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Yachting tourism, as part of the global marine leisure industry, presents unique operational 
characteristics that increase vulnerability to safety incidents. While human factors are widely 
recognized as a dominant cause of maritime accidents, existing analytical frameworks offer limited 
explanatory power for the complexity of yachting contexts. This study develops an adapted Human 
Factors Analysis and Classification System for yachting (HFACS-YA) and applies it to a comprehensive 
dataset of yachting tourism accidents. A combination of chi-square tests was used to identify 
statistically significant human factor categories, and complex network modeling was employed to 
reveal structural relationships and critical causal pathways. Results show that “unsafe acts” are the 
most frequent immediate contributors to accidents, but the underlying root causes largely originate 
from “organizational influences,” including deficiencies in safety management systems, inadequate 
training programs, and low safety awareness. Prominent pathways involve legislative gaps, flawed 
organizational processes, poor supervisory oversight, and decision-making errors. By integrating 
statistical inference with network analysis, this research provides a replicable methodological 
framework for investigating accident causation in small-vessel maritime tourism. The findings offer 
actionable insights for regulators, maritime authorities, and industry stakeholders to enhance safety 
governance and reduce accident risks.
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The continued growth of global social and economic development, coupled with rising living standards, has 
driven increasing demand for high-quality, personalized travel experiences. Within the spectrum of leisure 
tourism, maritime tourism represents a rapidly expanding interface between the global shipping industry and 
the tourism economy. Within this continuum, cruise shipping has long exemplified the economic and safety 
significance of passenger-oriented maritime transport, while yachting tourism constitutes its small-scale, private, 
and often less regulated counterpart. As a distinct form of Special Interest Tourism (SIT), yachting tourism has 
emerged as a rapidly expanding niche market, offering unique recreational and experiential value1–3.Its market 
potential is underscored by optimistic global and regional forecasts: the global yacht market is projected to grow 
at a compound annual growth rate (CAGR) of 5.2% between 2021 and 2028, with the Chinese market expected 
to expand even faster—by 20–25% annually4,5. In 2021, the global yacht charter market was valued at USD 13.28 
billion, with an anticipated CAGR of 5.4% through 20316. In China, the sector recorded a CAGR of 15% from 
2019 to 2023 and is projected to surpass USD 12 billion by 20307.

Despite the sector’s momentum, scholarly investigations into yachting tourism have predominantly examined 
economic8, social9, and ecological impacts10,11, consumer behaviour12, and development strategies13. Research 
addressing safety issues—particularly those involving human factors—remains limited. Yachting accidents pose 
acute risks to human life, property, and the marine environment due to the inherently high-risk nature of such 
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activities. Data from the China Cruise and Yacht Industry Association indicate that 6% of 1,335 surveyed yachts 
reported insurance claims for accidents14. In the United States, the U.S. Coast Guard recorded between 3,844 and 
5,265 recreational boating accidents annually from 2020 to 2023, while the Royal National Lifeboat Institution 
(RNLI) conducted 8,868 rescue operations in 2021. These statistics illustrate persistent and widespread safety 
risks, yet academic research on the topic remains sparse.

International studies consistently attribute a substantial share of maritime accidents—up to 96%—to human 
error15–17. Similar ratios have been documented across vessel types, including 84–88% of tanker accidents18, 
79% of tugboat groundings19, and 75% of maritime fires20. In the Chinese context, research on human error 
in yachting accidents is especially underdeveloped. The country’s rapidly expanding yachting sector faces 
notable regulatory gaps in yacht leasing, marina operations, and coastal zoning21,22. These structural deficiencies 
can interact with individual decision-making in ways consistent with the “Swiss Cheese Model” of accident 
causation, which underscores the alignment of systemic failures and unsafe acts23. While prior work has largely 
focused on individual-level behaviours24,25, few studies have examined the role of organizational and regulatory 
systems in shaping accident risk—particularly in fast-growing but weakly regulated markets.

Accident causation has been conceptualized through several multi-layered theoretical models—including 
the Swiss Cheese Model, the Human Error Identification (HEI) framework, and the Systems-Theoretic Accident 
Model and Processes (STAMP)—which collectively emphasize the systemic and organizational nature of human 
error. Building on these insights, the Human Factors Analysis and Classification System (HFACS) provides a 
structured, hierarchical approach to identifying both latent and active failures across sectors such as aviation, 
shipping, mining, petroleum, medical treatmen and architecture26–32. However, HFACS has seen limited 
application in yachting tourism despite the unique risk profiles of this sector, including recreational equipment 
malfunctions, propeller entanglement, and nearshore navigation errors33,34. Moreover, existing HFACS-based 
studies often overlook the interdependencies among human factors, treating them as discrete hierarchical levels 
rather than components of a dynamic system35.

This study aims to clarify the human factors that contribute to yachting tourism accidents by classifying 
accident-related behaviors and identifying the multi-level mechanisms through which operational, supervisory, 
and organizational elements interact. Rather than relying on broad or generic categories, the analysis focuses on 
scenario-specific errors—such as guest management and recreational navigation practices—and examines how 
these frontline behaviors are shaped by assumptions embedded in safety management, training, and oversight. 
To pursue this objective, we develop an adapted Human Factors Analysis and Classification System for Yachting 
Accidents (HFACS-YA) and employ a mixed-method design that integrates grounded theory, statistical testing, 
and network-based modeling. Grounded theory is used to inductively identify human and organizational 
factors; chi-square and odds-ratio analyses evaluate significant associations among them; and complex network 
modeling maps the hierarchical structure and propagation pathways of failures within yachting operations.

This integrated approach combines qualitative insight with quantitative rigor, extending HFACS from a 
static classification tool to a dynamic analytical framework. It provides a multi-level understanding of accident 
causation in China’s emerging yachting tourism sector and offers generalizable methodological and practical 
implications for improving safety management in small-vessel maritime tourism worldwide.

Literature review
Yachting tourism
The International Maritime Organization (IMO) has not classified yachts as mandatory management entities 
under international maritime conventions, leading to varied definitions and regulatory frameworks across 
different countries. In China, the Yacht Safety Management Regulations define a yacht as a mechanically propelled 
vessel intended solely for the personal use of its owner, such as for sightseeing and recreational purposes36. This 
definition explicitly excludes unpowered vessels and those used for public rentals, excursions, or recreational 
operations in parks, coastal areas, and scenic waters. Yachts are commonly categorized by propulsion type 
into unpowered boats, sailboats, and powerboats37. For the purposes of this study, “yachts” refer specifically to 
mechanically propelled powerboats used for sightseeing, leisure, and water sports38.

Despite its growing economic and recreational importance, yachting tourism lacks a universally accepted 
definition. Terms such as “yachting tourism,” “nautical tourism,” “boating tourism,” “recreational boating,” 
and “pleasure boating” are often used interchangeably39. Sariisik et al. (2011) describe it as a romantic, leisure-
driven, and sport-oriented tourism activity involving privately or commercially owned medium-sized vessels40. 
Across definitions, common themes emerge: yachts are used for leisure or sport, with recreation, athleticism, 
and charterability forming the core elements of yachting tourism41. Accordingly, yachting tourism can be 
defined as a range of tourism activities conducted at sea, ports, or along coastlines, in which yachts serve as both 
transportation and accommodation to fulfill recreational, sporting, and entertainment needs.

Yachting tourism risks
Research directly addressing risks in yachting tourism remains limited; however, relevant evidence can be drawn 
from studies on small-vessel operations, coastal maritime accidents, and marine tourism activities. Existing 
work consistently demonstrates that yachting-related risks emerge from the interplay between human behavior, 
vessel characteristics, environmental conditions, and managerial practices.

In this broader research landscape, Yao et al. (2023) provided one of the few comprehensive assessments 
by combining fishbone diagrams and the Analytic Hierarchy Process to identify risks across human, vessel, 
environmental, and management dimensions. Their dynamic Bayesian network–based Yachting Tourism Safety 
Risk (YTSR) model further showed that human factors constitute the primary source of safety vulnerability42. 
Similar patterns are also observed in adjacent small-vessel research: Zhang et al. (2024) used probabilistic 
modeling to analyze fishing vessel collisions43, Francis et al. (2022) constructed a generic Bayesian network for 
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small fishing vessel operational risks25, and Lee et al. (2019) developed a coastal accident model that explicitly 
incorporates human factors, underscoring their systemic significance24.

Beyond causal modeling, technological interventions have been explored to enhance operator performance 
and reduce risk. Kim et al. (2019) proposed a collision-avoidance support system based on dynamic risk-zone 
assessment, addressing the narrow decision windows typical in small-vessel navigation44. Complementing 
these safety-oriented studies, emerging research highlights the psychosocial dimensions of risk in commercial 
yachting. Paker and Osman (2021), for example, examined how customer-to-customer interaction (CCI) risks 
shape yacht navigators’ perceived value and service outcomes, revealing human-centered risk mechanisms often 
overlooked in operational analyses45.

Taken together, the literature indicates that although yachting tourism remains understudied, its risk 
architecture aligns closely with established patterns in small-vessel maritime safety—particularly the 
predominance of human factors across technical, environmental, and social domains. This convergence provides 
a strong rationale for the present study’s focus on systematically examining the human element within the 
yachting tourism safety system.

Human factors analysis and classification system
The HFACS offers a structured framework for identifying human contributions to accidents, hazardous events, 
and organizational failures. Originally developed for aviation, the model classifies human error across four 
hierarchical levels: unsafe acts, preconditions for unsafe acts, unsafe supervision, and organizational influences. 
Its demonstrated utility has led to widespread adaptation across diverse industries seeking greater contextual 
relevance and diagnostic precision.

HFACS has subsequently evolved along two complementary directions: contextual adaptation and 
methodological integration. Contextual adaptations refine HFACS taxonomies to better represent sector-
specific realities. Omole and Walker (2015), for instance, broadened the framework by incorporating external 
influences—including political and societal pressures—recognizing that systemic failures often extend beyond 
organizational boundaries46. In the maritime domain, Uğurlu et al. (2018) proposed the HFACS-PV model for 
passenger vessels, adding a new “prerequisite” level to capture causal factors unique to that sector47.

At the same time, methodological integrations extend HFACS beyond descriptive classification toward 
quantitative and dynamic system analysis. Akyuz and Celik (2014) combined HFACS with cognitive mapping to 
elucidate complex causal relationships in a cruise ship lifeboat drill incident48. Subsequent research has embedded 
HFACS within probabilistic frameworks, such as Wang et al.’s (2024) Bayesian network model quantifying human 
and organizational contributions to vessel collisions49. Qiao et al. (2022) further advanced this line by integrating 
HFACS with Bayesian and complex network theories to reveal root causes of ship maintenance accidents50.

Despite its extensive application in aviation, merchant shipping, and construction, HFACS has not yet been 
systematically applied to yachting tourism, where safety insights are largely inferred from general maritime 
or marine tourism studies51,52. This gap limits the sector’s ability to identify human error pathways that are 
specific to yacht-based recreational and commercial activities. To address this deficiency, the present study 
develops and validates the HFACS-YA (Yachting Accidents) model, designed to capture the unique operational, 
environmental, and behavioral characteristics of yachting tourism. By contextualizing HFACS for this sector, 
the study seeks to reveal its distinctive human-factor causal patterns and provide targeted strategies for accident 
prevention.

The complex networks for risk analyse
Complex network theory has emerged as a powerful tool for analyzing the structure and dynamic behavior of 
complex systems and has gained increasing prominence in the domain of risk analysis in recent years53,54. Unlike 
traditional accident causation models, which primarily emphasize linear, unidirectional causal chains, complex 
network theory enables the exploration of non-linear, interconnected, and emergent behaviors among multiple 
contributing factors. Accidents often result from a chain of interdependent events and interactions—known as 
coupling effects—which are inadequately captured by linear models. This limitation hinders a comprehensive 
understanding of how risk propagates through complex systems.

Complex network analysis addresses this gap by characterizing the structure of interactions among 
risk factors, thus providing novel insights into the hidden propagation mechanisms and coupling dynamics 
that underlie accident causation. The application of this approach has proven valuable for enhancing risk 
identification, evaluation, and mitigation strategies in high-risk environments. For example, Zhang et al. (2023) 
developed a Rule-based Maritime Traffic Situation Complex Network (R-MTSCN) model by defining directed 
edges based on ship collision avoidance rules. Using Automatic Identification System (AIS) data from vessels 
navigating the Yangtze River Estuary, they validated the applicability of the model in real-world maritime 
navigation scenarios55. Similarly, Deng et al. (2023) constructed a coastal maritime accident network in China 
by integrating four major risk domains—human, vessel, environment, and management—into a comprehensive 
network structure. They applied complex network metrics to examine the structural characteristics and systemic 
vulnerabilities of the maritime accident system56. Ma et al. (2024) focused specifically on human factors in 
maritime accidents, constructing a complex network of causative elements leading to ship groundings. Through 
topological analysis, they revealed the intricate interrelationships among human error nodes and highlighted 
critical points of intervention57.

Building on these foundations, the present study applies complex network theory within the HFACS 
framework to construct a human factors network tailored to yachting tourism accidents. By integrating 
qualitative causation analysis with quantitative topological metrics, this approach enhances our understanding 
of risk propagation pathways and provides a more holistic perspective on the dynamics of human error in 
recreational maritime activities.
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Materials and methods
The methodology integrating HFACS, grounded theory, chi-square test, ratio analysis, and complex network 
analysis is described as follows:

Step 1: Qualitative analysis was performed utilizing Nvivo12.0 to discern the human factors present within 
the data samples.

Step 2: The conventional HFACS framework was adopted, leading to the introduction of the HFACS-YA 
framework, which categorizes the identified human factors based on strata. This framework facilitates the 
calculation of frequency counts and frequencies.

Step 3: The correlations and influence paths among human factors across different levels, as well as within the 
same level, were established through a chi-square test and ratio analysis.

Step 4: A complex network model was developed to identify the risk factors and critical causal elements, as 
illustrated in Fig. 1.

Data source
The data utilized in this study were collected from multiple sources to ensure comprehensiveness and reliability 
while minimizing potential bias. Primary sources include official yacht accident reports issued by governmental 
agencies such as the Maritime Safety Administration and the Emergency Management Bureau. Supplementary 
data were obtained from yachting industry-related websites, literature databases, and relevant media reports. 
Following a rigorous screening process, a total of 179 yachting tourism accidents occurring between 2006 and 
2024 were selected for analysis. These cases encompass a variety of incident types, including collisions, fires, 
groundings, reef strikes, and capsizings.

Fig. 1.  Research framework.
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The selected cases predominantly involve motor yachts constructed from fiberglass and glass fiber, which 
are commonly used materials in modern yacht manufacturing. These vessels primarily operated in coastal 
environments, reflecting typical usage scenarios in Chinese yachting tourism. According to the classification 
by Popescu and Mocanu (2019), yachts are categorized as small (< 12 m), medium (12–24 m), and large (> 24 
m)38. The majority of cases in this study involve small and medium-sized yachts under 24 m, which constitute 
the mainstream of China’s yachting industry. Large yachts, often classified as luxury vessels with more extensive 
crew and enhanced safety features, are relatively rare in China and associated with a limited number of publicly 
available accident cases. As such, they were excluded from the research sample.

To ensure adequate geographical representativeness, the dataset covers key coastal provinces—including 
Liaoning, Guangdong, Hainan, and Zhejiang—providing broad spatial coverage that supports the robustness and 
generalizability of the findings. The data used in this study exhibit strong validity. Although the overall sample 
size is modest, all cases are drawn from detailed official accident reports, and the core structure of the network 
analysis remains stable across samples. In addition, rigorous screening criteria were applied: only accidents 
involving motorized vessels that clearly fall within the definition of yachting tourism were included. This ensures 
that the identified human factors accurately reflect the characteristics of the yachting tourism context.

HFACS and its improvements
HFACS, derived from the “Swiss Cheese” model originally developed in aviation, integrates human factors and 
systems approaches23. Unlike other accident analysis methods, HFACS offers a detailed classification of human 
and organizational factors, enabling efficient identification of human errors in complex incidents58. Widely 
applied across industries, it is a valuable tool for analyzing accidents, hazardous events, and system failures26. 
The framework categorizes causal factors into four levels: unsafe acts, preconditions for unsafe acts, unsafe 
supervision, and organizational influences. These levels reflect a systemic approach to risk analysis, highlighting 
the interconnections among diverse risk sources (see Fig. 2).

While the traditional HFACS model has been widely applied, it is not universally suited to all domains, 
highlighting the need for domain-specific adaptations. In the maritime field, variants such as HFACS-PV 
(passenger vessel accidents), HFACS-MA (maritime accidents) and HFACS-Coll (collision accidents) have been 
developed, mainly for passenger, merchant, and fishing vessels. However, yachts differ fundamentally in terms 
of personnel, operating environment, and equipment. First, personnel: Yacht operators are often the owners, 
typically lacking professional training despite holding licenses. Their behavior is more easily influenced by 
emotion or risk-seeking tendencies (e.g., speeding, ignoring weather warnings). Existing models, like HFACS-
PV, assume standardized crew training and do not account for passenger interference, a frequent issue in 
yachting. Second, operating environment: Yachting often involves high-risk recreational activities (e.g., diving, 
swimming, onboard parties), creating complex accident chains. In contrast, HFACS-MA addresses commercial 
risks such as cargo mishandling, not leisure-related hazards. Yachts also navigate shallow, congested waters, 
unlike commercial vessels on open routes. Third, equipment and maintenance: Yachts feature advanced 
systems (e.g., autopilot, electronic navigation) that may be misused by amateurs, and their maintenance is 
often irregular—unlike the mandatory inspections in commercial shipping. Given these distinctions, this study 
develops a tailored framework—HFACS-YA—to analyze human factors in yachting accidents.

Compared to the traditional HFACS framework, the HFACS-YA model introduced in this study incorporates 
an additional tier—External Factors—positioned above the conventional organizational level. This modification 

Fig. 2.  “Swiss Cheese” model.
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acknowledges the broader systemic influences that contribute to yachting tourism accidents. The external 
tier comprises four subcategories: legislative gaps, administration oversights, design flaws, and social factors, 
aligning with earlier extensions proposed by Reinach and Viale (2006)59.

In refining the model, the original subcategories under “Human Factors” and “Operator Status” were 
consolidated. Analysis of accident reports indicated that elements under “Human Factors” primarily pertained to 
individual preparedness, while those under “Operator Status” related to psychological conditions. To streamline 
the framework, these were broadly reclassified under the single category of Human Factors. Furthermore, due 
to insufficient evidence in the accident reports to distinguish between unintentional and routine violations, both 
were merged into a unified Violations category.

The revised HFACS-YA model is presented in Fig.  3, with the updated components highlighted in red. 
Specifically, legislative gaps refer to inadequacies in regulatory frameworks governing the yacht industry and its 
oversight bodies. administration oversights denotes the ineffective implementation of safety rules and monitoring 
mechanisms by yacht operators, owners, and relevant authorities. For example, fragmented governance in 
China’s yachting sector—spread across multiple agencies—often leads to overlapping responsibilities and 
regulatory blind spots. Design flaws relate to deficiencies in yacht architecture or marina infrastructure. Social 
factors encompass broader systemic issues such as economic constraints, safety culture, and political context. For 
instance, some yacht owners may deliberately reduce maintenance frequency or use inferior parts to minimize 
operational costs, thereby undermining vessel safety. Taken together, these findings underscore the necessity of 
integrating an external factors level into the HFACS-YA model to more accurately capture the systemic nature of 
accident causation in the yachting tourism sector.

Fig. 3.  HFACS-YA model.
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Grounded theory
Grounded theory is a methodological approach aimed at identifying the fundamental concepts underlying 
social or managerial phenomena through systematic analysis and generalization of raw data. This process 
involves continuous comparison and successive abstraction of core concepts and categories, ultimately leading 
to the construction of a theoretical framework. Since its inception, grounded theory has been recognized for its 
rigorous operational processes and practical methodological characteristics. This approach encompasses several 
stages, including data collection, three levels of coding, theory construction, testing, and revision. The three 
levels of coding includes open coding, axial coding, and selective encoding60,61. This is shown in Fig. 4.

The chi-square test and odds ratio analysis
The chi-square test is a hypothesis testing method that can be used to analyze the association between two 
variables62. In this study, the chi-square test was employed to examine whether statistically significant associations 
exist among human factors across different levels of the HFACS-YA framework. The chi-square test starts with 
the null hypothesis H0 and alternative hypothesis H1. H0: There is no significant correlation between human 
factors at different tiers; H1: There is a significant correlation between human factors at different tiers. The chi-
square (χ2) can be expressed as

	
χ2 =

∑ (fi − fe)2

fe

� (1)

Where fi is the actual observed value, and fe is the theoretical observed value.
When p < 0.05, the null hypothesis H0 was rejected, indicating a significant correlation between the two 

factors; otherwise, there was no significant correlation between the two factors.
The odds ratio (OR) is an eigenvalue that measures the correlation between the attributes X and Y. This study 

introduces Odds Ratio (OR) to quantify the influence degree among human factors across different levels of the 
HFACS-YA framework. Let OR be m, and the calculation formula is

	
m = c1

c2
� (2)

When m > 1, a change in the upper factor increases the probability of the occurrence of the lower factor. When 
m < 1, a change in the upper-level factor does not significantly affect the lower-level factor.

Complex network
Complex networks abstractly model real-world complex systems by visualizing data with a network topology 
architecture, reflecting the relationship between entities through nodes and edges, enabling an effective 
representation of these systems63. A complex network is a graph G = (V, E) comprising a certain number of 
node sets v and edge sets E. V = {v1, v2, ..., vn} denotes the set of all nodes, that is, the set of human factors 
in Table 2, and E = {e1, e2, ..., en} denotes the set of all edges, that is, the set of effective co-occurring human 
factor pairs of connecting lines. Thus, a complex network can be represented by Eq. (3).

	
Aij

{
aij × wij , i → j

0, else � (3)

.
When a factor i triggers another factor, it triggers j  and aij = 1 and vice versaaij = 0 . wij  denotes the 

weights of the edges between nodes. Analyzing the topological characteristics of the network can effectively 
identify the key nodes in the network and their dynamic characteristics.

Fig. 4.  Grounded theory flow chart.
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Results
Human factors identification based on HFACS-YA and grounded theory
A grounded theory methodology was employed to examine yachting tourism accident reports with the aim of 
identifying the human factors contributing to the accidents. In this study, Nvivo12.0 software is used for coding. 
The classification attributes of the HFACS-YA were integrated into the coding framework of grounded theory. 
Table 1 illustrates the coding process.

In accordance with grounded theory, concepts related to human factors were initially extracted from 
accident investigation reports. To reduce subjectivity during the coding process, the original statements from 
these reports were employed as the foundation for concept mining. Subsequently, the relevance and distinctions 
among these concepts were analyzed through open coding, leading to their classification into appropriate 
categories. During the axial coding process, the main categories were established by synthesizing the categories 
identified in the open coding stage. Subsequently, the relationships between the main categories were elucidated, 
allowing the abstraction of core categories that encompass all identified categories. This study integrates five 
levels of the HFACS-YA model framework for delineation purposes. Finally, a saturability test was performed; 
the ten accident samples that had not been previously coded and analyzed were subjected to the aforementioned 
coding process. The results indicated that no new concepts or categories emerged, thereby demonstrating that 
the human factors identified through grounded theory within the HFACS-YA framework reached a state of 
saturation.

Through the grounded theory approach, a comprehensive analysis identified 75 human factors contributing 
to yachting tourism accidents, which were subsequently categorized into various levels according to the 
HFACS-YA framework. Figure 5 presents the classification results. It can be seen from the results that the most 
significant contribution to yachting tourism accidents is the unsafe acts level (the frequency is 426, accounting 
for 32%), followed by the organizational influences level (the frequency is 292, accounting for 22%). The top five 
predominant human factors are ineffective execution of safety management responsibilities (B23), low safety 
awareness (B22), inadequate safety management (B21), windy waves and strong currents (D41), and failure to 
maintain a formal lookout (E31). The cumulative frequency of these five factors exceeded one (1.04), suggesting 
that accidents were attributable to the confluence of multiple interacting factors rather than a singular cause. The 
detailed list and statistics for Fig. 5 can be found in Appendix A1.

Using χ2 and OR to analyze the relevance of human factors in yachting tourism accidents
Based on the identified human factors, chi-square tests and odds ratio analysis were performed on 144 factor 
pairs using SPSS. The calculations included p-values and odds ratios (m). Applying the criteria of p < 0.05 and 

Fig. 5.  Statistical chart of human factors classification of yachting tourism accidents.

 

Original content Conceptualization

Category
(open 
coding)

Main 
category
(axial 
coding)

Core 
category
(selective 
encoding)

There is no legal basis for the licensing and supervision of commercial activities involving the transportation of fewer 
than 12 passengers in Zhuhai Lawlessness

Absence of 
laws and 
regulations

Legislative 
gaps

External 
factorsAccording to the relevant provisions of Dalian, there are currently no specific provisions governing the yacht rental 

business in the region
No regulations 
related to yacht 
leasing operation

Table 1.  Example of the coding process.
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m > 1, a total of 103 factor pairs were filtered out, such as legislative gaps (A1) and inadequate supervision (C1), 
among others. The filtering results are presented in Table 2.

In the HFACS-YA framework, external factors are classified as Level 1 and exert influence over the following 
four levels: external factors, organizational influences, unsafe supervision, preconditions for unsafe acts, and 
unsafe acts. Notably, the strongest associations among these relationships are observed in the pairs of :

•	 - administration oversights (A2)→inadequate supervision (C1);
•	 - administration oversights (A2)→supervisory violations (C4);
•	 - social factors (A4)→supervisory violations (C4).

This highlights the connection between external factors and unsafe supervision. Furthermore, the m values for 
these three pairs of factors ranked among the highest, at 6.563, 9.429, and 10.08, respectively. The analysis shows 
that administration oversights increases the likelihood of inadequate supervision and supervisory violations by 
6.563 and 9.429 times, respectively. In addition, social factors raise the probability of supervisory violations by 
10.08 times.

Organizational influences affect unsafe supervision and preconditions for unsafe and unsafe acts. Eighteen 
sets of factor pairs were found to be significantly associated. Based on the p-value, the top 3 factor pairs identified 
were:

•	 - poor organizational safety climate (B2)→failure to correct problems (C2);
•	 - poor organizational safety climate (B2)→decision errors (E2);
•	 - poor organizational safety climate (B2)→human factors (D2).

Based on the ORs, B2 is expected to increase the probabilities of C2, E2, and D2 by approximately 20, 10, and 
10 times.

Unsafe supervision is categorized as Level 3, and there are 7 sets of factor pairs with significant correlations 
with the preconditions for unsafe acts and unsafe acts. Two groups of factors were most prominent:

•	 - factor pairs (C4)→violations (E4);
•	 - inadequate supervision (C1)→decision errors (E2).

C4 increasing the probability of E4 occurring to 5 times the original probability, and C1 is expected to cause an 
increase in the probability of E2 being generated by a factor of about 4.

According to HFACS-YA, the preconditions of unsafe acts predispose individuals to the human factors 
associated with these acts. Unsafe acts can only occur if specific conditions are present. There is a significant 
correlation between operator status (D1), human factors (D2) and physical environment (D4) at the precondition 
level of unsafe acts and skill errors (E1), decision errors (E2) and perceptual errors (E3) at the level of unsafe acts, 
where the m of physical environment (D4)→skill errors (E1) is the largest at 4.144.

Correlations between human factors exist not only between different upper and lower tiers but also between 
individual factors in the same tier. Table 3 shows the results. Eleven groups of factor pairs were significantly 
correlated, of which administration oversights (A2) had the strongest correlation with social factors (A4), with 
an m value of 31.2. A2 led to an approximately 31-fold enhancement in the likelihood that A4 would be present.

Based on the results in Tables 2 and 3, the influence pathways among human factors were derived and are 
illustrated in Fig. 6, where dashed lines represent incomplete causal chains. As summarized in Table 4, eight 
complete causal paths were identified. The strongest pathway is A1–B3–C1–D2–E2 (legislative gaps→improper 
organizational processes→inadequate supervision→human factors→decision errors), with a cumulative weight 
of 17.627.

Human factors complex network
Building upon the initial analysis of closely linked elements within the HFACS-YA framework, this study 
constructs a complex network to further explore the intricate relationships among human factors in yachting 
tourism accidents. By incorporating more granular causes, the network approach enhances the depth of accident 
analysis and reveals additional insights.

Recognizing that human factors can interact both within and across hierarchical levels, the analysis includes 
intra-tier and cross-tier relationships. To identify latent multi-factor interactions not captured by HFACS or chi-
square tests, association rule mining was applied using SPSS Modeler 18.0, yielding 1,452 factor pairs64. Based on 
the hierarchical logic of the HFACS-YA framework, cross-tier connections are directional (from higher to lower 
tiers), while intra-tier relationships are non-directional. Invalid or logically inconsistent pairs were excluded 
from the final model65.

The cleaned edge and node lists were imported into Gephi 0.10.1 to construct a complex network model 
comprising 75 nodes and 1,357 valid edges. The resulting network visualization is presented in Fig. 6. In the 
network, the 75 identified human factors (see Fig. 7) serve as nodes and are categorized by different colors. 
Specifically, external factors (Level 1) are shown in dark green; organizational influences (Level 2) in blue; unsafe 
supervision (Level 3) in orange; preconditions for unsafe acts (Level 4) in light green; and unsafe acts (Lecel 5) in 
purple. The size of each node reflects its importance or influence. Edges represent causal relationships between 
nodes, with their direction indicating causality. Edge weights correspond to the frequency of factor pair co-
occurrences across 179 accident reports66,67, and edge thickness indicates the strength of the connection.

To further identify the key elements within the complex network, a core subnetwork was extracted 
based on the top 10 nodes ranked by PageRank (PR) values, see Fig.  8. This subnetwork highlights several 
organizational-level factors—B22 (low safety awareness), B23 (ineffective implementation of safety management 
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Cause factor

Chi-square 
test

mχ 2 p

External factors and Organizational 
influences

A1 and B2 10.571 0.001 4.2

A1 and B3 3.969 0.046 3.134

A2 and B1 5.902 0.015 3.735

External factors and Unsafe 
supervision

A1 and C3 9.242 0.002 5.036

A1 and C4 7.636 0.006 3.899

A2 and C1 12.568 0.000 6.563

A2 and C2 6.137 0.013 6.286

A2 and C4 20.128 0.000 9.429

A4 and C1 4.044 0.044 3.069

A4 and C4 17.181 0.000 10.08

External factors and Preconditions for 
unsafe acts

A1 and D2 7.723 0.005 3.385

External factors and Unsafe acts

A2 and E4 5.293 0.021 3.194

Organizational influences and 
Inadequate supervision

B1 and C3 3.919 0.048 2.505

B2 and C1 17.535 0.000 3.821

B2 and C2 12.334 0.000 20

B2 and C3 13.854 0.000 5.707

B2 and C4 6.517 0.011 2.641

B3 and C1 20.407 0.000 8.32

B3 and C4 4.252 0.039 2.903

Organizational influences and 
Preconditions for unsafe acts

B1 and D1 3.927 0.048 2.094

B2 and D1 24.775 0.000 5.787

B2 and D2 36.448 0.000 9.694

B3 and D1 10.528 0.001 3.972

B3 and D2 21.6 0.000 7.056

Organizational influences and Unsafe 
acts

B1 and E2 5.587 0.018 2.529

B2 and E1 7.894 0.005 6.548

B2 and E2 34.457 0.000 10.246

B2 and E3 4.657 0.031 2.273

B2 and E4 7.517 0.006 2.368

B3 and E2 11.447 0.000 8.856

Unsafe supervision and Preconditions 
for unsafe acts

C1 and D2 4.061 0.044 2.04

C3 and D1 5.127 0.024 2.801

C3 and D2 6.755 0.009 3.255

Unsafe supervision and Unsafe acts

C1 and E2 16.694 0.000 4.074

C1 and E3 4.961 0.026 2.335

C4 and E3 7.247 0.007 3.05

C4 and E4 14.806 0.000 4.56

Preconditions for unsafe acts and 
Unsafe acts

D1 and E2 11.698 0.000 4.024

D1 and E3 10.03 0.002 3.407

Continued
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responsibilities), and B21 (inadequate safety management)—as central hubs with both high PR values and dense 
interconnections. Their dominant positions and extensive outward influence across hierarchical levels suggest 
that these organizational deficiencies play a pivotal role in shaping downstream unsafe conditions and operational 
errors. The structure of the subnetwork demonstrates that interventions directed at these organizational hubs are 
likely to disrupt major causal pathways and yield the greatest systemic impact.

Clustering coefficient
The clustering coefficient reflects the degree of clustering of nodes in a complex network68. A larger clustering 
coefficient indicates that the nodes are more closely related to surrounding nodes. It was calculated using Eq. (4).

	
Ci = 2Ei

ki (ki − 1) � (4)

Where Ei  denotes the number of connected edges that exist between neighboring nodes of node i, and ki 
denotes the number of edges connected to node i.

Figure 9 presents the clustering coefficients of nodes within the complex network of yachting tourism 
accidents. A higher coefficient indicates stronger interconnections among risk factors, thereby increasing the 
likelihood of cascading failures once anomalies occur. Excluding invalid nodes with a clustering coefficient of 1, 
the network’s average clustering coefficient is 0.715, indicating a pronounced clustering tendency. Notably, the 
highest clustering coefficients were found among external factors, organizational influences, and unsafe acts. The 
top five nodes are:

•	 - A42 (0.964, subjective misconceptions of yacht owners);
•	 - B13 (0.945, poor quality of life jackets);
•	 - E211 (0.933, incomplete emergency plan);
•	 - D13 (0.901, thrill-seeking behavior);
•	 - E11 (0.886, no showing the signal light).

In contrast, nodes such as B22 (0.493, low safety awareness), B23 (0.541, ineffective execution of safety 
management responsibilities), B21 (0.546, inadequate safety management), E24 (0.552, improper operation), 

Cause factor

Chi-square 
test

mχ 2 p

External factors

A1 and A2 8.885 0.003 5.39

A1 and A4 4.592 0.032 4.269

A2 and A4 43.093 0.000 31.2

Organizational influences

B1 and B2 13.535 0.000 3.671

B2 and B3 27.728 0.000 12.717

Unsafe supervision

C1 and C2 7.169 0.007 7.893

C1 and C4 11.551 0.000 3.705

Preconditions for unsafe acts

D1 and D2 10.973 0.000 3.366

Unsafe acts

E1 and E3 8.758 0.003 6.006

E1 and E4 7.319 0.007 5.313

E2 and E3 22.464 0.000 29.143

Table 3.  Results of correlation analysis between two human factors at the same level.

 

Cause factor

Chi-square 
test

mχ 2 p

D2 and E2 11.091 0.000 4.133

D4 and E1 5.064 0.024 4.144

Table 2.  Results of correlation analysis between two human factors at upper and lower levels.
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and E210 (0.555, improper emergency measures) exhibit relatively low clustering coefficients, suggesting limited 
systemic influence.

Nodes with high clustering coefficients indicate that their neighboring nodes are densely interconnected, 
often forming tightly knit subgroups. These nodes are particularly vulnerable to cascading failures and play a 
critical role in the propagation of accidents. Accordingly, risk management strategies should prioritize these 
high-clustering nodes to improve system resilience and prevent chain-reaction incidents.

A complete list of clustering coefficients is provided in Appendix A2, and the sorted ranking table is presented 
in Appendix A3.

Number Complete causal path Value

1 A1-B2-C1-D2-E2 14.194

2 A1-B2-C3-D1-E2 16.732

3 A1-B2-C3-D1-E3 16.115

4 A1-B2-C3-D2-E2 17.295

5 A1-B3-C1-D2-E2 17.627

6 A2-B1-C3-D1-E2 13.065

7 A2-B1-C3-D1-E3 12.448

8 A2-B1-C3-D2-E2 13.628

Table 4.  Complete causal path.

 

Fig. 6.  Adjacent tier human factors causal pathways.
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Node importance based on PageRank. PageRank assessed the importance of nodes in a complex network of 
human factors. It can assist us in effectively identifying these key nodes, enabling targeted measures to reduce 
the likelihood of accidents. Its formula is as follows (5).

	
P R (i) = 1 − d

N
+ d

∑
j∈Mi

[
W (i, j) × P R (j)

D (j)

]
� (5)

 

Where Mi is the point connected to the node i, W (i, j) is the weight of the edge (i, j) , D (j) is the degree of 
the node j, and d is the attenuation coefficient, which is usually taken as d = 0.85.

The PageRank algorithm determines the relative importance of each node through an iterative calculation 
process, as illustrated in Fig. 10. Based on the PageRank (PR) values shown in the figure, the key nodes within 
the complex network of yachting tourism accidents are identified as:

•	 - B22 (0.024, low safety awareness);
•	 - B23 (0.022, ineffective implementation of safety management responsibilities);
•	 - B21 (0.022, inadequate safety management);

Fig. 8.  Core Subnetwork Diagram.

 

Fig. 7.  Complex network of human factors in yachting tourism accidents.
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•	 - B31 (0.021, insufficient training);
•	 - E31 (0.021, failure to maintain a proper lookout).

These nodes significantly influenced the likelihood of accidents occurring in the tourism context. Mitigating 
these risk factors can effectively prevent accidents, thereby enhancing safety and minimizing potential hazards.

In contrast, nodes such as E46 (0.003, illegal use of flammable materials) and B14 (0.003, improper storage 
and safekeeping of life jackets) occupy peripheral positions with relatively low influence.

Closeness centrality
Closeness centrality measures how central a node is within a network, reflecting its average distance to all other 
nodes. The shorter the distance, the more quickly the node can reach or influence others. This is expressed as 
Eq. (8).

	

CCi = N
N∑

j=1
dij

� (6)

Where dij  is the distance between node i and j.

Fig. 10.  PageRank values.

 

Fig. 9.  Distribution of clustering coefficient.
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As shown in Fig. 11, the nodes with higher closeness centrality values are B22 (0.925, low safety awareness), B23 
(0.871, ineffective execution of safety management responsibilities), B21 (0.860, inadequate safety management), 
B31 (0.851, inadequate training), E31 (0.841, failure to maintain a formal lookout). This indicates their central 
positions within the network and their ability to rapidly influence other nodes in the event of a failure. Notably, 
nodes B22 to B31 fall under the category of organizational influences, emphasizing that deficiencies in safety 
management are critical contributors to yachting tourism accidents.

In contrast, nodes such as E46 (0.463, illegal use of flammable materials), B14 (0.484, improper storage and 
safekeeping of life jackets), E211 (0.517, incomplete emergency plan), are located in peripheral positions and 
play relatively marginal roles within the network.

To mitigate risks associated with high closeness centrality, it is essential to optimize the allocation of key 
resources—such as personnel, equipment, and financial support—strengthen operational monitoring and 
maintenance, incorporate system redundancies, and reduce dependency on single points of failure. For example, 
daily yacht operations rely on the Chief Officer and deck crew to implement the Safety Management System 
(SMS), conduct regular inspections, and ensure compliance through routine drills and training69.

Modularity class
Modularity analysis was conducted to examine whether human factors form distinct communities within the 
network. The network was partitioned into four modules (0–3) (Fig. 12), with a modularity score of Q = 0.107—
well below the commonly accepted threshold of 0.3 for strong community structure. This result suggests 

Fig. 12.  Modularity class.

 

Fig. 11.  Distribution of closeness centrality.
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that human and organizational factors do not cluster into independent subsystems but instead constitute an 
interwoven risk network in which influences readily traverse functional and hierarchical boundaries.

Although the overall modularity is weak, several structural patterns remain observable. Module 0, the largest 
and most interconnected, spans multiple HFACS levels, reflecting the close coupling between organizational 
deficiencies and frontline operational errors. The smaller modules also maintain substantial linkages with Module 
0 and with each other, indicating that localized issues may be embedded within broader system interactions and 
that organizational-level shortcomings can readily shape operational behaviors.

These findings reinforce that human factors seldom operate in isolation and that operational errors often 
originate from deeper supervisory or organizational conditions. Accordingly, effective safety management 
should emphasize system-level resilience rather than isolated nodes, including strengthening redundancy, 
enhancing cross-level communication and feedback mechanisms, and cultivating a safety culture capable of 
identifying and interrupting risk transmission across modules.

Comprehensive analysis
The analysis of Table 5 reveals that nodes B22, B23, B21, B31, and E31 exhibit both high PageRank scores and 
high closeness centrality, indicating that they possess substantial influence as well as efficient propagation 
capabilities within the network. These nodes span the organizational influences and unsafe acts levels within 
the HFACS framework, demonstrating that the various HFACS tiers are not isolated but rather tightly coupled 
through network interactions. This finding supports the hypothesis of strong interdependence between upper-
level decision-making and frontline operations, echoing the “organizational deficiencies penetrating multiple 
layers of defense” mechanism described in Reason’s Swiss Cheese Model.

Notably, despite their high PageRank and closeness centrality values, nodes B22, B23, and B21 exhibit 
relatively low clustering coefficients. This suggests that the corresponding sectors—government departments, 
yacht enterprises, and tourist attractions—lack strong interconnections and collaborative linkages, resulting in 
an “islanding” phenomenon that impedes effective accident prevention in yachting tourism.

These nodes paradoxically hold both central decision-making authority (as they are widely relied upon) and 
information efficiency (as they can quickly affect the entire system), creating a unique governance dilemma: 
critical yet isolated nodes exert disproportionate systemic influence. Addressing this challenge requires enhanced 
inter-agency coordination and information sharing to improve governance resilience.

Discussion
Theoretical implications
Human factors are widely recognized as a primary driver of maritime accidents, yet the yachting tourism 
sector has lacked a domain-specific analytical framework. This study addresses this gap by developing an 
adapted Human Factors Analysis and Classification System for Yachting Accidents (HFACS-YA), calibrated 
to the operational characteristics of China’s rapidly expanding yachting tourism industry. By systematically 
identifying and classifying human-related causes and mapping their multi-level interactions through integrated 
qualitative and network-based methods, the study provides a coherent theoretical lens for understanding how 
organizational conditions, supervisory practices, and frontline behaviors jointly shape accident causation. This 
refined framework lays a foundation for more precise human-factor research in leisure vessel contexts and 
supports the development of evidence-based safety management in yachting tourism.

The revised HFACS-YA retains the hierarchical structure of the original HFACS but introduces “external 
factors” as a foundational layer and adjusts classifications under preconditions for unsafe acts and unsafe acts to 
better represent yachting-specific hazards71,72. Grounded theory analysis revealed that unsafe acts were the most 
frequent category of human factor failure, often traceable to organizational deficiencies. Specifically, ineffective 
execution of safety management responsibilities (B23), low safety awareness (B22), and inadequate safety 
management (B21) emerged as consistent high-risk nodes, aligning with prior findings in broader maritime 
contexts72,73.

Chi-square and odds ratio analyses identified 53 statistically significant associations among human factor 
categories across HFACS levels. Three causal chains were particularly prominent: poor organizational safety 
climate (B2) → failure to correct problems (C2); poor organizational safety climate (B2) → decision errors 
(E2); and administration oversights (A2) → social factors (A4). In addition, eight complete causal pathways 
were mapped, the most influential being: legislative gaps → improper organizational processes → inadequate 
supervision → human factors → decision errors. Viewed through a systems lens, these pathways illustrate how 
seemingly individual decision errors are embedded in—and often triggered by—upstream structural conditions, 
echoing core principles of the myth-of-human-error framework.These results reinforce the notion that 

Rank Clustering coefficient PR values Closeness centrality

1 A42 (subjective misconceptions of yacht owners) B22 (low safety awareness) B22 (low safety awareness)

2 B13 (poor quality of life jackets) B23 (ineffective implementation of safety management 
responsibilities)

B23 (ineffective implementation of safety 
management responsibilities)

3 E211 (incomplete emergency plan) B21 (inadequate safety management) B21 (inadequate safety management)

4 D13 (thrill-seeking behavior) B31 (insufficient training) B31 (insufficient training)

5 E11(no showing the signal light). E31 (failure to maintain a proper lookout) E31 (failure to maintain a proper lookout)

Table 5.  Comparison of topological parameters.
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preventing accidents requires disrupting key causal pathways at their origin. Complex network analysis further 
highlighted the structural dominance of organizational-level nodes, particularly with respect to PageRank values 
and closeness centrality, underscoring their role as both frequent sources and critical conduits of systemic risk.

Interestingly, despite their structural importance, nodes such as the safety management responsibilities 
(B23), low safety awareness (B22), and inadequate safety management (B21) exhibited relatively low clustering 
coefficients, reflecting weak inter-organizational connectivity. This “islanding” phenomenon—where influential 
safety governance actors operate in silos—limits collaborative risk mitigation. Paradoxically, these same nodes 
hold substantial decision-making authority and strong information propagation capacity, creating a governance 
paradox in which isolated yet powerful entities exert disproportionate influence on systemic safety outcomes. 
Addressing this requires strengthening horizontal linkages via formal coordination mechanisms, shared data 
platforms, and cross-sectoral drills, thus enabling more integrated and resilient safety governance.

The study’s contributions to the literature are threefold. First, while prior research has largely examined 
human error in general maritime contexts, few have considered human factors specific to yachting tourism—
particularly in rapidly expanding but loosely regulated markets. The HFACS-YA developed here captures both 
cross-hierarchical and intra-level interactions among human factors, overcoming the common limitation of 
focusing solely on vertical causal chains74,75 and providing a stronger theoretical basis for targeted interventions. 
Second, the integrated methodological approach—combining grounded theory, HFACS, complex network 
analysis, chi-square tests, and odds ratios—enhances the precision and comprehensiveness of human factor 
identification in yachting accidents. Third, by using SPSS Modeler 18.0 to extract associated factor pairs and 
model their relationships within a complex network, the analysis captures same-level causal pathways often 
overlooked in earlier studies57,76,77, broadening the methodological toolkit for human factor research in maritime 
tourism safety.

Managerial implications
Building on these results, a three-tiered intervention framework is proposed to enhance safety in the yachting 
tourism sector. First, at the policy and regulatory level, maritime authorities should establish differentiated safety 
standards tailored to recreational yachts, distinct from those for commercial or industrial vessels. This includes 
risk-based inspection regimes, leasing compliance guidelines, and standardized equipment requirements, 
implemented through incentive-based regulatory mechanisms. Second, in terms of training and awareness, 
crew members should receive standardized safety training with periodic evaluations, incorporating gamified 
emergency simulations to increase engagement and retention. Tourists should be provided with mandatory 
safety briefings, deliverable via automated video stations located at marinas and scenic areas. Third, regarding 
information infrastructure, the establishment of a unified yacht safety management platform integrating data 
from maritime, tourism, and commercial sectors is recommended. Such a platform would enable real-time risk 
monitoring, support evidence-based policy decisions, and facilitate inter-agency coordination for comprehensive 
yacht safety governance.

Limitations and future research
Several limitations should be acknowledged. First, the accident data were obtained from publicly accessible 
sources, which may contain reporting biases or insufficient detail. Second, although the dataset included 
multiple accident types, the analysis did not distinguish differences across accident categories; future studies 
could conduct comparative analyses to identify type-specific human-factor patterns. Third, incidents involving 
luxury yachts—whose operational profiles and regulatory conditions may differ substantially—were not 
included. Future research should address these gaps, further calibrate and validate the HFACS-YA framework, 
and assess its applicability across broader small-vessel and maritime tourism settings to enhance both theoretical 
robustness and practical generalizability.

Conclusion
This study developed and implemented a domain-specific Human Factors Analysis and Classification System for 
Yachting Accidents (HFACS-YA) to systematically identify and quantify human factors contributing to yachting 
tourism accidents in China. By integrating grounded theory, HFACS, chi-square testing, and complex network 
analysis, the findings demonstrate that organizational deficiencies—particularly inadequate supervision, weak 
safety awareness, and insufficient training—represent the predominant root causes of such accidents.

The study provides actionable insights for improving yachting tourism safety management in both domestic 
and international contexts. It highlights how human factors interact within organizational systems to either 
amplify or mitigate risk, emphasizing the importance of organizational governance and multi-level interventions. 
By combining qualitative and quantitative approaches, this research advances both the theoretical understanding 
of human factor causation in small-vessel maritime tourism and the practical toolkit for risk reduction, offering 
a replicable framework applicable to similar sectors worldwide.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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