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text guidance for medical image
segmentation
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Accurate organ segmentation is essential for clinical tasks such as radiotherapy planning and

disease monitoring. Recent foundation models like MedSAM achieve strong results using point

or bounding-box prompts but still require manual interaction. We propose DescriptorMedSAM,

a lightweight extension of MedSAM that incorporates structured text prompts, ranging from

simple organ names to combined shape and location descriptors to enable click-free segmentation.
DescriptorMedSAM employs a CLIP text encoder to convert radiology-style descriptors into dense
embeddings, which are fused with visual tokens via a cross-attention block and a multi-scale feature
extractor. We designed four descriptor types: Name (N), Name +Shape (NS), Name + Location (NL),
and Name +Shape + Location (NSL), and evaluated them on the FLARE 2022 dataset under zero-shot
and few-shot settings, where organs unseen during training must be segmented with minimal
additional data. NSL prompts achieved the highest performance, with a Dice score of 0.9405 under
full supervision, a 76.31% zero-shot retention ratio, and a 97.02% retention ratio after fine-tuning
with only 50 labeled slices per unseen organ. Adding shape and location cues consistently improved
segmentation accuracy, especially for small or morphologically complex structures. We demonstrate
that structured language prompts can effectively replace spatial interactions, delivering strong
zero-shot performance and rapid few-shot adaptation. By quantifying the role of descriptor, this work
lays the groundwork for scalable, prompt-aware segmentation models that generalize across diverse
anatomical targets with minimal annotation effort.

Keywords Medical image segmentation, Prompt-aware foundation model, Zero-shot and few-shot learning,
Radiology-style anatomical prompts, Multi-scale cross-attention

Accurate segmentation of abdominal organs is critical for tasks such as radiotherapy planning and disease
monitoring. Traditional deep learning models, including U-Net! and its derivatives (e.g., V-Net?, PSPNet’,
and TransUNet?, achieve high Dice scores when trained on thousands of annotated organ masks. However,
generating these annotations is both costly and time-consuming for clinicians®. To reduce this burden,
researchers have explored interactive segmentation methods that require only a few user-provided prompts®”.
The Segment Anything Model (SAM)?® enables high-quality segmentation with minimal input, and MedSAM
extends this approach to computed tomography (CT) and magnetic resonance imaging (MRI). Yet, even these
spatial prompts, such as clicks on small nodules still demand expert involvement. This limitation has motivated
the exploration of even more accessible prompts, including natural language descriptions’.

Large vision-language models, such as Contrastive Language-Image Pre-training (CLIP)!?, bridge visual and
textual domains by aligning an image encoder with a text encoder trained on millions of image-caption pairs'!.
This alignment allows free-form text to guide segmentation without explicit clicks. Recent work has applied
similar approaches to medical imaging: FLanS!? generates free-form text to guide segmentation, and STPNet!?
integrates scale-aware text prompts to enhance performance. However, these studies rarely examine how the
granularity of textual prompts influences segmentation quality - a key factor for minimizing annotation effort
and ensuring reliable clinical use'*. Moreover, most prior work evaluates only on organs present in training data,
leaving the challenges of zero-shot and few-shot generalization to unseen anatomy largely unaddressed.
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Building on these observations, we propose DescriptorMedSAM, a parameter-efficient extension of
MedSAM. The model adds only 1.9 M additional parameters (=~ 1.7% of the base model) and introduces minimal
inference overhead while enabling structured language guidance. Our method employs a CLIP text encoder that
converts radiology-style descriptors -ranging from simple organ names to detailed prompts such as “Isolate the
liver, a large wedge-shaped organ in the right upper quadrant beneath the diaphragm” - into dense embeddings.
We systematically study prompt granularity by designing four types of descriptors: Name (N), Name + Shape
(NS), Name + Location (NL), and Name + Shape + Location (NSL).

These structured prompts are evaluated under zero-shot and few-shot scenarios, where the model must
segment organs unseen during training'. In the few-shot setting, fine-tuning with only 50 labeled slices per
organ significantly boosts performance, highlighting the potential of structured language to enable rapid
adaptation to new anatomical targets. Our contributions are as follows:

1. We introduce a parameter-efficient architecture that integrates linguistic descriptors into MedSAM via a
cross-attention mechanism, improving abdominal organ delineation.

2. We develop and evaluate a structured taxonomy of four radiology-style prompts (N, NS, NL, NSL) across
12 abdominal organs from the FLARE-22 dataset'® under both zero-shot and few-shot settings.

Methods

Dataset

All experiments were conducted on the FLARE 2022 dataset'®, a benchmark comprising 50 contrast-enhanced
abdominal CT volumes with expert annotations for 13 organs: liver, spleen, pancreas, stomach, gallbladder,
duodenum, esophagus, aorta, inferior vena cava (IVC), left and right kidneys, and left and right adrenal glands.
Each volume is provided in 3D NIfTI format. To adapt this data to our 2D segmentation pipeline, we resampled
scans to a uniform pixel spacing and stored them as compressed NumPy archives (.npz), resulting in 24,234
fully labeled slices. For consistency across organs, any class with fewer than 2,000 labeled slices was excluded;
consequently, the duodenum was omitted, leaving 12 organs for training, validation, and testing. To avoid data
leakage arising from the substantial slice-to-slice similarity within each CT volume, the train, validation and test
partitions were performed at the volume level rather than the slice level. All slices originating from the same 3D
volume were assigned to the same split, ensuring the model is evaluated on volumes unseen during training and
mitigating bias from intra-volume redundancy.

Baseline MedSAM

MedSAM processes 2D slices using a frozen ViT-B/16 image encoder pretrained on large-scale natural and
medical image datasets. The encoder converts input slices into patch-level visual tokens. A separate prompt
encoder embeds user-provided guidance (e.g., points or bounding boxes) into tokens. These visual and prompt
tokens are concatenated and passed to a mask decoder, which outputs a probability map for the target structure.

DescriptorMedSAM architecture
The full architecture of DescriptorMedSAM is illustrated in Fig. 1. It retains MedSAM’s frozen image encoder and
mask decoder while introducing three lightweight modules: (i) Multi-scale feature extractor, (ii) Cross-attention
block, and (iii) CLIP-based text-prompt encoder.

First, intermediate features from four layers {I, L, L.} of the ViT backbone'? are aggregated and concatenated.
A 1 x 1 convolutional neck followed by pixel-shuftling produces a multi-scale feature pyramid, preserving
contextual cues while recovering fine spatial details.

Second, radiology-style descriptors are embedded using a CLIP text encoder'’, and the resulting textual
tokens are projected to match the dimensionality of visual tokens.

Third, Text embeddings are injected into the visual stream via a multi-head cross-attention mechanism'”.
Let V € RV* 4 be the visual tokens and ¢ € R% be the CLIP text embedding. After a linear projection
P, € R%* 9 theblock computes.

(Pt)Wy, (1)
V = LN(V + MHA(Q, K,U))

Where Wg, Wk, Wy € R* @ are learned linear maps, M HA(-) is standard multi-head attention, and
LN(-) denotes layer normalization with a residual connection. The enhanced token V' are concatenated
with the multi-scale features and fed into the mask decoder. This modification adds only 1.9 million trainable
parameters (= 1.7% of total model size), maintaining computational efficiency.

We optimize the decoder with a compound loss that sums dice!®and binary cross-entropy (BCE) :

L =AXpLpice + ABLBCE (2)
Where (with logits z and ground truth mask y € {0,1}HX Wi =oc@):
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Fig. 1. Comparison between (a) MedSAM and (b) DescriptorMedSAM.

Frozen Weights

M) Learnable Weights

Average
Prompt token
Category | Generation prompt to GPT-4 Example count (SD)
N / Liver 1.67 (0.85)
NS Generate one concise radiology-style sentence that describes the typical shape of the {organ}. ?Eﬁgfsm the curved, oval spleen hugging the stomach 10.40 (1.30)
NL Generate one concise sentence that states the anatomical location of the {organ} using Mark pancreas body crossing anterior to the aorta. 11.10 (1.06)
neighboring structures as landmarks.
. . S . Segment the right adrenal gland; note its triangular
NSL {(ierg:;z?e one concise sentence that combines both shape and location information for the outline positioned atop the right kidney, posterior 16.05 (1.83)
] to the liver.

Table 1. Radiological prompt categories, illustrative examples, and GPT-4 generation templates.
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Radiological prompt construction
To translate anatomical knowledge into textual prompts, we designed four descriptor prompt categories: N, N,
NL, and NSL, which progressively incorporate name, shape, and location cues. The examples of prompts are as

follows:

)

(4)
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The N prompt contains only the organ’s lowercase name, representing the most minimal user query. For the
N prompt category, we did not use GPT-4 generation and duplicated the organ names 20 times. Each of the 12
organ names was duplicated 20 times to match the total prompt count of the other categories. This ensures that
all four prompt categories contain 240 prompts for consistent training and evaluation. NS prompts enrich this
baseline with morphological cues; a spleen slice might be guided by “Segment the curved, oval spleen hugging
the stomach fundus” NL prompts anchor the structure within axial anatomy by citing neighboring organs and
directional landmarks, such as “Mark pancreas body crossing anterior to aorta” NSL prompts combine these
two aspects into one fluent instruction. For example,” segment the right adrenal gland; note its triangular outline
positioned atop the right kidney, posterior to the liver”

To generate such sentences, we supply GPT-4!° with one template per prompt category, substituting the
placeholder {organ} with each target-organ name. For every organ, we request 20 variants, resulting in 240
prompts per category (12 organs x 20) and a total of 960 prompts across the four categories. Batched API
calls are executed with temperature 0.7, top-p 0.9, and a fixed random seed, guaranteeing that identical calls
regenerate the corpus byte-for-byte. The resulting sentences are concise (median ~ 12 tokens) but provide
expressive guidance for every organ.

Experimental protocol

To comprehensively evaluate DescriptorMedSAM under different supervision levels, we adopt three
complementary learning protocols: fully supervised, zero-shot, and few-shot segmentation. For full-supervised
experiments, the model is trained on all available slices for each organ using the standard FLARE22 training
split, following prior MedSAM and medical segmentation literature.

In the zero-shot stage, the model is trained using labeled slices from a randomly selected subset of 8 seen
organs and evaluated on the 4 remaining unseen organs. To reduce sampling bias and ensure robustness, this
organ-level split is repeated for five independent rounds (Rounds 1-5)?L. In the Round r, we use Dicezs to
denote the dice on those unseen organs and Dicer to denote the fully supervised dice. We report the zero-shot
retain ratio as

RRzs = % (5)
Dicer

In the few-shot stage, following the protocol in SAM Few-shot Finetuning for Anatomical Segmentation in
Medical Images?’, we fine-tune the model starting from the zero-shot checkpoint using 50 labeled axial slices
per unseen organ. These 50 slices are randomly sampled from all annotated slices of that organ. Because slices
from the same 3D CT volume are highly correlated, random sampling may occasionally include multiple slices
from a single volume. To mitigate potential bias arising from this limited within-organ diversity, we adopt five
independent sampling rounds (Rounds 1-5)%!, each yielding a distinct subset of 50 slices. The final few-shot
performance is reported as the mean and 95% confidence interval across these five rounds, thereby substantially
reducing sensitivity to specific sampling instances. After the few-shot adaptation, the model is then tested on
the remaining slices for those organs. The dice score is Dicerg50, and the few-shot retain ratio is computed as

Di
RRpg = m (6)
Dicer

To ensure robustness and mitigate sampling bias, we repeat the experiment five times (Rounds 1-5) for every
prompt type?l. The same seed is applied across all prompt types—N, NS, NL, and NSL—ensuring that each
strategy is evaluated under identical training and test partitions. Within each seen organ, slices are randomly
divided into 80% training and 20% validation sets. All hyperparameters are kept constant across all rounds and
prompt variants.

Implementation

The proposed framework is implemented on the PyTorch library with one NVIDIA 80G H100 GPU. We
adopted the original MedSAM as the base and loaded its official weights. During the training and testing step,
the model is trained for 30 epochs on the Flare 2022 dataset with a batch size of 8'°, using the Adam optimizer
(learning rate: 0.0001). The baseline models are also trained for 30 epochs on the Flare 2022 dataset with the
same hyperparameters. Both SAM and MedSAM receive bounding box prompts during training, following
their official configurations. The bounding boxes were derived from the ground-truth masks by computing the
tightest enclosing rectangle. These baseline models are also trained for 30 epochs on the Flare 2022 dataset with
the same hyperparameters.

Results

Fully-Supervised evaluation

We compared four text-prompt strategies—N, NS, NL, and NSL—against two strong baselines, SAM?® and
MedSAM?*2 across 12 abdominal organs. Dice scores are summarized in Table 2.

NSL prompts attained the highest overall performance, achieving an average Dice score of 0.9405 and
exceeding the performance of MedSAM and SAM by 1.9 and 5.2% points, respectively. NSL prompts were the top
performer for four organs (liver, pancreas, aorta, and left kidney). NS prompts ranked second overall and led in
rightkidney, spleen, and gallbladder segmentation, indicating that shape information alone significantly enhances
delineation. N prompts performed best on IVC and stomach, whereas NL prompts did not lead in any single
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Organ SAM | MedSAM | DescriptorMedSAM-N | DescriptorMedSAM-NS | DescriptorMedSAM-NL | DescriptorMedSAM-NSL
Liver 0.9222 | 0.949 0.9699 0.9819 0.9716 0.9827
Right kidney 0.96 0.9449 0.9648 0.9781 0.9754 0.9764
Spleen 0.9567 | 0.957 0.9662 0.9812 0.968 0.973
Pancreas 0.8009 | 0.8567 0.8629 0.8649 0.8749 0.8903
Aorta 0.9534 | 0.9397 0.9557 0.9652 0.9644 0.9677
Ive 0.9272 | 0.9317 0.9511 0.9454 0.947 0.9508
Right adrenal gland | 0.7405 | 0.8964 0.8672 0.8701 0.8733 0.8755
Left adrenal gland | 0.8084 | 0.8851 0.871 0.8677 0.8717 0.8706
Gallbladder 0.9092 | 0.905 0.9257 0.9405 0.9364 0.9378
Esophagus 0.8601 | 0.9264 0.9066 0.9158 0.9043 0.9137
Stomach 0.8643 | 0.9193 0.9713 0.9685 0.9673 0.9695
Left kidney 0.9539 | 0.9477 0.9569 0.9773 0.9761 0.9784
Average Dice 0.8881 | 0.9216 0.9308 0.9381 0.9359 0.9405

Table 2. Dice scores per organ for SAM, MedSAM, and descriptormedsam with four prompt types.

Few-shot Retain Ratio

90.66% (95% CI 79.26%-100.00%)
DescriptorMedSAM-NS 71.17% (95% CI 60.62%-81.72%) | 93.94% (95% CI 86.85%-100.00%)
DescriptorMedSAM-NL | 72.51% (95% CI 63.99%-81.02%) | 93.39% (95% CI 85.62%-100.00%)
DescriptorMedSAM-NSL | 76.31% (95% CI 63.72%-88.90%) | 97.02% (95% CI 94.20%-99.83%)

Zero-shot Retain Ratio
69.83% (95% CI 59.71%-79.96%)

Model Type
DescriptorMedSAM-N

Table 3. Mean zero-shot and 50-shot retain ratios (five-split average). 95% CIs were derived with a two-tailed
t-distribution; upper bounds>100% or lower bounds < 0% were truncated to 100% and 0%, respectively.

organ but consistently delivered competitive results. Interestingly, MedSAM outperformed DescriptorMedSAM
on three small, low-contrast organs (left adrenal gland, right adrenal gland, and esophagus), suggesting that such
structures remain more sensitive to noise in textual prompts. Overall, NSL prompts emerged as the most reliable
choice, improving segmentation accuracy across all organs without degrading performance for any specific case.

Zero- & Few-Shot adaptation
Table 3 summarizes the mean zero-shot and few-shot retention ratios across five experimental rounds.

Adding textual detail consistently improved zero-shot generalization. Compared to N prompts, shape
prompts (NS) improved retention by 1.3% points, location prompts (NL) by 2.6 points, and combined prompts
(NSL) by 6.5 points. Without additional labels, NSL prompts already preserved 76.31% of fully supervised Dice
scores, narrowing the performance gap to less than 25%.

With few-shot fine-tuning using only 50 labeled slices per unseen organ, all prompt types achieved substantial
gains. NSL prompts reached 97.02% of fully supervised performance, outperforming NS and NL prompts
(~94%) and N prompts (~91%). These findings indicate that morphological and spatial cues are complementary,
with NSL prompts enabling the fastest and highest adaptation to unseen organs.

Confidence intervals for all prompt types remained within +15% points, indicating stable performance
across experimental rounds. Although some intervals overlap, the NSL prompt distribution consistently lies
higher, reinforcing its superior generalization in both zero-shot and few-shot scenarios.

Figure 2 provides a qualitative comparison of DescriptorMedSAM’s outputs under different training regimes.
The figure shows that the fully supervised model closely replicates the ground-truth masks across all organs. In
the zero-shot setting, DescriptorMedSAM with NSL prompts already covers some of the large, high-contrast
organs, such as the stomach and left kidney; however, it under-segments smaller or morphologically complex
structures, including the pancreas and both adrenal glands. After fine-tuning with just 50 labelled slices per
unseen organ, the red contours for these challenging organs tighten markedly, and the visual results approach
those of the fully supervised model. This qualitative improvement confirms that a small annotation budget can
substantially narrow the performance gap to full supervision.

Overall, NSL provides the strongest zero-shot safety net and the steepest few-shot learning curve once a
handful of labelled slices becomes available.

Discussion

Recent advances in medical image segmentation have largely centered on interactive spatial prompting, where
models such as SAM® and MedSAM? rely on user-supplied points or bounding boxes to localize target regions.
Variants like ProtoSAM?? further streamline this interaction. Although these approaches—built on a shared
encoder - decoder architecture, delivering state-of-the-art accuracy on organs encountered during training, they
share a critical limitation: every new case still demands additional human input. This extra annotation workload
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Fig. 2. Qualitative segmentation results for twelve abdominal organs. Columns list the organs (Liver to Left
Kidney); rows show, top to bottom: Ground Truth masks, Fully-Supervised DescriptorMedSAM (NSL), Zero-
Shot DescriptorMedSAM (NSL), and Few-Shot DescriptorMedSAM after 50 labelled slices per unseen organ.
Ground-truth regions are filled with organ-specific colors; predicted boundaries are overlaid in red.

hinders scalability and complicates deployment in time-sensitive clinical settings. To break this dependency on
clicks, researchers have begun exploring language-based prompting to guide the segmentation. FLanS'? employs
large language models to generate free-form descriptions, STPNet!® introduces scale-aware text prompts for
lesion segmentation, and TGAM fuses anatomical sentences with visual features?!. These studies demonstrate
that natural-language guidance can effectively replace spatial prompts and integrate seamlessly with radiology
reporting. However, they share several limitations: most treat the text prompt as a black-box input without
examining its semantic granularity, and they primarily evaluate on anatomies already encountered during
training.

To overcome these problems, we introduce DescriptorMedSAM—a descriptor-guided extension of
MedSAM. It maintains MedSAM’s image encoder and mask decoder in a frozen state to preserve speed and
memory, while injecting language via a parameter-To unpack the role of linguistic detail, we devise a four-
level prompt taxonomy—N, NS, NL, and NSL—that allows us to measure how each semantic aspect influences
performance. Finally, we established a unified zero-shot and few-shot protocol on FLARE 2022, utilizing five
random organ splits, which enabled rigorous tests on anatomy never encountered during training and rapid
adaptation with just 50 labelled slices per unseen organ. In summary, DescriptorMedSAM captures fine-grained
textual information, generalizes effectively to unseen anatomy, and maintains the efficiency required for real-
time clinical deployment.

Empirically, finer semantics consistently help: NSL improves the zero-shot retain ratio by 6.5% points over N
and reaches 97.02% of fully supervised performance after 50 slices per organ of fine-tuning, with results stable
across splits (95% ClIs within + 15 pp). Qualitative results echo these trends: zero-shot predictions already cover
large organs well but miss small or intricate structures, whereas few-shot fine-tuning sharpens the boundaries of
those challenging regions, bringing them close to fully supervised quality. Although the four descriptor variants
(N, NS, NL, NSL) show only modest differences under the fully supervised setting, this trend is reasonable because
all variants rely on the same complete set of annotations and share the same MedSAM backbone. Additionally,
replacing click-based prompts with text descriptors does not negatively affect accuracy, and the performance of
different prompt types naturally converges to similar Dice levels. In contrast, the effect of semantic granularity
becomes more pronounced in the zero-shot and few-shot settings, where the model must generalize to organs
not seen during training. The richer descriptors (NSL) consistently achieve higher retain ratios and more stable
performance across splits, demonstrating that semantic detail primarily benefits generalization rather than
fully supervised learning. This contrast highlights that DescriptorMedSAM’s improvements lie in its ability to
leverage textual semantics to enhance cross-organ generalization, rather than to boost already-saturated fully
supervised performance.

These findings clarify that DescriptorMedSAM retains the click-free convenience of language-guided
segmentation, while quantifying the impact of prompt semantic granularity and delivering substantial zero-shot
and few-shot improvements on previously unseen organs. Beyond quantitative improvements, language-guided
segmentation also carries practical advantages in clinical workflows. Unlike point- or box-based prompting,
which requires precise manual interaction and introduces inter-operator variability, radiologists and surgeons
naturally describe anatomy using text, such as “the superior pole of the left kidney” or “the pancreatic tail adjacent
to the spleen” A text-driven interface therefore enables zero-click or hands-free operation, reduces interaction
burden in high-volume reading settings, and improves reproducibility by eliminating variations in mouse-based
prompt placement. Moreover, structured text can encode subtle clinical attributes that are difficult to express
through bounding boxes, making it particularly valuable for irregular or elongated organs such as the pancreas
or adrenal glands. Language-guided segmentation thus aligns more closely with real clinical communication
patterns and can integrate seamlessly with Al-assisted reporting, surgical navigation, and telemedicine systems.

While our four-level taxonomy (N, NS, NL, NSL) captures three major semantic dimensions—name, shape,
and coarse location—it does not exhaust the full spectrum of clinically meaningful descriptors. In practice,
radiologists often reference additional attributes such as organ size, relative intensity (“hypodense compared with
the liver”), adjacency (“anterior to the spine”), or sub-regional characteristics (“pancreatic tail’, “upper pole of
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the kidney”). Incorporating such fine-grained or context-dependent details may further enhance generalization,
although their benefits likely depend on the anatomical complexity and the clarity of the underlying imaging
features. Determining how much semantic information is beneficial and at what point additional detail yields
diminishing or no further improvements remains an open question. Exploring these limits would require more
diverse datasets and clinically curated textual annotations, which we identify as an important direction for
future work. Our current study provides an initial step by quantifying how structured descriptor richness affects
segmentation performance, but a broader investigation into the full space of clinical semantics represents a
promising extension of this framework.

By systematically quantifying the effect of semantic granularity, DescriptorMedSAM is the first to show
that combining shape and location cues provides distinctive benefits for delineating organ boundaries. At the
same time, it delivers strong zero-shot performance from structured text alone and rapidly approaches fully
supervised accuracy with just a handful of labeled slices. This capability can shorten model-development cycles
from weeks to days and substantially ease the burden on clinicians.

Limitation

This study has several limitations. First, although the labeled subset of FLARE2022 provides 24k axial slices,
these originate from only 50 abdominal CT volumes. As slices within the same volume are highly correlated,
the effective diversity of the training set is limited. This is an inherent limitation of slice-based training and may
cause the model to over-represent volume-specific appearance patterns. While our volume-level split prevents
direct leakage across folds, broader multi-centre datasets or the inclusion of the unlabeled FLARE2022 volumes
would further strengthen the generalizability of DescriptorMedSAM. Future work should validate the approach
on larger, multi-institutional datasets and across different imaging modalities?. Second, our prompt design
focused on four fixed categories (N, NS, NL, NSL), which may not capture nuances such as pathology-specific
descriptors, temporal context, or radiologist shorthand. Expanding to adaptive or pathology-aware prompts
could further enhance performance and robustness. Finally, while our architecture is lightweight, real-time
clinical deployment will require additional work to optimize inference speed, integrate into Picture Archiving
and Communication System (PACS), and evaluate usability with radiologists in prospective workflows.

Conclusion

This study presents DescriptorMedSAM, an extension of MedSAM that integrates structured descriptor
prompts into medical image segmentation via a cross-attention mechanism and multi-scale feature fusion. By
systematically varying prompt granularity—from simple organ names to combined shape-location descriptors—
we demonstrate that richer textual guidance significantly enhances both zero-shot and few-shot segmentation
performance. By quantifying the impact of prompt semantics and demonstrating strong generalization to
unseen organs, DescriptorMedSAM establishes a foundation for prompt-aware medical segmentation models.
Future work should extend this framework to larger, multi-institutional datasets, additional imaging modalities,
and adaptive prompt generation strategies, further advancing the clinical applicability of language-guided
segmentation.

Data availability
FLARE22 are available at https://flare22.grand-challenge.org.

Code availability
The relevant code are available at: https://github.com/Wenjleee/Prompt-Dimensions-of-MedSAM.

Received: 7 October 2025; Accepted: 22 December 2025
Published online: 12 January 2026

References
1. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference
on Medical image computing and computer-assisted intervention. (Springer, 2015).
2. Milletari, E, Navab, N. & Ahmadi, S. A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. in
2016 fourth international conference on 3D vision (3DV). Ieee. 2016. leee. (2016).
3. Zhao, H. et al. Pyramid scene parsing network. in Proceedings of the IEEE conference on computer vision and pattern recognition.
(2017).
4. Chen, J. et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306,
(2021).
5. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image. Anal. 42, 60-88 (2017).
6. Sofiiuk, K., Petrov, I. A. & Konushin, A. Reviving iterative training with mask guidance for interactive segmentation. in 2022 IEEE
international conference on image processing (ICIP). IEEE (2022).
7. Chen, X. et al. Focalclick: Towards practical interactive image segmentation. in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. (2022).
8. Kirillov, A. et al. Segment anything. in Proceedings of the IEEE/CVF international conference on computer vision. (2023).
9. Liu, S. et al. Cross-modal progressive comprehension for referring segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44 (9),
4761-4775 (2021).
10. Radford, A. et al. Learning transferable visual models from natural language supervision. in International conference on machine
learning. PmLR. (2021).
11. Zhang, Z. et al. Echo-Vision-EM: A Pre-training and Fine-tuning Framework for Echocardiogram Videos Vision Foundation Model.
medRxiv, 2024.10.09.24315195. (2024).
12. Da, L. et al. Segment as You Wish-Free-Form Language-Based Segmentation for Medical Images. arXiv preprint arXiv:2410.12831,
(2024).

Scientific Reports |

(2026) 16:3758 | https://doi.org/10.1038/s41598-025-33843-5 nature portfolio


https://flare22.grand-challenge.org
https://github.com/Wenj1eee/Prompt-Dimensions-of-MedSAM
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

13. Shan, D. et al. STPNet: Scale-aware Text Prompt Network for Medical Image Segmentation (IEEE Transactions on Image Processing,
2025).

14. Ye,J. et al. DeepSeck in Healthcare: A Survey of Capabilities, Risks, and Clinical Applications of Open-Source Large Language Models.
arXiv preprint arXiv:2506.01257, (2025).

15. Pourpanah, E et al. A review of generalized zero-shot learning methods. IEEE Trans. Pattern Anal. Mach. Intell. 45 (4), 4051-4070
(2022).

16. Ma, J. et al. Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the
FLARE22 challenge. Lancet Digit. Health. 6 (11), e815-e826 (2024).

17. Vaswani, A. et al. Attention is all you need. Adv. Neural. Inf. Process. Syst. 30. (2017).

18. Sudre, C. H. et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. in International
Workshop on Deep Learning in Medical Image Analysis. Springer. (2017).

19. Achiam, J. et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, (2023).

20. Xie, W. et al. Sam fewshot finetuning for anatomical segmentation in medical images. in Proceedings of the IEEE/CVF winter
conference on applications of computer vision. (2024).

21. An, D. et al. Sli2Vol+: Segmenting 3D medical images based on an object estimation guided correspondence flow network. in 2025
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE. (2025).

22. Ma, J. et al. Segment anything in medical images. Nat. Commun. 15 (1), 654 (2024).

23. Ayzenberg, L., Giryes, R. & Greenspan, H. Protosam: One-shot medical image segmentation with foundational models. arXiv
preprint arXiv:2407.07042, (2024).

24. Rahman, M. M. et al. Text-Assisted Vision Model for Medical Image Segmentation (IEEE Journal of Biomedical and Health
Informatics, 2025).

25. Ye, J. et al. Multimodal data hybrid fusion and natural language processing for clinical prediction models. AMIA Summits on
Translational Science Proceedings, 2024, p. 191. (2024).

Author contributions

JY designed the study. WZ, JH, LL, and JY contributed to data analyses. WZ and JY contributed to the writing
of the manuscript. MH contributed to data management. All authors read and approved the final version of the
manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2026

Scientific Reports |

(2026) 16:3758 | https://doi.org/10.1038/s41598-025-33843-5 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿DescriptorMedSAM: language-image fusion with multi-aspect text guidance for medical image segmentation
	﻿Methods
	﻿Dataset
	﻿Baseline MedSAM
	﻿DescriptorMedSAM architecture
	﻿Radiological prompt construction
	﻿Experimental protocol
	﻿Implementation

	﻿Results
	﻿Fully-Supervised evaluation
	﻿Zero- & Few-Shot adaptation

	﻿Discussion
	﻿Limitation

	﻿Conclusion
	﻿References


