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Novel indices and multi-source
data fusion for monitoring plant
moisture stress in winter wheat

fields
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Drought is a significant challenge to winter wheat production. Its impact can be mitigated by
preventing plant moisture stress through precision agriculture. Remote sensing and machine learning
have proven effective for managing moisture stress in winter wheat. This study highlights the potential
of new indices that combine visible (VIS) and near-infrared (NIR) bands along with canopy temperature
(Tc), to monitor plant moisture content (PMC) and leaf moisture content (LMC) in winter wheat under
irrigation treatments: WO (no irrigation), W1 (45-65%), W2 (55-75%), W3 (65-85%), W4 (75-95%) of
field capacity, and Z (irrigation and rainfall). Our findings show that the ratio stress index (RSI), with
band combinations such as RSI7 ., ,,q, RSI8 (3 455, and RSI9 g;; 4, performs better in tracking PMC
and LMC, demonstrating high correlation and improved average prediction metrics for vegetation
index (V1) models with R%, RMSE, and MAE of 0.838, 2.791, and 2.093 respectively, for LMC and

VI-Tc input models with 0.850, 2.731, and 2.105 for PMC. Incorporating Tc into RSI models enhances
prediction accuracy, increasing R2 by up to 13.82% in the RSI-Tc-SVM-PMC model and decreasing
RMSE and MAE by 15.89% and 18.33%, respectively. Therefore, a combination of RSI-Tc-SVM-ANN is
recommended to monitor winter wheat moisture stress.

Keywords Spectroradiometer, Vegetation indices, Moisture stress, Winter wheat, Visible bands, Remote
sensing

Agricultural drought is a significant limiting factor for agricultural production, with reports suggesting a
probability greater than 80% for yield loss due to agricultural droughts'. As water resources become increasingly
scarce, and agriculture accounts for 70% of freshwater withdrawal®. Effective water management practices,
including soil water management, irrigation, and soil water conservation, are essential to sustain productive
farming?. Remote sensing has demonstrated its effectiveness in tackling drought challenges in agriculture?.
It offers the opportunity to monitor plant moisture content (PMC), leaf moisture content (LMC), soil moisture
content (SMC)>, canopy temperature (Tc)*, photosynthesis, stomatal conductance?, chlorophyll levels®’, and
disease infection® promptly, with high spatial and temporal resolution, showcasing its versatility.

Plant moisture is crucial for numerous biophysical and biochemical processes that regulate plant growth,
development, and yield. Generally, PMC can be monitored in several ways, focusing on various parameters,
including canopy moisture’, whole-plant moisture, leaf moisture, equivalent water thickness'’, leaf relative water
content, leaf fuel moisture!!, and water potential'>2. Monitoring PMC through remote sensing has become a
beneficial endeavor for alleviating moisture stress in farms, as this approach can identify moisture stress before
other methods!?. This feature is achieved by measuring canopy spectral reflectance and canopy temperature (Tc).
The measured reflectance is further processed to form vegetation indices, which reveal essential information
about a plant’s status based on its interaction with light within each spectrum.

Several approaches have been developed to form vegetation indices for monitoring PMC, utilizing a
combination of wavelengths across the spectrum. It is widely reported that pigments, chlorophyll, and
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carotenoids'® influence the reflectance changes in the VIS. The NIR reflectance is influenced by leaf internal
structure, canopy structure, plant age, and LAI, while the plants internal moisture influences the shortwave
infrared (SWIR). From this backdrop, vegetation indices are being formed to monitor PMC and leaf moisture
content (LMC).

Although VIS and NIR reflectance are viewed as indirect indicators of moisture stress in plants, these
regions of the spectrum are recently being reported as capable of monitoring droughts in farmlands with equal
effectiveness™!4-16. Sukhova et al.'#!>!7, having conducted both laboratory and field experiments with pea and
wheat plants in experiment pots, reported that ratio index (RI) (659, 553 nm), (613, 605 nm), and (670, 432 nm)
and normalized red-green index (659, 553 nm) were suitable for monitoring soil drought and could identify
changes in plant within four days of drought initiation, thus giving a new dimension of the use of VIS bands.
Although these findings were significant, their work involved potted peas and wheat, which were not fully
representative of typical farming conditions. Furthermore, their measurement of reflectance using a thermal
camera necessitates an improved method for reflectance measurement. Li et al.!® then reported using UAV
multispectral and hyperspectral data within the 400-1000 nm wavelength range for monitoring winter wheat
and summer maize water content and yield prediction with ratio and normalized indices. Their work reported
the importance of the VIS and novel indices for monitoring PMC. In their work, novel indices outperformed
traditional indices. Since this work used a UAV system, which is more complicated and requires more competence
to complete, and focused on only two growth stages (flowering and filling), a more straightforward and easier-
to-use method that covers more growth stages will be a handy and safer approach; the spectroradiometer
approach covers this scope and provides a more straightforward approach. Tian et al.!® also reported that the
new indices performed better in predicting rice leaf nitrogen content. This implies that new band combinations
for monitoring moisture stress in plants, both directly and indirectly, are possible.

Moreover, other than direct moisture stress monitoring, remote sensing has been employed to monitor
moisture stress in plants indirectly; one such use is the application of thermal infrared cameras for monitoring
plant canopy temperature* which is an indirect method of moisture monitoring. According to the literature,
as plants experience less available soil moisture, high temperature, and other environmental factors affecting
moisture availability, they react by closing their stomata®. This leads to less transpiration and photosynthesis,
thus increasing the surface leaf temperature?!. Infrared thermal cameras detect the temperature change?’, hence
reflecting plants’ moisture status. Additionally, several other works have reported using machine learning
models for predicting plants’ characteristics using remotely sensed data?>-2>. These combinations become a vital
partnership for monitoring farmland plant moisture stress.

In an effort to improve the current status of water management in the face of the changing environments
in which farmers farm, this work intended to form novel indices, concentrated in the VIS and NIR, from
spectroradiometer-measured canopy reflectance and fuse them with canopy temperature that are capable of
monitoring PMC and LMC at various growth stages of winter wheat. This will then enhance moisture stress
monitoring by combining these approaches into a few indices and models and capitalizing on the high
sensitivity of the VIS-NIR bands to stressors (including moisture stress), thereby preventing reliance on a single
moisture stress monitoring approach and conventional water stress indices, which can sometimes be affected
by environmental factors and fail to provide meaningful results. This approach ensures reliable monitoring of
moisture stress, thereby providing a robust method for preventing moisture stress in winter wheat fields, guiding
timely irrigation scheduling, and laying a scientific basis for decision-making in farmland water management.

Results

Canopy reflectance and water content of winter wheat across growth stages

Canopy spectral reflectance showed a continuous changing pattern across growth stages (Fig. 1). Notably, as
the growth progressed, there was an increase in reflectance in the VIS and SWIR bands, while the NIR bands
exhibited a decrease in reflection. This trend suggests that spectral reflectance is influenced by the moisture
content, age, and growth stage of winter wheat, making it a valuable tool for monitoring moisture stress in
winter wheat plants. As observed, the highest NIR reflectance was recorded at the booting stage and continued
to decrease as the growth stages progressed up to maturity (Fig. 1). After the flowering stage of winter wheat,
the moisture content continued to decline across all treatments, despite SMC showing both increasing and
decreasing trends during the same period. This is a noticeable trend as plants mature. The grains, leaves, and
stems generally lose moisture as plants senesce with age.

Novel vegetation index and canopy temperature (Tc) correlation with plant moisture content
(PMC), and leaf moisture content (LMC)

The two novel indices and Tc showed a significantly negative correlation with PMC and LMC at various growth
stages and throughout the growing season. Most importantly, different indices exhibited the highest correlations
at different stages of growth. As shown in Table 1 (correlation results), the novel indices outperformed the

ok ok

published indices further for monitoring moisture content in wheat. SRWI (R=0.86""), RSIIO (600,739 (R=0.88""),

and NDSI1, g0 -, (R=0.89"") had the highest overall correlation with PMC for their respective index types. RSI
had the best growth stage performance with RSI9 ., 50 (R=0.45") at elongatron, RSI7 50, 426) (R=0. 7177 at
booting, &SIG (530, 764) (R=0.83"") at flowering and SIS (663, 442) (R=0.93"") at the rrpemng stages NDSI9(§Q6 1100
(R=0.73"") had the highest correlation at the filling stage, while WBI (R=0.5") and MSI (R=0.72"") ha

the highest correlations at heading and dough stages, respectively. With LMC, RSI had the best growth stage
performance, havmg had the hlghest correlation coefficient at elongatlon (R=0.66"), flowering (R=0.74""),
filling (R=0.82""), dough (R=0.89""), and ripening (R=0.87"") in addition to the overall growth cycle data

(R=0.69""). These performances suggest that the new indices are more suitable for monitoring winter wheat
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Fig. 1. Shows the growth stage canopy reflectance of winter wheat.
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Table 1. Shows the absolute value of pearson’s correlation coefficient between moisture (plant moisture
content (PMC) and leaf moisture content (LMC)) with canopy temperature (Tc) and vegetation indices at
various growth stages of wheat, and with the full dataset. Note: ™ means not significant at p <0.05, * significant
at p<0.05, ** significant at p<0.01, *** significant at p <0.001, and pub. means published, ratio stress index
(RSI), and normalized drought stress index (NDSI).

moisture stress than the published indices in our study. The corresponding p-values and significance are better
indicated in Table 1 and its note.

Correlations were conducted by treatment to assess the suitability of the new indices further. Interestingly,
as evidenced in Table 2, there were highly significant correlations between PMC and various index types. At
the treatment level, the Pearson correlation coefficient for all indices with PMC ranged from 0.93 to 0.98, with
the strongest correlation (RSI7 (R=0.98"")) observed in the W4 treatment (significance in Table 2). The LMC
correlations indicated that RSI achieved the best performance overall, with the highest R of 0.87"" in W2. A
strong correlation was also found between Tc and PMC across treatments. These correlation results suggest that

these new indices can potentially monitor moisture stress characteristics in winter wheat fields.
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Number of
Moisture type | Index type | WO w1 w2 w3 W4 Z samples
RSI RSI2 0.95%** RSI11 0.96*** RSI7 0.94*** RSI11 0.96*** RSI7 0.98*** RSI2 0.96*** 24
NDSI NDSI1 0.95%** | NDSI14 0.96*** | NDSI14 0.93*** | NDVI14 0.96*** | NDSI14 0.96*** | NDSI10 0.96*** | 24
pMC Published | WI 0.97%** NDVI 0.96*** NDVI 0.94*** WI0.964** WI0.98** SRWI 0.96*** 24
Tc 0.83*** 0.74*** 0.75%%* 0.78*** 0.80*** 0.81*** 24
RSI RSI9 0.79*** RSI8 0.82*** RSI9 0.87%** RSI9 0.77*** RSI9 0.76%** RSI9 0.80*** 24
LMC NDSI NDSI14 0.79*** | NDSI14 0.75*** | NDSI14 0.80*** | NDSI14 0.69*** | NDSI6 0.73*** | NDSI1 0.79*** | 24
Published | NDWI 0.80*** | SRWI 0.75*** SRWT 0.81** SRWT 0.70*** SRWI 0.72*** SRWT 0.80*** 24
Tc 0.55** 0.45* 0.56** 0.23™ 0.52** 0.19™ 24

Table 2. Presents the absolute value of the pearson correlation coefficient (R) between moisture (PMC and
LMC) with Tc and the vegetation index by treatment. Note: ™ is not significant at p <0.05, * is significant at
Pp<0.05, ** is significant at p <0.01, *** is significant at p <0.001. W0, W1, W2, W3, W4, and Z are irrigation
treatments.

RF PLSR SVM ANN
Moisture type | Index type R? RMSE | MAE | R? RMSE | MAE | R? RMSE | MAE | R? RMSE | MAE
RSI 0.756 | 3.422 | 2.288 | 0.613 |4.315 |3.408 | 0.824 |2.910 |2.111 |0.727 | 3.621 | 2.745
LMC NDSI 0.639 | 4.165 |2.701 | 0.597 |4.403 |3.750 | 0.732 | 3.587 |2.542 | 0.488 | 4.963 | 3.806
Published indices | 0.752 | 3.454 |2.298 | -3.105 | 14.050 | 5.498 | 0.726 | 3.627 |2.580 | 0.578 | 4.505 | 2.905
RSI 0.817 | 3.017 |2.220 | 0.807 |3.100 |2.559 |0.679 |3.993 |2.628 |0.849 |2.736 |2.131
PMC NDSI 0.810 | 3.076 |2.268 | 0.825 |2.950 |2.472 |0.828 |2.927 |2.391 |0.844 |2.784 |2.284
Published indices | 0.809 | 3.084 | 2.136 | 0.831 |2.895 |2.313 |0.720 | 3.729 |2.448 | 0.828 | 2.924 |2.427

Table 3. Presents the model testing performance metrics of the PMC and LMC of winter wheat with only
vegetation indices as input. RF is the random forest model, PLSR is the partial least squares regression model,
SVM is the support vector machine model and ANN is the artificial neural network model. PMC and LMC are
plant moisture content and leaf moisture content, respectively.

Machine learning prediction of plant moisture content (PMC)

To evaluate the indices” predictive abilities, four machine learning models — random forest (RF), partial least
squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN)- were fitted to
the data. 70% (104) of the data was used for model training, while 30% (40) was used for testing the models.
This 30% data was not used in model training and was set aside for model testing. For model tuning and
parameterization, we employed the cross-validation (k=10) and grid search method, where the models were
tuned, and the best parameter combinations that produced the lowest RMSE were selected. This ensures that the
best possible parameters are utilized for modelling.

Firstly, models were built with only vegetation indices as the input data. With the VIs as the only input
data, the RSI-ANN model achieved the best performance, yielding an R? of 0.849, RMSE of 2.736, and MAE of
2.131. The NDSI-ANN model yielded the second-best results, with an R* of 0.844, RMSE of 2.784, and MAE
of 2.284. With the published indices, the best performance was achieved by the PLSR model, yielding an R* of
0.831, an RMSE of 2.895, and an MAE of 2.231 (Table 3). Our work shows that the novel indices outperform
the notable water stress monitoring indices. The Tc was added as input data to the models to better explore the
benefits of multi-source data fusion for these indices in stress monitoring. This addition generally improved the
performance of the models and indices in predicting PMC. With this inclusion, the RSI-ANN model had an R?
of 0.850, RMSE of 2.726, and MAE of 2.078 (Fig. 2), the NDSI-ANN model achieved an R2 of 0.842, RMSE of
2.803, and MAE of 2.293 (Fig. 3) and the ANN and published VI model had an R? of 0.866, RMSE of 2.577, and
MAE of 1.820 (Fig. 4). In addition, incorporating Tc into prediction models improved performance over the
metrics presented in Table 3.

Figure 2 presents the prediction metrics of machine learning using RSI-Tc as input data to predict PMC.
Notably, there are good prediction metrics across all models. As revealed, error metrics are also appreciable.

Figure 5 presents the variable importance for the random forest model. In the RSI model, RSI9, RSI10, and
RSI6 were the top three contributing indices, while the Tc was the fourth most important variable (Fig. 8a).
With the NDSI model, the contribution of Tc is not well pronounced, though it increased the overall prediction
accuracy of the model. The published indices model saw the NDVI, SRWI, WI, OSAVI, and Tc as the top
contributing variables.

ML prediction performance of LMC
The LMC prediction model, using the new indices as input data, further demonstrated a promising performance
compared to the published indices, with the SVM model combined with RSI producing the highest R* of 0.824,
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Fig. 2. Shows the PMC model testing metrics for the ratio stress index (RSI) combined with Tc as input data
for machine learning models. a is the random forest model, b is the partial least squares model, c is the support
vector machine model, and d is the artificial neural network model. Error metrics are presented in percentage.
The green line is the regression line, while the red dashed line is the 1:1 ratio line. The higher point density
indicates the regions with more samples, while the proximity to the regression line indicates model accuracy.

RMSE of 2.910, and MAE of 2.111 (Table 3). The SVM and NDSI model achieved an R? of 0.732, an RMSE of
4.165, and an MAE of 2.701 (Table 3), whereas the published indices and RF model achieved an R* of 0.752, an
RMSE of 3.454, and an MAE of 2.299. Again, the RSI achieved the best performance. The VIs combined with
Tc further improved the performance of the models, as presented in Table 6; Figs. 6, 7 and 8. The SVM-RSI-Tc
model R? increased to 0.851 (3.338%), while RMSE reduced to 2.673 (8.148%) and MAE to 2.075 (1.677%).
The SVM-NDSI-Tc model increased the testing R? to 0.770 (5.149%), reduced RMSE to 3.323 (7.313%), and
MAE to 2.424 (4.634%). RE, Tc, and published indices model improved the prediction R? by 0.792 (5.384%),
while also reducing RMSE and MAE by 3.160 (8.52%) and 2.237 (2.669%), respectively. Index-wise, the RSI-Tc
combination achieved the best performance in predicting LMC, while the SVM model had the best performance
among ML models. The better performance of the ANN and SVM models can be attributed to their ability

Scientific Reports|  (2026) 16:3836 | https://doi.org/10.1038/s41598-025-33905-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

&
=
S 80
=
A
=
[<P]
jg 70
=
[«P]
S
A
60
7y
S
8
LE) 0
o
=
[<P]
e
9
5 70
[<P]
S
-
60

7 y=20.954+0.740x

,7 R=0818
P RMSE = 3.007
4 MAE = 2.113
60 70 80

7 y=21.271+0.744x

., ’ R? = 0.835
p RMSE = 2859
’ MAE = 2.346
60 70 80

Actual PMC (%)

80

70

60

80

70

60

y =19.831 + 0.754x
e R2 = (.827

7/
’ RMSE =2.928
2 MAE =2.517
60 70 80
d
/
y =15.286 + 0.810x
<,7  R=0842
¢ RMSE = 2.803
’ MAE = 2.293
60 70 80

Actual PMC (%)

Fig. 3. Shows the PMC model testing metrics for the normalized drought stress index (NDSI) combined
with Tc as input data for machine learning models. a is the random forest model, b is the partial least squares
model, c is the support vector machine model, and d is the artificial neural network model. Error metrics are
presented in percentage. The green line is the regression line, while the red dashed line is the 1:1 ratio line.
The higher point density indicates the regions with more samples, while the proximity to the regression line

indicates model accuracy.

to model complex, nonlinear relationships between the target and predictor variables, a feature that is highly
present in spectral vegetation indices and the PMC relationship.

Discussion

Agricultural drought has become a key challenge for winter wheat production. Monitoring and preventing its
occurrence promptly in farmlands are crucial for improved wheat production. This can be effectively achieved
by remote sensing. The combination of different bands across the spectrum has proven effective in monitoring
various biophysical and biochemical characteristics of plants in diverse environments and conditions.
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Fig. 4. Shows the PMC model testing metrics for the published indices combined with Tc as input data for
machine learning models. a is the random forest model, b is the partial least squares model, c is the support
vector machine model, and d is the artificial neural network model. Error metrics are presented in percentage.
The green line is the regression line, while the red dashed line is the 1:1 ratio line. The higher point density
indicates the regions with more samples, while the proximity to the regression line indicates model accuracy.

In our work, we examined the feasibility of band combinations (vegetation indices) between the NIR and
VIS, with the VIS bands focused on the blue and green bands. Our work revealed that the combination of
bands between VIS and NIR (400-1100 nm) and VIS-VIS bands (400-671 nm) ranges can effectively monitor
winter wheat moisture stress at critical growth stages. These results are consistent with findings reported in

other works!4-18:26:27

, who reported that VIS indices performed better in monitoring the canopy water content of

summer maize compared to traditional water-sensitive indices.
Although this region has been mainly linked to photosynthesis'®> and pigment-related characteristics, it is
also reported that photosynthesis, chlorophyll, and pigments are affected by water stress, which subsequently
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Fig. 5. Shows the PMC model testing variable importance for the RF, index, and Tc model, where a-c is the
ratio stress index, the normalized drought stress index, and the published vegetation indices, respectively.

reduces the absorption prowess of chlorophyll and other leaf pigments, thereby increasing reflectance in the
visible region?®-*°. This makes this spectral region very sensitive to changes in plant moisture.

As moisture stress intensifies, it triggers physiological responses in the internal structures of leaves, resulting
in changes in spectral response to incoming radiation. These interactions can further express stress levels in
winter wheat*®. With reports that the VIS presents the highest correlation coeflicient in winter wheat compared
to other spectral regions®!, blue and green bands have been less frequently reported for monitoring winter wheat
moisture stress. However, there are reports of their use for disease detection in plants and yield prediction®*-3,
An et al.® reported the suitability of visible bands in predicting rice’s chlorophyll content and their effect on
canopy spectral reflectance.

Our work reveals that ratio and normalized band selections in the VIS and NIR bands range are essential
tools for monitoring moisture stress in winter wheat at critical growth stages (Figs. 2 and 3). As shown in Table
2, apart from the elongation stage, there is a significant correlation between the calculated indices and PMC,
indicating the sensitivity of both indices to moisture content during reproductive growth stages, consistent with
other reported findings?’. Like other reported indices, the created indices can be employed as a key monitoring
tool for water stress monitoring in winter wheat from the booting to harvest stages. Interestingly, the RSI
demonstrated a better growth stage monitoring ability for PMC, with RSI calculated using two VIS bands (RSI7,
RSI8, and RSI9) exhibiting the best performance. The ability of these indices to predict winter wheat’s moisture
content has a positive implication for winter wheat farming, as it ensures timely stress detection and precision
irrigation control, thereby preventing moisture stress to winter wheat at critical growth stages.

At the treatment level (Table 2), these indices show significant correlation with PMC. These highly substantial
correlations confirm that these indices can be used at treatment levels to monitor water stress, ensuring timely
irrigation scheduling. In addition to the superior growth stage correlations, the RSI, when used as input data
for the SVM model, further produced the best performance in predicting the PMC of winter wheat (Table 3). In
conclusion, the better performance of the new indices over the published indices validates the need for further
applying new band combinations to monitor moisture stress in winter wheat fields.

When Tc was included as input data for PMC prediction, the SVM showed notable improvements, with the
best performance characterized by increased R? across all input data and enhanced accuracy. With the RSI-Tc,
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Fig. 6. Presents the RSI-Tc LMC prediction metrics. a is the random forest model, b is the partial least squares
model, ¢ is the support vector machine model, and d is the artificial neural network model. Error metrics are
presented in percentage. The green line is the regression line, while the red dashed line is the 1:1 ratio line.
The higher point density indicates the regions with more samples, while the proximity to the regression line
indicates model accuracy.
there was an increase of 13.820% in R? a decrease of 15.890% and 18.327% in RMSE and MAE, respectively.
Although the published indices-ANN model obtained the highest prediction accuracy (Table 3), the RSI and
NDSI closely follow the trend of improved performance by the SVM across all indices, putting it in strong
contention for consideration as a formidable ML model for moisture stress monitoring in winter wheat.

LMC plays a significant role in plant growth and development, as it controls physiological processes such as
photosynthesis, transpiration, nutrient uptake, and PMC control®® through its regulation of the stomata. Canopy
reflectance from winter wheat canopies, spanning the VIS-SWIR regions, has been reported to monitor changes
in plant water status®®. Due to this critical role, our work endeavored to monitor LMC using novel indices and
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Error metrics are presented in percentage. The green line is the regression line, while the red dashed line is

the 1:1 ratio line. The higher point density indicates the regions with more samples, while the proximity to the
regression line indicates model accuracy.

compared their performance with those of notable moisture content monitoring indices. As presented in Table 2,
there is a strong correlation between LMC and all three types of indices, with the RSI exhibiting the best treatment-
wise performance. At individual growth stages (Table 1), the RSI exhibits its best performance with RSI7, RSI8,
and RSI9, which are calculated from two VIS bands that present the best performance. This performance trend
is also seen at the treatment level (Table 2). With the prediction models, there is an acceptable output from the
four ML models presented in this work for predicting LMC. With input data of vegetation indices (Table 5),
other than PLSR-published indices (R? = -3.105) and NDSI-ANN models (R* = 0.489), all other combinations
produced an R* > 0.578, with the RSI combinations showing superior performance. Comparatively, the LMC
prediction performance was less accurate than that of the PMC prediction. This outcome is because other parts
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Fig. 8. Shows the published indices-Tc LMC prediction metrics, where a is random forest, b is partial least

squares regression, c is the support vector machine model, and d is the artificial neural network model. The red
dashed line is the 1:1 ratio line, while the green line is the regression line. The higher point density indicates the
regions with more samples, while the proximity to the regression line indicates model accuracy.

of winter wheat (stems and spikes) also affect canopy reflectance beyond the leaf level. This result was also
reported by Zhang et al.*”. With these outputs, it can be concluded that the VIS is a crucial tool for monitoring
winter wheat moisture stress due to its outstanding performance in tracking LMC in winter wheat fields.

The better performance of the RSI and NDSI (generally VIS-NIR bands) over the conventional vegetation
indices used in this work has been reported in literature and linked to some physiological and biochemical
plant features. Plant chlorophyll and pigments are sensitive to plant moisture and are affected by the slight
changes in internal moisture content and they are key contributors to reflectance in the VIS®. NIR reflectance
is influenced by the by leaf internal structures, canopy coverage, and general plant health, which are highly
sensitive to plant moisture. These mentioned physiological parameters react to stress at a very fast pace. These
regions also responsd to other stressors*. These conditions provide an extra advantage over the SWIR bands,
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which mostly rely on acute moisture stress. This leads to better performance of the VIS-NIR bands in moisture
stress monitoring.

The varying sensitivity of vegetation indices to specific plant biophysical features has also been reported in
the literature. This phenomenon has been linked to several conditions and characteristic features, ranging from
environmental factors (solar angle, soil background), plant features (canopy structure, leaf angle inclination,
leaf area index, leaf internal moisture and cell structures, as well as leaf chlorophyll and pigments), and viewing
geometry. Prudnikova et al.*” reported that soil background and soil variability influence VIS and NIR canopy
spectral reflectance at the early growth stages of winter wheat. Also, at early growth stages, background materials
influence spectral reflectance?!. These influences are reduced with the growth and proper coverage of the plant
canopy. With the plant canopy structure, the leaf area index, canopy coverage, and leaf inclination angles directly
influence the amount of solar radiation that is intercepted and reflected*?. These underlying factors, in addition to
plant health, internal moisture, and structural makeup, play a crucial role in the varying sensitivity of vegetation
indices to moisture content in plants across different growth stages.

Agricultural drought can harm winter wheat, but early detection and prompt remediation can help
mitigate damage. Specifically, drought leads to a decrease in soil moisture, reducing plant water content®.
These effects trigger several physiological changes in plants, varying according to the drought’s duration and
severity. Fortunately, these changes can be detected using various remote sensing tools, including ground-
based spectrometers and thermal imagers?!. A reduction in plant moisture triggers responses that impact LAIL
photosynthesis, cell health, chlorophyll levels, and stomatal function. As plants experience moisture stress,
they adjust their stomata to limit water loss, which raises the leaf surface temperature—detectable by thermal
imagers’. This temperature change results from both internal plant conditions and environmental factors,
expanding the application of this technology in moisture stress monitoring. Since both spectral reflectance and
canopy temperature reflect moisture levels in winter wheat, combining these measurements improves moisture
stress detection more than using either method alone, as shown in our study. We evaluated the impact of Tc
as input data in models using three types of indices, presented in Table 4. In the LMC prediction models, the
SVM demonstrated the most significant positive influence, with all inputs contributing to an increase in R? and
a decrease in the error metrics. RF also had a significant effect, with the highest R? increase of 16.426% and the
highest reduction in RMSE by 15.808%. The index type with the most consistent performance across all models
was the NDSI. Results indicate an increase in R?, ranging from 2.209% to 16.426%, while the error was reduced
by 1.649% to 15.808%. It can then be concluded that the Tc inclusion in the LMC prediction models had the
most significant influence on the SVM and NDSI performance, with the RSI combined with PLSR and ANN
exhibiting the poorest performance. The use of canopy temperature and its derivative parameters as a proxy
for moisture stress in plants, and their application in controlling irrigation, has also been reported by other
studies?**. We therefore conclude that including Tc in VIs ML models for monitoring plant moisture stress
yields a better prediction accuracy. Still, care must be taken to select the best match between model and input
types.

Machine learning models have become a valuable tool for modelling remotely sensed data to monitor
plants’ biophysical and biochemical characteristics due to their ability to learn the complex interactions and
relationships between target(s) and predictor(s) variables?®°. In our work, we applied four machine learning
models to predict the PMC of winter wheat and further validated the models. Model evaluation results indicate
that the ANN model using published indices-Tc as input achieved the best performance, with R*, RMSE, and
MAE values of 0.866, 2.577, and 1.820, respectively, for PMC simulation, and the ANN-RSI-Tc combination
achieved R?, RMSE, and MAE values of 0.850, 2.726, and 2.078, respectively. (Table 3; Fig. 2d). With the
vegetation indices as input, the ANN model produced the best PMC simulation across all input types (Table
3). The PMC simulation performance metrics (averaging the model with only VIs and VIs-Tc) showed that the
highest R? was achieved by the ANN model across inputs 0.843, 0.850, and 0.847, respectively, for NDSI, RSI,
and the published indices, respectively. The performance of LMC models exhibited better SVM performance,
as measured by both individual input data and the average R” for all data types and models used for modeling.
The SVM-RSI-Tc combination achieved the best metrics with RZ, RMSE, and MAE of 0.851, 2.673, and 2.075,
respectively. These outstanding performances of the ML models in predicting PMC and LMC are consistent with

RSI NDSI Published indices
Moisture types | ML models | R? RMSE | MAE |R? RMSE | MAE |R? RMSE | MAE
RF 0.190 -0.296 | 2.547 16.426 | -15.808 | -7.812 | 5.384 |-8.520 | -2.669
PLSR -44.678 | 30.654 | 17.975 |2.209 -1.649 -10.349 | 5.761 | 2.156 -0.752
LMe SVM 3.338 -8.143 | -1.677 |5.149 |-7.313 |-4.634 |5.307 |-7.314 |-11.430
ANN -27.653 | 31.825 | 18.491 |6.816 |-3.301 -3.215 | -8.116 | 5.409 14.163
RF -0.559 | 1.239 -0.507 | 1.055 |-2.267 |-6.836 |2.258 |-4.886 |-5.181
PMC PLSR 0.805 -1.692 | 2.289 0.319 | -0.754 | 1.842 -2.500 | 5.981 -3.702
SVM 13.820 | -15.890 | -18.327 | 0.948 |-2.302 | 1.880 4.736 | -6.289 | -10.683
ANN 0.132 -0.372 | -2.498 | -0.248 | 0.669 0.402 4.632 | -11.848 | -25.015

Table 4. Presents the percentage change in performance metrics between the indices prediction model and the
combined indices and canopy temperature model. Note: positive values indicate a percentage increase, while
negative values indicate a decrease.
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findings from other studies'®?>46, These findings have significant implications for monitoring moisture stress in
winter wheat.

Conclusion

Moisture stress in winter wheat has a far-reaching impact on growth, development, yield, and food security.
In this work, we reported two approaches (VIs and VIs-Tc) to alleviate winter wheat moisture stress through
direct monitoring of plant moisture and leaf moisture through canopy reflectance and its derived vegetation
indices, and indirectly monitoring plant canopy temperature with infrared thermal imagers, and fusing the
multi-source data in ML models. We can safely conclude that the indices (RSI and NDSI) are valuable tools for
monitoring moisture stress in winter wheat fields. As reported, the RSI, with prominent VIS band combinations
of RSI7 (oo 4og), RSI8 45 4y and RSI9 ) 5 demonstrated a good ability to monitor PMC and LMC across
different growth stages and treatments. The NIR and VIS band combinations (400 -600 nm) further showed
strong potential for detecting moisture stress in winter wheat fields, a feature that is less reported. Fusing these
VIS-derived indices with canopy temperature as input data for ML models improves the accuracy of ML model
predictions. These improvements lay scientific foundations for stress monitoring and irrigation control in winter
wheat fields, thereby alleviating moisture stress.

Limitation of the study

It is worth mentioning that this work covered one year and a single experiment site. Future work will focus on
assessing these indices and fusion methods across different sites and years to further consolidate their valuable
contributions to monitoring moisture stress in winter wheat fields.

Materials and methods

Study site and treatment

The research was conducted at the Qiliying Comprehensive Experimental Base, Chinese Academy of Agricultural
Sciences (35°18’11"’N and 113°55'34"'E), located at an elevation of 81 m above sea level. The site experiences an
average annual rainfall of 573.4 mm, with approximately 70% of the rainfall occurring during the summer. The
yearly average temperature is 14 °C, and the annual solar radiation is 4900 MJ m~2 yr~!, with 189-240 frost-free
days per year. The experimental soil has a bulk density of 1.46 g/cm?, a field capacity of 24.77%, and a porosity
of 41.17% at a soil depth of 0-60 cm.

Winter wheat was planted on October 18, 2024, with row spacing of 20 cm and a seeding rate of 227.27 kg
per hectare and was harvested on May 29, 2025. Irrigation was applied using drip lines spaced 40 cm apart
with emitters spaced 30 cm apart. Six irrigation treatments were used: WO (no irrigation), W1 (45-65% soil
moisture), W2 (55-75% soil moisture), W3 (65-85% soil moisture), W4 (75-95% soil moisture), with plot sizes
of 3.4 m x 2.03 m, and Z with 2 m x 2 m, representing normal farmers’ irrigation and rainfall. The soil moisture
levels were intended to create varying moisture availability to plants, thereby introducing varying stress levels,
which could trigger varying physiological responses from the plants*”*%. These physiological responses further
influence canopy reflectance, which can be captured by remote sensing equipment*’. Each treatment had three
replicates. Soil moisture within the 0-60 cm depth was monitored gravimetrically, and irrigation amounts were
calculated based on the difference between the current soil moisture and the target maximum soil moisture level
for each treatment. An initial irrigation of 227.27 mm was applied before sowing to provide moisture for early
growth and overwintering, along with a compound fertiliser.

Irrigation treatments commenced during the regreening period on March 6, 2025. Fertiliser was applied
according to local recommendations for the research location. Irrigation was measured using flow meters. The
Z treatment received a total of 446.95 mm of rainfall and irrigation during the treatment period. The total
irrigation amounts per treatment are: 0 mm, 260.06 mm, 276.28 mm, 362.53 mm, and 372.69 mm for W0, W1,
W2, W3, and W4, respectively, excluding the pre-sowing irrigation.

Spectral reflectance, canopy temperature, and plant moisture data collection
Canopy spectral reflectance was measured usingahandheld spectroradiometer, the PSR + 3500 (Spectral Evolution
Inc., Lawrence, MA, USA), with a wavelength range of 350-2500 nm, at a height of 1 m, providing a 25° field of
view above the canopy on clear-sky days with little or no wind interference from 10:30 am to 11:30 am Beijing
Time on clear sky days with little or no winds. Before each measurement, the instrument was calibrated using
a reference plate with 99% reflectance, and this calibration was repeated every 15 min. The spectroradiometer
has resolutions of 3 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 nm. The spectroradiometer resampled
each measurement to produce 2151 narrow bands as the final output. The instrument was fitted with a fore-optic
fibre cable for reflectance measurement®. The instrument was set to average twenty-five scans per measurement,
and every plot was scanned at four different points and averaged to represent the reflectance of the plot per
measurement day. Reflectance measurements were done on March 17, 25, April 2, 10, 18, 26, and May 4 and 12.
Canopy temperature was measured between 11:30 am and 12:30 pm Beijing Time using an infrared thermal
camera (InFRec G100, NEC, Tokyo, Japan)®. This measurement was performed at a vertical distance of 1 m
from the target (canopy) at a 45° angle immediately following the daily spectral measurement on data collection
days. The InFRec G100 can provide the average temperature for target areas within the field of view without
needing further calculations. It was programmed to have five focus points and give the average temperature for
each focus point. Emissivity was set at 0.98, and the InFRec G100 was calibrated before daily measurements.
The equipment performed periodic self-calibrations during the measurement. Measurements were made at full
canopy closure points.
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Five wheat plants, which included all tillers from each germinated seed, were collected and placed in a
Ziplock plastic bag for measurement of their moisture content (PMC). An additional plant leaf (including all
tillers from a single germinated seed) was collected for LMC measurement on all data collection days. These
plants were collected from the second rows on either side of the plots, maintaining a distance of 50 cm from the
beginning of each row. Both leaf and plant moisture samples were collected from the same points on specific data
collection days and alternately between the two rows. This was done to prevent losing all plants at a particular
point and maintain a good canopy cover, which will enable the continuation of the experiment. They were
weighed fresh, initially dried in an oven at 105 °C for 30 min, and then dried at 80 °C until a constant weight was
achieved to obtain the dry weight. Soil samples were simultaneously collected in the 0-60 cm layers to calculate
soil moisture®. The average soil moisture for all layers was considered the soil moisture within the root zone
and used as the basis for irrigation calculation. PMC, LMC, and gravimetric soil moisture content (SMC) were
calculated using the following two Egs. (1-3):

PMC (%) = (W) %100 (1)
LMC (%) = (W) 100 @)
SMC (g) = %‘SDS 3)

Where PEW, PDW, LFW, LDW, WS, and DS are fresh plant weight (g), dry plant weight (g), fresh leaf weight (g),
dry leaf weight (g), wet soil (g), and dry soil (g), respectively.

Spectral band selection for index calculation and index selection for modelling

Firstly, the visible and near-infrared bands have been reported as sensitive bands to both biotic and abiotic plant
stressors and have been used to identify and differentiate these stresses®'. For example, Koh et al.>? reported
the use of VIS and NIR bands for classification of drought-induced physiological changes in plant colouration,
while Vasquez et al.>* reported that there is a contrasting interaction with radiation between the VIS and NIR.
The chlorophyll content in healthy leaves absorbs more incident rays in the VIS while reflecting incident rays
in the NIR. As plant moisture reduces, chlorophyll and other plant pigments are also affected and are thereby
reduced®. These changes affect leaf internal and canopy structures, thereby influencing the reflection in
incoming incident rays. These changes are captured by remote sensing and analysed to reflect the status of the
plants. Fully harnessing the potential of these regions will lay a solid technical foundation for monitoring plant
stress promptly and developing low-cost remote sensing devices>’. Based on these underlying phenomena, our
work focused on these regions of the spectral wavelength to monitor moisture stress in winter wheat.

To begin, all two-band combination indices were generatedw, which included all bands in the VIS and
NIR regions. These band combinations were used to calculate vegetation indices, which were correlated with
PMC. The highest R* from band combinations within the VIS and NIR was selected, thereby revealing the
most sensitive bands for monitoring PMC. These bands were further used for monitoring leaf moisture content
(LMC). The goal for these band selections was to select band combinations between VIS (blue, green) and
VIS (red) bands. These combinations will highlight the significance of these bands (VIS bands) in monitoring
moisture stress in farmlands. The following band combinations focused on the VIS (blue, green) and NIR bands.
These combinations will then highlight the importance of the blue and green electromagnetic spectrum region in
moisture monitoring stress in combination with the NIR. These highlights will further extend the VIS moisture
stress monitoring ability beyond the traditionally recognized red and/or red-edge regions of the spectrum. This
revealed the best band combinations for index formation. Two index types are used in this work. One type
used the normalized two-band combination between NIR and VIS bands (Eq. 4), and the other used the ratio
between two bands in Eq. (5) (VIS-VIS and VIS-NIR). The normalized drought stress index (NDSI) utilized the
normalized formula, while the ratio stress index (RSI) employed the ratio formula.

The two formula types were:

Bandl — Band?2

NDSI = Bandl + Band?2 @
Bandl

= 5

RSI Band2 ®)

Where Band1 and Band2 are random wavelengths within the VIS and NIR.

Based on the coefficient of determination (R%) and sorting out as explained above for the selection criteria,
the best wavelength combinations were selected and listed in Table 5.

Normalised drought stress index (NDSI) and ratio stress index (RSI). The reflectance at the two specified
wavelengths was used to calculate the indices, with the first corresponding to Band 1 and the second to Band 2.

Three feature selection algorithms were used to select the best indices for model building. They are the
recursive feature elimination (RFE), the least absolute shrinkage and selection operator (LASSO) regression,
and the random forest algorithm (RFA). RFE is a feature selection algorithm that gradually removes the less
essential variables while maintaining the most important ones®>. LASSO regression applies the L1 regularisation
to penalise the absolute size of the coefficient, thus shrinking some to zero and performing feature selection, and
preventing overfitting. RF is an ensemble-based approach that uses variable importance to rank features based

Scientific Reports |

(2026) 16:3836 | https://doi.org/10.1038/s41598-025-33905-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Index | Bands (nm) | Index Bands (nm) | Index | Bands (nm) | Index | Bands (nm)
NDSI1 | 499, 764 NDSI9 | 506, 1100 RSI3 | 516, 764 RSI11 | 600, 941

NDSI2 | 499,911 NDSI10 | 507, 764 RSI4 | 516,909
NDSI3 | 499, 1064 NDSI11 | 507, 804 RSI5 | 516,877
NDSI4 | 501, 764 NDSI12 | 507,911 RSI6 | 530, 764
NDSI5 | 502, 764 NDSI13 | 511, 764 RSI7 | 650,428

NDSI6 | 502, 1065 NDSI14 | 580, 755 RSI8 | 663,422
NDSI7 | 503, 764 RSI1 503,921 RSI9 | 671,450
NDSI8 | 506, 764 RSI2 514,764 RSI10 | 600, 739

Table 5. Presents the vegetation index types and their calculation bands.

Name Abbreviation | Formula References
(NIR-RED)/(NIR + RED) = | 5
( 783" 66/) (R783 + R667)
(NIR-IR)/(NIR + IR) =
e
(

Normalised difference

vegetation index NDVI

Normalised difference

water index NDWI

860 1240)/
1240)

1+016)x(R“R
16

Optimised soil adjusted OSAVT s63)! 58

vegetation index (Rgsg + Regy + 0.

Simple ratio water index | SRWI RED/IR = R(i/R »
Moisture stress index MSI SWIR/NIR = R,y /Rg3, 60
Water index WI RED/NIR = R673/R850 o1
Water band index WBI NIR/NIR = R970/R900 62

Table 6. Presents the published vegetation indices used in this work.

on the scores from individual trees. After each feature selection method was completed, all VIs for a specific
index type were ranked from the most important to the least important for the target variable. The first set of
selected indices was those selected by the three feature selection methods in the top seven. Then, the balance
indices were selected from VIs that were selected at least twice by two of the three feature selection methods in
their top ten ranked VIs. The selected indices were used as input data for model building.

To further assess the performance of the new band combination indexes, some previously used indices for
moisture stress monitoring were calculated and used in this work. These indices and their calculation formulas
are presented in Table 6. All previously published indices were used in model building.

Machine learning models

This work used four machine learning models: partial least squares regression (PLSR), RE, support vector
machines (SVM), and artificial neural networks (ANN) to predict PMC and SMC. A statistical modelling method
called partial least squares regression (PLSR) identifies latent components accounting for variation in predictors
and responses. Because PLSR is so versatile (e.g., it makes few assumptions and handles collinear variables
effectively), it is invaluable as a data exploration approach®. Tin Kam Ho developed the non-parametric,
supervised, ensemble machine learning algorithm known as RF regression, which uses a set of decision trees
to generate predictions. RF is a well-liked option for regression and classification tasks, as it uses ensemble
learning techniques to produce precise and dependable predictions by employing multiple decision trees
instead of a single model. RF’s primary goal is to create a “forest” by merging multiple decision trees, typically
through bootstrap aggregation, also known as “bagging” One of RF’s main advantages is that it can withstand
overfitting, even with many features®. SVM is another famous machine learning model that has proven to
be a good fit for modelling plant characteristics in remote sensing. Some researchers have reported its better
performance?’. ANNG are supervised, non-parametric machine learning techniques that mimic how the human
brain processes information to model complex issues for decision-making or prediction. Neural networks are
superior to alternative regression models in several ways. These include their ability to represent known or
non-linear correlations between variables, resilience to noisy inputs, capacity to generalize input variables, and
absence of variable-specific assumptions®.

For model tuning parameters, we implemented the cross-validation and grid search approach as further
explained by An et al.’. Model performance was assessed using the root mean square error (RMSE), mean
absolute error (MAE), and the coefficient of determination (R*), which were calculated using Egs. (6-8),
respectively.
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(6)

1~
MAE = — i — Yi
nE lyi — il (8)

i=1

Where RMSE is the root mean square error, MAE is the mean absolute error, RZis the coefficient of determination,
n is the total number of observations in the dataset, y; is the observed value at sample i (runs from 1 to n), ¥
indicates adding up all terms from i=1 to i=n, ¥, is the predicted value of the dependent variable at the i-th
observation, ¥ is the mean of the observed values, § is the mean of the predicted values, |.| is the absolute value.

All data were analysed using R programming (R Core Team, 2023, Vienna, Austria) and OriginPro, Version
2025 (OriginLab Corporation, Northampton, MA, USA) for plotting graphs and statistical analysis.

Data availability

All data will be available upon reasonable request through the corresponding authors.
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