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Evapotranspiration (ET) is a key component of the hydrological cycle and is critical for determining crop 
water requirements. Accurate ET estimation is essential for improving irrigation efficiency, particularly 
under increasing water scarcity and climate variability. Conventional approaches such as the soil water 
balance, empirical formulations, the FAO Penman–Monteith method, eddy covariance flux towers, 
lysimeters, and scintillometers each have limitations related to spatial representativeness, accuracy, 
or operational cost. Unmanned aerial vehicles (UAVs) equipped with multispectral and thermal sensors 
offer a high spatial resolution and cost-effective alternative for field-scale assessment of surface 
energy balance components and ET. In this study, a field experiment was conducted on maize during 
rabi season of 2022–23 under two irrigation regimes based on depletion of available soil moisture 
(20% DASM and 40% DASM). UAV-based multispectral (0.05 m) and thermal imagery (0.33 m) were 
acquired at five crop growth stages and processed using the Mapping Evapotranspiration at High 
Resolution with Internalized Calibration (METRIC) model to estimate actual evapotranspiration (ETa) 
and surface energy fluxes. Spatiotemporal analysis showed that the 20% DASM treatment (400 mm) 
resulted in a 1.7 °C lower land surface temperature, a 16.5% higher NDVI, and an 11% increase in 
daily ETa compared with the 40% DASM treatment (316 mm), which experienced water stress and 
a 20% reduction in seasonal ETa. The UAV-based METRIC estimates of daily ETa showed strong 
agreement with that of Penman-Monteith (PM) combination approach (R² = 0.84; RMSE = 0.22 mm 
day⁻¹; MAPE = 6.1%), with a slight underestimation of seasonal ETa (–7%). Agreement with the soil 
water balance method ranged from − 3% to + 3%, demonstrating the capability of the approach to 
capture irrigation-induced variability in ETa and surface energy fluxes. Overall, the results highlight the 
potential of UAV-based METRIC for spatiotemporal assessment of crop evapotranspiration and surface 
energy dynamics to support precision irrigation management.
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Climate change1 is a significant global concern, exerting immense pressure on various sectors and stands as 
one of the most formidable challenges of our time2. Amid escalating climate change and variation, the global 
agricultural sector finds itself at a critical crossroads, both a significant contributor to and victim of climate 
change. The irrigation water management is particularly vulnerable, grappling with hydrological imbalances3 
exacerbated by the rapid depletion of groundwater resources4,5 and the instability of surface water bodies such 
as rivers, lakes, and reservoirs. These challenges are indeed compounded by frequent prolonged dry spells 
and erratic rainfall patterns6. Beyond climate change, factors such as population growth, urbanization, global 
economic development, increasing competition for natural resources, intensive agricultural practices, and 
fluctuations in trade and food prices exert more immediate impacts on water resources7. Collectively, these 
factors impair both the quantity and quality of water resources8. Agriculture sector, consuming around 70% of 
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available freshwater resources, needs to evaluate existing practices and swiftly adopt efficient water management 
strategies and modern irrigation technologies to enhance water productivity through optimized water use9.

In this context, accurate and precise evaluations of crop water needs are thus essential for formulating, 
implementing, and adopting relevant practices. Evapotranspiration (ET) plays a critical role in this equation, 
representing largest share of water outflow from agricultural systems, identified as the ‘consumptive’ fraction 
of water used by the system, typically crop water requirements10. ET is defined as the transfer of water to the 
atmosphere from the land surface through soil evaporation and plant transpiration. Accurate quantification of 
ET is vital for optimizing water use and conducting climate change studies11,12.

Over the years, numerous methods have been devised to estimate ET, each presenting a unique blend of 
complexity, accuracy, and suitability for specific applications. Among the direct measurement techniques, 
lysimetry, eddy covariance (EC), Bowen ratio energy balance, and scintillometry stand out, each offering distinct 
advantages and limitations. Indirect methods, such as the pan evaporation method13, soil water balance method, 
FAO Penman-Monteith13, Hargreaves Samani14, Blaney and Criddle15, and Priestly-Taylor16, represent a range 
of empirical and reference ET estimation techniques. The application of these methods is frequently constrained 
by high costs and/or the requirement for extensive surface measurements, which are difficult to obtain over large 
regions17. A common drawback of these techniques is they provide point-based or area-weighted measurements, 
leading to potential inaccuracies when extrapolated across large, heterogeneous landscapes due to the dynamic 
nature of energy fluxes18,19.

Remote sensing technologies can mitigate these limitations by capturing spatial and temporal variations 
with high precision17. In particular, surface energy balance models utilize thermal infrared imagery, to estimate 
ET. Single-source models, such as the Surface Energy Balance Algorithm for Land (SEBAL)20 and the Mapping 
Evapotranspiration at High Resolution with Internalized Calibration (METRIC)21, conceptualize the land 
surface as a unified system. In contrast, dual-source models, exemplified by the Two-Source Energy Balance 
Model (TSEB)22, distinguish between the energy fluxes from soil and vegetation components.

Numerous studies have validated the effectiveness of various remote sensing models in assessing the spatial 
and temporal variations of ET using satellite data. For instance, SEBAL has been successfully implemented across 
multiple regions with notable results in India23,24, Turkey25, China26, and Egypt27 using Landsat imagery. The 
METRIC model, an advanced version of SEBAL, has also been widely employed for ET estimation. For example, 
a study over the Jurala project command area in the Krishna Basin recorded daily ET values ranging from 4 to 
10 mm day− 1 using the METRIC model with Landsat imagery28.

In Odisha and Saudi Arabia, previous studies reported good agreement with eddy covariance flux tower 
measurements, albeit with slight overestimations12,29. Additionally, METRIC has been successfully implemented 
using Landsat-7/8 imagery over irrigated agricultural landscapes in Turkey30–32. Developed for the continuous 
estimation of ET over large areas, METRIC is considered one of the most appropriate models for determining the 
quantity and spatial distribution of ET over crops during the growing season21,33 as also reported in subsequent 
studies34,35.

Nonetheless, achieving field-scale precision remains challenging due to the coarse spatial and temporal 
resolutions of satellite data, such as Landsat-8/9 (30  m; 8–16 days) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS; 500 m; 8 days). Given the sensitivity of temperature measurements, high-resolution 
thermal data is indispensable for accurate estimations of ET. Unmanned Aerial Vehicles (UAVs) emerge as a 
compelling solution, with researchers increasingly embracing them as cost-effective platforms for scientific data 
collection. Equipped with advanced high-resolution sensors, UAVs can capture spatial variations at remarkable 
resolutions, down to the centimeter level, thereby surmounting several limitations inherent in satellite-based 
methods. They provide flexible flight paths, circumvent cloud cover, operate in favorable weather conditions 
on demand, and facilitate near real-time data acquisition, rendering them both economically viable and highly 
efficient.

Recent research has investigated the use of UAVs for ET estimation at high resolutions, building on 
established energy balance models36–40. However, UAV-based ET estimation remains an emerging field that 
necessitates further validation and exploration37,40. Although only a limited number of studies have contributed 
to this area, they underscore its potential and the need for more extensive research. For instance, data-fusion 
approaches integrating UAV and Landsat observations have been proposed to improve spatial and temporal 
ET estimation41, while a high-resolution METRIC variant (METRIC-HR) has been developed for mixed land-
use areas42. UAV-based implementation of the METRIC model has also been successfully applied to assess 
irrigation-induced variability in vineyard systems in Spain43. Additionally, other studies have optimized existing 
models for UAV data to estimate energy fluxes, such as SEBAL44 and SEBS45. Given its demonstrated accuracy 
and adaptability, the METRIC model is employed in the present study to assess ET under different water regimes 
in maize (Zea mays L.) using UAV-derived spatial data. Maize is the third most important cereal crop in the 
region, with wide applications in food, feed, fodder, and industrial sectors46, and Telangana leads the country in 
maize productivity47. In the region, maize is predominantly cultivated under ridge-and-furrow irrigation, where 
farmers often face challenges related to poor water use efficiency. Both deficit and excess irrigation can adversely 
affect maize growth, yield, quality, and water productivity48,49. Therefore, evaluating existing irrigation practices 
in relation to crop water requirements is essential for improving sustainable water management.

The present study investigates evapotranspiration anomalies in maize under varying water regimes using 
UAV-based optical and thermal imagery, implementing the METRIC model with UAV-specific adaptations for 
high-resolution imagery (hereafter referred to as METRIC-UAV). It is hypothesized that the METRIC-UAV 
model can effectively capture variations in evapotranspiration of maize under proposed two different irrigation 
levels.
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Materials and methods
Study area
A field experiment was conducted at the Maize Research Centre, Agricultural Research Institute, Rajendranagar, 
Professor Jayashankar Telangana Agricultural University (PJTAU), Hyderabad, India. The maize crop was 
cultivated in the fetch area of the Eddy Covariance flux tower (EC), positioned at 17° 19’ 35” N, 78° 23’ 45” E, at 
an altitude of 541 m above mean sea level (MSL) (Fig. 1). According to Troll’s classification, the site falls under 
the Semi-arid Tropics, with a mean annual rainfall of 919 mm. The region experiences very hot summers and 
cool winters, receiving 80.4% (738.6 mm) of the mean annual rainfall from the southwest monsoon and 12.2% 
(113.2 mm) from the northeast monsoon (Fig. 2). During the study period, predominantly westerly to north-
westerly winds were prevalent at the study site as shown in the wind rose (Fig. 3). The soil type at the site is clay 
loam, characterized by a slightly alkaline nature (pH 8.1), medium organic carbon content (0.43%), field capacity 
of 29% (w/w), permanent wilting point of 12% (w/w), and water-holding capacity of 85 mm. The maize hybrid 
DHM-117 was sown on November 10, 2022, during the rabi season (winter cropping), with a spacing of 60 cm 
x 20 cm following the standard package of practices recommended by the University. The crop was harvested on 
March 16, 2023, and March 21, 2023.

Treatment details
The irrigation treatments employed in the experiment are (1) scheduling irrigation at 20% Depletion of Available 
Soil Moisture (DASM) (I20) and (2) scheduling irrigation at 40% DASM (I40). Each treatment consists of two 
plots of 200 m2 (20 m x 10 m) separated from other treatment by 3 m width buffer channels (Fig. 1). Initially two 
common irrigations, each of 60 mm were provided to both treatments for germination and the establishment 
of the seedlings. Subsequently, the irrigation was scheduled as per treatment requirements till harvest. Pre 
calibrated gypsum blocks for the given soil conditions were installed in each plot at 15 & 30 cm depth to monitor 
soil moisture levels in real time to schedule irrigation as per treatments.

UAV campaign, sensors, data acquisition and pre-processing
A fixed-wing type UAV, Trinity F90+ (Quantum-Systems Inc., Moorpark, CA, USA), equipped with MicaSense 
Altum PT sensor (AgEagle Aerial Systems Inc., Kansas, USA), was utilized to capture synchronized multispectral, 
thermal, and panchromatic data for pixel-aligned outputs (Table 1). Seven UAV flights coinciding with 
Landsat-8 satellite pass (around 10:00 to 10:30 IST) over the maize fields were carried out, ensuring sufficient 
(approximately 80%) overlap during each flight throughout the study period. The UAV operated at an average 
velocity of 17 m s− 1 at an altitude of 120 m above ground level (AGL). Due to unfavourable weather conditions 
the UAV flight scheduled for December 10, 2023 was not taken up. The dates of the UAV flights during the 
cropping season are detailed in the Table 2. Prior to each flight, the Calibrated Reflectance Panel (CRP) was used 
for radiometric calibration of the optical bands. Every time before the flight, the thermal sensor was stabilized 
for at least 15 min after resting period50,51, with automatic non-uniformity correction (NUC) enabled, and its 
accuracy verified using ground targets (ice, boiling water, bare soil, wet soil) of known surface/skin temperatures 
measured with soil thermometers and infrared thermometers; empirical line calibration was applied using 
average measurements. Acquired imageries with different projections and tie points were processed in a 
photogrammetric software Pix4D (Pix4D S.A., Prilly, Switzerland), where stitching and image correction were 
carried out followed by orthorectification. The ortho mosaic of multispectral and thermal bands (blue, green, 
red, red edge, near infrared, thermal bands), Digital Surface Model (DSM), Digital Terrain Model (DTM) were 
derived as outputs of the preprocessing. The Normalized Difference Vegetation Index (NDVI), Land Surface 
Temperature (LST) were generated using index calculator and used for further procedure.

	
NDV I = NIR − Red

NIR + Red
� (1)

	
LST (oC) = LWIR

100 − 273.15 � (2)

Weather data and ground-based observations
In addition to the spatial data, several ground-based observations during each flight, including meteorological 
and plant parameters, were recorded and utilized in the study. The meteorological parameters included wind 
speed (u), air temperature (Ta), air pressure (p), and albedo (α), all obtained from various sensors and instruments 
mounted on the eddy covariance flux tower installed at the site. The field observations like plant height, crop 
yield and basic irrigation details were recorded manually at regular intervals. Leaf area index was measured by 
LAI-2200c Plant canopy analyser (LI-COR, Lincoln, NE, USA), and leaf stomatal conductance was measured 
using porometer and converted to stomatal resistance (rL).

Methodology
METRIC-UAV model
METRIC model, determines latent heat flux as the residual of energy fluxes at the land surface, as described in 
Eq. (3). Although METRIC was originally developed for Landsat imagery, in the present study it was adapted 
for high-resolution UAV-based data. The model was implemented step by step using the model builder tool in 
ArcGIS Pro software (Esri, Redlands, California, USA), with necessary modifications to accommodate the spatial 
resolution and data structure of UAV imagery. The surface energy balance consists of four primary components: 
net radiation (Rn), soil heat flux (G), sensible heat flux (H), and latent heat flux (LE or λET). These components 
are assumed to be in balance at all times, as expressed by the following equation:

Scientific Reports |         (2026) 16:4302 3| https://doi.org/10.1038/s41598-025-33916-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 1.  Location and layout of the experimental site. Administrative boundary maps were generated in QGIS 
3.40 (QGIS Development Team, Open-Source Geospatial Foundation) using publicly available datasets, and 
the background satellite image is a Sentinel-2 Level-2A true-colour composite. The lower left panel shows a 
UAV-derived true-colour orthomosaic of the experimental maize plots, illustrating the 20% and 40% DASM 
irrigation treatments and the location of the eddy covariance flux tower. UAV imagery was visualized in 
ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).
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	 λET = Rn − G − H � (3)

 
Where, λET is the latent heat flux, Rn is net radiation, G is soil heat flux, and H is sensible heat flux. All these 

fluxes are expressed as W m-² or MJ m-² day−1.
Net radiation, the primary driver of surface energy, was determined by estimating all four components of 

radiation, as expressed in Eq. (4): 

	 Rn = (1 − α)Rs + ϵaσT 4
a − ϵsσT 4

s � (4) 

Where, α denotes albedo; RS is insolation or incoming shortwave radiation (W m−²);, σ is Stefan-Boltzmann’s 
constant (5.67 × 108 W m− 2 K− 4); εa and εs are atmospheric and surface emissivity (dimensionless); Ta and Ts 
represents air and surface temperatures (K), respectively.

To solve Eq. (4), a single point value of α, obtained from the EC flux tower, was used due to the unavailability 
of broadband data required for spatial albedo determination. The same value was applied uniformly to both 
treatments and directly substituted into the equation. Surface emissivity was estimated using a relationship 
based on NDVI-derived vegetation proportion52, following the method described in53. Due to the absence of a 
shortwave infrared (SWIR) band in the UAV data, atmospheric emissivity was estimated from Landsat imagery 
following the established procedure54 (Appendix A). However, since both treatment plots fall within a single 
Landsat pixel, only one atmospheric emissivity value was obtained, regardless of the treatment differences. This 
single value was then subsequently substituted into Eq. (5).

Soil heat flux was computed using the empirical equation proposed by Bastiaanssen55 (Eq. 5):

	
G/Rn = Ts

α
[0.0032α + 0.0064α2][1 − 0.98NDV I4]� (5)

Where Ts represents surface temperature (oC).
When energy flows into the soil, G is positive; conversely, when energy flows out, G is negative.
Sensible heat flux (H), one of the complex components of the energy balance, computed using the 

aerodynamic equation (similar to Fick’s law of diffusion) as a function of temperature difference and resistance 
to heat transfer (Eq. 6):

	
H = ρ a Cp ∆ T

rah
� (6)

Fig. 2.  Monthly average rainfall, minimum and maximum air temperature, and reference crop 
evapotranspiration (ETo) for the period 2010–2019 at the experimental site. Climatic data were obtained 
from the Agroclimatic Research Centre, PJTAU, Rajendranagar, and the figure was generated using R software 
(version 4.5.1; https://cran.r-project.org).
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Date Crop growth stage UAV flight (Yes/No) Remarks

November 24, 2022 Seedling stage (14 DAS) Yes -

December 10, 2022 Vegetative phase (30 DAS) No Unfavourable weather conditions

December 26, 2022 Vegetative phase (46 DAS) Yes -

January 11, 2023 Silking & tasselling (62 DAS) Yes -

January 27, 2023 Cob formation (78 DAS) Yes -

February 12, 2023 Cob development (94 DAS) Yes -

February 28, 2023 Pre maturity (110 DAS) Yes -

March 16, 2024 Maturity & harvest (126 DAS) Yes -

Table 2.  Details of UAV flight schedule during the crop growth season. Note: DAS is days after sowing.

 

Spectral band Band width
Resolution
(pixels) GSD at 120 m AGL (cm pixel−1) FOV

Panchromatic - 4112 × 3008
(12 MP) 2.49 46° x 35°

Multi-spectral

Blue (475 mm) 32 nm

2064 × 1544
(3.2 MP) 5.28 50° x 38°

Green (560 mm) 27 nm

Red (668 mm) 14 nm

Red Edge (717 mm) 12 nm

NIR (842 mm) 57 nm

Thermal/LWIR (7.5–13.5 μm)
(radiometrically calibrated) 5 μm 320 × 256 33.5 46° x 35°

Table 1.  Description of the ALTUM-PT sensor.

 

Fig. 3.  Wind rose showing the frequency distribution of wind speed and wind direction over the study area 
for the experimental period. Wind data were obtained from the eddy covariance flux tower installed at the 
experimental site, and the wind rose was generated using R software (version 4.5.1; https://cran.r-project.org).
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Where ρa is air density (kg m− 3); Cp denotes specific heat of air at constant pressure (1004 J kg− 1 K− 1); rah is the 
aerodynamic resistance (s m− 1) between two near-surface heights z1​ and z2​ (typically 0.1 m and 2 m above the zero-
plane displacement height, d), and ΔT is the temperature difference (K) between these.

An iterative approach was adopted to simultaneously solve for ΔT and rah using two anchor pixels (hot 
and cold), which represent the extremes of ET in the image. Given the limited spatial coverage of UAVs, cold 
pixel identification is more complex than in satellite-based approaches. UAV imagery covering the entire 
research station (14.14 ha) was analyzed, where a patch of grass (1–1.5 m height) surrounding the water body 
was maintained under non-water-stress conditions (Fig.  4). Cold pixels were selected from this grass patch, 
restricted to the first quartile of the LST histogram and the top 5% of NDVI values, and validated with ground 
conditions. An ET value of 1.05 ETo was assigned to these pixels. Hot pixels were identified from the last quartile 
of the LST histogram and the bottom 5% of NDVI values, after excluding outliers and validating with ground 
conditions—preferably dry, bare soil without irrigation or rainfall in the preceding 10 days, ET is assumed to be 
zero for hot pixel.

Then, using the energy balance, H was calculated for the selected hot and cold pixels. Subsequently, ΔT and 
rah were iteratively determined using Eq. (6), initially assuming neutral atmospheric conditions. The Monin-
Obukhov length (L) was then applied to update the air stability conditions accordingly. Based on the linear 
relationship between surface temperature and ΔT (Eq. 7), pixel-level ΔT and rah values were updated, and H 
was calculated for the entire image. The step-wise equations involved in the estimation of sensible heat flux are 
provided in Appendix B.

	 ∆T = aT s + b� (7) 

The latent heat flux was calculated by substituting Rn, G, and H in the Eq. (3). This latent heat flux was then 
converted to instantaneous evapotranspiration (ETinst) using the following formula (Eq. 8):

	
ETinst = λ ET

λ
X 3600� (8)

where, ETinst represents instantaneous ET (mm hr− 1) and 3600 is the conversion factor from seconds to hours.

Fig. 4.  UAV-derived true-colour orthomosaic of the experimental site showing the reference pixels used for 
internal calibration of the METRIC model. Dry and bare soil patches were selected as hot pixels, while a well-
watered grass patch was used as the cold pixel. UAV imagery was processed and visualized in ArcGIS Pro 3.2 
(Esri Inc., Redlands, USA).
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Further, the reference evapotranspiration fraction (ETrF), which is similar to the crop coefficient 
(Kc), was calculated as the ratio of instantaneous evapotranspiration to weather-based reference crop 
evapotranspiration (Eq. 9):

	
ET rF = ETinst

ETo
� (9)

Daily and seasonal ETa were estimated by inverting Eq. (9), expressed as ETa = ETrF × ETr, where ETrF values 
were interpolated for the intervening days between successive UAV flights and ETr was derived from ground-
based weather observations. A detailed workflow, including stepwise equations and procedures, is provided in 
Appendix B.

Crop coefficient (Kc)
As noted earlier, ETrF is analogous to the crop coefficient (Kc). However, Kc curve is constructed using stage-
wise average values derived from equation. For this, crop duration is divided into four growth stages—initial (0–
20 DAS), crop development (20–55 DAS), mid-season (55–95 DAS), and maturity (95–125 DAS)—as described 
by Allen et al.13. Kc values computed in this study represent actual crop coefficients under irrigation-induced 
water stress conditions.

	
Kc = ETa

ETo
� (10)

Comparison with Penman Monteith method
The average daily ETa, seasonal ETa and Kc values derived from the METRIC-UAV model were compared 
against those obtained using the Penman–Monteith (PM) combination equation. In this study, PM equation 
refers to the basic Penman Monteith (PM) equation (Chap. 2 in FAO-56 irrigation & drainage paper)13, which 
incorporates aerodynamic (ra) and bulk surface resistance (rs) terms. By substituting measured crop biophysical 
parameters, this equation calculates actual evapotranspiration (ETa) from the maize canopy. It is different from 
the standard FAO-PM ETo approach that assumes a non-water stressed reference crop (ETc = ETo x Kc).

Meteorological inputs, including air temperature, relative humidity, wind speed, and solar radiation, were 
obtained from EC flux tower. Only meteorological variables were used; energy balance fluxes (e.g., LE) from 
the EC flux tower were not used to derive ET. Prior to analysis, the meteorological data were quality-filtered 
in EddyPro v7.0 (LI-COR Biosciences, USA) using steady-state and developed-turbulence tests, and only data 
with QC flags 1–4 were retained. To parameterize surface resistance in the PM equation, crop biophysical 
measurements, such as plant height, leaf area index (LAI), and leaf resistance (rL) were recorded periodically for 
each irrigation treatment. This data was substituted into Penman Monteith equation to obtain treatment-specific 
ETa, ensuring consistency in atmospheric forcing while capturing differences in crop response to irrigation.

Although the EC flux tower provides direct ETa measurements through covariance analysis, these represent 
an integrated flux over its entire footprint, encompassing both irrigation treatments and adjacent land 
surfaces. Consequently, they do not isolate treatment specific water use. To address this, the Penman-Monteith 
combination equation was used to calculate ETa at the treatment level. Data from the EC flux tower —specifically 
energy balance closure and footprint-scale ETa observations—are presented in this study alongside METRIC-
UAV derived ETa to illustrate consistency.

Furthermore, seasonal ETa estimates from both the METRIC-UAV approach and the Penman-Monteith 
method were independently cross validated against estimates obtained using soil water balance (SWB) method. 
A more detailed explanation of the ET estimation procedures using PM and SWB approaches is available in56.

Statistical analysis
The METRIC-UAV derived ETa was validated against ETa estimated using the Penman–Monteith method. 
Statistical metrics such as the coefficient of determination (R²), root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE), and bias were computed using the following equations 
(Eqs. 11–15)57,58.

	
R2 = 1 −

∑ n
i=1(Oi − Pi)2

∑ n
i=1

(
Oi − O

)2 � (11)

	
RMSE =

√
1
n

∑ n

i=1
(Pi − Oi)2� (12)

	
MAE = 1

n

∑ n

i=1
|Pi − Oi|� (13)

	
MAPE = 100

n

∑ n

i=1

∣∣∣Pi − Oi

Oi

∣∣∣� (14)

	
Bias = 1

n

∑ n

i=1
(Pi − Oi)� (15)
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Where, P is UAV-METRIC estimated ETa (mm day− 1); Oi is PM derived ETa (mm day− 1); and O is mean of 
observed values (mm day− 1) and n is total number of observations.

Results and discussion
Irrigation levels
Two irrigations, totalling approximately 120 mm (60 mm each), were applied uniformly across all treatments—
one immediately after sowing to facilitate seedling germination, and another at 12 DAS to ensure proper crop 
establishment. Subsequently, irrigation was scheduled based on soil moisture depletion, monitored in real time 
using gypsum blocks, following 20% DASM (I20) and 40% DASM (I40) depletion thresholds. In accordance 
with the treatment protocols, a total of 400 mm of irrigation water was applied to the I20 plots and 316 mm to 
the I40 plots, distributed over six and five irrigation events, respectively as detailed in Table 3. Comparable water 
use by maize under varying irrigation regimes has been reported in the region59,60 and elsewhere in India61–63. 
In the study region, seasonal water use typically ranges from 300 to 600 mm, depending on soil and weather 
conditions.

NDVI and LST
In both treatments, NDVI values progressed from 0.18 during the seedling stage to a peak of 0.75 at the tasselling 
stage. The initially low NDVI was attributed to sparse vegetation cover and the dominant influence of soil 
background. As the crop developed, NDVI values increased, peaking at the tasselling stage, and subsequently 
declined due to senescence (Fig. 5). This trend aligns with the typical NDVI progression reported in previous 
studies64–66.

The I20 treatment consistently exhibited higher NDVI values, averaging 16.5% greater than I40 from the 
knee-high stage onwards (Fig. 5 & Fig. 6). This increase was attributed to improved soil moisture availability 
under the I20 regime, which enhanced vegetation growth. As illustrated in Fig. 6, by the maturity stage (March 
16, 2023), the I20 treatment showed a 48.5% higher NDVI than I40, as the latter reached maturity approximately 
a week earlier, resulting in senesced and fallen vegetation.

Land surface temperature (LST), a critical parameter influencing evapotranspiration, exhibited distinct 
spatial and temporal dynamics, ranging from 23.8 °C (January 11, 2023) to 34.1 °C (February 12, 2023) (Fig. 7). 
When averaged over the crop growth period, excluding January 11 and February 12, the I20 plots were 1.7 °C 
cooler than the I40 plots. These findings are consistent with previous studies. Previous studies have reported a 
1.5 °C lower daytime LST in irrigated compared with rainfed maize systems in Nebraska, USA67, and a 1.15 °C 
reduction in LST attributable to irrigation effects68. Increased soil moisture under the I20 treatment enhanced 
latent heat flux through the canopy, resulting in a cooling effect and reduced LST. In contrast, moisture deficits 
under the I40 treatment induced vegetation stress and elevated canopy temperatures, consistent with earlier 
observations69. The temporal pattern revealed nearly identical LST values between treatments during the peak 
vegetative stage (27 January 2023), in contrast to other growth stages.

Moreover, a negative correlation (r = − 0.66) was observed between NDVI and LST (Fig. 8), consistent with 
previously reported inverse relationships between vegetation indices and surface temperature (r = − 0.51)70. 
Reduced vegetation cover and soil moisture depletion have also been shown to elevate soil surface temperatures, 
reinforcing the trend observed in this study71.

Surface energy fluxes
Balancing energy fluxes is the fundamental principle of this model. Each energy component exhibited distinct 
variations throughout the crop growth period. For the maize crop, regardless of the treatments, the net radiation 

No. of irrigations Time of application (DAS)
Discharge
(l s−1) Duration of application (min) Total amount of water applied (mm)

20% DASM

I 0 - - 60

II 12 - - 60

III 26 3.31 150 75

IV 45 3.35 135 68

V 79 2.90 162 71

VI 105 2.72 165 67

Total 400

40% DASM

I 0 - - 60

II 12 - - 60

III 36 3.29 132 65

IV 61 2.75 173 71

V 90 3.32 140 70

Total 316

Table 3.  Quantity of irrigation water applied to maize under different irrigation treatments.
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ranged from 164.8 W m−² (December 26, 2022) to 453.7 W m−² (January 27, 2023). Soil heat flux ranged from 
21.7 W m−² (December 26, 2022) to 46.4 W m−² (February 12, 2023). Latent energy varied from 84.5 W m−² 
(March 16, 2023) to 173.1 W m−² (December 26, 2022). These observed flux values are consistent with those 
reported in previous studies25,28,29,72–75.

Net radiation (Rn)
The temporal dynamics of net radiation (Rn) throughout the crop growth period exhibited distinct trends. 
During the early stages of crop development, when vegetation cover was minimal, Rn values remained relatively 
low—except on November 24, 2022, when a slightly elevated Rn (266.8 W m⁻²) was observed, due to wet field 
conditions with exposed soil. As the canopy developed, particularly during January and February, Rn increased 
markedly, coinciding with higher vegetation cover and leaf area index (LAI) (Appendix C).

Notably, spatial differences in Rn were more pronounced between treatments throughout the crop growth 
period, with the I20 treatment consistently exhibiting slightly higher Rn values (~ 3%) compared to I40 (Fig. 
9). This variation is attributed to relatively denser vegetation and improved soil moisture availability under I20. 
These observations suggest that both vegetation density and soil moisture positively influence Rn, while dry 
soil conditions and sparse vegetation—resulting from water stress—negatively affect energy availability. These 
findings are consistent with previous studies76.

Soil heat flux (G)
During the early part of the season—particularly on November 24 and December 26, 2022—G values were 
relatively low disregarding the treatments, recorded at 26.6 and 21.7 W m⁻², respectively. As the canopy 
developed, G averaged around 31.0 W m⁻² up to the tasselling stage. Subsequently, from crop maturity to 
senescence, G gradually increased, ranging between 41.2 and 46.4 W m⁻². This trend suggests that under dense 
vegetation, soil heat flux remains low due to shading and reduced solar radiation reaching the soil surface. In 
contrast, G increased under sparse vegetation conditions where greater solar energy is directly absorbed by the 
soil. These observations are consistent with previous reports of similar soil heat flux behaviour under variable 
canopy conditions77.

Minor spatial variability in G was observed between irrigation treatments (Fig. 10), with the I40 treatment 
exhibiting approximately 5% higher G than I20. This indicates that deficit moisture conditions can enhance soil 
heat flux, likely due to reduced evaporative cooling and less canopy cover. When the G/Rn ratio was evaluated, 
it was found that 7.1% to 12% of net radiation was partitioned into soil heat flux across the crop growth stages. 
A greater proportion of Rn was allocated to G under dry, bare soil and sparse vegetation conditions, compared 

Fig. 5.  Boxplots showing the distribution of NDVI for maize under the I20 and I40 irrigation treatments on 
selected UAV acquisition dates during the study period. NDVI was derived from UAV-based multispectral 
imagery, and the figure was generated using R software (version 4.5.1; https://cran.r-project.org).
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to full vegetation cover and adequate soil moisture conditions. These findings are consistent with previous 
observations of similar soil heat flux partitioning in maize under varying irrigation regimes78.

Sensible heat flux
The pattern of sensible heat flux was inversely related to vegetation cover. Lower H values were recorded during 
periods of peak vegetation, while higher values were observed during the early (seedling) and late (maturity) 
stages of crop development. Under dry soil moisture conditions, sensible heat flux increased, as evidenced by 
the I40 treatment exhibiting approximately 5% higher H than I20 (Fig.  11). This trend reflects the reduced 
partitioning of net radiation into latent heat flux under water stress, resulting in greater energy allocation to 
sensible heat.

Latent heat flux (LE)
In contrast to soil heat flux, latent heat flux exhibited a gradual increase with the development of vegetation 
cover, reaching its peak when the LAI attained its maximum, followed by a decline during the senescence phase 
in both irrigation treatments. However, notable spatiotemporal anomalies in LE were observed, influenced by 
the irrigation regimes (Fig. 12). Specifically, the I20 treatment consistently recorded an average of 16.5% higher 
LE than I40, indicating that LE is predominantly governed by vegetation dynamics (LAI) and soil moisture 
availability, which in turn influenced by irrigation management practices. These findings are consistent with 
previous reports showing approximately 27% higher LE in irrigated maize compared with deficit-irrigated 
conditions, highlighting the critical role of adequate soil moisture in enhancing evaporative cooling through 
transpiration76.

In essence, the observed dynamics of the energy balance components suggest that under conditions of 
adequate water availability and sufficient soil moisture, LE dominates the energy partitioning, consuming the 
majority of net radiation. However, as soil moisture declines and water become limiting for evapotranspiration, 
the available energy is increasingly redirected toward soil heating (G) and sensible heat flux (H), thereby warming 
the soil and air, respectively. These trends are consistent with previously reported shifts in energy partitioning 
under variable soil moisture regimes78. Moreover, when vegetation indices such as LAI and NDVI are high—
indicative of dense, healthy canopies under non-stress conditions—net radiation tends to increase while soil 
heat flux decreases due to shading, thereby enhancing LE. Conversely, under water-stressed conditions, reduced 

Fig. 6.  Spatiotemporal variation in NDVI of maize under the I20 and I40 irrigation treatments, derived from 
UAV-based multispectral imagery for selected flight dates during the maize growing period. Image processing 
and map visualization were performed using ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).
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Fig. 8.  Scatter plot illustrating the relationship between NDVI and LST derived from UAV imagery during the 
study period. Each point represents pixel-level values, and the dashed line indicates the linear regression fit.

 

Fig. 7.  Spatiotemporal variation in LST of maize under the I20 and I40 irrigation treatments derived from 
UAV-based thermal imagery for selected UAV dates during the maize growing period. Image processing and 
map visualization were performed in ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).
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Fig. 12.  Spatiotemporal variation in latent heat flux in the maize field under the I20 and I40 irrigation 
treatments, derived from UAV-based imagery for selected flight dates during the maize growing period. Image 
processing and map visualization were performed using ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).

 

Fig. 11.  Spatiotemporal variation in sensible heat flux in the maize field under the I20 and I40 irrigation 
treatments, derived from UAV-based imagery for selected flight dates during the maize growing period. Image 
processing and map visualization were performed using ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).

 

Fig. 10.  Spatiotemporal variation in soil heat flux in the maize field under the I20 and I40 irrigation 
treatments, derived from UAV-based imagery for selected flight dates during the maize growing period. Image 
processing and map visualization were performed using ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).

 

Fig. 9.  Spatiotemporal variation in net radiation in the maize field under the I20 and I40 irrigation treatments, 
derived from UAV-based imagery for selected flight dates during the maize growing period. Image processing 
and map visualization were performed using ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).

 

Scientific Reports |         (2026) 16:4302 13| https://doi.org/10.1038/s41598-025-33916-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


transpiration leads to a decline in LE, with a corresponding rise in H. Thus, vegetation and soil moisture plays a 
crucial role in regulating surface energy fluxes.

24-hour period evapotranspiration (ET24)
For the UAV imagery captured throughout the crop growth period, 24-hour evapotranspiration (ET24) was 
estimated by multiplying the fraction of reference evapotranspiration (ETrF) with corresponding daily reference 
evapotranspiration (ETo). The ET24 values ranged from 1.46  mm day⁻¹ (March 16, 2023) to 2.93  mm day⁻¹ 
(January 27, 2023), with an average of 2.28 mm day⁻¹ across the dataset (Fig. 13). In general, higher ET24 values 
corresponded to dates when the crop had a well-developed canopy, such as January 27 (2.93 mm day⁻¹), February 
12 (2.2 mm day⁻¹), and February 28 (2.1 mm day⁻¹) as shown in Figs. 13 and 14.

Notably, relatively high ET₂₄ values were also recorded during the early crop stages—2.2  mm day⁻¹ on 
November 24, 2022, and 2.7 mm day⁻¹ on December 26, 2022—despite minimal canopy development. These 
elevated ET rates are attributed to increased soil evaporation under wet field conditions and limited shading 
by maize seedlings. Toward the end of the season, during the harvesting stage, ET₂₄ declined, with values of 
1.85 mm day⁻¹ in the I20 treatment and 1.46 mm day⁻¹ in the I40 treatment.

Following the imposition of irrigation treatments (post-December 24, 2022), distinct treatment-induced 
variations in ET24 became evident, particularly in imagery acquired on December 26, February 28, and March 
16 (Fig. 13). In these instances, the I20 treatment exhibited an average of 20.5%, 60.0%, and 26.7% higher ET24, 
respectively, compared to I40. Notably, ET24 values were nearly identical between treatments on January 27, 2023 
(I20: 2.93 mm day⁻¹; I40: 2.92 mm day⁻¹), corresponding to the period of peak vegetation cover and adequate 
soil moisture in both treatments (Fig. 13).

Daily evapotranspiration (daily ETa)
Overall, average daily ETa exhibited a progressive increase throughout the crop growth period, with values 
averaging 2.43 mm day⁻¹ and 2.50 mm day⁻¹ during the seedling stage under the I20 and I40 treatments, 
respectively. ETa peaked during the peak vegetative stage at 3.02 mm day⁻¹ for I20 and 2.93 mm day⁻¹ for I40, 
before declining to 2.20 mm day⁻¹ (I20) and 1.64 mm day⁻¹ (I40) as the crop approached physiological maturity 
(Fig. 14). Comparable trends have been reported in previous studies. For example, lysimeter-based measurements 
of maize evapotranspiration under Ethiopian conditions showed lower ET during the initial growth stages (2.20 

Fig. 13.  Spatiotemporal variation of 24-h evapotranspiration (ET24, mm day⁻¹) of maize under the I20 and 
I40 irrigation treatments derived from UAV-based observations for selected UAV dates during maize growing 
period. Image processing and map visualization were performed in ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).
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and 1.82 mm day⁻¹) and substantially higher values during midseason (6.83 and 7.20 mm day⁻¹ in 2017 and 
2018, respectively)79. Similarly, other studies have consistently documented a typical ET pattern characterized by 
initially low values, followed by a midseason peak and a gradual decline toward the end of the growing season. 
In contrast, the relatively higher ETa observed during the seedling stage in the present study is attributed to 
increased soil surface evaporation, as the soil remained moist and largely exposed due to sparse canopy cover 
during early crop establishment.

Prior to the imposition of irrigation treatments, ETa values were nearly identical between the I20 and I40 
treatments. However, following the imposition of irrigation treatments at 30 DAS, distinct spatial and temporal 
anomalies in ETa emerged. The I20 treatment consistently recorded higher ET than I40 (Figs. 13, 14 and 15) due 
to relatively increased soil moisture availability and plant physiological activity in I20. As a consequence, the 
maize crop under I40 matured approximately one week earlier than that under I20. The average daily ETa over 
the entire crop growth period was 2.51 mm day⁻¹ for I20 and 2.27 mm day⁻¹ for I40, with values ranging from 
1.14 to 3.09 mm day⁻¹ and 1.34 to 3.15 mm day⁻¹, respectively (Fig. 15). Notably, during the maturity and harvest 
stages (from 100 DAS onwards), the I40 treatment exhibited considerably lower ETa, averaging approximately 
0.7 mm day⁻¹ less than I20 (Fig. 14), suggesting more pronounced water stress in the later stages under the 40% 
DASM regime. Conversely, during the peak period of consumptive use (60–70 DAS), ETa values were nearly 
equal across both treatments, averaging around 2.9 mm day⁻¹.

Seasonal evapotranspiration
Seasonal evapotranspiration is a critical parameter for assessing crop water requirements over the entire crop 
growth period. In this study, seasonal ETa was estimated by aggregating daily ETa values throughout the crop 
growth duration for each treatment. The results indicated that the I20 treatment recorded a seasonal ETa of 333 
mm, approximately 15% higher than the I40 treatment (288 mm) (Figs. 16 and 17). This difference underscores 
the effect of irrigation frequency and soil moisture availability on cumulative crop water use. Seasonal 
evapotranspiration of maize of 351.6 mm, estimated using the pan evaporation method under Hyderabad 
conditions, has been previously reported80, with comparable observations documented for Karnal81.

Crop coefficient
At the initial stage, Kc values were nearly identical across both treatments, as no irrigation regimes had yet been 
imposed (Fig. 18). The relatively higher Kc during this stage compared to standard values can be attributed to 
greater evaporation under exposed wet soil conditions, typical of the seedling stage. For this phase, Kc values 
may be corrected considering the number of irrigations and ETo following the criteria described in Allen et al.13.

Fig. 14.  Temporal trends of daily ETa (mm day− 1) of maize crop under different irrigation treatments, derived 
using the UAV-based METRIC approach. The time-series plot was generated using R software (version 4.5.1; 
https://cran.r-project.org).
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From the crop development stage onward, Kc remained consistently higher under I20 compared to I40. 
The divergence was more pronounced during mid-season (1.11 in I20 vs. 1.02 in I40) and maturity (0.60 in 
I20 vs. 0.40 in I40) (Fig. 18a). Under I40, water stress reduced canopy greenness, as reflected by lower NDVI, 
accelerating senescence and consequently lowering Kc. In contrast, optimal soil moisture under I20 sustained 
canopy vigor, resulting in higher Kc values. The Kc values observed under I20 are consistent with previously 
reported values60 and align with standard crop coefficient values13.

The results derived from UAV imagery clearly demonstrate that the two irrigation regimes, I20 and I40, 
differing by a single irrigation event (60 mm), induced substantial spatiotemporal variations in key crop and 
energy balance parameters. The I40 treatment resulted in water-deficit conditions, reducing soil moisture 

Fig. 16.  Spatial distribution of seasonal ETa (mm) of maize under 20% and 40% DASM irrigation treatments 
derived using the UAV-based METRIC approach. Image processing and map visualization were performed in 
ArcGIS Pro 3.2 (Esri Inc., Redlands, USA).

 

Fig. 15.  Box plots showing the distribution of daily ETa (mm day⁻¹) of maize under the 20% and 40% DASM 
irrigation treatments estimated using the UAV-based METRIC approach. The statistical visualization was 
generated using R software (version 4.5.1; https://cran.r-project.org).
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availability and consequently leading to elevated LST and diminished vegetative development, as reflected by 
lower NDVI and LAI values. As a result, Rn was reduced, and a larger proportion of the available energy was 
partitioned into H and G, both of which exhibited higher values under I40 compared to I20. In contrast, the I20 
treatment, with greater soil moisture availability, enhanced vegetative growth, evidenced by higher NDVI and 
LAI values. This dense canopy intercepted greater portion of solar energy, resulting in higher Rn. A substantial 
portion of this energy was then channelled into LE, supporting higher ET rates.

As a C₄ crop, maize likely employed adaptive physiological responses under the water-stressed I40 
condition—such as reduced vegetative growth, restricted leaf area, stomatal regulation, and increased surface 
resistance—to conserve water and maintain cellular turgor, ultimately limiting transpiration losses. Additionally, 
the diminished soil moisture under I40 also suppressed soil evaporation, thereby contributing to the overall 
lower ETa observed under this treatment. In contrast, the I20 plots exhibited higher ET due to more favorable 
moisture conditions that supported both evaporation and transpiration. These differences in water availability 
and energy partitioning ultimately translated into yield outcomes, with the I20 treatment achieving a higher 
grain yield of 6.3 t ha⁻¹ compared to 5.4 t ha⁻¹ under I40.

As previously mentioned, the UAV images captured on January 11 and February 12, 2023, were considered 
non-representative of typical crop conditions. On both occasions, irrigation had been applied to the I40 treatment 
just one day prior to the UAV flights—unlike the other image acquisitions, which were conducted without recent 
irrigation events. As a result, the soil in the I40 plots was at or near saturation to field capacity, with visible 
surface water. This led to a pronounced reduction in LST by 2.1 °C and 2.2 °C, respectively, compared to the I20 
treatment. This contributed to slightly higher Rn and LE, and correspondingly lower G and H in I40 relative to 
I20. Consequently, the estimated ETa values for these dates were anomalously high for I40 and did not reflect 
the broader seasonal trends or true treatment effects. Figures showing the spatial variability of those parameters 
on these dates is given in Appendix D. Given the substantial influence of immediate post-irrigation conditions 
on soil moisture and surface energy fluxes, these images were excluded from both the daily and seasonal ETa 
analyses, as they did not accurately represent typical crop and field conditions during those growth stages.

Comparison of METRIC-UAV with Penman Monteith
Daily and seasonal ETa
Daily ETa and seasonal ETa estimated from UAV imagery using the METRIC-UAV approach were compared 
with ETa computed using the Penman–Monteith method throughout the crop growth period. The comparison 
of daily ETa revealed a strong correlation, with a high coefficient of determination (R² = 0.84), low root mean 
square error (RMSE = 0.22  mm day⁻¹), low mean absolute error (MAE = 0.15  mm day⁻¹), mean absolute 
percentage error (MAPE) of 6.1%, and a negative bias of −0.13  mm day⁻¹ (Fig.  19). These statistics suggest 
good agreement between the two methods. However, slight underestimations by METRIC-UAV were observed, 
particularly at moderate to high ETa levels, as evidenced by data points falling below the 1:1 line (Fig. 19).

At the seasonal scale, METRIC-UAV slightly underestimated cumulative ETa. For I20 and I40 treatments, 
seasonal ETa was estimated at 333 mm and 288 mm, respectively, compared to 346 mm and 306 mm from 

Fig. 17.  Cumulative ETa (mm) of maize under the 20% and 40% DASM irrigation treatments, derived using 
the UAV-based METRIC approach. The cumulative ETa time series was generated using R software (version 
4.5.1; https://cran.r-project.org).
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PM, resulting in an average underestimation of ~ 7%. When compared with ET values calculated using the soil 
water balance (SWB) method (340 mm for I20 and 280 mm for I40), METRIC-UAV slightly overestimated ET 
under I20 (~ 3%) and slightly underestimated under I40 (~ 3%). When PM method derived ETa values were 
compared with SWB based ET, it showed 2% and 14% overestimation under I20 and I40 treatments, respectively. 
Using SWB method the ET difference between the I20 and I40 treatments was 60 mm, but, METRIC UAV and 
PM showed only 44 mm and 28 mm, respectively. Particularly under water stress (I40) conditions, both the 
methods (METRIC-UAV & PM) poorly captured (overestimated) the ET compared to SWB method. However, 
ET anomalies induced by the I20 and I40 water regimes (a difference of single irrigation) relatively small but 
considerably pronounced.

Crop coefficient
Compared with the PM method, the METRIC-UAV model yielded slightly lower Kc values across all growth 
stages, which was evident from its underestimation of average daily ETa and seasonal ETa (Fig. 18). Notably, 
the difference between I20 and I40 during mid-season and maturity was more pronounced in METRIC-UAV 
than in PM as shown in Fig. 18. As discussed earlier, the PM method exhibited comparatively limited sensitivity 
in capturing ETa anomalies between irrigation regimes, particularly under water-stressed conditions, where it 
tended to overestimate ET.

Evaluation against EC flux tower observations
Energy balance closure consistency
When the relationship between available energy (Rn - G) and turbulent heat fluxes (LE + H) was evaluated 
for both METRIC-UAV and EC flux tower data (Fig. 20), METRIC-UAV demonstrated near complete energy 
balance closure (EBC), whereas EC measurements showed non-closure. METRIC-UAV inherently enforces 

Fig. 18.  Seasonal variation of crop coefficient (Kc) for maize under the 20% and 40% DASM irrigation 
treatments derived using (a) the UAV-based METRIC approach and (b) the Penman–Monteith method.
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Fig. 20.  Energy balance closure comparison (available energy vs. turbulent fluxes) between the UAV-based 
METRIC model and eddy covariance measurements. Solid lines represent linear regressions for each method, 
while the dashed line is 1:1. The analysis was performed using R software (version 4.5.1; ​h​t​t​p​s​:​/​/​c​r​a​n​.​r​-​p​r​o​j​e​c​t​.​
o​r​g​​​​​)​.​​​​

 

Fig. 19.  1:1 Comparison between UAV-based METRIC and Penman–Monteith estimates of ETa (mm day− 1). 
The plot was generated using R software (version 4.5.1; https://cran.r-project.org).
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internal energy balance during the calibration of hot and cold pixels, resulting in physically consistent flux 
partitioning (R2 = 0.996). Minor deviations are attributed to parameterization within the model.

In contrast, the EC flux tower showed incomplete closure (R2 = 0.82), indicating systematic underestimation 
of turbulent fluxes. Similar imbalance of 15–20% has been reported in several studies82–84. Energy non-closure 
in EC systems may arise from unmeasured storage terms (heat stored in the soil layers above soil heat flux 
plates and in air column below sensor height), canopy biomass heat storage, sensors alignment, footprint 
mismatch between available energy and turbulent energy fluxes, and contribution from unmeasured advection 
and biochemical heat exchange. A detailed explanation of the potential causes is provided in85. Despite years of 
advancement, complete energy balance closure in EC observations remains elusive, and the underlying causes 
are still not fully understood86.

Relative to METRIC-UAV, EC fluxes appear lower because EC integrates time averaged fluxes over a 
heterogenous footprint that includes different land-use types and different crops at different stages. METRIC-
UAV, however, represents instantaneous and spatially explicit fluxes directly over the maize canopy within the 
experimental plots. Due to these real-world biophysical and measurement complexities, this comparison should 
be interpreted primarily as a diagnostic evaluation of METRIC’s internal energy consistency and the degree of 
agreement with EC-based footprint averages, rather than a strict one-to-one validation.

Actual evapotranspiration (ETa)
Although a direct comparison between METRIC-UAV derived ETa and EC-measured ETa is not ideal due 
to differences in footprint heterogeneity and scale, the ETa estimates obtained on the UAV flight dates are 
presented in Fig. 21 for interpretation. METRIC captures spatial variability across the field, while EC provides 
flux measurements overs its source area footprint; therefore, perfect agreement between them is not expected. 
ETa measured by the EC flux tower, averaged over a ± 60-minute window centered on each UAV overpass time, 
exhibited larger temporal variability, likely influenced by atmospheric stability, upwind fetch composition, and 
heterogeneity in the upwind vegetation among other factors. Despite these differences, EC-derived ETa generally 
remained within or close to the two treatment level METRIC estimates on all flight dates demonstrating the 
consistency of the METRIC model in representing spatial ET anomalies.

The comparable performance of the METRIC-UAV model can be attributed to several factors, including 
the high spatial resolution of the imagery and the adequate frequency of image acquisition throughout the crop 
growth period. However, the observed underestimation may be partly due to the selection of cold pixels. In 
UAV-based applications, the limited spatial coverage can make it challenging to identify a truly representative 
cold pixel that meets all the standard conditions. Unlike satellite imagery, which covers a broader spatial extent 
and thus increases the likelihood of capturing a true cold pixel that defines the upper limit of ET for the scene, 
UAV imagery may not always contain such a pixel. As a result, there is a strong possibility that a suboptimal 
cold pixel is selected—one that does not ideally represent the extreme low LST and associated maximum ET. 
This may lead the model to assume a lower-than-actual maximum ET, contributing to slight underestimation 
in ETa calculations. This issue of underestimation is not unique to the present study. Similar concerns have 

Fig. 21.  Box plots showing daily ETa (mm day⁻¹) of maize during growing period, estimated using the UAV-
based METRIC approach for the 20% and 40% DASM irrigation treatments and ETa measured by the EC flux 
tower footprint for selected UAV dates. The statistical visualization was generated using R software (version 
4.5.1; https://cran.r-project.org).
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been reported in UAV-based applications of the METRIC model. For example, evapotranspiration estimates 
over almond orchards in Northern California derived using UAV imagery showed good agreement with eddy 
covariance flux tower measurements (R² = 0.77), although the UAV-based METRIC approach exhibited notable 
underestimation, with an RMSE of 1.23 mm day⁻¹ and an ETrF mean error of − 0.97 mm day⁻¹ when compared 
with Landsat-based estimates (RMSE = 0.81 mm day⁻¹; mean error = − 0.36 mm day⁻¹)41. Similarly, UAV-
based METRIC estimates applied to rice paddies underestimated ET by approximately 7% relative to lysimeter 
measurements (r = 0.97; RMSE = 0.51 mm day⁻¹), while successfully capturing ET anomalies ranging from 0.2% 
to 8% under varying soil water potential conditions (− 10, − 15 and − 20 kPa relative to 0 kPa)87.

Furthermore, the METRIC model has been effectively implemented using UAV-based thermal and 
multispectral imagery to assess evapotranspiration variability in vineyard systems in Spain, capturing distinct 
responses under different water regimes in crop rows and inter-rows43. Similarly, UAV-based METRIC estimates 
applied to paddy fields under continuous flooding and alternate wetting and drying (AWD) conditions in Peru 
revealed discernible ET differences and showed good agreement with AquaCrop model simulations (r = 0.783)88.

Additionally, other alternative models have been explored in the literature for UAV-based ET estimation. 
Various methods such as the One Source Energy Balance (OSEB), High Resolution Mapping of Evapotranspiration 
(HRMET), Dual-Temperature-Difference (DTD) model, Two Source Energy Balance (TSEB) model, Machine 
Learning (ML) algorithms, and SEBAL have also been employed by researchers89. Each of these approaches has 
its own limitations. For instance, the OSEB model tends to underestimate ET, while ML models often require 
exhaustive datasets89. Among these, the TSEB model is widely used, particularly to distinguish surface and canopy 
ET in complex environments (e.g., orchards and mixed land covers). Several studies have reported promising 
results. For example, daily and seasonal evapotranspiration estimated using the TSEB model showed strong 
agreement with the soil water balance method in bell pepper, with R² values of 0.73 and 0.98, respectively90. 
Similarly, good agreement between TSEB-derived ET and ground-based measurements has been reported 
in other studies37,39. However, application of the TSEB model to UAV data over sorghum fields showed good 
agreement under fully irrigated conditions (R² = 0.64) but poor performance under water-deficit conditions, 
with R² values ranging from 0.06 to 0.3091. Other studies have similarly reported a tendency of the TSEB model 
to overestimate evapotranspiration under water stress conditions92,93. In addition, large discrepancies in H and 
LE fluxes have been observed when wind speeds exceeded 2.7 m s⁻¹38. A further challenge with the TSEB model 
is its sensitivity to errors in the retrieval of absolute LST, which can be particularly problematic with UAV-based 
sensors and require extensive field measurements. In contrast, METRIC may not require highly accurate LST 
and large ground-based measurements, making it potentially more robust for UAV applications.

Nonetheless, the evaluation of the METRIC-UAV methodology for ETa estimation within a defined area of 
interest under varying irrigation levels revealed intricate mapping of key parameters—NDVI, LST, energy fluxes 
and ET—at exceptionally high spatial resolutions and with reasonably higher accuracy. The detailed mapping 
at small scales, distinguishing ET variability across row spaces, bunds, crop rows, and even weed patches, was 
particularly pronounced.

Challenges and Limitations.
It is crucial to acknowledge the limitations of this model and consider its practical utility under varying 

conditions. Several factors can impact the model’s effectiveness, particularly in different environmental contexts:

•	 Terrain Variability: This study was conducted in a flat, agricultural setting. However, applying the model in 
heterogeneous, sloped, or hilly landscapes may require modifications. These adjustments would need to ac-
count for meteorological influences such as surface temperature, solar radiation, and aerodynamic variations 
that result from changes in altitude.

•	 Pixel Selection: Limited spatial coverage of UAV imagery makes it particularly challenging to identify a rep-
resentative cold pixel that meets all standard conditions.

•	 Temporal Representativeness: Images acquired during or immediately after irrigation or rainfall can substan-
tially alter LST and NDVI (as observed on January 11, 2023, and February 12, 2023), and may not accurately 
reflect the prevailing crop stage. This poses a particular challenge in ensuring representative conditions, espe-
cially during the rainy season.

•	 Solving Atmospheric Emissivity: In the present study, UAV flights were carefully timed to coincide with 
Landsat-8 overpasses, enabling accurate estimation of atmospheric emissivity using satellite-derived refer-
ence data. However, such alignment is not always feasible in other settings, and in those cases, alternative 
methods for estimating atmospheric emissivity may be required.

Conclusions
This study demonstrated the potential of METRIC-UAV in capturing spatial and temporal dynamics of NDVI, 
LST, surface energy fluxes, and actual evapotranspiration in maize under varying irrigation regimes. Irrigation at 
20% DASM with an additional 60 mm event reduced LST by 1.7 °C, increased NDVI by 16.5%, enhanced daily 
and seasonal ET by 11% and 15%, respectively, and improved grain yield by 14% compared with the water-deficit 
40% DASM treatment.

METRIC-UAV provided accurate high-resolution ETa estimates, showing strong agreement with the Penman–
Monteith combination method (R² = 0.84, RMSE = 0.22 mm day⁻¹, MAE = 0.15 mm day⁻¹, MAPE = 6.1%), and 
a slight underestimation in seasonal ETa (7%). Deviations from the soil water balance method remained within 
± 3%, with minor biases indicating scope for calibration under extreme ET conditions. Overall, METRIC-UAV 
represents a scalable and adaptable framework for high-resolution ETa monitoring at field scale in agriculture.

Future studies should extend its application to diverse cropping systems and agro-climatic regions, while 
integrating advanced data-driven approaches to support adaptive, near real-time irrigation management.
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