

A positive sensitivity index means that higher parameter values result in higher basic reproduction numbers,
whereas negative sensitivity means that higler parameter values result in lower basic reproduction numbers. As
an illustration, if the sensitivity index is 3/ © = 1, then raising the « value by 10% will raise Zo by 10%, and if
%f;o = —0.5277, then raising the ¢ value by 10% will reduce %, by 5.277%. They thereby help to lower the

basic reproduction number, which in turn helps to lower the disease’s prevalence. Figure 2 shows a bar graph
of these results. Additionally, the sensitivity plots in Fig. 3(a) - 3(g) show how different model parameters affect
the %,.

Ulam-hyres stability

This section goes into the Ulam-Hyers stability of nonlinear fractional-order systems utilizing fractional
methods, a concept that dates back to the twentieth century and originated with Ulam and Hyers’ work between
1940 and 1941. In numerical analysis and optimization, Ulam-Hyers stability is essential because it yields near-
precise results rather than perfect ones. Ulam-Hyers-Rassias has made a substantial contribution to this issue.
Simulations that show how small variances in solutions disappear over time can be used to numerically verify
Ulam-Hyers stability. This entails proving convergence, comparing perturbed solutions to accurate ones, and
offering information about the mathematical model’s adaptability and reliability. It ensures that slight variations
in initial conditions or external factors do not produce unanticipated results, with the systems response
proportionate to the scale of the perturbation. Because of the intrinsic complexity of nonlinear fractional-order
models, analytical solutions are frequently unattainable, necessitating reliance on numerical techniques and
approximate analytical methods. Proving UH stability for fractional models uses fixed-point theorems within
appropriate function spaces, simplifying the approach and eliminating the necessity for Lyapunov analysis.
Furthermore, proving Ulam-Hyers stability validates the use of numerical methods by assuring that calculated

Parameter | Sensitivity index | Parameter | Sensitivity index
« 1.0000 IIn 1.0000
v 04722 b2 - 05277
dg -0.9999 “ -0.0026

Table 2. Parameters sensitivity index results.

Scientific Reports |

(2026) 16:3778 | https://doi.org/10.1038/s41598-025-33804-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Sensitivity Indices

0.8

0.6

0.4

-0.0026

Sensitivity Index
o

1 \ \ \ \ -0.9999 !
« Iy v [ dﬁ "

Parameters

Fig. 2. Sensitivity indices of the Zo’s parameters.

0.035

0.03

0.025

0.02

0015

001

0.005

() (e) ()

(@

Fig. 3. Variations in % via different parameters.

Scientific Reports | (2026) 16:3778 | https://doi.org/10.1038/s41598-025-33804-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

numerical solutions are consistently close to the genuine but unknown precise solutions of the models, protecting
against mathematically nonsensical findings.

Lemma 6.1 The solution of the problem

EDIQ) = w(t, QL)) + m(t),
{ §DFQU0) = =(0,Q(6) + m(1) o)

satisfies the following:
(9%

‘Q(t) - Qo — ﬁ/o @(s, Q(s))(t —<)ds| < ﬁn = . (38)

Definition 6.1 The system (12) is Ulam-Hyers-Rassias stable for (¢) € L' ([0, T], R) and a real valued contin-
uous function z(#) on [0, o), provided that

o Fareal value 6, > 0, and
« for each of the solutions (Fx, In, Ag, Ty, Ms) € L1([0, T}, R) of the following inequality

6D7Q(t) — 2(t, Q)| < n(v), (39)

there is a solution (Fn, Iy, Ag, T, Ms) € L*([0, T],R) of (12) satisfying

Q) — Q)] < don(t). (40)
Theorem 6.1 The system (12) is Ulam-Hyers-Rassias stable for L* ([0, T], R) if
QM° < 1. (41)
Proof Forw > 0,
/Ot(t —o)n(s)ds < wn(t), V¢ € [0, T]. (42)

According to Definition 6.1, 7 is a non-decreasing function of t. It has been demonstrated that the function ¢ is
continuous and that the solutions’ positivity satisfies the Lipschitz conditions. Therefore, we have

G(t) = Qo+ ﬁ / (t — )" lz(s, Q(s))llds. (43)

Integrating gives us

1 ¢ o—1 1 ¢ o—1 wM’
QO = Qo= 57 [ (1= H( QN < T [(E= 9 0 < g, @)

Also, we get

@) - QW) < @) - @~ {55 [ ¢ 9" 2. Qs
1 1

* 5y Jy Q0 — g5 [[ 0= 6. @)

1 t
<M —Qo— =— | (t—9)7"2(,Q(c))ds
‘ 1 t I'(o) /o ) ‘ (45)
+ m/o (t—<)7 (s, Q<)) — Z(<7Q(<))’d<
< T e [ - 97 a - alas
_ EMOn()E, (VM)
- I'(o+1)
Let W = J,, then
Q) — Q)| < don(t). (46)
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Chaos control

Adaptive techniques can be used to regulate the chaos in the fractional order system (12) when uncertainties and
disturbances are taken into account. The objective is to appropriately build controllers to stabilize chaos around
fixed points in the system’s trajectories. We use a linear feedback regulate method to stabilize the regulated
design of the proposed system (12) based on its equilibrium points.

Theorem 7.1 Under the following control law, the fractional-order chaotic system is stabilized.

EDIFn(t) = Iy + vMs — aFnAs — ¢1Fn — 91 (Fy — FY),

0D7In(t) = aFnAg — B1iIvMs — (v + é2)In — ¥2(Iv — IN),

oDY Ag(t) = vIn — BaAsMs — (ds + k)As — P3(As — Aj), (47)
0D{Tu(t) = kAg — BT Ms — (du + p) T — ¥a(Tp — T}),

0D7Ms(t) = (B1ln + B2Ap + BTy )Ms — ¢sMs — b5 (Ms — Mj).

where {}* depicts the system (6)’s equilibrium point and control parameters are: 11; ¥2; 133 P4, V5.

Proof The Jacobian matrix at equilibrium point is given as follows:

—¢p1— 0 ,a%v p 0
. 0 —Y = ¢2— 2 alh 0 0
J(P) = 0 . —dg —'k — s 0 0 (48)
0 0 K —d, —p—a 0
0 0 0 0 —¢3 — s
The characteristic equation can be expressed as follows:
£+ 01+ 0 atgt —p 0
0 E+7+ 2+ 12 —aik 0 0
()= 0 — §+dﬁ+é+¢3 0 0 =0. (49)
0 0 —k E4du+p+a 0
0 0 0 0 £+ d3+ s
Letting ¢1 = 1,92 = 2,13 = 3, %4 = 4, and 95 = 5 gives us
S=d1—1, L=-7—-¢2—-2, &=—dg—kK—3 (50)
s = —dy —p—4, §s = —¢3 — 5. (51)
We can easily verify that
|arg&| =m > % and  |&] < |2cos (W)] , 0<o< 1. (52)
—0o

We can observe that all of the eigenvalues are negative, as shown below, using the parameter values from Table
1, which provides the asymptotic stability for the equilibrium point.

€ =—1.08, & =-200036, & =—12.535, & =-4.302, & = —5.015. (53)

Numerical scheme

According to recent research, power-law processes can be simulated using the Caputo derivative. Given the
dynamics seen in fractional calculus, we employed the temporal derivative in conjunction with the Caputo
derivative to incorporate power law effects into our model. The problem is then discretized using a numerical
approach’>? based on Newton polynomial interpolation. We can generalize the system (12) in abstract form:

ngQ(t) = A(t7 Q(t))7 o e (05 1]? t e [05 TL (54)
Q(0) = Qo,
Then we have
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Qter1) = Qo+ . ZC: /thrl Ateyr — )7 ds. (55)
F(U) =2t

Approximating A(t, A(t)) using the Newton polynomial as
Pi(¢) = Atj—2,Q" %)

1 i -

+ o At Q1) = Altj—2, Q") x (¢ —tj-2) (56)

1

T agr A(t5, Q) = 2A(tj-1, Q") + A(tj—2, Q"™ )] x (¢ — tj—2) (¢ — tj-1).

After some computations, we get

¢

Qtcr) = Qo+ ooy Do Mb-2 @ x (€= +1)7 ~ (¢ =i)")
(A7 < 0N L (b .. 02 =i+ 1)7(C—j+3+20)
MCED) ;{*“J“Q )= M@ (ST 1A L)) o
o ¢ . . .
Sy Do M @)~ 2, @) A, )

j=2

y <(< — 4+ 1)7{2(C — )2 + (30 + 10)(C — J) + (20 + 9)o + 12})
S(C=D7H2(C - 77 + (50 + 10)(C - 4+ 6(0° + 30 + )},

The proposed scheme’s algorithm is illustrated in Fig. 4.

Simulations discussion

This section investigates the temporal dynamics of our fractional-order model, revealing a variety of shifting
patterns in different compartments and providing numerical evidence to support our findings. Using the Newton
polynomial method described in the previous section, we mathematically examine the effects of fractional order
changes on the density of functioning neurons, infected neurons, amyloid-beta, tau protein and microglia. The
values of the parameters are taken from Table 1. We used MATLAB programming to run these simulations. The
analysis shows consistent behavior patterns and a substantial correlation between the dynamics of the fractional-
order and integer-order models. The inquiry centers on various fractional order cases, all of which are available
through the figures. Numerical results are derived for various ways of assessing the feasibility and accuracy of the
proposed model, as shown in Figures 6-19, which support theoretical observations. Details of each sub-figure are
also explained below for better representation and understanding of the behavior of the model.

Input: Fractional-order
Alzheimer’s disease model

U

Generalization of fractional-order
system

U

Newton polynomial interpolation

U

Discretization

U

Output: Results

Fig. 4. Numerical scheme’s algorithm.
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Fig. 6. Comparison results of I (¢) using integer-order, fractional-order and different population.

« Fig. 5a shows the analysis of functioning neurons at various o levels. We see that functional neurons first de-
cline in the presence of harmful proteins and then resume normal functioning once microglia are activated.
The comparison study of integer-order and fractional-order model is displayed in Fig. 5b. At larger fractional
orders, we observe an increase in functioning neurons. Using actual data from the literature, Fig. 5¢ illustrates
the dynamics of Fx (¢) at different o levels. At increasing o values, we observe an increase in functioning
neurons.

« The study of infected neurons at different o levels is shown in Fig. 6a. Infected neurons accumulate as a result
of the infection, and as they recover, they start to deteriorate and stabilize. Figure 6b shows the comparison
study of the integer-order and fractional-order models. The density of tau and amyloid-beta proteins, as well
as infected neurons, noticeably decreases at increasing fractional orders. Figure 6¢ shows the dynamics of
I (t) at various o values using real data from the literature. The dynamics of infected neurons decrease more
quickly at large o values than at high fractional orders.

« Figure 7a displays the amyloid-beta analysis at different o values. Amyloid-beta protein levels gradually de-
cline as a result of microglia activation. The comparative study between the fractional-order and integer-order
models is shown in Fig. 7b. The density of amyloid-beta decreases noticeably with higher fractional orders.
The dynamics of Ag(¢) at various o values are depicted in Fig. 7c using real data from the literature. Com-
pared to high fractional orders, the dynamics of Az decrease more quickly for large o values.

« The simulation of tau protein at different o levels is shown in Fig. 8a. High o values cause the tau protein’s
dynamics to drop more quickly than high fractional orders. Figure 8b shows the comparison study of the in-
teger-order and fractional-order models. The tau protein density noticeably decreases with higher fractional
orders. Figure 8c shows the dynamics of T, (t) at various o values using real data from the literature. The
dynamics of T, decrease more quickly at large o values than they do at high fractional orders.

o InFig. 9a, microglia are analyzed at different o levels. Microglia first become more functional at high fraction-
al orders, but thereafter their functionality declines at high fractional orders. In Fig. 9b, the comparison study
of integer-order and fractional-order models is shown. Microglia proliferate more rapidly at low fractional
orders than at higher fractional orders and integer-order order. The dynamics of M (¢) at various o values
are depicted in Fig. 9c using real data from the literature. Microglia’s performance decreases at large fractional
orders in contrast to smaller o values.

+ When it comes to representing memory and hereditary characteristics in biological systems, a Caputo frac-

tional model performs better than conventional integer-order models. These effects are crucial for examining
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the course of Alzheimer’s disease. The Caputo derivative is preferred among fractional approaches because
it can include integer-order initial conditions. It is especially useful for expressing phenomena with nonlo-
cal features because of this capability. The non-locality of the Caputo fractional operator illustrates the role
of memory in the dynamics of Alzheimer’s disease. Its spectrum of low to high prevalence is analyzed to
determine its efficacy. The fractional order ¢ in the fractional model of Alzheimer’s disease characterizes
memory or time-delay effects, illustrating how past states affect disease dynamics. A smaller o indicates a
stronger memory effect, which is dependent on the disease’s complete history, whereas values near 1 indicate
lesser memory and behavior, similar to standard integer-order differential equations. This technique helps
describe the complicated, non-local temporal dynamics of Alzheimer’s disease, such as amyloid-3 build-
up and Microglia activation. The conventional integer order model solution at ¢ = 1 is used in the study
to compare integer-order results with numerical simulation results. Over longer time periods, curves with
o = 0.95,0.90, 0.85 exhibit a slower increase or decrease. A fair ratio can be employed to lessen the conse-
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Fig. 11. Response surface plot of I (t).

quences of amyloid beta and tau protein. With the system’s memory effect and derivative order decreasing
from 1, the concentration of tau and amyloid-beta proteins rises, suggesting that fractional-order dynamics
with memory effects are more robust. For long-range interactions between neurons, amyloid-beta, tau pro-
tein, infected neurons, and microglia, the model provides more accurate predictions. Effective therapy of
Alzheimer’s disease requires an understanding of its historical dynamics.

A surface plot shows a three-dimensional relationship in two dimensions with variables on the two axes and
a smooth surface. Figure 10a and b show 3D surface graphs for functional neurons with suggested parameter
values and different population, respectively. Figure 11a and b show 3D surface graphs for infected neurons
with suggested parameter values and different population, respectively. Figure 12a and b show 3D surface
graphs for amyloid-beta concentration with suggested parameter values and different population, respective-
ly. Figure 13a and b show 3D surface graphs for tau protein concentration with suggested parameter values
and different population, respectively. Figure 14a and b show 3D surface graphs for microglia density with
suggested parameter values and different population, respectively. Surface plots of the feasible zone’s stable
relation and the chaos region for various compartments in the phase trajectory are displayed. These response
surface plots show the main effects and interaction effects of independent variables. The idea that fractional
derivatives influence neuron concentration is supported by variations in outlines. Compartment densities are
shown by surface peaks.
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Fig. 13. Response surface plot of T (%).

« Two-dimensional contour plots give visual representations of response values. A contour plot joins points
with the same response value to show a two-dimensional representation of a response variable. Contour
plots for functioning neurons with recommended parameter values and distinct populations are displayed in
Fig. 15a and b, respectively. Contour plots for infected neurons with varied populations and recommended
parameter values are displayed in Fig. 16a and b. Contour plots for amyloid-beta concentration with recom-
mended parameter values and distinct populations are displayed in Fig. 17a and b, respectively. Contour plots
for tau protein concentration with recommended parameter values and distinct populations are displayed in
Fig. 18a and b, respectively. Contour plots for microglia density with recommended parameter values and
distinct populations are displayed in Fig. 19a and b, respectively. These contour plots show stepwise behavior
and reveal fractional order ¢ for each compartment. For compartment densities as shown by contour plots,
darker areas imply slower progression and lighter patches indicate higher densities.

The comparative numerical outcomes for all biological compartments associated with Alzheimer’s disease (AD)
under integer-order conditions are presented in Tables 3, 4, 5, 6 and 7. Table 3 illustrates the temporal evolution
of the Fiv compartment, representing the population of normal neurons. The results indicate that neuronal
activity initially increases but gradually declines over time, reflecting the progressive nature of neuronal
degradation characteristic of AD. Table 4 presents the results for the Iy compartment, which corresponds
to infected or impaired neurons. A noticeable decline is observed for lower fractional values, signifying that
diminished memory effects suppress the progression of neuronal impairment. The dynamic response of the
Ap compartment, shown in Table 5, demonstrates a steady decrease in amyloid-beta concentration over time,

Scientific Reports | (2026) 16:3778 | https://doi.org/10.1038/s41598-025-33804-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.02 -

0.01995
0.0199

£ 001985

= 0.0198

0.01975
0.0197
1

0.95
0.9
0.85
0.8

© 0.75
0.7

0.65

N
08
o

o

0.02 34
3.2
0.01995 a5
0.0199 3
3
= 28
Y 0.01985 a
=
23 26
0.0198
) g 24
0.01975 1
2 08 //// 10 22
05 0.0197 0.6 i 5
2
04 0 Time o 04 0 Time
(a) (b)
Fig. 14. Response surface plot of M5 (¢).
1.1 1 14
1 0.95 13.9
0.9 0.9 13.8
08 0.85 13.7
13.6
07 0.8
135
06 & 0.75
13.4
05 0.7
0.65 13.3
0.4
06 13.2
0.3
13.1
0.55
0.2
13
0.5
1 2 3 4 5 6 7 8 9 10

Time
(a) (b)

Fig. 15. Contour plot of Fx () within feasible domain.

implying that the integer-order case promotes a faster clearance mechanism compared to fractional dynamics.
Similarly, Table 6 reports the variations in the 7,, compartment, representing activated microglial cells. Here,
smaller fractional parameters yield faster decay and lower steady-state values, highlighting the sensitivity of
microglial activation to the order of differentiation. Finally, Table 7 summarizes the M;s compartment results,
which describe the density of pro-inflammatory cytokines. The integer-order condition yields the highest
magnitude, whereas fractional parameters closer to zero correspond to reduced inflammatory responses.

Conclusion

A novel mathematical model of Alzheimer’s disease has been introduced, which includes nonlinear fractional
differential equations for tau protein, amyloid-beta, microglia, infected neurons, and functioning neurons.
The study analyzed the dynamics of a proposed model for Alzheimer’s disease transmission using the next-
generation technique. It found two equilibrium points and subjected reproductive number parameters to
sensitivity analysis. The study confirmed the Ulam-Hyers-Rassias stability requirements. The model was
solved using Newton polynomial interpolation and the discretization of the Caputo fractional-order operator.
Simulations were conducted to investigate the global effects of factors on generating circumstances that prevent
Alzheimer’s disease incidence. Fractional calculus has proven to be a helpful tool for understanding the complex
dynamics associated with memory disorders and cognitive deficits in Alzheimer’s disease research. Better illness
prediction and treatment design are made possible by the analysis, which shows that fractional-order models
accurately depict health processes. According to the simulation results, the concentration of tau and amyloid-beta
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Fig. 17. Contour plot of A(t) within feasible domain.

proteins rises with derivative order and memory impact. By tracking changes in treatment controls and illness
impacts over time, researchers can improve the design of their models. For increased accuracy, future research
recommends including time delay in model dynamics. Validation of real-world data will help improve parameter
estimations for useful applications. Collecting statistics on Alzheimer’s disease is difficult since patients’ cognitive
deficits limit communication and self-reporting. The disease’s gradual growth makes tracking its development
difficult, and variable diagnosis techniques result in untrustworthy data. Ethical concerns about disadvantaged
groups provide moral quandaries for researchers, while logistical challenges such as patient accessibility, data
sharing issues, and funding limits impede complete data collection. Our model uses arbitrary parameter values
identified in the literature, with some values assumed, limiting its applicability to clinical practice. Accurate
and interpretable parameters are required for models to provide important insights for early identification and
effective treatment. A worldwide data format for normalizing and standardizing measures could greatly improve
data integration, making future cohort studies more efficient. This would save researchers a tremendous amount
of time. Furthermore, emerging computer modeling methodologies may address present issues in Alzheimer’s
disease modeling, thereby assisting in the development of medical interventions and procedures. Furthermore,
Alzheimer’s disease models can be improved by including treatment effects and stochastic disturbances, resulting
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t |og=1|01=0.95 |5, =0.90 |03 = 0.85
10 | 7.5899 | 7.4407 7.3228 7.2400
15 | 9.1911 8.7509 8.3749 8.0667
20 | 10.2838 | 9.6972 9.1752 8.7269
25 | 11.0153 | 10.3726 9.7778 9.2470
30 | 11.5050 | 10.8594 10.2372 9.6615
35 | 11.8330 | 11.2144 10.5925 9.9965
40 | 12.0529 | 11.4762 10.8712 10.2710
45 | 12.2003 | 11.6714 11.0926 10.4985
50 | 12.2991 | 11.8187 11.2704 10.6892

Table 3. Comparative analysis of the Fiv (¢) dynamics obtained under integer-order.
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t |g—1|01=0.95 |02 =0.90 |05 = 0.85
10 | 0.1394 | 0.4102 0.7134 1.0441
15 | 0.0095 | 0.1527 0.3286 0.5383
20 [ 0.0008 | 0.1013 0.2268 0.3803
25 | 0.0001 0.0812 0.1818 0.3057
30 | 0.0000 | 0.0701 0.1561 0.2619
35 [ 0.0000 | 0.0630 0.1393 0.2328
40 | 0.0000 | 0.0580 0.1273 0.2119
45 | 0.0000 | 0.0543 0.1183 0.1961
50 | 0.0000 | 0.0515 0.1114 0.1837

Table 4. Comparative analysis of the I (t) dynamics obtained under integer-order.

t |log=1|01=0.95 |02 =0.90 | o3 = 0.85
10 | 0.0501 | 0.2408 0.4595 0.7034
15 | 0.0035 | 0.1118 0.2523 0.4253
20 | 0.0002 | 0.0734 0.1741 0.3056
25 {0.0000 | 0.0554 0.1340 0.2401
30 | 0.0000 | 0.0448 0.1095 0.1988
35| 0.0000 |0.0377 0.0929 0.1702
40 | 0.0000 | 0.0326 0.0808 0.1493
45 | 0.0000 | 0.0287 0.0716 0.1332
50 | 0.0000 | 0.0257 0.0644 0.1204

Table 5. Comparative analysis of the Ag(¢) dynamics obtained under integer-order.

t |og=1|01=0.95 |5, =0.90 |03 = 0.85
10 | 0.5183 | 0.8949 1.2849 1.6849
15 | 0.1080 0.3680 0.6689 1.0059
20 | 0.0225 |0.1972 0.4205 0.6910
25 | 0.0047 | 0.1296 0.3008 0.5209
30 | 0.0010 | 0.0969 0.2340 0.4177
35 (0.0002 | 0.0780 0.1921 0.3493
40 | 0.0000 | 0.0657 0.1635 0.3010
45 | 0.0000 | 0.0569 0.1427 0.2650
50 | 0.0000 | 0.0504 0.1268 0.2371

Table 6. Comparative analysis of the 7}, (¢) dynamics obtained under integer-order.

t |0 =1|01=0.95 g5 =0.90 |03 = 0.85
10 | 13.5683 | 13.1011 12.5989 12.0572
15 | 12.7835 | 12.7319 12.6005 12.3793
20 | 11.8758 | 12.1072 12.2331 12.2416
25 | 11.0194 | 11.4754 11.8044 11.9938
30 | 10.2234 | 10.8692 11.3693 11.7116
35 | 9.4847 10.2939 10.9430 11.4188
40 | 8.7994 | 9.7501 10.5303 11.1253
45 | 8.1636 | 9.2367 10.1332 10.8356
50 | 7.5737 8.7524 9.7522 10.5518

Table 7. Comparative analysis of the Ms(t) dynamics obtained under integer-order.
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in more realistic simulations. This method exposes how random variability drives illness progression and how
different therapies can alter these dynamics, potentially changing the results reached from the models.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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