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Drought is a significant challenge to winter wheat production. Its impact can be mitigated by 
preventing plant moisture stress through precision agriculture. Remote sensing and machine learning 
have proven effective for managing moisture stress in winter wheat. This study highlights the potential 
of new indices that combine visible (VIS) and near-infrared (NIR) bands along with canopy temperature 
(Tc), to monitor plant moisture content (PMC) and leaf moisture content (LMC) in winter wheat under 
irrigation treatments: W0 (no irrigation), W1 (45–65%), W2 (55–75%), W3 (65–85%), W4 (75–95%) of 
field capacity, and Z (irrigation and rainfall). Our findings show that the ratio stress index (RSI), with 
band combinations such as RSI7(650, 428), RSI8(663, 422), and RSI9(671, 450), performs better in tracking PMC 
and LMC, demonstrating high correlation and improved average prediction metrics for vegetation 
index (VI) models with R2, RMSE, and MAE of 0.838, 2.791, and 2.093 respectively, for LMC and 
VI-Tc input models with 0.850, 2.731, and 2.105 for PMC. Incorporating Tc into RSI models enhances 
prediction accuracy, increasing R² by up to 13.82% in the RSI-Tc-SVM-PMC model and decreasing 
RMSE and MAE by 15.89% and 18.33%, respectively. Therefore, a combination of RSI-Tc-SVM-ANN is 
recommended to monitor winter wheat moisture stress.
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Agricultural drought is a significant limiting factor for agricultural production, with reports suggesting a 
probability greater than 80% for yield loss due to agricultural droughts1. As water resources become increasingly 
scarce, and agriculture accounts for 70% of freshwater withdrawal2. Effective water management practices, 
including soil water management, irrigation, and soil water conservation, are essential to sustain productive 
farming2. Remote sensing has demonstrated its effectiveness in tackling drought challenges in agriculture3–5. 
It offers the opportunity to monitor plant moisture content (PMC), leaf moisture content (LMC), soil moisture 
content (SMC)5, canopy temperature (Tc)4, photosynthesis, stomatal conductance4, chlorophyll levels6,7, and 
disease infection8 promptly, with high spatial and temporal resolution, showcasing its versatility.

Plant moisture is crucial for numerous biophysical and biochemical processes that regulate plant growth, 
development, and yield. Generally, PMC can be monitored in several ways, focusing on various parameters, 
including canopy moisture9, whole-plant moisture, leaf moisture, equivalent water thickness10, leaf relative water 
content, leaf fuel moisture11, and water potential12. Monitoring PMC through remote sensing has become a 
beneficial endeavor for alleviating moisture stress in farms, as this approach can identify moisture stress before 
other methods13. This feature is achieved by measuring canopy spectral reflectance and canopy temperature (Tc). 
The measured reflectance is further processed to form vegetation indices, which reveal essential information 
about a plant’s status based on its interaction with light within each spectrum.

Several approaches have been developed to form vegetation indices for monitoring PMC, utilizing a 
combination of wavelengths across the spectrum. It is widely reported that pigments, chlorophyll, and 
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carotenoids14 influence the reflectance changes in the VIS. The NIR reflectance is influenced by leaf internal 
structure, canopy structure, plant age, and LAI, while the plant’s internal moisture influences the shortwave 
infrared (SWIR). From this backdrop, vegetation indices are being formed to monitor PMC and leaf moisture 
content (LMC).

Although VIS and NIR reflectance are viewed as indirect indicators of moisture stress in plants, these 
regions of the spectrum are recently being reported as capable of monitoring droughts in farmlands with equal 
effectiveness5,14–16. Sukhova et al.14,15,17, having conducted both laboratory and field experiments with pea and 
wheat plants in experiment pots, reported that ratio index (RI) (659, 553 nm), (613, 605 nm), and (670, 432 nm) 
and normalized red-green index (659, 553 nm) were suitable for monitoring soil drought and could identify 
changes in plant within four days of drought initiation, thus giving a new dimension of the use of VIS bands. 
Although these findings were significant, their work involved potted peas and wheat, which were not fully 
representative of typical farming conditions. Furthermore, their measurement of reflectance using a thermal 
camera necessitates an improved method for reflectance measurement. Li et al.18 then reported using UAV 
multispectral and hyperspectral data within the 400–1000 nm wavelength range for monitoring winter wheat 
and summer maize water content and yield prediction with ratio and normalized indices. Their work reported 
the importance of the VIS and novel indices for monitoring PMC. In their work, novel indices outperformed 
traditional indices. Since this work used a UAV system, which is more complicated and requires more competence 
to complete, and focused on only two growth stages (flowering and filling), a more straightforward and easier-
to-use method that covers more growth stages will be a handy and safer approach; the spectroradiometer 
approach covers this scope and provides a more straightforward approach. Tian et al.19 also reported that the 
new indices performed better in predicting rice leaf nitrogen content. This implies that new band combinations 
for monitoring moisture stress in plants, both directly and indirectly, are possible.

Moreover, other than direct moisture stress monitoring, remote sensing has been employed to monitor 
moisture stress in plants indirectly; one such use is the application of thermal infrared cameras for monitoring 
plant canopy temperature4 which is an indirect method of moisture monitoring. According to the literature, 
as plants experience less available soil moisture, high temperature, and other environmental factors affecting 
moisture availability, they react by closing their stomata20. This leads to less transpiration and photosynthesis, 
thus increasing the surface leaf temperature21. Infrared thermal cameras detect the temperature change20, hence 
reflecting plants’ moisture status. Additionally, several other works have reported using machine learning 
models for predicting plants’ characteristics using remotely sensed data22–25. These combinations become a vital 
partnership for monitoring farmland plant moisture stress.

In an effort to improve the current status of water management in the face of the changing environments 
in which farmers farm, this work intended to form novel indices, concentrated in the VIS and NIR, from 
spectroradiometer-measured canopy reflectance and fuse them with canopy temperature that are capable of 
monitoring PMC and LMC at various growth stages of winter wheat. This will then enhance moisture stress 
monitoring by combining these approaches into a few indices and models and capitalizing on the high 
sensitivity of the VIS-NIR bands to stressors (including moisture stress), thereby preventing reliance on a single 
moisture stress monitoring approach and conventional water stress indices, which can sometimes be affected 
by environmental factors and fail to provide meaningful results. This approach ensures reliable monitoring of 
moisture stress, thereby providing a robust method for preventing moisture stress in winter wheat fields, guiding 
timely irrigation scheduling, and laying a scientific basis for decision-making in farmland water management.

Results
Canopy reflectance and water content of winter wheat across growth stages
Canopy spectral reflectance showed a continuous changing pattern across growth stages (Fig. 1). Notably, as 
the growth progressed, there was an increase in reflectance in the VIS and SWIR bands, while the NIR bands 
exhibited a decrease in reflection. This trend suggests that spectral reflectance is influenced by the moisture 
content, age, and growth stage of winter wheat, making it a valuable tool for monitoring moisture stress in 
winter wheat plants. As observed, the highest NIR reflectance was recorded at the booting stage and continued 
to decrease as the growth stages progressed up to maturity (Fig. 1). After the flowering stage of winter wheat, 
the moisture content continued to decline across all treatments, despite SMC showing both increasing and 
decreasing trends during the same period. This is a noticeable trend as plants mature. The grains, leaves, and 
stems generally lose moisture as plants senesce with age.

Novel vegetation index and canopy temperature (Tc) correlation with plant moisture content 
(PMC), and leaf moisture content (LMC)
The two novel indices and Tc showed a significantly negative correlation with PMC and LMC at various growth 
stages and throughout the growing season. Most importantly, different indices exhibited the highest correlations 
at different stages of growth. As shown in Table  1 (correlation results), the novel indices outperformed the 
published indices further for monitoring moisture content in wheat. SRWI (R = 0.86***), RSI10(600, 739) (R = 0.88***), 
and NDSI1(499, 764) (R = 0.89***) had the highest overall correlation with PMC for their respective index types. RSI 
had the best growth stage performance with RSI9(671, 450) (R = 0.45ns) at elongation, RSI7(650, 428) (R = 0.71***) at 
booting, RSI6(530, 764) (R = 0.83***) at flowering and RSI8(663, 442) (R = 0.93***) at the ripening stages. NDSI9(506, 1100) 
(R = 0.73***) had the highest correlation at the filling stage, while WBI (R = 0.5*) and MSI (R = 0.72***) had 
the highest correlations at heading and dough stages, respectively. With LMC, RSI had the best growth stage 
performance, having had the highest correlation coefficient at elongation (R = 0.66**), flowering (R = 0.74***), 
filling (R = 0.82***), dough (R = 0.89***), and ripening (R = 0.87***) in addition to the overall growth cycle data 
(R = 0.69***). These performances suggest that the new indices are more suitable for monitoring winter wheat 
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moisture stress than the published indices in our study. The corresponding p-values and significance are better 
indicated in Table 1 and its note.

Correlations were conducted by treatment to assess the suitability of the new indices further. Interestingly, 
as evidenced in Table 2, there were highly significant correlations between PMC and various index types. At 
the treatment level, the Pearson correlation coefficient for all indices with PMC ranged from 0.93 to 0.98, with 
the strongest correlation (RSI7 (R = 0.98***)) observed in the W4 treatment (significance in Table 2). The LMC 
correlations indicated that RSI achieved the best performance overall, with the highest R of 0.87*** in W2. A 
strong correlation was also found between Tc and PMC across treatments. These correlation results suggest that 
these new indices can potentially monitor moisture stress characteristics in winter wheat fields.

Growth Stages
Number of 
samples

PMC and 
Tc

LMC and 
Tc

PMC and RSI PMC and NDSI
PMC and pub. 
Indices LMC and RSI LMC and NDSI

LMC and 
pub. Indices

Index and R Index and R Index and R Index and R Index and R Index and R

Elongation 18 0.56* 0.58* RSI9
0.46 ns

NDSI6
0.08 ns

NDVI
0.13ns RSI9 0.66** NDSI1 0.55* NDVI 

0.62**

Booting 18 0.59** 0.64** RSI7
0.72***

NDSI14
0.08 ns

WBI
0.70** RSI7 0.47* NDSI1 0.05ns WBI 0.58***

Heading 18 0.48* 0.59** RSI9
0.50*

NDSI5
0.36 ns

WBI
0.50* RSI2 0.59* NDSI4 0.6** WBI 0.74***

Flowering 18 0.64** 0.58* RSI6
0.83***

NDSI9
0.82***

SRWI
0.78*** RSI4 0.74*** NDSI9 0.73*** SRWI 0.69**

Filling 18 0.80*** 0.87*** RSI4
0.73***

NDSI9
0.73***

WBI
0.67** RSI4 0.82*** NDSI12 0.81*** WBI 0.80***

Dough 36 0.71*** 0.66*** RSI3
0.60***

NDSI1
0.61***

MSI
0.72*** RSI7 0.89*** NDSI9 0.88*** SRWI 

0.88***

Ripening 18 0.80*** 0.76*** RSI8
0.93***

NDSI14
0.91***

SRWI
0.93*** RSI8 0.87*** NDSI14 0.83*** SRWI 

0.86***

All 144 0.82*** 0.54*** RSI10
0.88***

NDSI3
0.89***

SRWI
0.86*** RSI7 0.69*** NDSI14 0.64*** SRWI 

0.62***

Table 1.  Shows the absolute value of pearson’s correlation coefficient between moisture (plant moisture 
content (PMC) and leaf moisture content (LMC)) with canopy temperature (Tc) and vegetation indices at 
various growth stages of wheat, and with the full dataset. Note: ns means not significant at p < 0.05, * significant 
at p < 0.05, ** significant at p < 0.01, *** significant at p < 0.001, and pub. means published, ratio stress index 
(RSI), and normalized drought stress index (NDSI).

 

Fig. 1.  Shows the growth stage canopy reflectance of winter wheat.
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Machine learning prediction of plant moisture content (PMC)
To evaluate the indices’ predictive abilities, four machine learning models — random forest (RF), partial least 
squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN)- were fitted to 
the data. 70% (104) of the data was used for model training, while 30% (40) was used for testing the models. 
This 30% data was not used in model training and was set aside for model testing. For model tuning and 
parameterization, we employed the cross-validation (k = 10) and grid search method, where the models were 
tuned, and the best parameter combinations that produced the lowest RMSE were selected. This ensures that the 
best possible parameters are utilized for modelling.

Firstly, models were built with only vegetation indices as the input data. With the VIs as the only input 
data, the RSI-ANN model achieved the best performance, yielding an R² of 0.849, RMSE of 2.736, and MAE of 
2.131. The NDSI-ANN model yielded the second-best results, with an R² of 0.844, RMSE of 2.784, and MAE 
of 2.284. With the published indices, the best performance was achieved by the PLSR model, yielding an R² of 
0.831, an RMSE of 2.895, and an MAE of 2.231 (Table 3). Our work shows that the novel indices outperform 
the notable water stress monitoring indices. The Tc was added as input data to the models to better explore the 
benefits of multi-source data fusion for these indices in stress monitoring. This addition generally improved the 
performance of the models and indices in predicting PMC. With this inclusion, the RSI-ANN model had an R2 
of 0.850, RMSE of 2.726, and MAE of 2.078 (Fig. 2), the NDSI-ANN model achieved an R2 of 0.842, RMSE of 
2.803, and MAE of 2.293 (Fig. 3) and the ANN and published VI model had an R2 of 0.866, RMSE of 2.577, and 
MAE of 1.820 (Fig. 4). In addition, incorporating Tc into prediction models improved performance over the 
metrics presented in Table 3.

Figure 2 presents the prediction metrics of machine learning using RSI-Tc as input data to predict PMC. 
Notably, there are good prediction metrics across all models. As revealed, error metrics are also appreciable.

Figure 5 presents the variable importance for the random forest model. In the RSI model, RSI9, RSI10, and 
RSI6 were the top three contributing indices, while the Tc was the fourth most important variable (Fig. 8a). 
With the NDSI model, the contribution of Tc is not well pronounced, though it increased the overall prediction 
accuracy of the model. The published indices model saw the NDVI, SRWI, WI, OSAVI, and Tc as the top 
contributing variables.

ML prediction performance of LMC
The LMC prediction model, using the new indices as input data, further demonstrated a promising performance 
compared to the published indices, with the SVM model combined with RSI producing the highest R² of 0.824, 

Moisture type Index type

RF PLSR SVM ANN

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

LMC

RSI 0.756 3.422 2.288 0.613 4.315 3.408 0.824 2.910 2.111 0.727 3.621 2.745

NDSI 0.639 4.165 2.701 0.597 4.403 3.750 0.732 3.587 2.542 0.488 4.963 3.806

Published indices 0.752 3.454 2.298 -3.105 14.050 5.498 0.726 3.627 2.580 0.578 4.505 2.905

PMC

RSI 0.817 3.017 2.220 0.807 3.100 2.559 0.679 3.993 2.628 0.849 2.736 2.131

NDSI 0.810 3.076 2.268 0.825 2.950 2.472 0.828 2.927 2.391 0.844 2.784 2.284

Published indices 0.809 3.084 2.136 0.831 2.895 2.313 0.720 3.729 2.448 0.828 2.924 2.427

Table 3.  Presents the model testing performance metrics of the PMC and LMC of winter wheat with only 
vegetation indices as input. RF is the random forest model, PLSR is the partial least squares regression model, 
SVM is the support vector machine model and ANN is the artificial neural network model. PMC and LMC are 
plant moisture content and leaf moisture content, respectively.

 

Moisture type Index type W0 W1 W2 W3 W4 Z
Number of
samples

PMC

RSI RSI2 0.95*** RSI11 0.96*** RSI7 0.94*** RSI11 0.96*** RSI7 0.98*** RSI2 0.96*** 24

NDSI NDSI1 0.95*** NDSI14 0.96*** NDSI14 0.93*** NDVI14 0.96*** NDSI14 0.96*** NDSI10 0.96*** 24

Published WI 0.97*** NDVI 0.96*** NDVI 0.94*** WI 0.96*** WI 0.98*** SRWI 0.96*** 24

Tc 0.83*** 0.74*** 0.75*** 0.78*** 0.80*** 0.81*** 24

LMC

RSI RSI9 0.79*** RSI8 0.82*** RSI9 0.87*** RSI9 0.77*** RSI9 0.76*** RSI9 0.80*** 24

NDSI NDSI14 0.79*** NDSI14 0.75*** NDSI14 0.80*** NDSI14 0.69*** NDSI6 0.73*** NDSI1 0.79*** 24

Published NDWI 0.80*** SRWI 0.75*** SRWI 0.81*** SRWI 0.70*** SRWI 0.72*** SRWI 0.80*** 24

Tc 0.55** 0.45* 0.56** 0.23ns 0.52** 0.19ns 24

Table 2.  Presents the absolute value of the pearson correlation coefficient (R) between moisture (PMC and 
LMC) with Tc and the vegetation index by treatment. Note: ns is not significant at p < 0.05, * is significant at 
p < 0.05, ** is significant at p < 0.01, *** is significant at p < 0.001. W0, W1, W2, W3, W4, and Z are irrigation 
treatments.
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RMSE of 2.910, and MAE of 2.111 (Table 3). The SVM and NDSI model achieved an R² of 0.732, an RMSE of 
4.165, and an MAE of 2.701 (Table 3), whereas the published indices and RF model achieved an R² of 0.752, an 
RMSE of 3.454, and an MAE of 2.299. Again, the RSI achieved the best performance. The VIs combined with 
Tc further improved the performance of the models, as presented in Table 6; Figs. 6, 7 and 8. The SVM-RSI-Tc 
model R2 increased to 0.851 (3.338%), while RMSE reduced to 2.673 (8.148%) and MAE to 2.075 (1.677%). 
The SVM-NDSI-Tc model increased the testing R2 to 0.770 (5.149%), reduced RMSE to 3.323 (7.313%), and 
MAE to 2.424 (4.634%). RF, Tc, and published indices model improved the prediction R2 by 0.792 (5.384%), 
while also reducing RMSE and MAE by 3.160 (8.52%) and 2.237 (2.669%), respectively. Index-wise, the RSI-Tc 
combination achieved the best performance in predicting LMC, while the SVM model had the best performance 
among ML models. The better performance of the ANN and SVM models can be attributed to their ability 

Fig. 2.  Shows the PMC model testing metrics for the ratio stress index (RSI) combined with Tc as input data 
for machine learning models. a is the random forest model, b is the partial least squares model, c is the support 
vector machine model, and d is the artificial neural network model. Error metrics are presented in percentage. 
The green line is the regression line, while the red dashed line is the 1:1 ratio line. The higher point density 
indicates the regions with more samples, while the proximity to the regression line indicates model accuracy.

 

Scientific Reports |         (2026) 16:3836 5| https://doi.org/10.1038/s41598-025-33905-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


to model complex, nonlinear relationships between the target and predictor variables, a feature that is highly 
present in spectral vegetation indices and the PMC relationship.

Discussion
Agricultural drought has become a key challenge for winter wheat production. Monitoring and preventing its 
occurrence promptly in farmlands are crucial for improved wheat production. This can be effectively achieved 
by remote sensing. The combination of different bands across the spectrum has proven effective in monitoring 
various biophysical and biochemical characteristics of plants in diverse environments and conditions.

Fig. 3.  Shows the PMC model testing metrics for the normalized drought stress index (NDSI) combined 
with Tc as input data for machine learning models. a is the random forest model, b is the partial least squares 
model, c is the support vector machine model, and d is the artificial neural network model. Error metrics are 
presented in percentage. The green line is the regression line, while the red dashed line is the 1:1 ratio line. 
The higher point density indicates the regions with more samples, while the proximity to the regression line 
indicates model accuracy.
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In our work, we examined the feasibility of band combinations (vegetation indices) between the NIR and 
VIS, with the VIS bands focused on the blue and green bands. Our work revealed that the combination of 
bands between VIS and NIR (400–1100 nm) and VIS-VIS bands (400–671 nm) ranges can effectively monitor 
winter wheat moisture stress at critical growth stages. These results are consistent with findings reported in 
other works14–18,26,27, who reported that VIS indices performed better in monitoring the canopy water content of 
summer maize compared to traditional water-sensitive indices.

Although this region has been mainly linked to photosynthesis15 and pigment-related characteristics, it is 
also reported that photosynthesis, chlorophyll, and pigments are affected by water stress, which subsequently 

Fig. 4.  Shows the PMC model testing metrics for the published indices combined with Tc as input data for 
machine learning models. a is the random forest model, b is the partial least squares model, c is the support 
vector machine model, and d is the artificial neural network model. Error metrics are presented in percentage. 
The green line is the regression line, while the red dashed line is the 1:1 ratio line. The higher point density 
indicates the regions with more samples, while the proximity to the regression line indicates model accuracy.

 

Scientific Reports |         (2026) 16:3836 7| https://doi.org/10.1038/s41598-025-33905-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


reduces the absorption prowess of chlorophyll and other leaf pigments, thereby increasing reflectance in the 
visible region28–30. This makes this spectral region very sensitive to changes in plant moisture.

As moisture stress intensifies, it triggers physiological responses in the internal structures of leaves, resulting 
in changes in spectral response to incoming radiation. These interactions can further express stress levels in 
winter wheat30. With reports that the VIS presents the highest correlation coefficient in winter wheat compared 
to other spectral regions31, blue and green bands have been less frequently reported for monitoring winter wheat 
moisture stress. However, there are reports of their use for disease detection in plants and yield prediction32–34. 
An et al.6 reported the suitability of visible bands in predicting rice’s chlorophyll content and their effect on 
canopy spectral reflectance.

Our work reveals that ratio and normalized band selections in the VIS and NIR bands range are essential 
tools for monitoring moisture stress in winter wheat at critical growth stages (Figs. 2 and 3). As shown in Table 
2, apart from the elongation stage, there is a significant correlation between the calculated indices and PMC, 
indicating the sensitivity of both indices to moisture content during reproductive growth stages, consistent with 
other reported findings27. Like other reported indices, the created indices can be employed as a key monitoring 
tool for water stress monitoring in winter wheat from the booting to harvest stages. Interestingly, the RSI 
demonstrated a better growth stage monitoring ability for PMC, with RSI calculated using two VIS bands (RSI7, 
RSI8, and RSI9) exhibiting the best performance. The ability of these indices to predict winter wheat’s moisture 
content has a positive implication for winter wheat farming, as it ensures timely stress detection and precision 
irrigation control, thereby preventing moisture stress to winter wheat at critical growth stages.

At the treatment level (Table 2), these indices show significant correlation with PMC. These highly substantial 
correlations confirm that these indices can be used at treatment levels to monitor water stress, ensuring timely 
irrigation scheduling. In addition to the superior growth stage correlations, the RSI, when used as input data 
for the SVM model, further produced the best performance in predicting the PMC of winter wheat (Table 3). In 
conclusion, the better performance of the new indices over the published indices validates the need for further 
applying new band combinations to monitor moisture stress in winter wheat fields.

When Tc was included as input data for PMC prediction, the SVM showed notable improvements, with the 
best performance characterized by increased R2 across all input data and enhanced accuracy. With the RSI-Tc, 

Fig. 5.  Shows the PMC model testing variable importance for the RF, index, and Tc model, where a-c is the 
ratio stress index, the normalized drought stress index, and the published vegetation indices, respectively.
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there was an increase of 13.820% in R2, a decrease of 15.890% and 18.327% in RMSE and MAE, respectively. 
Although the published indices-ANN model obtained the highest prediction accuracy (Table 3), the RSI and 
NDSI closely follow the trend of improved performance by the SVM across all indices, putting it in strong 
contention for consideration as a formidable ML model for moisture stress monitoring in winter wheat.

LMC plays a significant role in plant growth and development, as it controls physiological processes such as 
photosynthesis, transpiration, nutrient uptake, and PMC control35 through its regulation of the stomata. Canopy 
reflectance from winter wheat canopies, spanning the VIS-SWIR regions, has been reported to monitor changes 
in plant water status36. Due to this critical role, our work endeavored to monitor LMC using novel indices and 

Fig. 6.  Presents the RSI-Tc LMC prediction metrics. a is the random forest model, b is the partial least squares 
model, c is the support vector machine model, and d is the artificial neural network model. Error metrics are 
presented in percentage. The green line is the regression line, while the red dashed line is the 1:1 ratio line. 
The higher point density indicates the regions with more samples, while the proximity to the regression line 
indicates model accuracy.
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compared their performance with those of notable moisture content monitoring indices. As presented in Table 2, 
there is a strong correlation between LMC and all three types of indices, with the RSI exhibiting the best treatment-
wise performance. At individual growth stages (Table 1), the RSI exhibits its best performance with RSI7, RSI8, 
and RSI9, which are calculated from two VIS bands that present the best performance. This performance trend 
is also seen at the treatment level (Table 2). With the prediction models, there is an acceptable output from the 
four ML models presented in this work for predicting LMC. With input data of vegetation indices (Table 5), 
other than PLSR-published indices (R2 = -3.105) and NDSI-ANN models (R² = 0.489), all other combinations 
produced an R² ≥ 0.578, with the RSI combinations showing superior performance. Comparatively, the LMC 
prediction performance was less accurate than that of the PMC prediction. This outcome is because other parts 

Fig. 7.  Illustrates the NDSI-Tc LMC prediction models metrics, where a is the random forest model, b is the 
partial least squares model, c is the support vector machine model, and d is the artificial neural network model. 
Error metrics are presented in percentage. The green line is the regression line, while the red dashed line is 
the 1:1 ratio line. The higher point density indicates the regions with more samples, while the proximity to the 
regression line indicates model accuracy.
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of winter wheat (stems and spikes) also affect canopy reflectance beyond the leaf level. This result was also 
reported by Zhang et al.37. With these outputs, it can be concluded that the VIS is a crucial tool for monitoring 
winter wheat moisture stress due to its outstanding performance in tracking LMC in winter wheat fields.

The better performance of the RSI and NDSI (generally VIS-NIR bands) over the conventional vegetation 
indices used in this work has been reported in literature and linked to some physiological and biochemical 
plant features. Plant chlorophyll and pigments are sensitive to plant moisture and are affected by the slight 
changes in internal moisture content and they are key contributors to reflectance in the VIS38. NIR reflectance 
is influenced by the by leaf internal structures, canopy coverage, and general plant health, which are highly 
sensitive to plant moisture. These mentioned physiological parameters react to stress at a very fast pace. These 
regions also responsd to other stressors39. These conditions provide an extra advantage over the SWIR bands, 

Fig. 8.  Shows the published indices-Tc LMC prediction metrics, where a is random forest, b is partial least 
squares regression, c is the support vector machine model, and d is the artificial neural network model. The red 
dashed line is the 1:1 ratio line, while the green line is the regression line. The higher point density indicates the 
regions with more samples, while the proximity to the regression line indicates model accuracy.
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which mostly rely on acute moisture stress. This leads to better performance of the VIS-NIR bands in moisture 
stress monitoring.

The varying sensitivity of vegetation indices to specific plant biophysical features has also been reported in 
the literature. This phenomenon has been linked to several conditions and characteristic features, ranging from 
environmental factors (solar angle, soil background), plant features (canopy structure, leaf angle inclination, 
leaf area index, leaf internal moisture and cell structures, as well as leaf chlorophyll and pigments), and viewing 
geometry. Prudnikova et al.40 reported that soil background and soil variability influence VIS and NIR canopy 
spectral reflectance at the early growth stages of winter wheat. Also, at early growth stages, background materials 
influence spectral reflectance41. These influences are reduced with the growth and proper coverage of the plant 
canopy. With the plant canopy structure, the leaf area index, canopy coverage, and leaf inclination angles directly 
influence the amount of solar radiation that is intercepted and reflected42. These underlying factors, in addition to 
plant health, internal moisture, and structural makeup, play a crucial role in the varying sensitivity of vegetation 
indices to moisture content in plants across different growth stages.

Agricultural drought can harm winter wheat, but early detection and prompt remediation can help 
mitigate damage. Specifically, drought leads to a decrease in soil moisture, reducing plant water content43. 
These effects trigger several physiological changes in plants, varying according to the drought’s duration and 
severity. Fortunately, these changes can be detected using various remote sensing tools, including ground-
based spectrometers and thermal imagers21. A reduction in plant moisture triggers responses that impact LAI, 
photosynthesis, cell health, chlorophyll levels, and stomatal function. As plants experience moisture stress, 
they adjust their stomata to limit water loss, which raises the leaf surface temperature—detectable by thermal 
imagers31. This temperature change results from both internal plant conditions and environmental factors, 
expanding the application of this technology in moisture stress monitoring. Since both spectral reflectance and 
canopy temperature reflect moisture levels in winter wheat, combining these measurements improves moisture 
stress detection more than using either method alone, as shown in our study. We evaluated the impact of Tc 
as input data in models using three types of indices, presented in Table 4. In the LMC prediction models, the 
SVM demonstrated the most significant positive influence, with all inputs contributing to an increase in R2 and 
a decrease in the error metrics. RF also had a significant effect, with the highest R2 increase of 16.426% and the 
highest reduction in RMSE by 15.808%. The index type with the most consistent performance across all models 
was the NDSI. Results indicate an increase in R², ranging from 2.209% to 16.426%, while the error was reduced 
by 1.649% to 15.808%. It can then be concluded that the Tc inclusion in the LMC prediction models had the 
most significant influence on the SVM and NDSI performance, with the RSI combined with PLSR and ANN 
exhibiting the poorest performance. The use of canopy temperature and its derivative parameters as a proxy 
for moisture stress in plants, and their application in controlling irrigation, has also been reported by other 
studies21,44. We therefore conclude that including Tc in VIs ML models for monitoring plant moisture stress 
yields a better prediction accuracy. Still, care must be taken to select the best match between model and input 
types.

Machine learning models have become a valuable tool for modelling remotely sensed data to monitor 
plants’ biophysical and biochemical characteristics due to their ability to learn the complex interactions and 
relationships between target(s) and predictor(s) variables23,45. In our work, we applied four machine learning 
models to predict the PMC of winter wheat and further validated the models. Model evaluation results indicate 
that the ANN model using published indices-Tc as input achieved the best performance, with R², RMSE, and 
MAE values of 0.866, 2.577, and 1.820, respectively, for PMC simulation, and the ANN-RSI-Tc combination 
achieved R², RMSE, and MAE values of 0.850, 2.726, and 2.078, respectively. (Table 3; Fig. 2d). With the 
vegetation indices as input, the ANN model produced the best PMC simulation across all input types (Table 
3). The PMC simulation performance metrics (averaging the model with only VIs and VIs-Tc) showed that the 
highest R2 was achieved by the ANN model across inputs 0.843, 0.850, and 0.847, respectively, for NDSI, RSI, 
and the published indices, respectively. The performance of LMC models exhibited better SVM performance, 
as measured by both individual input data and the average R² for all data types and models used for modeling. 
The SVM-RSI-Tc combination achieved the best metrics with R2, RMSE, and MAE of 0.851, 2.673, and 2.075, 
respectively. These outstanding performances of the ML models in predicting PMC and LMC are consistent with 

Moisture types ML models

RSI NDSI Published indices

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

LMC

RF 0.190 -0.296 2.547 16.426 -15.808 -7.812 5.384 -8.520 -2.669

PLSR -44.678 30.654 17.975 2.209 -1.649 -10.349 5.761 2.156 -0.752

SVM 3.338 -8.143 -1.677 5.149 -7.313 -4.634 5.307 -7.314 -11.430

ANN -27.653 31.825 18.491 6.816 -3.301 -3.215 -8.116 5.409 14.163

PMC

RF -0.559 1.239 -0.507 1.055 -2.267 -6.836 2.258 -4.886 -5.181

PLSR 0.805 -1.692 2.289 0.319 -0.754 1.842 -2.500 5.981 -3.702

SVM 13.820 -15.890 -18.327 0.948 -2.302 1.880 4.736 -6.289 -10.683

ANN 0.132 -0.372 -2.498 -0.248 0.669 0.402 4.632 -11.848 -25.015

Table 4.  Presents the percentage change in performance metrics between the indices prediction model and the 
combined indices and canopy temperature model. Note: positive values indicate a percentage increase, while 
negative values indicate a decrease.
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findings from other studies18,25,46. These findings have significant implications for monitoring moisture stress in 
winter wheat.

Conclusion
Moisture stress in winter wheat has a far-reaching impact on growth, development, yield, and food security. 
In this work, we reported two approaches (VIs and VIs-Tc) to alleviate winter wheat moisture stress through 
direct monitoring of plant moisture and leaf moisture through canopy reflectance and its derived vegetation 
indices, and indirectly monitoring plant canopy temperature with infrared thermal imagers, and fusing the 
multi-source data in ML models. We can safely conclude that the indices (RSI and NDSI) are valuable tools for 
monitoring moisture stress in winter wheat fields. As reported, the RSI, with prominent VIS band combinations 
of RSI7(650, 428), RSI8(663, 422), and RSI9(671, 450), demonstrated a good ability to monitor PMC and LMC across 
different growth stages and treatments. The NIR and VIS band combinations (400 –600 nm) further showed 
strong potential for detecting moisture stress in winter wheat fields, a feature that is less reported. Fusing these 
VIS-derived indices with canopy temperature as input data for ML models improves the accuracy of ML model 
predictions. These improvements lay scientific foundations for stress monitoring and irrigation control in winter 
wheat fields, thereby alleviating moisture stress.

Limitation of the study
It is worth mentioning that this work covered one year and a single experiment site. Future work will focus on 
assessing these indices and fusion methods across different sites and years to further consolidate their valuable 
contributions to monitoring moisture stress in winter wheat fields.

Materials and methods
Study site and treatment
The research was conducted at the Qiliying Comprehensive Experimental Base, Chinese Academy of Agricultural 
Sciences (35°18′11′′N and 113°55′34′′E), located at an elevation of 81 m above sea level. The site experiences an 
average annual rainfall of 573.4 mm, with approximately 70% of the rainfall occurring during the summer. The 
yearly average temperature is 14 °C, and the annual solar radiation is 4900 MJ m− 2 yr− 1, with 189–240 frost-free 
days per year. The experimental soil has a bulk density of 1.46 g/cm3, a field capacity of 24.77%, and a porosity 
of 41.17% at a soil depth of 0–60 cm.

Winter wheat was planted on October 18, 2024, with row spacing of 20 cm and a seeding rate of 227.27 kg 
per hectare and was harvested on May 29, 2025. Irrigation was applied using drip lines spaced 40 cm apart 
with emitters spaced 30 cm apart. Six irrigation treatments were used: W0 (no irrigation), W1 (45–65% soil 
moisture), W2 (55–75% soil moisture), W3 (65–85% soil moisture), W4 (75–95% soil moisture), with plot sizes 
of 3.4 m x 2.03 m, and Z with 2 m x 2 m, representing normal farmers’ irrigation and rainfall. The soil moisture 
levels were intended to create varying moisture availability to plants, thereby introducing varying stress levels, 
which could trigger varying physiological responses from the plants47,48. These physiological responses further 
influence canopy reflectance, which can be captured by remote sensing equipment49. Each treatment had three 
replicates. Soil moisture within the 0–60 cm depth was monitored gravimetrically, and irrigation amounts were 
calculated based on the difference between the current soil moisture and the target maximum soil moisture level 
for each treatment. An initial irrigation of 227.27 mm was applied before sowing to provide moisture for early 
growth and overwintering, along with a compound fertiliser.

Irrigation treatments commenced during the regreening period on March 6, 2025. Fertiliser was applied 
according to local recommendations for the research location. Irrigation was measured using flow meters. The 
Z treatment received a total of 446.95  mm of rainfall and irrigation during the treatment period. The total 
irrigation amounts per treatment are: 0 mm, 260.06 mm, 276.28 mm, 362.53 mm, and 372.69 mm for W0, W1, 
W2, W3, and W4, respectively, excluding the pre-sowing irrigation.

Spectral reflectance, canopy temperature, and plant moisture data collection
Canopy spectral reflectance was measured using a handheld spectroradiometer, the PSR + 3500 (Spectral Evolution 
Inc., Lawrence, MA, USA), with a wavelength range of 350–2500 nm, at a height of 1 m, providing a 25° field of 
view above the canopy on clear-sky days with little or no wind interference from 10:30 am to 11:30 am Beijing 
Time on clear sky days with little or no winds. Before each measurement, the instrument was calibrated using 
a reference plate with 99% reflectance, and this calibration was repeated every 15 min. The spectroradiometer 
has resolutions of 3 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 nm. The spectroradiometer resampled 
each measurement to produce 2151 narrow bands as the final output. The instrument was fitted with a fore-optic 
fibre cable for reflectance measurement6. The instrument was set to average twenty-five scans per measurement, 
and every plot was scanned at four different points and averaged to represent the reflectance of the plot per 
measurement day. Reflectance measurements were done on March 17, 25, April 2, 10, 18, 26, and May 4 and 12.

Canopy temperature was measured between 11:30 am and 12:30 pm Beijing Time using an infrared thermal 
camera (InFRec G100, NEC, Tokyo, Japan)4. This measurement was performed at a vertical distance of 1 m 
from the target (canopy) at a 45° angle immediately following the daily spectral measurement on data collection 
days. The InFRec G100 can provide the average temperature for target areas within the field of view without 
needing further calculations. It was programmed to have five focus points and give the average temperature for 
each focus point. Emissivity was set at 0.98, and the InFRec G100 was calibrated before daily measurements. 
The equipment performed periodic self-calibrations during the measurement. Measurements were made at full 
canopy closure points.
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Five wheat plants, which included all tillers from each germinated seed, were collected and placed in a 
Ziplock plastic bag for measurement of their moisture content (PMC). An additional plant leaf (including all 
tillers from a single germinated seed) was collected for LMC measurement on all data collection days. These 
plants were collected from the second rows on either side of the plots, maintaining a distance of 50 cm from the 
beginning of each row. Both leaf and plant moisture samples were collected from the same points on specific data 
collection days and alternately between the two rows. This was done to prevent losing all plants at a particular 
point and maintain a good canopy cover, which will enable the continuation of the experiment. They were 
weighed fresh, initially dried in an oven at 105 °C for 30 min, and then dried at 80 °C until a constant weight was 
achieved to obtain the dry weight. Soil samples were simultaneously collected in the 0–60 cm layers to calculate 
soil moisture50. The average soil moisture for all layers was considered the soil moisture within the root zone 
and used as the basis for irrigation calculation. PMC, LMC, and gravimetric soil moisture content (SMC) were 
calculated using the following two Eqs. (1–3):

	
P MC (%) =

(
P F W − P DW

P F W

)
∗ 100� (1)

	
LMC (%) =

(
LF W − LDW

LF W

)
∗ 100� (2)

	
SMC (g) = W S − DS

DS
� (3)

Where PFW, PDW, LFW, LDW, WS, and DS are fresh plant weight (g), dry plant weight (g), fresh leaf weight (g), 
dry leaf weight (g), wet soil (g), and dry soil (g), respectively.

Spectral band selection for index calculation and index selection for modelling
Firstly, the visible and near-infrared bands have been reported as sensitive bands to both biotic and abiotic plant 
stressors and have been used to identify and differentiate these stresses51. For example, Koh et al.52 reported 
the use of VIS and NIR bands for classification of drought-induced physiological changes in plant colouration, 
while Vásquez et al.53 reported that there is a contrasting interaction with radiation between the VIS and NIR. 
The chlorophyll content in healthy leaves absorbs more incident rays in the VIS while reflecting incident rays 
in the NIR. As plant moisture reduces, chlorophyll and other plant pigments are also affected and are thereby 
reduced39. These changes affect leaf internal and canopy structures, thereby influencing the reflection in 
incoming incident rays. These changes are captured by remote sensing and analysed to reflect the status of the 
plants. Fully harnessing the potential of these regions will lay a solid technical foundation for monitoring plant 
stress promptly and developing low-cost remote sensing devices54. Based on these underlying phenomena, our 
work focused on these regions of the spectral wavelength to monitor moisture stress in winter wheat.

To begin, all two-band combination indices were generated18, which included all bands in the VIS and 
NIR regions. These band combinations were used to calculate vegetation indices, which were correlated with 
PMC. The highest R² from band combinations within the VIS and NIR was selected, thereby revealing the 
most sensitive bands for monitoring PMC. These bands were further used for monitoring leaf moisture content 
(LMC). The goal for these band selections was to select band combinations between VIS (blue, green) and 
VIS (red) bands. These combinations will highlight the significance of these bands (VIS bands) in monitoring 
moisture stress in farmlands. The following band combinations focused on the VIS (blue, green) and NIR bands. 
These combinations will then highlight the importance of the blue and green electromagnetic spectrum region in 
moisture monitoring stress in combination with the NIR. These highlights will further extend the VIS moisture 
stress monitoring ability beyond the traditionally recognized red and/or red-edge regions of the spectrum. This 
revealed the best band combinations for index formation. Two index types are used in this work. One type 
used the normalized two-band combination between NIR and VIS bands (Eq. 4), and the other used the ratio 
between two bands in Eq. (5) (VIS-VIS and VIS-NIR). The normalized drought stress index (NDSI) utilized the 
normalized formula, while the ratio stress index (RSI) employed the ratio formula.

The two formula types were:

	
NDSI = Band1 − Band2

Band1 + Band2
� (4)

	
RSI = Band1

Band2
� (5)

Where Band1 and Band2 are random wavelengths within the VIS and NIR.
Based on the coefficient of determination (R2) and sorting out as explained above for the selection criteria, 

the best wavelength combinations were selected and listed in Table 5.
Normalised drought stress index (NDSI) and ratio stress index (RSI). The reflectance at the two specified 

wavelengths was used to calculate the indices, with the first corresponding to Band 1 and the second to Band 2.
Three feature selection algorithms were used to select the best indices for model building. They are the 

recursive feature elimination (RFE), the least absolute shrinkage and selection operator (LASSO) regression, 
and the random forest algorithm (RFA). RFE is a feature selection algorithm that gradually removes the less 
essential variables while maintaining the most important ones55. LASSO regression applies the L1 regularisation 
to penalise the absolute size of the coefficient, thus shrinking some to zero and performing feature selection, and 
preventing overfitting. RF is an ensemble-based approach that uses variable importance to rank features based 
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on the scores from individual trees. After each feature selection method was completed, all VIs for a specific 
index type were ranked from the most important to the least important for the target variable. The first set of 
selected indices was those selected by the three feature selection methods in the top seven. Then, the balance 
indices were selected from VIs that were selected at least twice by two of the three feature selection methods in 
their top ten ranked VIs. The selected indices were used as input data for model building.

To further assess the performance of the new band combination indexes, some previously used indices for 
moisture stress monitoring were calculated and used in this work. These indices and their calculation formulas 
are presented in Table 6. All previously published indices were used in model building.

Machine learning models
This work used four machine learning models: partial least squares regression (PLSR), RF, support vector 
machines (SVM), and artificial neural networks (ANN) to predict PMC and SMC. A statistical modelling method 
called partial least squares regression (PLSR) identifies latent components accounting for variation in predictors 
and responses. Because PLSR is so versatile (e.g., it makes few assumptions and handles collinear variables 
effectively), it is invaluable as a data exploration approach63. Tin Kam Ho developed the non-parametric, 
supervised, ensemble machine learning algorithm known as RF regression, which uses a set of decision trees 
to generate predictions. RF is a well-liked option for regression and classification tasks, as it uses ensemble 
learning techniques to produce precise and dependable predictions by employing multiple decision trees 
instead of a single model. RF’s primary goal is to create a “forest” by merging multiple decision trees, typically 
through bootstrap aggregation, also known as “bagging.” One of RF’s main advantages is that it can withstand 
overfitting, even with many features64. SVM is another famous machine learning model that has proven to 
be a good fit for modelling plant characteristics in remote sensing. Some researchers have reported its better 
performance23. ANNs are supervised, non-parametric machine learning techniques that mimic how the human 
brain processes information to model complex issues for decision-making or prediction. Neural networks are 
superior to alternative regression models in several ways. These include their ability to represent known or 
non-linear correlations between variables, resilience to noisy inputs, capacity to generalize input variables, and 
absence of variable-specific assumptions5.

For model tuning parameters, we implemented the cross-validation and grid search approach as further 
explained by An et al.6. Model performance was assessed using the root mean square error (RMSE), mean 
absolute error (MAE), and the coefficient of determination (R²), which were calculated using Eqs. (6–8), 
respectively.

Name Abbreviation Formula References

Normalised difference
vegetation index NDVI (NIR-RED)/(NIR + RED) =

(R783-R667)/(R783 + R667)
56

Normalised difference
water index NDWI

(NIR-IR)/(NIR + IR) =
(R860-R1240)/
(R860 + R1240)

57

Optimised soil adjusted
vegetation index OSAVI (1 + 0.16) x (R850-R668)/

(R850 + R660 + 0.16)
58

Simple ratio water index SRWI RED/IR = R668/R1240
59

Moisture stress index MSI SWIR/NIR = R1596/R830
60

Water index WI RED/NIR = R673/R850 61

Water band index WBI NIR/NIR = R970/R900 62

Table 6.  Presents the published vegetation indices used in this work.

 

Index Bands (nm) Index Bands (nm) Index Bands (nm) Index Bands (nm)

NDSI1 499, 764 NDSI9 506, 1100 RSI3 516, 764 RSI11 600, 941

NDSI2 499, 911 NDSI10 507, 764 RSI4 516, 909

NDSI3 499, 1064 NDSI11 507, 804 RSI5 516, 877

NDSI4 501, 764 NDSI12 507, 911 RSI6 530, 764

NDSI5 502, 764 NDSI13 511, 764 RSI7 650, 428

NDSI6 502, 1065 NDSI14 580, 755 RSI8 663, 422

NDSI7 503, 764 RSI1 503, 921 RSI9 671, 450

NDSI8 506, 764 RSI2 514, 764 RSI10 600, 739

Table 5.  Presents the vegetation index types and their calculation bands.
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n
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Where RMSE is the root mean square error, MAE is the mean absolute error, R2 is the coefficient of determination, 
n is the total number of observations in the dataset, yi is the observed value at sample i (runs from 1 to n), ∑ 
indicates adding up all terms from i = 1 to i = n, ŷi is the predicted value of the dependent variable at the i-th 
observation, ȳ is the mean of the observed values, ŷ is the mean of the predicted values, |.| is the absolute value.

All data were analysed using R programming (R Core Team, 2023, Vienna, Austria) and OriginPro, Version 
2025 (OriginLab Corporation, Northampton, MA, USA) for plotting graphs and statistical analysis.

Data availability
All data will be available upon reasonable request through the corresponding authors.

Received: 17 September 2025; Accepted: 23 December 2025

References
	 1.	 Leng, G. & Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. 

Sci. Total Environ. 654, 811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434 (2019).
	 2.	 Naganjali, K. et al. Revamping water use in agriculture: techniques and emerging innovations. J. Sci. Res. Rep. 30, 1055–1066. 

https://doi.org/10.9734/JSRR/2024/V30I72215 (2024).
	 3.	 Patiluna, V. et al. Using hyperspectral imaging and principal component analysis to detect and monitor water stress in ornamental 

plants. Remote Sens. (Basel). 17, 78. https://doi.org/10.3390/rs17020285 (2025).
	 4.	 Ma, S. et al. Water deficit diagnosis of winter wheat based on thermal infrared imaging. Plants 13, 745.  ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​p​l​

a​n​t​s​1​3​0​3​0​3​6​1​​​​ (2024).
	 5.	 Vahidi, M., Shafian, S. & Frame, W. H. Precision soil moisture monitoring through drone-based hyperspectral imaging and PCA-

driven machine learning. Sensors 25, 856. https://doi.org/10.3390/s25030782 (2025).
	 6.	 An, G. et al. Using machine learning for estimating rice chlorophyll content from in situ hyperspectral data. Remote Sens. (Basel). 

12, 3104. https://doi.org/10.3390/rs12183104 (2020).
	 7.	 Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J. & Dextraze, L. Integrated narrow-band vegetation indices for 

prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 81, 416–426. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​
1​0​.​1​0​1​6​/​S​0​0​3​4​-​4​2​5​7​(​0​2​)​0​0​0​1​8​-​4​​​​ (2002).

	 8.	 Ashraf, A. et al. Remote sensing as a management and monitoring tool for agriculture: potential applications. Int. J. Environ. Clim. 
Change. 13, 324–343. https://doi.org/10.9734/ijecc/2023/v13i81957 (2023).

	 9.	 Ustin, S. L., Riaño, D. & Hunt, E. R. Estimating canopy water content from spectroscopy. Isr. J. Plant. Sci. 60, 9–23. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​1​5​6​0​/​I​J​P​S​.​6​0​.​1​-​2​.​9​​​​ (2012).

	10.	 Elsherif, A., Gaulton, R. & Mills, J. Estimation of vegetation water content at leaf and canopy level using dual-wavelength 
commercial terrestrial laser scanners. Interface Focus 8, 96. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​0​9​8​/​​R​S​F​S​.​​2​0​1​7​.​0​​0​4​1​/​A​S​​S​E​T​/​2​8​​D​0​D​A​B​​9​-​D​9​1​E​​-​4​1​
0​2​-​​B​4​5​A​-​8​​B​8​7​9​1​​F​7​A​6​D​6​​/​A​S​S​E​T​​S​/​G​R​A​P​​H​I​C​/​R​S​F​S​2​0​1​7​0​0​4​1​F​1​2​.​J​P​E​G (2018).

	11.	 Zhang, F. & Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water 
indicators in response to water stress treatments for summer maize. BMC Ecol. 19, 1–12. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​1​8​6​/​​S​1​2​8​9​​8​-​0​1​9​-​​0​2​3​
3​-​0​​/​F​I​G​U​R​​E​S​/​4 (2019).

	12.	 Holtzman, N. M. et al. L-Band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest 
stand. Biogeosciences 18, 739–753. https://doi.org/10.5194/BG-18-739-2021 (2021).

	13.	 Brown, D. & Poole, L. Enhanced Plant Species and Early Water Stress Detection Using Visible and Near-Infrared Spectra  765–779  
(Springer, 2023). https://doi.org/10.1007/978-981-19-9819-5_55

	14.	 Sukhova, E. et al. Complex analysis of the efficiency of difference reflectance indices on the basis of 400–700 Nm wavelengths for 
revealing the influences of water shortage and heating on plant seedlings. Remote Sens. (Basel). 13, 1–25. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​r​
s​1​3​0​5​0​9​6​2​​​​ (2021).

	15.	 Sukhova, E. et al. New normalized difference reflectance indices for estimation of soil drought influence on pea and wheat. Remote 
Sens. (Basel)  14, 569. https://doi.org/10.3390/rs14071731 (2022).

	16.	 Sukhova, E. et al. Modified photochemical reflectance indices as new tool for revealing influence of drought and heat on pea and 
wheat plants. Plants 11, 745. https://doi.org/10.3390/plants11101308 (2022).

	17.	 Sukhova, E. et al. Broadband normalized difference reflectance indices and the normalized red–green index as a measure of 
drought in wheat and pea plants. Plants 14, 36. https://doi.org/10.3390/plants14010071 (2025).

	18.	 Li, Z. et al. Novel spectral indices and transfer learning model in Estimat moisture status across winter wheat and summer maize. 
Comput. Electron. Agric. 229, 123. https://doi.org/10.1016/j.compag.2024.109762 (2025).

	19.	 Tian, Y. C. et al. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with 
ground-and space-based hyperspectral reflectance. Field Crops Res. 120, 299–310. https://doi.org/10.1016/j.fcr.2010.11.002 (2011).

	20.	 Ihuoma, S. O. & Madramootoo, C. A. Recent advances in crop water stress detection. Comput. Electron. Agric. 141, 267–275. 
https://doi.org/10.1016/j.compag.2017.07.026 (2017).

	21.	 Van Zyl, J. L. Canopy temperature as a water stress indicator in vines. South. Afr. J. Enol. Viticulture  7, 785. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​2​1​5​
4​8​/​7​-​2​-​2​3​2​6​​​​ (2017).

	22.	 Zhang, Z. et al. Inversion of crop water content using multispectral data and machine learning algorithms in the North China 
plain. Agronomy 14, 586.  https://doi.org/10.3390/agronomy14102361 (2024).

Scientific Reports |         (2026) 16:3836 16| https://doi.org/10.1038/s41598-025-33905-8

www.nature.com/scientificreports/

https://doi.org/10.1016/j.scitotenv.2018.10.434
https://doi.org/10.9734/JSRR/2024/V30I72215
https://doi.org/10.3390/rs17020285
https://doi.org/10.3390/plants13030361
https://doi.org/10.3390/plants13030361
https://doi.org/10.3390/s25030782
https://doi.org/10.3390/rs12183104
https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.1016/S0034-4257(02)00018-4
https://doi.org/10.9734/ijecc/2023/v13i81957
https://doi.org/10.1560/IJPS.60.1-2.9
https://doi.org/10.1560/IJPS.60.1-2.9
https://doi.org/10.1098/RSFS.2017.0041/ASSET/28D0DAB9-D91E-4102-B45A-8B8791F7A6D6/ASSETS/GRAPHIC/RSFS20170041F12.JPEG
https://doi.org/10.1098/RSFS.2017.0041/ASSET/28D0DAB9-D91E-4102-B45A-8B8791F7A6D6/ASSETS/GRAPHIC/RSFS20170041F12.JPEG
https://doi.org/10.1186/S12898-019-0233-0/FIGURES/4
https://doi.org/10.1186/S12898-019-0233-0/FIGURES/4
https://doi.org/10.5194/BG-18-739-2021
https://doi.org/10.1007/978-981-19-9819-5_55
https://doi.org/10.3390/rs13050962
https://doi.org/10.3390/rs13050962
https://doi.org/10.3390/rs14071731
https://doi.org/10.3390/plants11101308
https://doi.org/10.3390/plants14010071
https://doi.org/10.1016/j.compag.2024.109762
https://doi.org/10.1016/j.fcr.2010.11.002
https://doi.org/10.1016/j.compag.2017.07.026
https://doi.org/10.21548/7-2-2326
https://doi.org/10.21548/7-2-2326
https://doi.org/10.3390/agronomy14102361
http://www.nature.com/scientificreports


	23.	 Zhuang, T. et al. Coupling continuous wavelet transform with machine learning to improve water status prediction in winter 
wheat. Precis. Agric. 24, 2171–2199. https://doi.org/10.1007/s11119-023-10036-6 (2023).

	24.	 Wang, Y. et al. Estimating maize leaf water content using machine learning with diverse multispectral image features. Plants  14, 
973. https://doi.org/10.3390/PLANTS14060973 (2025).

	25.	 Wu, Y. et al. Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice. 
Agric. Water Manag. 289, 108521. https://doi.org/10.1016/J.AGWAT.2023.108521 (2023).

	26.	 El-Hendawy, S. E. et al. Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain 
yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 217, 356–373. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​J​.​A​G​W​A​T​.​2​
0​1​9​.​0​3​.​0​0​6​​​​ (2019).

	27.	 Zhou, Z., Ecol, B., Zhang, F. & Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: a comparison 
of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 19, 18–18. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​8​6​/​S​
1​2​8​9​8​-​0​1​9​-​0​2​3​3​-​0​​​​ (2019).

	28.	 Zygielbaum, A. I., Arkebauer, T. J., Walter-Shea, E. A. & Scoby, D. L. Detection and measurement of vegetation photoprotection 
stress response using PAR reflectance. Isr. J. Plant. Sci. 60, 37–47. https://doi.org/10.1560/IJPS.60.1-2.37 (2012).

	29.	 Genc, L. et al. Determination of water stress with spectral reflectance on sweet corn (Zea Mays L.) using classification tree (CT) 
analysis. Zemdirbyste 100, 81–90. https://doi.org/10.13080/z-a.2013.100.011 (2013).

	30.	 Skendžić, S., Zovko, M., Lešić, V., Pajač Živković, I. & Lemić, D. Detection and evaluation of environmental stress in winter wheat 
using remote and proximal sensing methods and vegetation indices—a review. Divers. (Basel). 15, 481. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​d​1​
5​0​4​0​4​8​1​​​​ (2023).

	31.	 Gao, C. et al. Estimation of canopy water content by integrating hyperspectral and thermal imagery in winter wheat fields. 
Agronomy 14 , 2569. https://doi.org/10.3390/AGRONOMY14112569 (2024).

	32.	 G, R. & Srinivasan, M. Detection and Estimation of damage caused by thrips thrips tabaci (Lind) of cotton using hyperspectral 
radiometer. Agrotechnology  3, 896. https://doi.org/10.4172/2168-9881.1000123 (2014).

	33.	 Pourazar, H., Samadzadegan, F. & Dadrass Javan, F. Aerial multispectral imagery for plant disease detection: radiometric calibration 
necessity assessment. Eur. J. Remote Sens. 52, 17–31. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​0​8​0​/​​2​2​7​9​7​​2​5​4​.​2​0​​1​9​.​1​6​4​​2​1​4​3​/​A​​S​S​E​T​/​​2​7​5​A​0​F​​3​F​-​1​B​2​​3​-​4​1​
E​4​​-​A​6​B​A​​-​A​C​1​5​6​​8​9​8​F​8​4​​5​/​A​S​S​E​​T​S​/​I​M​​A​G​E​S​/​T​​E​J​R​_​A​_​​1​6​4​2​1​4​​3​_​I​L​G​0​0​0​2​.​J​P​G (2019).

	34.	 Cao, Q. et al. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with 
crop circle active crop canopy sensor. Precis Agric. 17, 136–154. https://doi.org/10.1007/S11119-015-9412-Y/METRICS (2016).

	35.	 Li, C. et al. Hyperspectral Estimation of winter wheat leaf water content based on fractional order differentiation and continuous 
wavelet transform. Agronomy 13, 56.  https://doi.org/10.3390/AGRONOMY13010056 (2022).

	36.	 Zhang, J. et al. Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water 
content. Plant. Methods  17, 1–14. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​1​1​​8​​6​/​S​1​3​​​0​0​7​-​​0​​2​1​-​0​​0​7​​​3​7​-​2​/​​F​I​​G​U​R​E​S​/​1​0 (2021).

	37.	 Zhang, C., Liu, J., Shang, J. & Cai, H. Capability of crop water content for revealing variability of winter wheat grain yield and soil 
moisture under limited irrigation. Sci. Total Environ. 631-632, 677–687.  https://doi.org/10.1016/j.scitotenv.2018.03.004 (2018).

	38.	 Carter, G. A. & Knapp, A. K. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll 
concentration. Am. J. Bot. 88, 677–684. https://doi.org/10.2307/2657068 (2001).

	39.	 Rapaport, T., Hochberg, U., Cochavi, A., Karnieli, A. & Rachmilevitch, S. The potential of the spectral ‘water balance index’ 
(WABI) for crop irrigation scheduling. New Phytol. 216, 741–757. https://doi.org/10.1111/NPH.14718 (2017).

	40.	 Prudnikova, E. et al. Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sens. 11, 1932.  
https://doi.org/10.3390/RS11161932   (2019).

	41.	 Li, W. et al. RSARE: a physically-based vegetation index for estimating wheat green LAI to mitigate the impact of leaf chlorophyll 
content and residue-soil background. ISPRS J. Photogram. Remote Sens. 200, 138–152. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​i​s​p​r​s​j​p​r​s​.​2​0​2​3​.​0​5​.​
0​1​2​​​​ (2023).

	42.	 Zou, X. & Mõttus, M. Sensitivity of common vegetation indices to the canopy structure of field crops. Remote Sens. (Basel). 9, 253. 
https://doi.org/10.3390/rs9100994 (2017).

	43.	 Nanda, M. K., Giri, U. & Bera, N. Canopy temperature-based water stress indices: potential and limitations. In Advances in Crop 
Environment Interaction   365–385   (Springer, 2018).

	44.	 Colaizzi, P., Evett, S., O’shaughnessy, S. A. & Howell, T. A. Using Plant Canopy Temperature to Improve Irrigated Crop Management 
(Springer, 2012).

	45.	 Shi, B. et al. Improving water status prediction of winter wheat using multi-source data with machine learning. Eur. J. Agron. 139, 
256. https://doi.org/10.1016/j.eja.2022.126548 (2022).

	46.	 Zhang, X. et al. Improving the prediction performance of leaf water content by coupling multi-source data with machine learning 
in rice (Oryza sativa L). Plant. Methods. 20, 1–16. https://doi.org/10.1186/S13007-024-01168-5 (2024).

	47.	 Cervera-Díaz, M., León-Chávez, M. F., Santiesteban-Toca, C. & Lozoya, C. Greenhouse smart irrigation based on soil moisture 
and vegetation index measurements. In Proceedings of the 2023 IEEE Conference on Technologies for Sustainability, SusTech 2023; 
Institute of Electrical and Electronics Engineers Inc. 20–24  (2023).

	48.	 Owino, L., Söffker, D., Nicholas Koumboulis, F. & Kouvakas, N. How much is enough in watering plants? state-of-the-art in 
irrigation control: advances, challenges, and opportunities with respect to precision irrigation. Front. Control Eng. 3, 982463. 
https://doi.org/10.3389/FCTEG.2022.982463 (2022).

	49.	 Tunca, E., Selim Köksal, E., Öztürk, E., Akay, H. & Çetin Taner, S. Accurate estimation of sorghum crop water content under 
different water stress levels using machine learning and hyperspectral data Emre Tunca · Eyüp Selim Köksal · elif Öztürk · Hasan 
Akay · Sakine Çetin Taner.  https://doi.org/10.1007/s10661-023-11536-8 (2024).

	50.	 Zheng, X., Yu, Z., Shi, Y. & Liang, P. Differences in water consumption of wheat varieties are affected by root morphology 
characteristics and post-anthesis root senescence. Front. Plant. Sci. 12, 256. https://doi.org/10.3389/fpls.2021.814658 (2022).

	51.	 Navarro, A. et al. Sorting biotic and abiotic stresses on wild rocket by leaf-image hyperspectral data mining with an artificial 
intelligence model. Plant Methods  18, 45.  https://doi.org/10.1186/S13007-022-00880-4 (2022).

	52.	 Koh, S. S. et al. Classification of plant endogenous States using machine learning-derived agricultural indices. Plant. Phenomics. 5, 
256. https://doi.org/10.34133/PLANTPHENOMICS.0060 (2023).

	53.	 Vásquez, R. A. R., Heenkenda, M. K., Nelson, R. & Segura Serrano, L. Developing a new vegetation index using cyan, orange, and 
near infrared bands to analyze soybean growth dynamics. Remote Sens. . 15, 2888. https://doi.org/10.3390/RS15112888 (2023).

	54.	 Sulaiman, P. S., Khalid, F., Azman, A., Kahar, Z. A. & Hanafi, M. Reviewing vegetation indices for mobile application: potentials 
and challenges. J. Adv. Res. Appl. Sci. Eng. Technol. 35, 33–46. https://doi.org/10.37934/ARASET.35.2.3346 (2024).

	55.	 Wen, P. et al. Adaptability of wheat to future climate change: effects of sowing date and sowing rate on wheat yield in three wheat 
production regions in the North China plain. Sci. Total Env. https://doi.org/10.1016/j.scitotenv.2023.165906  (2023).

	56.	 Rouse, R. W. H., Haas, J. A. W. & Deering, D. W. ’aper A 20 monitoring vegetation systems in the great plains with ERTS (2024).
	57.	 Gao, B. C. NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. 

Environ. 58, 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3 (1996).
	58.	 Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107. ​h​t​t​p​s​:​/​/​d​

o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​0​0​3​4​-​4​2​5​7​(​9​5​)​0​0​1​8​6​-​7​​​​ (1996).
	59.	 Zarco-Tejada, P. J., Rueda, C. A. & Ustin, S. L. Water content estimation in vegetation with MODIS reflectance data and model 

inversion methods. Remote Sens. Environ. 85, 109–124. https://doi.org/10.1016/S0034-4257(02)00197-9 (2003).

Scientific Reports |         (2026) 16:3836 17| https://doi.org/10.1038/s41598-025-33905-8

www.nature.com/scientificreports/

https://doi.org/10.1007/s11119-023-10036-6
https://doi.org/10.3390/PLANTS14060973
https://doi.org/10.1016/J.AGWAT.2023.108521
https://doi.org/10.1016/J.AGWAT.2019.03.006
https://doi.org/10.1016/J.AGWAT.2019.03.006
https://doi.org/10.1186/S12898-019-0233-0
https://doi.org/10.1186/S12898-019-0233-0
https://doi.org/10.1560/IJPS.60.1-2.37
https://doi.org/10.13080/z-a.2013.100.011
https://doi.org/10.3390/d15040481
https://doi.org/10.3390/d15040481
https://doi.org/10.3390/AGRONOMY14112569
https://doi.org/10.4172/2168-9881.1000123
https://doi.org/10.1080/22797254.2019.1642143/ASSET/275A0F3F-1B23-41E4-A6BA-AC156898F845/ASSETS/IMAGES/TEJR_A_1642143_ILG0002.JPG
https://doi.org/10.1080/22797254.2019.1642143/ASSET/275A0F3F-1B23-41E4-A6BA-AC156898F845/ASSETS/IMAGES/TEJR_A_1642143_ILG0002.JPG
https://doi.org/10.1007/S11119-015-9412-Y/METRICS
https://doi.org/10.3390/AGRONOMY13010056
https://doi.org/10.1186/S13007-021-00737-2/FIGURES/10
https://doi.org/10.1016/j.scitotenv.2018.03.004
https://doi.org/10.2307/2657068
https://doi.org/10.1111/NPH.14718
https://doi.org/10.3390/RS11161932
https://doi.org/10.1016/j.isprsjprs.2023.05.012
https://doi.org/10.1016/j.isprsjprs.2023.05.012
https://doi.org/10.3390/rs9100994
https://doi.org/10.1016/j.eja.2022.126548
https://doi.org/10.1186/S13007-024-01168-5
https://doi.org/10.3389/FCTEG.2022.982463
https://doi.org/10.1007/s10661-023-11536-8
https://doi.org/10.3389/fpls.2021.814658
https://doi.org/10.1186/S13007-022-00880-4
https://doi.org/10.34133/PLANTPHENOMICS.0060
https://doi.org/10.3390/RS15112888
https://doi.org/10.37934/ARASET.35.2.3346
https://doi.org/10.1016/j.scitotenv.2023.165906
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/S0034-4257(02)00197-9
http://www.nature.com/scientificreports


	60.	 Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S. & Grégoire, J. M. Detecting vegetation leaf water content using reflectance in 
the optical domain. Remote Sens. Environ. 77, 22–33. https://doi.org/10.1016/s0034-4257(01)00191-2 (2001).

	61.	 Penuelas, J., Pinol, J., Ogaya, R. & Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). 
Int. J. Remote Sens. 18, 2869–2875. https://doi.org/10.1080/014311697217396 (1997).

	62.	 Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J. & Field, C. B. Reflectance indices associated with physiological changes in 
nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 48, 135–146. https://doi.org/10.1016/0034-4257(94)90136-8 
(1994).

	63.	 Sawatsky, M. L., Clyde, M. & Meek, F. Partial least squares regression in the social Sciences. Quant. Methods Psychol. 11, 52 (2015).
	64.	 Sajjad Abdollahpour, S., Buehler, R., Le, C., Nasri, H. T. K. & Hankey, A. S. Built environment’s nonlinear effects on mode shares 

around BRT and rail stations. Transport. Res. Part D: Transport Env. https://doi.org/10.1016/j.trd.2024.104143 (2024).

Author contributions
Author Contributions: James E. Kanneh: Conceptualisation, Methodology, Investigation, Software, Formal anal-
ysis, Visualisation, Writing—original draft, Writing—Review & editing. Jinglei Wang: Conceptualisation, Meth-
odology, Writing—Review & editing, Supervision, Data curation, Validation, Project administration, Funding 
acquisition. Caixia Li: Conceptualisation, Methodology, Writing—Review & editing, Supervision, Data cura-
tion, Validation, Project administration. Yanchuan Ma: Methodology, Software, Writing—Review & editing, 
Validation. Shengli Li: Writing—Review & editing, Validation. Daokuan Zhong: Investigation, Writing—Review 
& editing. Zuji Wang: Investigation, Writing—Review & editing. Djifa Fidele Kpalari: Writing—Review & edit-
ing. BE Madjebi Collela: Writing—Review & editing. All authors have read and agreed to the published version 
of the manuscript.

Funding
This work was funded by the “Agricultural Science and Technology Major Project”.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.W. or C.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2026 

Scientific Reports |         (2026) 16:3836 18| https://doi.org/10.1038/s41598-025-33905-8

www.nature.com/scientificreports/

https://doi.org/10.1016/s0034-4257(01)00191-2
https://doi.org/10.1080/014311697217396
https://doi.org/10.1016/0034-4257(94)90136-8
https://doi.org/10.1016/j.trd.2024.104143
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Novel indices and multi-source data fusion for monitoring plant moisture stress in winter wheat fields
	﻿Results
	﻿Canopy reflectance and water content of winter wheat across growth stages
	﻿Novel vegetation index and canopy temperature (Tc) correlation with plant moisture content (PMC), and leaf moisture content (LMC)
	﻿Machine learning prediction of plant moisture content (PMC)
	﻿ML prediction performance of LMC

	﻿Discussion
	﻿Conclusion
	﻿Limitation of the study

	﻿Materials and methods
	﻿Study site and treatment
	﻿Spectral reflectance, canopy temperature, and plant moisture data collection
	﻿Spectral band selection for index calculation and index selection for modelling
	﻿Machine learning models

	﻿References


