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Accurate organ segmentation is essential for clinical tasks such as radiotherapy planning and 
disease monitoring. Recent foundation models like MedSAM achieve strong results using point 
or bounding‑box prompts but still require manual interaction. We propose DescriptorMedSAM, 
a lightweight extension of MedSAM that incorporates structured text prompts, ranging from 
simple organ names to combined shape and location descriptors to enable click‑free segmentation. 
DescriptorMedSAM employs a CLIP text encoder to convert radiology‑style descriptors into dense 
embeddings, which are fused with visual tokens via a cross‑attention block and a multi-scale feature 
extractor. We designed four descriptor types: Name (N), Name + Shape (NS), Name + Location (NL), 
and Name + Shape + Location (NSL), and evaluated them on the FLARE 2022 dataset under zero‑shot 
and few‑shot settings, where organs unseen during training must be segmented with minimal 
additional data. NSL prompts achieved the highest performance, with a Dice score of 0.9405 under 
full supervision, a 76.31% zero‑shot retention ratio, and a 97.02% retention ratio after fine‑tuning 
with only 50 labeled slices per unseen organ. Adding shape and location cues consistently improved 
segmentation accuracy, especially for small or morphologically complex structures. We demonstrate 
that structured language prompts can effectively replace spatial interactions, delivering strong 
zero‑shot performance and rapid few‑shot adaptation. By quantifying the role of descriptor, this work 
lays the groundwork for scalable, prompt‑aware segmentation models that generalize across diverse 
anatomical targets with minimal annotation effort.

Keywords  Medical image segmentation, Prompt-aware foundation model, Zero-shot and few-shot learning, 
Radiology-style anatomical prompts, Multi-scale cross-attention

Accurate segmentation of abdominal organs is critical for tasks such as radiotherapy planning and disease 
monitoring. Traditional deep learning models, including U-Net1 and its derivatives (e.g., V-Net2, PSPNet3, 
and TransUNet4, achieve high Dice scores when trained on thousands of annotated organ masks. However, 
generating these annotations is both costly and time‑consuming for clinicians5. To reduce this burden, 
researchers have explored interactive segmentation methods that require only a few user‑provided prompts6,7. 
The Segment Anything Model (SAM)8 enables high‑quality segmentation with minimal input, and MedSAM 
extends this approach to computed tomography (CT) and magnetic resonance imaging (MRI). Yet, even these 
spatial prompts, such as clicks on small nodules still demand expert involvement. This limitation has motivated 
the exploration of even more accessible prompts, including natural language descriptions9.

Large vision–language models, such as Contrastive Language‑Image Pre‑training (CLIP)10, bridge visual and 
textual domains by aligning an image encoder with a text encoder trained on millions of image–caption pairs11. 
This alignment allows free‑form text to guide segmentation without explicit clicks. Recent work has applied 
similar approaches to medical imaging: FLanS12 generates free‑form text to guide segmentation, and STPNet13 
integrates scale‑aware text prompts to enhance performance. However, these studies rarely examine how the 
granularity of textual prompts influences segmentation quality - a key factor for minimizing annotation effort 
and ensuring reliable clinical use14. Moreover, most prior work evaluates only on organs present in training data, 
leaving the challenges of zero‑shot and few‑shot generalization to unseen anatomy largely unaddressed.
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Building on these observations, we propose DescriptorMedSAM, a parameter-efficient extension of 
MedSAM. The model adds only 1.9 M additional parameters (≈ 1.7% of the base model) and introduces minimal 
inference overhead while enabling structured language guidance. Our method employs a CLIP text encoder that 
converts radiology‑style descriptors -ranging from simple organ names to detailed prompts such as “Isolate the 
liver, a large wedge‑shaped organ in the right upper quadrant beneath the diaphragm” - into dense embeddings. 
We systematically study prompt granularity by designing four types of descriptors: Name (N), Name + Shape 
(NS), Name + Location (NL), and Name + Shape + Location (NSL).

These structured prompts are evaluated under zero‑shot and few‑shot scenarios, where the model must 
segment organs unseen during training15. In the few‑shot setting, fine‑tuning with only 50 labeled slices per 
organ significantly boosts performance, highlighting the potential of structured language to enable rapid 
adaptation to new anatomical targets. Our contributions are as follows:

 

 	 1.	  We introduce a parameter‑efficient architecture that integrates linguistic descriptors into MedSAM via a 
cross‑attention mechanism, improving abdominal organ delineation.

 	 2.	  We develop and evaluate a structured taxonomy of four radiology‑style prompts (N, NS, NL, NSL) across 
12 abdominal organs from the FLARE‑22 dataset16 under both zero‑shot and few‑shot settings. 

 

Methods
Dataset
All experiments were conducted on the FLARE 2022 dataset16, a benchmark comprising 50 contrast‑enhanced 
abdominal CT volumes with expert annotations for 13 organs: liver, spleen, pancreas, stomach, gallbladder, 
duodenum, esophagus, aorta, inferior vena cava (IVC), left and right kidneys, and left and right adrenal glands. 
Each volume is provided in 3D NIfTI format. To adapt this data to our 2D segmentation pipeline, we resampled 
scans to a uniform pixel spacing and stored them as compressed NumPy archives (.npz), resulting in 24,234 
fully labeled slices. For consistency across organs, any class with fewer than 2,000 labeled slices was excluded; 
consequently, the duodenum was omitted, leaving 12 organs for training, validation, and testing. To avoid data 
leakage arising from the substantial slice-to-slice similarity within each CT volume, the train, validation and test 
partitions were performed at the volume level rather than the slice level. All slices originating from the same 3D 
volume were assigned to the same split, ensuring the model is evaluated on volumes unseen during training and 
mitigating bias from intra-volume redundancy.

Baseline MedSAM
MedSAM processes 2D slices using a frozen ViT‑B/16 image encoder pretrained on large-scale natural and 
medical image datasets. The encoder converts input slices into patch‑level visual tokens. A separate prompt 
encoder embeds user-provided guidance (e.g., points or bounding boxes) into tokens. These visual and prompt 
tokens are concatenated and passed to a mask decoder, which outputs a probability map for the target structure.

DescriptorMedSAM architecture
The full architecture of DescriptorMedSAM is illustrated in Fig. 1. It retains MedSAM’s frozen image encoder and 
mask decoder while introducing three lightweight modules: (i) Multi‑scale feature extractor, (ii) Cross‑attention 
block, and (iii) CLIP‑based text‑prompt encoder.

First, intermediate features from four layers {l1, l2, l3} of the ViT backbone12 are aggregated and concatenated. 
A 1 × 1 convolutional neck followed by pixel‑shuffling produces a multi‑scale feature pyramid, preserving 
contextual cues while recovering fine spatial details.

Second, radiology‑style descriptors are embedded using a CLIP text encoder10, and the resulting textual 
tokens are projected to match the dimensionality of visual tokens.

Third, Text embeddings are injected into the visual stream via a multi‑head cross‑attention mechanism17. 
Let V ∈ RN× d be the visual tokens and t ∈ Rdt  be the CLIP text embedding. After a linear projection 
Pt ∈ Rdt× d, the block computes.

	

Q = V WQ,
K = (Ptt)WK ,
U = (Ptt)WV ,
Ṽ = LN(V + MHA(Q, K, U))

� (1)

Where WQ, WK , WV ∈ Rd× d are learned linear maps, MHA(· ) is standard multi-head attention, and 
LN(· ) denotes layer normalization with a residual connection. The enhanced token 

∼
V  are concatenated 

with the multi‑scale features and fed into the mask decoder. This modification adds only 1.9 million trainable 
parameters (≈ 1.7% of total model size), maintaining computational efficiency.

We optimize the decoder with a compound loss that sums dice18and binary cross-entropy (BCE) :

	 L = λ DLDice + λ BLBCE � (2)

Where (with logits z and ground truth mask y ∈ {0,1}H× W , ŷ = σ (z)):
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LDice = 1 −

2
∑

ŷy + ϵ∑
ŷ +

∑
y + ϵ

� (3)

	
LBCE = − 1

HW

∑
[ylogŷ + (1 − y )log(1 − ŷ)]� (4)

We set λ D = λ B = 1 and ϵ = 10−6 for numerical stability.

Radiological prompt construction
To translate anatomical knowledge into textual prompts, we designed four descriptor prompt categories: N, NS, 
NL, and NSL, which progressively incorporate name, shape, and location cues. The examples of prompts are as 
follows:

Prompt 
Category Generation prompt to GPT-4 Example

Average 
token 
count (SD)

N / Liver 1.67 (0.85)

NS Generate one concise radiology-style sentence that describes the typical shape of the {organ}. Segment the curved, oval spleen hugging the stomach 
fundus. 10.40 (1.30)

NL Generate one concise sentence that states the anatomical location of the {organ} using 
neighboring structures as landmarks. Mark pancreas body crossing anterior to the aorta. 11.10 (1.06)

NSL Generate one concise sentence that combines both shape and location information for the 
{organ}.

Segment the right adrenal gland; note its triangular 
outline positioned atop the right kidney, posterior 
to the liver.

16.05 (1.83)

Table 1.  Radiological prompt categories, illustrative examples, and GPT-4 generation templates.

 

Fig. 1.  Comparison between (a) MedSAM and (b) DescriptorMedSAM.
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The N prompt contains only the organ’s lowercase name, representing the most minimal user query. For the 
N prompt category, we did not use GPT-4 generation and duplicated the organ names 20 times. Each of the 12 
organ names was duplicated 20 times to match the total prompt count of the other categories. This ensures that 
all four prompt categories contain 240 prompts for consistent training and evaluation. NS prompts enrich this 
baseline with morphological cues; a spleen slice might be guided by “Segment the curved, oval spleen hugging 
the stomach fundus.” NL prompts anchor the structure within axial anatomy by citing neighboring organs and 
directional landmarks, such as “Mark pancreas body crossing anterior to aorta.” NSL prompts combine these 
two aspects into one fluent instruction. For example,” segment the right adrenal gland; note its triangular outline 
positioned atop the right kidney, posterior to the liver.”

To generate such sentences, we supply GPT-419 with one template per prompt category, substituting the 
placeholder {organ} with each target-organ name. For every organ, we request 20 variants, resulting in 240 
prompts per category (12 organs × 20) and a total of 960 prompts across the four categories. Batched API 
calls are executed with temperature 0.7, top‑p 0.9, and a fixed random seed, guaranteeing that identical calls 
regenerate the corpus byte‑for‑byte. The resulting sentences are concise (median ≈ 12 tokens) but provide 
expressive guidance for every organ.

Experimental protocol
To comprehensively evaluate DescriptorMedSAM under different supervision levels, we adopt three 
complementary learning protocols: fully supervised, zero-shot, and few-shot segmentation. For full-supervised 
experiments, the model is trained on all available slices for each organ using the standard FLARE22 training 
split, following prior MedSAM and medical segmentation literature.

In the zero-shot stage, the model is trained using labeled slices from a randomly selected subset of 8 seen 
organs and evaluated on the 4 remaining unseen organs. To reduce sampling bias and ensure robustness, this 
organ-level split is repeated for five independent rounds (Rounds 1–5)21. In the Round r, we use DiceZS  to 
denote the dice on those unseen organs and DiceF  to denote the fully supervised dice. We report the zero-shot 
retain ratio as

	
RRZS = DiceZS

DiceF
� (5)

In the few-shot stage, following the protocol in SAM Few-shot Finetuning for Anatomical Segmentation in 
Medical Images20, we fine-tune the model starting from the zero-shot checkpoint using 50 labeled axial slices 
per unseen organ. These 50 slices are randomly sampled from all annotated slices of that organ. Because slices 
from the same 3D CT volume are highly correlated, random sampling may occasionally include multiple slices 
from a single volume. To mitigate potential bias arising from this limited within-organ diversity, we adopt five 
independent sampling rounds (Rounds 1–5)21, each yielding a distinct subset of 50 slices. The final few-shot 
performance is reported as the mean and 95% confidence interval across these five rounds, thereby substantially 
reducing sensitivity to specific sampling instances. After the few-shot adaptation, the model is then tested on 
the remaining slices for those organs. The dice score is DiceF S50, and the few-shot retain ratio is computed as

	
RRF S = DiceF S50

DiceF
� (6)

To ensure robustness and mitigate sampling bias, we repeat the experiment five times (Rounds 1–5) for every 
prompt type21. The same seed is applied across all prompt types—N, NS, NL, and NSL—ensuring that each 
strategy is evaluated under identical training and test partitions. Within each seen organ, slices are randomly 
divided into 80% training and 20% validation sets. All hyperparameters are kept constant across all rounds and 
prompt variants.

Implementation
The proposed framework is implemented on the PyTorch library with one NVIDIA 80G H100 GPU. We 
adopted the original MedSAM as the base and loaded its official weights. During the training and testing step, 
the model is trained for 30 epochs on the Flare 2022 dataset with a batch size of 816, using the Adam optimizer 
(learning rate: 0.0001). The baseline models are also trained for 30 epochs on the Flare 2022 dataset with the 
same hyperparameters. Both SAM and MedSAM receive bounding box prompts during training, following 
their official configurations. The bounding boxes were derived from the ground-truth masks by computing the 
tightest enclosing rectangle. These baseline models are also trained for 30 epochs on the Flare 2022 dataset with 
the same hyperparameters.

Results
Fully-Supervised evaluation
We compared four text‑prompt strategies—N, NS, NL, and NSL—against two strong baselines, SAM8 and 
MedSAM22 across 12 abdominal organs. Dice scores are summarized in Table 2.

NSL prompts attained the highest overall performance, achieving an average Dice score of 0.9405 and 
exceeding the performance of MedSAM and SAM by 1.9 and 5.2% points, respectively. NSL prompts were the top 
performer for four organs (liver, pancreas, aorta, and left kidney). NS prompts ranked second overall and led in 
right kidney, spleen, and gallbladder segmentation, indicating that shape information alone significantly enhances 
delineation. N prompts performed best on IVC and stomach, whereas NL prompts did not lead in any single 
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organ but consistently delivered competitive results. Interestingly, MedSAM outperformed DescriptorMedSAM 
on three small, low‑contrast organs (left adrenal gland, right adrenal gland, and esophagus), suggesting that such 
structures remain more sensitive to noise in textual prompts. Overall, NSL prompts emerged as the most reliable 
choice, improving segmentation accuracy across all organs without degrading performance for any specific case.

Zero- & Few-Shot adaptation
Table 3 summarizes the mean zero‑shot and few‑shot retention ratios across five experimental rounds.

Adding textual detail consistently improved zero‑shot generalization. Compared to N prompts, shape 
prompts (NS) improved retention by 1.3% points, location prompts (NL) by 2.6 points, and combined prompts 
(NSL) by 6.5 points. Without additional labels, NSL prompts already preserved 76.31% of fully supervised Dice 
scores, narrowing the performance gap to less than 25%.

With few‑shot fine‑tuning using only 50 labeled slices per unseen organ, all prompt types achieved substantial 
gains. NSL prompts reached 97.02% of fully supervised performance, outperforming NS and NL prompts 
(~ 94%) and N prompts (~ 91%). These findings indicate that morphological and spatial cues are complementary, 
with NSL prompts enabling the fastest and highest adaptation to unseen organs.

Confidence intervals for all prompt types remained within ± 15% points, indicating stable performance 
across experimental rounds. Although some intervals overlap, the NSL prompt distribution consistently lies 
higher, reinforcing its superior generalization in both zero‑shot and few‑shot scenarios.

Figure 2 provides a qualitative comparison of DescriptorMedSAM’s outputs under different training regimes. 
The figure shows that the fully supervised model closely replicates the ground-truth masks across all organs. In 
the zero-shot setting, DescriptorMedSAM with NSL prompts already covers some of the large, high-contrast 
organs, such as the stomach and left kidney; however, it under-segments smaller or morphologically complex 
structures, including the pancreas and both adrenal glands. After fine-tuning with just 50 labelled slices per 
unseen organ, the red contours for these challenging organs tighten markedly, and the visual results approach 
those of the fully supervised model. This qualitative improvement confirms that a small annotation budget can 
substantially narrow the performance gap to full supervision.

Overall, NSL provides the strongest zero-shot safety net and the steepest few-shot learning curve once a 
handful of labelled slices becomes available.

Discussion
Recent advances in medical image segmentation have largely centered on interactive spatial prompting, where 
models such as SAM8 and MedSAM22 rely on user‑supplied points or bounding boxes to localize target regions. 
Variants like ProtoSAM23 further streamline this interaction. Although these approaches—built on a shared 
encoder - decoder architecture, delivering state-of-the-art accuracy on organs encountered during training, they 
share a critical limitation: every new case still demands additional human input. This extra annotation workload 

Model Type Zero-shot Retain Ratio Few-shot Retain Ratio

DescriptorMedSAM-N 69.83% (95% CI 59.71%–79.96%) 90.66% (95% CI 79.26%–100.00%)

DescriptorMedSAM-NS 71.17% (95% CI 60.62%–81.72%) 93.94% (95% CI 86.85%–100.00%)

DescriptorMedSAM-NL 72.51% (95% CI 63.99%–81.02%) 93.39% (95% CI 85.62%–100.00%)

DescriptorMedSAM-NSL 76.31% (95% CI 63.72%–88.90%) 97.02% (95% CI 94.20%–99.83%)

Table 3.  Mean zero‑shot and 50‑shot retain ratios (five‑split average). 95% CIs were derived with a two‑tailed 
t‑distribution; upper bounds > 100% or lower bounds < 0% were truncated to 100% and 0%, respectively.

 

Organ SAM MedSAM DescriptorMedSAM-N DescriptorMedSAM-NS DescriptorMedSAM-NL DescriptorMedSAM-NSL

Liver 0.9222 0.949 0.9699 0.9819 0.9716 0.9827

Right kidney 0.96 0.9449 0.9648 0.9781 0.9754 0.9764

Spleen 0.9567 0.957 0.9662 0.9812 0.968 0.973

Pancreas 0.8009 0.8567 0.8629 0.8649 0.8749 0.8903

Aorta 0.9534 0.9397 0.9557 0.9652 0.9644 0.9677

Ivc 0.9272 0.9317 0.9511 0.9454 0.947 0.9508

Right adrenal gland 0.7405 0.8964 0.8672 0.8701 0.8733 0.8755

Left adrenal gland 0.8084 0.8851 0.871 0.8677 0.8717 0.8706

Gallbladder 0.9092 0.905 0.9257 0.9405 0.9364 0.9378

Esophagus 0.8601 0.9264 0.9066 0.9158 0.9043 0.9137

Stomach 0.8643 0.9193 0.9713 0.9685 0.9673 0.9695

Left kidney 0.9539 0.9477 0.9569 0.9773 0.9761 0.9784

Average Dice 0.8881 0.9216 0.9308 0.9381 0.9359 0.9405

Table 2.  Dice scores per organ for SAM, MedSAM, and descriptormedsam with four prompt types.
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hinders scalability and complicates deployment in time-sensitive clinical settings. To break this dependency on 
clicks, researchers have begun exploring language-based prompting to guide the segmentation. FLanS12 employs 
large language models to generate free-form descriptions, STPNet13 introduces scale-aware text prompts for 
lesion segmentation, and TGAM fuses anatomical sentences with visual features24. These studies demonstrate 
that natural-language guidance can effectively replace spatial prompts and integrate seamlessly with radiology 
reporting. However, they share several limitations: most treat the text prompt as a black-box input without 
examining its semantic granularity, and they primarily evaluate on anatomies already encountered during 
training.

To overcome these problems, we introduce DescriptorMedSAM—a descriptor-guided extension of 
MedSAM. It maintains MedSAM’s image encoder and mask decoder in a frozen state to preserve speed and 
memory, while injecting language via a parameter-To unpack the role of linguistic detail, we devise a four-
level prompt taxonomy—N, NS, NL, and NSL—that allows us to measure how each semantic aspect influences 
performance. Finally, we established a unified zero-shot and few-shot protocol on FLARE 2022, utilizing five 
random organ splits, which enabled rigorous tests on anatomy never encountered during training and rapid 
adaptation with just 50 labelled slices per unseen organ. In summary, DescriptorMedSAM captures fine-grained 
textual information, generalizes effectively to unseen anatomy, and maintains the efficiency required for real-
time clinical deployment.

Empirically, finer semantics consistently help: NSL improves the zero-shot retain ratio by 6.5% points over N 
and reaches 97.02% of fully supervised performance after 50 slices per organ of fine-tuning, with results stable 
across splits (95% CIs within ± 15 pp). Qualitative results echo these trends: zero-shot predictions already cover 
large organs well but miss small or intricate structures, whereas few-shot fine-tuning sharpens the boundaries of 
those challenging regions, bringing them close to fully supervised quality. Although the four descriptor variants 
(N, NS, NL, NSL) show only modest differences under the fully supervised setting, this trend is reasonable because 
all variants rely on the same complete set of annotations and share the same MedSAM backbone. Additionally, 
replacing click-based prompts with text descriptors does not negatively affect accuracy, and the performance of 
different prompt types naturally converges to similar Dice levels. In contrast, the effect of semantic granularity 
becomes more pronounced in the zero-shot and few-shot settings, where the model must generalize to organs 
not seen during training. The richer descriptors (NSL) consistently achieve higher retain ratios and more stable 
performance across splits, demonstrating that semantic detail primarily benefits generalization rather than 
fully supervised learning. This contrast highlights that DescriptorMedSAM’s improvements lie in its ability to 
leverage textual semantics to enhance cross-organ generalization, rather than to boost already-saturated fully 
supervised performance.

These findings clarify that DescriptorMedSAM retains the click-free convenience of language-guided 
segmentation, while quantifying the impact of prompt semantic granularity and delivering substantial zero-shot 
and few-shot improvements on previously unseen organs. Beyond quantitative improvements, language-guided 
segmentation also carries practical advantages in clinical workflows. Unlike point- or box-based prompting, 
which requires precise manual interaction and introduces inter-operator variability, radiologists and surgeons 
naturally describe anatomy using text, such as “the superior pole of the left kidney” or “the pancreatic tail adjacent 
to the spleen.” A text-driven interface therefore enables zero-click or hands-free operation, reduces interaction 
burden in high-volume reading settings, and improves reproducibility by eliminating variations in mouse-based 
prompt placement. Moreover, structured text can encode subtle clinical attributes that are difficult to express 
through bounding boxes, making it particularly valuable for irregular or elongated organs such as the pancreas 
or adrenal glands. Language-guided segmentation thus aligns more closely with real clinical communication 
patterns and can integrate seamlessly with AI-assisted reporting, surgical navigation, and telemedicine systems.

While our four-level taxonomy (N, NS, NL, NSL) captures three major semantic dimensions—name, shape, 
and coarse location—it does not exhaust the full spectrum of clinically meaningful descriptors. In practice, 
radiologists often reference additional attributes such as organ size, relative intensity (“hypodense compared with 
the liver”), adjacency (“anterior to the spine”), or sub-regional characteristics (“pancreatic tail”, “upper pole of 

Fig. 2.  Qualitative segmentation results for twelve abdominal organs. Columns list the organs (Liver to Left 
Kidney); rows show, top to bottom: Ground Truth masks, Fully-Supervised DescriptorMedSAM (NSL), Zero-
Shot DescriptorMedSAM (NSL), and Few-Shot DescriptorMedSAM after 50 labelled slices per unseen organ. 
Ground-truth regions are filled with organ-specific colors; predicted boundaries are overlaid in red.
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the kidney”). Incorporating such fine-grained or context-dependent details may further enhance generalization, 
although their benefits likely depend on the anatomical complexity and the clarity of the underlying imaging 
features. Determining how much semantic information is beneficial and at what point additional detail yields 
diminishing or no further improvements remains an open question. Exploring these limits would require more 
diverse datasets and clinically curated textual annotations, which we identify as an important direction for 
future work. Our current study provides an initial step by quantifying how structured descriptor richness affects 
segmentation performance, but a broader investigation into the full space of clinical semantics represents a 
promising extension of this framework.

By systematically quantifying the effect of semantic granularity, DescriptorMedSAM is the first to show 
that combining shape and location cues provides distinctive benefits for delineating organ boundaries. At the 
same time, it delivers strong zero-shot performance from structured text alone and rapidly approaches fully 
supervised accuracy with just a handful of labeled slices. This capability can shorten model-development cycles 
from weeks to days and substantially ease the burden on clinicians.

Limitation
This study has several limitations. First, although the labeled subset of FLARE2022 provides 24k axial slices, 
these originate from only 50 abdominal CT volumes. As slices within the same volume are highly correlated, 
the effective diversity of the training set is limited. This is an inherent limitation of slice-based training and may 
cause the model to over-represent volume-specific appearance patterns. While our volume-level split prevents 
direct leakage across folds, broader multi-centre datasets or the inclusion of the unlabeled FLARE2022 volumes 
would further strengthen the generalizability of DescriptorMedSAM. Future work should validate the approach 
on larger, multi‑institutional datasets and across different imaging modalities25. Second, our prompt design 
focused on four fixed categories (N, NS, NL, NSL), which may not capture nuances such as pathology‑specific 
descriptors, temporal context, or radiologist shorthand. Expanding to adaptive or pathology‑aware prompts 
could further enhance performance and robustness. Finally, while our architecture is lightweight, real‑time 
clinical deployment will require additional work to optimize inference speed, integrate into Picture Archiving 
and Communication System (PACS), and evaluate usability with radiologists in prospective workflows.

Conclusion
This study presents DescriptorMedSAM, an extension of MedSAM that integrates structured descriptor 
prompts into medical image segmentation via a cross‑attention mechanism and multi‑scale feature fusion. By 
systematically varying prompt granularity—from simple organ names to combined shape‑location descriptors—
we demonstrate that richer textual guidance significantly enhances both zero‑shot and few‑shot segmentation 
performance. By quantifying the impact of prompt semantics and demonstrating strong generalization to 
unseen organs, DescriptorMedSAM establishes a foundation for prompt‑aware medical segmentation models. 
Future work should extend this framework to larger, multi‑institutional datasets, additional imaging modalities, 
and adaptive prompt generation strategies, further advancing the clinical applicability of language‑guided 
segmentation.
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