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Fractional derivative modeling has become an important tool for studying and forecasting disease 
transmission dynamics. We propose a new mathematical model for Alzheimer’s disease, a condition 
in which dying and malfunctioning neurons impair memory. The model has a five-dimensional set 
of nonlinear fractional differential equations for microglia, amyloid-beta, tau protein, infected 
neurons, and functioning neurons. To further understand the dynamics of the proposed model, we 
demonstrated the solutions’ existence, uniqueness, positivity, and feasible domain. We used the 
next-generation technique to calculate the fundamental reproduction number (R0), the threshold 
parameter of Alzheimer’s disease transmission. Two model equilibrium points have been found. 
The reproductive number parameters are subjected to sensitivity analysis in order to show how 
R0 responds to parameter changes. The Ulam-Hyers-Rassias stability requirements have been 
confirmed. The suggested model is solved using the Newton polynomial interpolation method with 
the discretization of the Caputo fractional-order operator. Lastly, simulations are made to investigate 
the potential effects of factors that prevent the incidence of Alzheimer’s disease. The findings show 
how the proposed method may be able to provide deeper and possibly accurate predictions for the 
dynamics of Alzheimer’s disease, thus leading to more successful public health campaigns.

Keywords  Alzheimer’s disease, Fractional-order model, Caputo operator, Sensitivity of parameters, ULAM-
Hyers-Rassias stability

Brain research is vital for understanding brain disease pathophysiology, which represents 35% of disorders in 
Europe. Key challenges include assessing disability-adjusted life years1. Brain tumors arise from uncontrolled cell 
growth, emphasizing the need for early detection and targeted therapies. Mathematical models for evaluating 
solid tumors, such as those addressing proliferation and cellular motility, enhance our understanding of brain 
tumors, particularly gliomas due to their invasive characteristics2,3. Millions of people worldwide suffer from 
neurodegenerative diseases, which mostly cause cognitive and behavioral impairments. The creation of successful 
treatments and a deeper comprehension of their mechanisms are crucial4. Variations in mitochondrial viscosity 
are associated with a number of cellular functions and illnesses. The fluorescent probes used today to detect 
mitochondrial viscosity are not photostable or permeable. Mito-DDP successfully penetrated cell membranes 
and dyed the cells, demonstrating its potential practical applications, according to confocal laser scanning 
microscopy5. Alzheimer’s disease is a neurodegenerative disorder characterized by memory deterioration due to 
the dysfunction and death of neurons. It influences neuronal and synaptic function, causing abnormalities such 
as amyloid-beta buildup and tau tangles, which impair synaptic activity and lead to significant brain atrophy6. 
Often viewed as a consequence of aging, it has become a major public health concern due to its socioeconomic 
impacts and the rising number of cases. Alois Alzheimer’s 1906 description highlights pathological signs and 
disorientation7. The US government invested 226 million in 2015 to address Alzheimer’s disease, which is 
expected to impact 131 million people worldwide by 2050, particularly in middle and low-income nations, with 
annual health care costs surpassing those of cancer and cardiovascular diseases8.

A mathematical model in9 explains Alzheimer’s disease pathophysiology using differential rate equations, 
including microglia, astrocytes, neurons, and amyloid-beta, involving seven species and intercellular signaling 
influences. A prospective cohort study10 aimed to develop a multiattribute model of the progression of Alzheimer’s 
disease (AD) from moderate to fatal. Researchers analyzed 91 proteins in cerebral fluid or plasma of Alzheimer’s 
patients and cognitively normal controls to mathematically describe disease-specific molecular characteristics11. 
They found a limited number of signaling proteins that can identify Alzheimer’s disease and model pathological 
markers like tau and amyloid-beta levels. Alzheimer’s disease patients have decreased expression of brain-derived 
neurotrophic factor, an essential neurotrophic factor present throughout the brain12. The study13 highlights the 
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use of data-driven computer models in Alzheimer’s disease research, which are based on experimental data, 
providing quick insights and testable predictions. These models are continuously developed and improved to 
capture a significant portion of existing knowledge. The study14 proposed a mathematical model concentrating 
on the function of prions in memory impairment, utilizing differential equations to describe the dynamic 
production of amyloid plaques. The model works with four distinct species. Researchers used transport and 
diffusion equations to develop a mathematical model for Alzheimer’s disease15. Gastrodin has antioxidant 
qualities, protects neurons, and improves brain function. Its effects and mechanisms on Parkinson’s disease 
in a rat model16 were examined in a study. Another study17 looked at the role of ceramide in Alzheimer’s 
disease and neuronal aging as well as icariin’s possible mitigating effect. Some other contributions related to the 
mathematical modeling approach for brain disorders are discussed in18–20, optimizing the treatments and results 
of brain disorders derived in21,22.

Fractional operators are now widely used as a common methodology for investigating the spread of 
epidemics and as a way to solve real-world problems. Fractional calculus has been the subject of numerous 
published studies, with new developments improving its theoretical and practical aspects. Fractional calculus 
is a quickly expanding branch of mathematics and is used to model various biological phenomena for disease 
models, fractional approaches, and modeling concepts for various diseases discussed in23–25. In26, the authors 
studied the dynamics of hepatitis B transmission with real data. Because of the order of differential equations, 
it overcomes the drawbacks of classical models based on derivatives and incorporates intricate real-world 
dynamics. Researchers are increasingly utilizing fractional calculus to tackle these issues. The fractional order 
model for Parkinson’s disease patients is examined in the paper27, which also suggests an identification method 
based on the frequency behavior of wheelchair movements.

The fractional dynamic model of a “disabled man-wheelchair” system is also covered in the essay, along with 
a control technique that takes into account the wheelchair driver’s impairment31. offers a mathematical model 
of Alzheimer’s disease that takes gender disparities into consideration. Using variable-order fractional temporal 
derivatives, the model illustrates how cells and aggregation-prone amyloid fibrils change over time. The model 
also accounts for neuroprotective memory loss, which is particularly common in postmenopausal women due 
to the dramatic drop in estrogen levels. The study32 proposed a simpler and more efficient fractional order-based 
convolutional neural network model that integrates an improved attention mechanism and a new optimization 
strategy to accurately and effectively classify Alzheimer’s disease. Some of the recent research comes up with the 
artificial neural network techniques to solve various disease models28–30.

Our research incorporates the amyloid-beta, tau protein, and microglia compartments that contribute to 
the transmission of Alzheimer’s disease, drawing inspiration from the aforementioned publications. This study 
introduces a novel model that categorizes neurons into functioning and infected types, incorporating the roles of 
tau protein, amyloid beta, and microglia in neuronal functionality. Notably, this model has not been previously 
addressed in existing literature. Introducing fractional calculus into Alzheimer’s disease mathematical models 
addresses research deficiencies by accommodating the disease’s memory and hereditary characteristics. Unlike 
standard integer-order models, fractional models accurately represent the non-local and cumulative impacts of 
Alzheimer’s, offering deeper insights into the complex biological processes involved. This paper’s structure is as 
follows: In Sect. 2, we go over the Caputo fractional derivative and review the essential mathematical principles. 
We describe the development of the suggested fractional order Alzheimer’s disease model in Sect. 3. In order 
to guarantee biological viability and practicality, Sect. 4 provides a thorough analysis that proves the solutions’ 
existence, uniqueness, boundedness, and positivity. The calculation of the basic reproduction number and 
equilibrium points is examined in Sect. 5. We do sensitivity analysis of several factors in relation to the model’s 
basic reproduction number in Sect. 6. The model is extended to chaos control in Sect. 7. The numerical method 
is presented in Sect. 7, while the numerical simulations and comments are presented in Sect. 8. The conclusion 
is finally given in Sect. 9.

Key definitions
Definition 2.1  33,34 Consider the function Q(t), which is differentiable to the jth derivative. The definition of the 
Caputo derivative of Q(t) of order 0 < σ ≤ 1 is as follows:

	

c
0Dσ

t Q(t) = dσ

dtσ
Q(t) =

{
1

Γ(j−σ)

´ t

0
Qj (ς)

(t−ς)σ−j+1 dς, σ ∈ (j − 1, j), t > 0, j ∈ N,

Qj(t), σ = j.
� (1)

The Caputo fractional derivative of a constant k is zero, specifically dσ

dtσ k = 0 and ensures:

	

dσ

dtσ
tj

{ 0, j ≤ σ − 1,
Γ(j+1)tj−σ

Γ(j−σ+1) , j > σ − 1.
� (2)

At j = 1, the Eq. (1) is reduced to

	
c
0Dσ

t Q(t) = 1
Γ(1 − σ)

d

dt

ˆ t

0
(t − ς)−σQ(ς)dς.� (3)

Remark 2.1  The Caputo fractional derivative is an ordinary derivative if σ = 1. Consequently, the ordinary 
derivative is generalized by the Caputo fractional derivative.

Definition 2.2  The corresponding fractional integral operator is given by35
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cIσ

t Q(t) = 1
Γ(σ)

ˆ t

0
(t − ς)(σ−1)Q(ς)dς.� (4)

Lemma 2.1  36 The solution to the cauchy problem:

	

{ c
0Dσ

t Q(t) = ψ(t, Q(t)), 0 < σ ≤ 1, t > 0,
Q(0) = Q0, � (5)

is given by

	
Q(t) = Q0 + 1

Γ(σ)

ˆ t

0
(t − ς)(ς−1)ψ(ς, Q(ς))dς.� (6)

Alzheimer’s disease model formulation
There are two primary proteins believed to disrupt communication between brain cells: tau and amyloid. This 
disruption instigates a positive feedback loop that results in increased production of amyloid-beta and abnormal 
tau37. Both amyloid-beta plaques and tau tangles contribute to neuro-inflammation, which can also be triggered 
by various microbes, including bacteria and viruses38. Microglia, the resident innate immune cells of the central 
nervous system, play a role in disease progression by modifying their physiological functions and activating 
inflammatory pathways. The presence of toxic amyloid-beta and tau proteins is believed to activate microglia39. 
Microglia tries to clear the toxic proteins as well as widespread debris from dead and dying cells. Chronic 
inflammation may set in when microglia cannot keep up with all that needs to be cleared, resulting in neuronal 
dysfunction, injury, and loss.

Based on previous studies, we develop a new mathematical model of Alzheimer’s disease including:

•	 FN (t): Functioning neurons;
•	 IN (t): Infected neurons;
•	 Aβ(t): Amyloid-beta;
•	 Tµ(t): Tau protein; and
•	 Mδ(t): Microglia.

We assume that the density of functioning neurons rises with the brain’s neuron production rate of ΠN  and 
falls with the proliferation of neurons in the amyloid-beta cascade at a rate of α and due to the natural death of 
neurons at a rate of ϕ1. In Alzheimer’s disease, the amyloid-beta peptide forms aggregates that deposit as plaques 
around neuronal cells and brain vasculature. This deposition is associated with the degradation of neuronal 
function, leading to impaired memory and cognition, such as compromised thinking, speaking, writing, and 
other day-to-day activities40. Beyond innate immunity, microglia, the central nervous system’s macrophages, 
play critical roles in brain growth, preservation, homeostasis, and restoration. Through a variety of interactions, 
they not only serve as phagocytes but also influence how neurons and glial cells operate. Understanding the 
mechanisms underlying the early pathophysiology of neurodevelopmental diseases requires an understanding 
of the factors influencing microglial homeostasis and diversity throughout normal brain development41. To 
illustrate the possible impact of microglia on the development of functional neurons, we introduced a parameter 
υ. Consequently, the dynamic of active neurons at time t is given by

	 FN (t) = ΠN + ρTµ − αFNAβ − ϕ1FN .� (7)

Amyloid-beta plaques around brain vasculature and neuronal cells are linked to the deterioration of neuronal 
function. Beta-amyloids are released into plasma and cerebrospinal fluid when secretases cleave the Amyloid-
beta protein, which is found on different cell membranes. These beta-amyloids are ingested and misfolded into 
beta-folded designs, which eventually develop into fibrils and aggregates known as plaques after adhering to 
neuronal and glial cell receptors at nanomolar concentrations. Beta-amyloids affect brain signaling and memory 
function as monomers, dimers, or multimers on cell membranes prior to plaque accumulation42. Microglia 
kill the infected neurons at the rate of β1. Amyloid-beta clears a percentage of infected neurons at a γ rate. 
Additionally, the normal death rate of ϕ2 reduces the number of infected neurons. Therefore, we have

	 IN (t) = αFNAβ − β1INMδ − (γ + ϕ2)IN .� (8)

By eliminating amyloid-beta, microglia act as the brain’s main immune cells, avoiding the plaque development 
that can damage neurons. We assume that microglia clean amyloid-beta at a rate of β2. A wide range of 
peptidases and proteinases, collectively referred to as amyloid-beta-degrading proteases (AβDPs), are capable 
of proteolytically breaking down the amyloid-beta protein. These proteases are crucial in controlling the levels 
of endogenous cerebral amyloid-beta under various physiological and pathological circumstances43. Amyloid-
beta clusters appear first and are followed by a surge in abnormal tau once amyloid-beta has accumulated to a 
certain level. We suppose that the proteolytic degradation rate of dβ  and the tau protein initialization rate of κ 
by amyloid-beta also reduce the density of amyloid-beta. Consequently, the amyloid-beta density at time t is 
given by

	 Aβ(t) = γIN − β2AβMδ − (dβ + κ)Aβ .� (9)
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Tau protein is triggered by amyloid-beta at a κ rate. By internalizing and breaking down tau seeds, microglia 
perform protective roles that slow the proliferation of tau. We assume that microglia reduce the density of tau 
protein at a rate of β3. Cellular mechanisms, such as the ubiquitin-proteasome system, which mostly breaks 
down soluble tau, control the degradation of tau proteins. Because tau aggregates into toxic structures like 
tangles and oligomers, which are detrimental to neurons, neurodegeneration results in decreased functional 
tau concentrations. Therefore, we suppose that the natural rate of tau protein degradation (dµ) and neuro-
degeneration also cause a decrease in tau protein concentration. Consequently, tau protein density is expressed 
as

	 Tµ(t) = κAβ − β3TµMδ − (dµ + ρ)Tµ.� (10)

Microglia are triggered by tau protein, amyloid beta, and infected neurons. By removing protein clumps and 
pruning malfunctioning synapses, microglia first defend the nervous system. Chronic activation, on the other 
hand, turns them into a pro-inflammatory state that leads to increased toxic factors, synapse loss, and neuronal 
death. Apoptosis and necroptosis are two natural cell death processes that microglia experience, which contribute 
to a constant turnover necessary for preserving brain health. Despite the extended lifespans of microglia, illness 
can speed up this sluggish pace of cell renewal. We suppose that, at a rate of ϕ3, natural death lowers the density 
of microglia. Consequently, the following represents the microglia concentration at time t:

	 Mδ(t) = (β1IN + β2Aβ + β3Tµ)Mδ − ϕ3Mδ.� (11)

Figure 1 describes the dynamics of Alzheimer’s disease based on the stated assumptions.
Memory effects in physical system models are crucial for assessing non-local effects, with integer order 

differential equations being limited in this regard. Fractional order derivatives, featuring power-law memory 
kernels, provide a better representation as they account for a state variable’s rate of change based on its entire 
past behavior. The key difference lies in accuracy, where lower fractional order values signify more pronounced 
memory effects. The Caputo derivative offers a key advantage over the Riemann-Liouville derivative due to 
its compatibility with standard initial conditions, while the latter requires initial conditions to be expressed in 
fractional integral form, which is often impractical for various physical systems. Additionally, the Atangana-
Baleanu derivative utilizes a non-singular kernel, specifically the Mittag-Leffler function, effectively addressing 
the singularity issues that arise with the kernels of the Caputo and Riemann-Liouville derivatives. The Caputo 
fractional derivative is suited for systems with well-defined initial conditions, as it incorporates past states and 
non-local interactions, thereby integrating memory effects. Its power-law memory kernels improve system 
stability and numerical simulations. Additionally, it introduces a new parameter allowing for real number orders 
of derivatives in fractional order systems. Therefore, we examine the Caputo operator model in order to take 
these dynamical aspects into account. Using first-order Caputo derivatives of order σ, 0 < σ ≤ 1, the fractional-
order model is introduced as a nonlinear system.

	

c
0Dσ

t FN (t) = ΠN + υMδ − αFNAβ − ϕ1FN ,
c
0Dσ

t IN (t) = αFNAβ − β1INMδ − (γ + ϕ2)IN ,
c
0Dσ

t Aβ(t) = γIN − β2AβMδ − (dβ + κ)Aβ ,
c
0Dσ

t Tµ(t) = κAβ − β3TµMδ − (dµ + ρ)Tµ,
c
0Dσ

t Mδ(t) = (β1IN + β2Aβ + β3Tµ)Mδ − ϕ3Mδ,

� (12)

(t)

(t)(t)

(t)

(t)

Fig. 1.  Flowchart of dynamical system.
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where σ ∈ (0, 1] is the derivative order and cD is the Caputo fractional derivative.
The initial condition: ∆ = {Λ1, Λ2, Λ3, Λ4, Λ5} is stated in the space:

	 C+ =
{

∆ ∈ C([0, T],R5
+) | Λ1 = FN (τ), Λ1 = IN (τ), Λ3 = Aβ(τ), Λ4 = Tµ(τ), Λ5 = Mδ(τ)

}
,� (13)

where FN (0) > 0, IN (0) > 0, Aβ(0) > 0, Tµ(0) > 0, Mδ(0) > 0. Also, τ ∈ C[0, T] and

	 Λ1(τ) ≥ 0, Λ2(τ) ≥ 0, Λ3(τ) ≥ 0, Λ4(τ) ≥ 0, Λ5(τ) ≥ 0.� (14)

C+ denotes the Banach space of continuous functions in the domain [0, T] → R5
+, with an appropriate sub-

norm and

	 R5
+ = {FN , IN , Aβ , Tµ, Mδ} , FN , IN , Aβ , Tµ, Mδ ≥ 0. � (15)

Parameters values are given in the Table 1.

Key features analysis
The existence, uniqueness, non-negativity, and boundedness of the suggested model are all investigated in this 
section.

Existence and uniqueness
Theorem 4.1  46 There exists a unique solution for every non-negative initial condition in the suggested model 
(12).

Proof  We are evaluating the given model (12)’s solutions for their existence and uniqueness in the region 
Ω × [0, T], where

	 Ω = (FN , IN , Aβ , Tµ, Mδ) ∈ R5 : max (∥FN ∥, ∥IN ∥, ∥Aβ∥, ∥Tµ∥, ∥Mδ∥) .� (16)

We define the mapping:

	 X(H) = (X1(H), X2(H), X3(H), X4(H), X5(H)) ,� (17)

where H = (FN , IN , Aβ , Tµ, Mδ) and

Parameter Description Value Unit Source

FN Functioning brain neurons 0.14 g/ml 44

IN Infected brain neurons 0 g/ml 44

Aβ Amyloid-beta concentration in brain 0.000001 g/ml 44

Tµ Tau protein concentration in brain 0.000001 g/ml Assumed

Mδ Microglia concentration in brain 0.02 g/ml 44

ΠN Rate of neuron production in brain 1 Per day Assumed

υ Input of microglia on neurons development 0.025 g/ml Assumed

α Rate of Amyloid-beta cascade growth in neurons 0.08 Per day 45

ϕ1 Natural death rate of neurons in brain 0.08 Per day Assumed

β1 Killing rate of infected neurons by Microglia 0.06 Per day 44

γ Clearance of neurons by Amyloid-beta 0.00017 Per day 44

ϕ2 Death rate of infected neurons 0.00019 Per day 44

β2 Clearance rate of Amyloid-beta by Microglia 0.002 Per day 44

dβ Proteolytic degradation rate of Amyloid-beta 9.51 Per day 44

κ Initiating rate of Tau protein by Amyloid-beta 0.025 Per day 45

β3 Clearance rate of Tau protein by Microglia 0.001 Per day Assumed

ρ Rate of Neuro-degeneration from Tau protein 0.025 Per day 45

dµ Natural degradation rate of tau protein 0.277 Per day 44

ϕ3 Death rate of Microglia 0.015 Per day 44

Table 1.  Initial variables’ states and parameters values.
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X1(H) = ΠN + υMδ − αFNAβ − ϕ1FN ,

X2(H) = αFNAβ − β1INMδ − (γ + ϕ2)IN ,

X3(H) = γIN − β2AβMδ − (dβ + κ)Aβ ,

X4(H) = κAβ − β3TµMδ − (dµ + ρ)Tµ,

X5(H) = (β1IN + β2Aβ + β3Tµ)Mδ − ϕ3Mδ.

� (18)

Let H̄ =
(
F̄N , ĪN , Āβ , T̄µ, M̄δ

)
, then

	

∥X(H) − X(H̄)∥ = |X1(H) − X1(H̄)| + |X2(H) − X2(H̄)| + |X3(H) − X3(H̄)| + |X4(H) − X4(H̄)|
+ |X5(H) − X5(H̄)|

≤ −(αAβ + ϕ1)|FN − F̄N | − (γ + ϕ2)|IN − IN | − (αFN + dβ + κ)|Aβ − Āβ |
− (dµ + ρ)|Tµ − T̄µ| − ϕ3|Mδ − M̄δ|

≤ X1|H − H̄| + X2|H − H̄| + X3|H − H̄| + X4|H − H̄| + X5|H − H̄|
≤ X∥H − H̄∥,

� (19)

where X = max {X1, X2, X3, X4, X5} and

	





X1 = −αAβ − ϕ1,
X2 = −γ − ϕ2,
X3 = −αFN − dβ − κ,
X4 = −dµ − ρ,
X5 = −ϕ3.

� (20)

The existence and uniqueness of the proposed fractional-order system (12) are thus guaranteed since X(H) 
meets the Lipschitz condition. □

Biological feasibility
Examine the closed set Ω for the system (12), which is defined by

	 Ω =
{

(X1, X2, X3, X4, X5) ∈ R+ : X1(t), X2(t), X3(t), X4(t), X5(t) ≥ 0
}

,� (21)

is biological feasible.

Lemma 4.2  47 Let q(t) ∈ C[0, T] and c0Dσ
t q(t) ∈ C[0, T] for σ ∈ (0, 1]. Then, we have

	
q(t) = q(0) + 1

Γ(σ)
c
0Dσ

t q(t)(t − ς)σ,� (22)

where ς ∈ [0, t] for all t ≤ T.

Remark 4.1  Let q(t) ∈ C[0, T]. and c0Dσ
t q(t) ≥ 0 for all t ∈ (0, T] and σ ∈ (0, 1], it results from Lemma 4.2 

that q(t) is non-decreasing for all t ∈ [0, T].

Theorem 4.3  47 ∀t ≥ 0, the solution of the system (12), starting in R5
+ and with initial conditions, is constrained 

and positive invariant.

Proof  First, we show the positive invariance of the set Ω. For this reason, it is developed from system (12) that

	

c
0Dσ

t FN (t)
∣∣∣
FN =0, Tµ≥0

= ΠN + υMδ ≥ 0,

c
0Dσ

t IN (t)
∣∣∣
IN =0, FN ≥0, Aβ≥0

= αFNAβ ≥ 0,

c
0Dσ

t Aβ(t)
∣∣∣
Aβ=0, IN ≥0

= γIN ≥ 0,

c
0Dσ

t Tµ(t)
∣∣∣
Tµ=0, Aβ≥0

= κAβ ≥ 0,

c
0Dσ

t Mδ(t)
∣∣∣
Mδ=0

= 0.

� (23)

Our conclusion is that the set Ω is positive invariant with respect to model (12) since Lemma 4.2 and system (23) 
hold for all points of Ω. Next, we establish the boundedness of the set Ω. Adding all of the model’s Eq. (12) yields 
the fractional derivative of the entire population N(t), namely

	
c
0Dσ

t N(t) = ΠN − ϕ1FN − ϕ2IN − dβAβ − dµTµ − ϕ3Mδ.� (24)
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Let

	
c
0Dσ

t N(t) = ΠN − ϕ∗N,� (25)

The problem is reformulated as the subsequent initial value problem:

	

{ c
0Dσ

t N(t) + ϕ∗N = ΠN ,
N(0) = N0. � (26)

When we apply the Laplace transform on both sides, we get

	 L [N(t) + ϕ∗N] = L [ΠN ] .� (27)

We get

	
N(s) = s−1(ΠN + sσN0)

sσ + ϕ
.� (28)

From inverse Laplace transform, we get

	

N(t) = ΠN tσEσ,σ+1(−ϕtσ) + N0Eσ,σ+1(−ϕtσ)

≤ ΠN

ϕ
[ϕtσEσ,σ+1(−ϕtσ)] + Eσ,σ+1(−ϕtσ)

≤ ΠN

ϕ

1
Γ(1) ≤ ΠN

ϕ
,

� (29)

where Eσ,σ+1 represents Mittag-Leffler function.
Because the entire population is bounded, the sub-populations are as well, completing the proof. □

Qualitative analysis
Equilibrium points and reproductive number
Lemma 5.1  The equilibrium point of (12) is the solution to the

	

ΠN + υMδ − αFNAβ − ϕ1FN = 0,

αFNAβ − β1INMδ − (γ + ϕ2)IN = 0,

γIN − β2AβMδ − (dβ + κ)Aβ = 0,

κAβ − β3TµMδ − (dµ + ρ)Tµ = 0,

(β1IN + β2Aβ + β3Tµ)Mδ − ϕ3Mδ = 0.

� (30)

If every eigenvalue (ϖi) of the Jacobian matrix evaluated at the equilibrium point satisfies

	
| arg(ϖi)| >

σπ

2 ,

then the equilibrium point is locally asymptotically stable.
According to the Lemma 5.1, Eq. (12)’s disease-free equilibrium point is

	
P 0 = {F0

N , I0
N , A0

β , T0
µ, M0

δ} =
{

ΠN

ϕ1
, 0, 0, 0, 0

}
.� (31)

Next, the next-generation matrix approach48,49 is used to calculate the basic reproduction number (R0) of Eq. 
(12). The number of secondary instances of the primary cases that occur during the infectious period as a result 
of the infection type is known as the basic reproduction number. For this purpose, consider the system

	

c
0Dσ

t IN (t) = αFNAβ − β1INMδ − (γ + ϕ2)IN ,
c
0Dσ

t Aβ(t) = γIN − β2AβMδ − (dβ + κ)Aβ ,
c
0Dσ

t Tµ(t) = κAβ − β3TµMδ − (dµ + ρ)Tµ.

� (32)

The associated transition matrix (V) and incidence matrix (F) for the system (12), at P 0, are obtained as follows, 
respectively:

	
F =

(
0 αΠN

ϕ1
0

0 0 0
0 0 0

)
, V =

(
γ + ϕ2 0 0

−γ dβ + κ 0
0 −κ dµ + ρ

)
.� (33)

Then, from spectral radius of FV−1, we have the reproductive number (R0) as:
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R0 = αγΠN

(γ + ϕ2)(dβ + κ) .� (34)

One important epidemiological statistic that is connected to cognitive capacities and the likelihood of incident 
Alzheimer’s disease is the fundamental reproduction number R0. The risk of incident Alzheimer’s disease 
will be higher if R0 > 1 and lower if R0 < 1. In terms of biology, the term “reproductive number (R))” in 
Alzheimer’s refers to the transmission of misfolded proteins and illness from neuron to neuron or from region 
to region rather than from person to person. The average number of new neurons or brain regions infected by a 
pathogenic protein, like tau, that originate from a single infected neuron or region during its infectious phase is 
indicated here by R0. When the R0 > 1, it means that the pathology is gradually expanding and advancing the 
disease. On the other hand, R0 < 1 indicates that the pathology is contained and cannot spread further, which 
could lead to a very sluggish or non-progressive disease state.

Equation (12)’s endemic equilibrium point is P ∗ = {F∗
N , I∗

N , A∗
β , T∗

µ, M∗
δ}, where

	

F∗
N =ΠN + υM∗

δ

αA∗
β + ϕ1

, I∗
N =

αF∗
NA∗

β

β1M∗
δ + γ + ϕ2

,

A∗
β = γI∗

N

β2M∗
δ + dβ + κ

, T∗
µ =

κA∗
β

β3M∗
δ + dµ + ρ

,

M∗
δ = max

{
αF∗

NA∗
β − (γ + ϕ2)I∗

N

β1I∗
N

,
γI∗

N − (dβ + κ)A∗
β

β2A∗
β

,
κAβ − (dµ + ρ)T∗

µ

β3T∗
µ

}
.

� (35)

P ∗ exists when R0 > 1.

Sensitivity of R0’s parameters
The sensitivity analysis of the R0 to the parameters in Eq. (38) is presented in this subsection. This analysis’s goal 
is to quantify the factors that most affect R0. We use normalized sensitivity index50 and the following formula 
can be used to get the index of each parameter involved in R0:

	
ℑR0

z = ∂R0

∂z

z

R0
,� (36)

where ℑR0
z  is the normalized sensitivity index formula in which z represents the parameter to be analyzed. Table 

2 displays the findings of the sensitivity index calculation on the model parameters.
A positive sensitivity index means that higher parameter values result in higher basic reproduction numbers, 

whereas negative sensitivity means that higher parameter values result in lower basic reproduction numbers. As 
an illustration, if the sensitivity index is ℑR0

α = 1, then raising the α value by 10% will raise R0 by 10%, and if 
ℑR0

ϕ2
= −0.5277, then raising the ϕ2 value by 10% will reduce R0 by 5.277%. They thereby help to lower the 

basic reproduction number, which in turn helps to lower the disease’s prevalence. Figure 2 shows a bar graph 
of these results. Additionally, the sensitivity plots in Fig. 3(a) - 3(g) show how different model parameters affect 
the R0.

Ulam-hyres stability
This section goes into the Ulam-Hyers stability of nonlinear fractional-order systems utilizing fractional 
methods, a concept that dates back to the twentieth century and originated with Ulam and Hyers’ work between 
1940 and 1941. In numerical analysis and optimization, Ulam-Hyers stability is essential because it yields near-
precise results rather than perfect ones. Ulam-Hyers-Rassias has made a substantial contribution to this issue. 
Simulations that show how small variances in solutions disappear over time can be used to numerically verify 
Ulam-Hyers stability. This entails proving convergence, comparing perturbed solutions to accurate ones, and 
offering information about the mathematical model’s adaptability and reliability. It ensures that slight variations 
in initial conditions or external factors do not produce unanticipated results, with the system’s response 
proportionate to the scale of the perturbation. Because of the intrinsic complexity of nonlinear fractional-order 
models, analytical solutions are frequently unattainable, necessitating reliance on numerical techniques and 
approximate analytical methods. Proving UH stability for fractional models uses fixed-point theorems within 
appropriate function spaces, simplifying the approach and eliminating the necessity for Lyapunov analysis. 
Furthermore, proving Ulam-Hyers stability validates the use of numerical methods by assuring that calculated 

Parameter Sensitivity index Parameter Sensitivity index

α 1.0000 ΠN 1.0000

γ 0.4722 ϕ2 − 0.5277

dβ − 0.9999 κ − 0.0026

Table 2.  Parameters sensitivity index results.
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Fig. 3.  Variations in R0 via different parameters.

 

Fig. 2.  Sensitivity indices of the R0’s parameters.
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numerical solutions are consistently close to the genuine but unknown precise solutions of the models, protecting 
against mathematically nonsensical findings.

Lemma 6.1  The solution of the problem

	

{ c
0Dσ

t Q(t) = ϖ(t, Q(t)) + m(t),
Q(0) = Q0, � (37)

satisfies the following:

	

∣∣∣∣Q(t) − Q0 − 1
Γ(σ)

ˆ t

0
ϖ(ς, Q(ς))(t − ς)dς

∣∣∣∣ ≤ ℑσ

Γ(σ + 1)η = φη.� (38)

Definition 6.1  The system (12) is Ulam-Hyers-Rassias stable for η(t) ∈ L1([0, T],R) and a real valued contin-
uous function z(t) on [0, ∞), provided that

•	 ∃ a real value δσ > 0, and
•	 for each of the solutions (FN , IN , Aβ , Tµ, Mδ) ∈ L1([0, T],R) of the following inequality 

	
∣∣c
0Dσ

t Q(t) − z(t, Q(t))
∣∣ ≤ η(t),� (39)

 there is a solution (F̄N , ĪN , Āβ , T̄µ, M̄δ) ∈ L1([0, T],R) of (12) satisfying 

	 |Q(t) − Q̄(t)| ≤ δση(t).� (40)

Theorem 6.1  The system (12) is Ulam-Hyers-Rassias stable for L1([0, T],R) if

	 QMσ < 1.� (41)

Proof  For ϖ > 0,

	

ˆ t

0
(t − ς)η(ς)dς ≤ ϖη(t), ∀t ∈ [0, T].� (42)

According to Definition 6.1, η is a non-decreasing function of t. It has been demonstrated that the function φ is 
continuous and that the solutions’ positivity satisfies the Lipschitz conditions. Therefore, we have

	
Q̄(t) = Q0 + 1

Γ(σ)

ˆ t

0
(t − ς)σ−1∥z(ς, Q̄(ς))∥dς.� (43)

Integrating gives us

	

∣∣Q(t) − Q0 − 1
Γ(σ)

ˆ t

0
(t − ς)σ−1z(ς, Q(ς))dς

∣∣ ≤ 1
Γ(σ)

ˆ t

0
(t − ς)σ−1η(ς)dς ≤ ϖMσ

Γ(σ + 1)η(t).� (44)

Also, we get

	

∣∣Q(t) − Q̄(t)
∣∣ ≤

∣∣∣Q(t) − Q0 −
{ 1

Γ(σ)

ˆ t

0
(t − ς)σ−1z(ς, Q̄(ς))dς

+ 1
Γ(σ)

ˆ t

0
(t − ς)σ−1z(ς, Q(ς))dς − 1

Γ(σ)

ˆ t

0
(t − ς)σ−1z(ς, Q(ς))dς

}∣∣∣

≤
∣∣∣Q(t) − Q0 − 1

Γ(σ)

ˆ t

0
(t − ς)σ−1z(ς, Q(ς))dς

∣∣∣

+ 1
Γ(σ)

ˆ t

0
(t − ς)σ−1

∣∣∣z(ς, Q(ς)) − z(ς, Q̄(ς))
∣∣∣dς

≤ ϖMση(t)
Γ(σ + 1) + ΨzMσ

Γ(σ + 1)

ˆ t

0
(t − ς)σ−1∣∣Q(ς) − Q̄(ς)

∣∣dς

≤ ϖMση(t)Eσ(ΨzMσ)
Γ(σ + 1) .

� (45)

Let ϖMσEσ(Ψφi
Mσ)

Γ(σ+1) = δσ , then

	 |Q(t) − Q̄(t)| ≤ δση(t).� (46)
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□

Chaos control
Adaptive techniques can be used to regulate the chaos in the fractional order system (12) when uncertainties and 
disturbances are taken into account. The objective is to appropriately build controllers to stabilize chaos around 
fixed points in the system’s trajectories. We use a linear feedback regulate method to stabilize the regulated 
design of the proposed system (12) based on its equilibrium points.

Theorem 7.1  Under the following control law, the fractional-order chaotic system is stabilized.

	

c
0Dσ

t FN (t) = ΠN + υMδ − αFNAβ − ϕ1FN − ψ1(FN − F⋆
N ),

c
0Dσ

t IN (t) = αFNAβ − β1INMδ − (γ + ϕ2)IN − ψ2(IN − I⋆
N ),

c
0Dσ

t Aβ(t) = γIN − β2AβMδ − (dβ + κ)Aβ − ψ3(Aβ − A⋆
β),

c
0Dσ

t Tµ(t) = κAβ − β3TµMδ − (dµ + ρ)Tµ − ψ4(Tµ − T⋆
µ),

c
0Dσ

t Mδ(t) = (β1IN + β2Aβ + β3Tµ)Mδ − ϕ3Mδ − ψ5(Mδ − M⋆
δ).

� (47)

where {}⋆ depicts the system (6)’s equilibrium point and control parameters are: ψ1; ψ2; ψ3; ψ4, ψ5.

Proof  The Jacobian matrix at equilibrium point is given as follows:

	

J(P ⋆) =




−ϕ1 − ψ1 0 −α ΠN
ϕ1

ρ 0
0 −γ − ϕ2 − ψ2 α ΠN

ϕ1
0 0

0 γ −dβ − κ − ψ3 0 0
0 0 κ −dµ − ρ − ψ4 0
0 0 0 0 −ϕ3 − ψ5


 .� (48)

The characteristic equation can be expressed as follows:

	

f(ξ) =

∣∣∣∣∣∣∣∣

ξ + ϕ1 + ψ1 0 α ΠN
ϕ1

−ρ 0
0 ξ + γ + ϕ2 + ψ2 −α ΠN

ϕ1
0 0

0 −γ ξ + dβ + κ + ψ3 0 0
0 0 −κ ξ + dµ + ρ + ψ4 0
0 0 0 0 ξ + ϕ3 + ψ5

∣∣∣∣∣∣∣∣
= 0.� (49)

Letting ψ1 = 1, ψ2 = 2, ψ3 = 3, ψ4 = 4, and ψ5 = 5 gives us

	 ξ1 = ϕ1 − 1, ξ2 = −γ − ϕ2 − 2, ξ3 = −dβ − κ − 3, � (50)

	 ξ4 = −dµ − ρ − 4, ξ5 = −ϕ3 − 5. � (51)

We can easily verify that

	
| arg ξi| = π >

σπ

2 and |ξi| <

[
2cos

(
| arg ξi| − π

2 − σ

)]σ

, 0 < σ < 1.� (52)

We can observe that all of the eigenvalues are negative, as shown below, using the parameter values from Table 
1, which provides the asymptotic stability for the equilibrium point.

	 ξ1 = −1.08, ξ2 = −2.00036, ξ3 = −12.535, ξ4 = −4.302, ξ5 = −5.015.� (53)

□

Numerical scheme
According to recent research, power-law processes can be simulated using the Caputo derivative. Given the 
dynamics seen in fractional calculus, we employed the temporal derivative in conjunction with the Caputo 
derivative to incorporate power law effects into our model. The problem is then discretized using a numerical 
approach51,52 based on Newton polynomial interpolation. We can generalize the system (12) in abstract form:

	

{
C
0Dσ

t Q(t) = λ(t, Q(t)), σ ∈ (0, 1], t ∈ [0, T],
Q(0) = Q0,

� (54)

Then we have
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Q(tζ+1) = Q0 + 1

Γ(σ)

ζ∑
j=2

ˆ tj+1

tj

λ(tζ+1 − ς)σ−1dς.� (55)

Approximating λ(t, ∆(t)) using the Newton polynomial as

	

Pl(ϕ) ≃ λ(tj−2, Qj−2)

+ 1
Qt

[
λ(tj−1, Qj−1) − λ(tj−2, Qj−2)

]
× (ϕ − tj−2)

+ 1
2Qt2

[
λ(tj , Qj) − 2λ(tj−1, Qj−1) + λ(tj−2, Qj−2)

]
× (ϕ − tj−2)(ϕ − tj−1).

� (56)

After some computations, we get

	

Q(tζ+1) = Q0 + (∆t)σ

Γ(σ + 1)

ζ∑
j=2

λ(tj−2, Qj−2) ×
(

(ζ − j + 1)σ − (ζ − j)σ
)

+ (∆t)σ

Γ(σ + 2)

ζ∑
j=2

{
λ(tj−1, Qj−1) − λ(tj−2, Qj−2)

}
×

((ζ − j + 1)σ(ζ − j + 3 + 2σ)
−(ζ − j)σ(ζ − j + 3(1 + σ))

)

+ σ(∆t)σ

2Γ(σ + 3)

ζ∑
j=2

{
λ(tj , Qj) − 2λ(tj−1, Qj−1) + λ(tj−2, Qj−2)

}

×
(

(ζ − j + 1)σ{2(ζ − j)2 + (3σ + 10)(ζ − j) + (2σ + 9)σ + 12}
−(ζ − l)σ{2(ζ − j)2 + (5σ + 10)(ζ − j) + 6(σ2 + 3σ + 2)}.

)

� (57)

The proposed scheme’s algorithm is illustrated in Fig. 4.

Simulations discussion
This section investigates the temporal dynamics of our fractional-order model, revealing a variety of shifting 
patterns in different compartments and providing numerical evidence to support our findings. Using the Newton 
polynomial method described in the previous section, we mathematically examine the effects of fractional order 
changes on the density of functioning neurons, infected neurons, amyloid-beta, tau protein and microglia. The 
values of the parameters are taken from Table 1. We used MATLAB programming to run these simulations. The 
analysis shows consistent behavior patterns and a substantial correlation between the dynamics of the fractional-
order and integer-order models. The inquiry centers on various fractional order cases, all of which are available 
through the figures. Numerical results are derived for various ways of assessing the feasibility and accuracy of the 
proposed model, as shown in Figures 6-19, which support theoretical observations. Details of each sub-figure are 
also explained below for better representation and understanding of the behavior of the model.

Fig. 4.  Numerical scheme’s algorithm.
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•	 Fig. 5a shows the analysis of functioning neurons at various σ levels. We see that functional neurons first de-
cline in the presence of harmful proteins and then resume normal functioning once microglia are activated. 
The comparison study of integer-order and fractional-order model is displayed in Fig. 5b. At larger fractional 
orders, we observe an increase in functioning neurons. Using actual data from the literature, Fig. 5c illustrates 
the dynamics of FN (t) at different σ levels. At increasing σ values, we observe an increase in functioning 
neurons.

•	 The study of infected neurons at different σ levels is shown in Fig. 6a. Infected neurons accumulate as a result 
of the infection, and as they recover, they start to deteriorate and stabilize. Figure 6b shows the comparison 
study of the integer-order and fractional-order models. The density of tau and amyloid-beta proteins, as well 
as infected neurons, noticeably decreases at increasing fractional orders. Figure 6c shows the dynamics of 
IN (t) at various σ values using real data from the literature. The dynamics of infected neurons decrease more 
quickly at large σ values than at high fractional orders.

•	 Figure 7a displays the amyloid-beta analysis at different σ values. Amyloid-beta protein levels gradually de-
cline as a result of microglia activation. The comparative study between the fractional-order and integer-order 
models is shown in Fig. 7b. The density of amyloid-beta decreases noticeably with higher fractional orders. 
The dynamics of Aβ(t) at various σ values are depicted in Fig. 7c using real data from the literature. Com-
pared to high fractional orders, the dynamics of Aβ  decrease more quickly for large σ values.

•	 The simulation of tau protein at different σ levels is shown in Fig. 8a. High σ values cause the tau protein’s 
dynamics to drop more quickly than high fractional orders. Figure 8b shows the comparison study of the in-
teger-order and fractional-order models. The tau protein density noticeably decreases with higher fractional 
orders. Figure 8c shows the dynamics of Tµ(t) at various σ values using real data from the literature. The 
dynamics of Tµ decrease more quickly at large σ values than they do at high fractional orders.

•	 In Fig. 9a, microglia are analyzed at different σ levels. Microglia first become more functional at high fraction-
al orders, but thereafter their functionality declines at high fractional orders. In Fig. 9b, the comparison study 
of integer-order and fractional-order models is shown. Microglia proliferate more rapidly at low fractional 
orders than at higher fractional orders and integer-order order. The dynamics of Mδ(t) at various σ values 
are depicted in Fig. 9c using real data from the literature. Microglia’s performance decreases at large fractional 
orders in contrast to smaller σ values.

•	 When it comes to representing memory and hereditary characteristics in biological systems, a Caputo frac-
tional model performs better than conventional integer-order models. These effects are crucial for examining 

Fig. 6.  Comparison results of IN (t) using integer-order, fractional-order and different population.

 

Fig. 5.  Comparison results of FN (t) using integer-order, fractional-order and different population.
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the course of Alzheimer’s disease. The Caputo derivative is preferred among fractional approaches because 
it can include integer-order initial conditions. It is especially useful for expressing phenomena with nonlo-
cal features because of this capability. The non-locality of the Caputo fractional operator illustrates the role 
of memory in the dynamics of Alzheimer’s disease. Its spectrum of low to high prevalence is analyzed to 
determine its efficacy. The fractional order σ in the fractional model of Alzheimer’s disease characterizes 
memory or time-delay effects, illustrating how past states affect disease dynamics. A smaller σ indicates a 
stronger memory effect, which is dependent on the disease’s complete history, whereas values near 1 indicate 
lesser memory and behavior, similar to standard integer-order differential equations. This technique helps 
describe the complicated, non-local temporal dynamics of Alzheimer’s disease, such as amyloid-β build-
up and Microglia activation. The conventional integer order model solution at σ = 1 is used in the study 
to compare integer-order results with numerical simulation results. Over longer time periods, curves with 
σ = 0.95, 0.90, 0.85 exhibit a slower increase or decrease. A fair ratio can be employed to lessen the conse-

Fig. 9.  Comparison results of Mδ(t) using integer-order, fractional-order and different population.

 

Fig. 8.  Comparison results of Tµ(t) using integer-order, fractional-order and different population.
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Fig. 7.  Comparison results of Aβ(t) using integer-order, fractional-order and different population.
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quences of amyloid beta and tau protein. With the system’s memory effect and derivative order decreasing 
from 1, the concentration of tau and amyloid-beta proteins rises, suggesting that fractional-order dynamics 
with memory effects are more robust. For long-range interactions between neurons, amyloid-beta, tau pro-
tein, infected neurons, and microglia, the model provides more accurate predictions. Effective therapy of 
Alzheimer’s disease requires an understanding of its historical dynamics.

•	 A surface plot shows a three-dimensional relationship in two dimensions with variables on the two axes and 
a smooth surface. Figure 10a and b show 3D surface graphs for functional neurons with suggested parameter 
values and different population, respectively. Figure 11a and b show 3D surface graphs for infected neurons 
with suggested parameter values and different population, respectively. Figure 12a and b show 3D surface 
graphs for amyloid-beta concentration with suggested parameter values and different population, respective-
ly. Figure 13a and b show 3D surface graphs for tau protein concentration with suggested parameter values 
and different population, respectively. Figure 14a and b show 3D surface graphs for microglia density with 
suggested parameter values and different population, respectively. Surface plots of the feasible zone’s stable 
relation and the chaos region for various compartments in the phase trajectory are displayed. These response 
surface plots show the main effects and interaction effects of independent variables. The idea that fractional 
derivatives influence neuron concentration is supported by variations in outlines. Compartment densities are 
shown by surface peaks.

Fig. 11.  Response surface plot of IN (t).

 

Fig. 10.  Response surface plot of FN (t).
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•	 Two-dimensional contour plots give visual representations of response values. A contour plot joins points 
with the same response value to show a two-dimensional representation of a response variable. Contour 
plots for functioning neurons with recommended parameter values and distinct populations are displayed in 
Fig. 15a and b, respectively. Contour plots for infected neurons with varied populations and recommended 
parameter values are displayed in Fig. 16a and b. Contour plots for amyloid-beta concentration with recom-
mended parameter values and distinct populations are displayed in Fig. 17a and b, respectively. Contour plots 
for tau protein concentration with recommended parameter values and distinct populations are displayed in 
Fig. 18a and b, respectively. Contour plots for microglia density with recommended parameter values and 
distinct populations are displayed in Fig. 19a and b, respectively. These contour plots show stepwise behavior 
and reveal fractional order σ for each compartment. For compartment densities as shown by contour plots, 
darker areas imply slower progression and lighter patches indicate higher densities.

The comparative numerical outcomes for all biological compartments associated with Alzheimer’s disease (AD) 
under integer-order conditions are presented in Tables 3, 4, 5, 6 and 7. Table 3 illustrates the temporal evolution 
of the FN  compartment, representing the population of normal neurons. The results indicate that neuronal 
activity initially increases but gradually declines over time, reflecting the progressive nature of neuronal 
degradation characteristic of AD. Table  4 presents the results for the IN  compartment, which corresponds 
to infected or impaired neurons. A noticeable decline is observed for lower fractional values, signifying that 
diminished memory effects suppress the progression of neuronal impairment. The dynamic response of the 
Aβ  compartment, shown in Table 5, demonstrates a steady decrease in amyloid-beta concentration over time, 

Fig. 13.  Response surface plot of Tτ (t).

 

Fig. 12.  Response surface plot of Aβ(t).
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implying that the integer-order case promotes a faster clearance mechanism compared to fractional dynamics. 
Similarly, Table 6 reports the variations in the Tµ compartment, representing activated microglial cells. Here, 
smaller fractional parameters yield faster decay and lower steady-state values, highlighting the sensitivity of 
microglial activation to the order of differentiation. Finally, Table 7 summarizes the Mδ  compartment results, 
which describe the density of pro-inflammatory cytokines. The integer-order condition yields the highest 
magnitude, whereas fractional parameters closer to zero correspond to reduced inflammatory responses.

Conclusion
A novel mathematical model of Alzheimer’s disease has been introduced, which includes nonlinear fractional 
differential equations for tau protein, amyloid-beta, microglia, infected neurons, and functioning neurons. 
The study analyzed the dynamics of a proposed model for Alzheimer’s disease transmission using the next-
generation technique. It found two equilibrium points and subjected reproductive number parameters to 
sensitivity analysis. The study confirmed the Ulam-Hyers-Rassias stability requirements. The model was 
solved using Newton polynomial interpolation and the discretization of the Caputo fractional-order operator. 
Simulations were conducted to investigate the global effects of factors on generating circumstances that prevent 
Alzheimer’s disease incidence. Fractional calculus has proven to be a helpful tool for understanding the complex 
dynamics associated with memory disorders and cognitive deficits in Alzheimer’s disease research. Better illness 
prediction and treatment design are made possible by the analysis, which shows that fractional-order models 
accurately depict health processes. According to the simulation results, the concentration of tau and amyloid-beta 

Fig. 15.  Contour plot of FN (t) within feasible domain.

 

Fig. 14.  Response surface plot of Mδ(t).
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proteins rises with derivative order and memory impact. By tracking changes in treatment controls and illness 
impacts over time, researchers can improve the design of their models. For increased accuracy, future research 
recommends including time delay in model dynamics. Validation of real-world data will help improve parameter 
estimations for useful applications. Collecting statistics on Alzheimer’s disease is difficult since patients’ cognitive 
deficits limit communication and self-reporting. The disease’s gradual growth makes tracking its development 
difficult, and variable diagnosis techniques result in untrustworthy data. Ethical concerns about disadvantaged 
groups provide moral quandaries for researchers, while logistical challenges such as patient accessibility, data 
sharing issues, and funding limits impede complete data collection. Our model uses arbitrary parameter values 
identified in the literature, with some values assumed, limiting its applicability to clinical practice. Accurate 
and interpretable parameters are required for models to provide important insights for early identification and 
effective treatment. A worldwide data format for normalizing and standardizing measures could greatly improve 
data integration, making future cohort studies more efficient. This would save researchers a tremendous amount 
of time. Furthermore, emerging computer modeling methodologies may address present issues in Alzheimer’s 
disease modeling, thereby assisting in the development of medical interventions and procedures. Furthermore, 
Alzheimer’s disease models can be improved by including treatment effects and stochastic disturbances, resulting 

Fig. 17.  Contour plot of Aβ(t) within feasible domain.

 

Fig. 16.  Contour plot of IN (t) within feasible domain.
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t σ = 1 σ1 = 0.95 σ2 = 0.90 σ3 = 0.85
10 7.5899 7.4407 7.3228 7.2400

15 9.1911 8.7509 8.3749 8.0667

20 10.2838 9.6972 9.1752 8.7269

25 11.0153 10.3726 9.7778 9.2470

30 11.5050 10.8594 10.2372 9.6615

35 11.8330 11.2144 10.5925 9.9965

40 12.0529 11.4762 10.8712 10.2710

45 12.2003 11.6714 11.0926 10.4985

50 12.2991 11.8187 11.2704 10.6892

Table 3.  Comparative analysis of the FN (t) dynamics obtained under integer-order.

 

Fig. 19.  Contour plot of Mδ(t) within feasible domain.
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Fig. 18.  Contour plot of Tτ (t) within feasible domain.
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t σ = 1 σ1 = 0.95 σ2 = 0.90 σ3 = 0.85
10 13.5683 13.1011 12.5989 12.0572

15 12.7835 12.7319 12.6005 12.3793

20 11.8758 12.1072 12.2331 12.2416

25 11.0194 11.4754 11.8044 11.9938

30 10.2234 10.8692 11.3693 11.7116

35 9.4847 10.2939 10.9430 11.4188

40 8.7994 9.7501 10.5303 11.1253

45 8.1636 9.2367 10.1332 10.8356

50 7.5737 8.7524 9.7522 10.5518

Table 7.  Comparative analysis of the Mδ(t) dynamics obtained under integer-order.

 

t σ = 1 σ1 = 0.95 σ2 = 0.90 σ3 = 0.85
10 0.5183 0.8949 1.2849 1.6849

15 0.1080 0.3680 0.6689 1.0059

20 0.0225 0.1972 0.4205 0.6910

25 0.0047 0.1296 0.3008 0.5209

30 0.0010 0.0969 0.2340 0.4177

35 0.0002 0.0780 0.1921 0.3493

40 0.0000 0.0657 0.1635 0.3010

45 0.0000 0.0569 0.1427 0.2650

50 0.0000 0.0504 0.1268 0.2371

Table 6.  Comparative analysis of the Tµ(t) dynamics obtained under integer-order.

 

t σ = 1 σ1 = 0.95 σ2 = 0.90 σ3 = 0.85
10 0.0501 0.2408 0.4595 0.7034

15 0.0035 0.1118 0.2523 0.4253

20 0.0002 0.0734 0.1741 0.3056

25 0.0000 0.0554 0.1340 0.2401

30 0.0000 0.0448 0.1095 0.1988

35 0.0000 0.0377 0.0929 0.1702

40 0.0000 0.0326 0.0808 0.1493

45 0.0000 0.0287 0.0716 0.1332

50 0.0000 0.0257 0.0644 0.1204

Table 5.  Comparative analysis of the Aβ(t) dynamics obtained under integer-order.

 

t σ = 1 σ1 = 0.95 σ2 = 0.90 σ3 = 0.85
10 0.1394 0.4102 0.7134 1.0441

15 0.0095 0.1527 0.3286 0.5383

20 0.0008 0.1013 0.2268 0.3803

25 0.0001 0.0812 0.1818 0.3057

30 0.0000 0.0701 0.1561 0.2619

35 0.0000 0.0630 0.1393 0.2328

40 0.0000 0.0580 0.1273 0.2119

45 0.0000 0.0543 0.1183 0.1961

50 0.0000 0.0515 0.1114 0.1837

Table 4.  Comparative analysis of the IN (t) dynamics obtained under integer-order.

 

Scientific Reports |         (2026) 16:3778 20| https://doi.org/10.1038/s41598-025-33804-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in more realistic simulations. This method exposes how random variability drives illness progression and how 
different therapies can alter these dynamics, potentially changing the results reached from the models.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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