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Heat stress represents a major limitation for livestock production systems, negatively affecting 
feed efficiency, animal health and welfare, and overall performance. In this context, the objective 
of this study was to identify genomic regions, candidate genes, biological pathways, and functional 
networks associated with dry matter intake (DMI) and residual feed intake (RFI) in Nellore cattle 
exposed to varying levels of thermal stress. The dataset comprised records from 22,838 animals, 
with genotypes available for 18,567 individuals. The data were collected during 296 feed efficiency 
trials between 2011 and 2023 across 21 Brazilian farms. Genome-wide association studies (GWAS) 
were performed using the single-step GBLUP (ssGBLUP) approach to account for genotype-by-
environment (G×E) interactions in Nellore cattle. Environmental variation was modeled using the 
temperature-humidity index (THI) as the environmental gradient, with analyses stratified across three 
environmental gradients (EG): low (THI = 66), medium (THI = 74), and high (THI = 81). Fifty-one SNPs 
were significantly associated with RFI, including 27 shared across all three EGs, 10 exclusive to the 
low EG, one to the high EG, and 13 shared between the moderate and high EGs. These associations 
were mapped to 44 candidate genes, with 19 genes commonly identified across all EGs, including 
key candidates such as PIPOX, GTF2F2, KCTD4, MYO18A, and NFIA. For DMI, 136 significant SNPs 
were identified: 12 and 39 exclusive to the low and moderate EGs, respectively; 28 shared across all 
EGs; and 57 shared between the moderate and high EGs. These variants were linked to 58 candidate 
genes, of which 19 were common to all EGs, including NCAPG, LCORL, FAM13A, HERC3, CCND1, and 
FGF19. Gene network analyses revealed a clear reconfiguration of interaction structures across thermal 
gradients, particularly for RFI, where gene connectivity declined with increasing THI levels. For DMI, 
gene networks remained highly integrated, especially in the lowest THI level. Functional annotation 
highlighted both conserved and environment-specific regulatory architectures, involving key biological 
processes such as growth regulation, lipid and protein metabolism, intracellular signaling, stress 
response, and neuroendocrine control. These findings uncover the environmental sensitivity of RFI 
and DMI, highlight the complex and dynamic genomic basis of these traits under varying climatic 
conditions, and support the identification of candidate genes for genomic selection programs aiming 
to enhance climatic resilience in tropical beef cattle.
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Background
Environmental stressors, particularly heat stress, impose significant challenges on livestock by triggering 
complex physiological and molecular responses that compromise animal health, welfare, and productivity1,2. 
Among the various indicators to quantify heat stress, the temperature-humidity index (THI) remains the most 
widely adopted, as it integrates temperature and relative humidity into a single descriptor of environmental 
stress3–5. Exposure to elevated THI levels has been associated with altered gene expression patterns5–7, 
dysregulation of metabolic pathways8, and impairment of key physiological functions, including immune 
response2,9, reproductive performance10–12, and nutrient metabolism1,13. These stress-induced modifications 
occur at multiple biological levels, ranging from transcriptional and post-transcriptional regulation to endocrine 
signaling, contributing to phenotypic variability among animals14–17. Furthermore, there is growing evidence 
that thermal stress may modulate the expression of genetic merit, directly affecting the response to selection 
under varying environmental conditions18,19. This highlights the importance of genotype-by-environment 
(G×E) interactions, in which the magnitude and direction of genetic effects vary depending on environmental 
conditions.

The intensification of climate change poses a major challenge to the sustainability of beef production systems, 
particularly in tropical environments where animals are continuously exposed to heat stress conditions13,20. 
Among the traits most sensitive to heat stress is feed efficiency11,21, which directly influences profitability, 
environmental sustainability, and resource allocation. Heat stress can compromise feed intake, alter energy 
partitioning, and reduce metabolic efficiency, thereby amplifying phenotypic variability1,21,22 and consequently 
variation in genetic merit. Consequently, identifying animals that maintain superior performance under thermal 
stress conditions becomes a strategic objective for breeding programs in tropical regions.

Genome-wide association studies (GWAS), when integrated with environmental descriptors such as THI, 
can enable the detection of genomic regions and candidate genes associated with resilience and adaptation to 
heat stress23. These approaches not only advance our understanding of the genetic background of feed efficiency 
under heat stress but also support the development of more precise genomic selection strategies, targeting animals 
that are both efficient and robust across diverse climatic scenarios. Furthermore, integrating environmental 
sensitivity into GWAS allows the identification of SNP-by-environment (SNP x E) interactions, unraveling the 
environment-dependent genetic effects that are often masked in conventional analyses23–25. Understanding 
how genomic regions influence response to environmental variability is therefore essential for advancing more 
precise and climate-resilient breeding programs.

In a previous study, Silva Neto et al.19 investigated G×E interactions for feed efficiency traits in Nellore 
cattle using a bi-trait genomic reaction norm model, considering THI as an environmental descriptor. Their 
results demonstrated that the genetic expression of dry matter intake (DMI) and residual feed intake (RFI) 
is sensitive to heat stress, with both heritability estimates and additive genetic variance declining under high 
THI conditions. These findings highlight the importance of incorporating environmental sensitivity into genetic 
evaluations to improve the selection of animals that remain feed efficient under thermally stressful conditions. 
However, no previous GWAS have evaluated the genetic background of DMI and RFI in Nellore cattle while 
explicitly accounting for environmental variation through distinct THI levels26. Therefore, the main objectives 
of this study were to: (i) perform a GWAS accounting for GxE interactions for RFI and DMI in Nellore cattle 
under varying levels of thermal conditions (low, medium, and high) according to the THI; and (ii) to annotate 
candidate genes and conduct functional enrichment analyses to elucidate the biological processes and molecular 
mechanisms associated with thermal resilience in feed efficiency traits.

Materials and methods
Field data and phenotypic information
Individual feed intake records were measured on 22,838 Nellore animals (16,233 males and 6,605 females) from 
2011 to 2023. The datasets were provided by the National Association of Breeders and Researchers (ANCP, 
Ribeirão Preto, SP, Brazil; www.ancp.org.br). Data originated from 296 feeding trials performed in 21 farms 
distributed in different Brazilian regions. Phenotypic information was available for DMI and RFI, following 
the standardized protocols for measuring individual feed intake in beef cattle described by Mendes et al.27. The 
feeding trials were performed in group pens with animals grouped by sex and age, with feed intake automatically 
recorded using the GrowSafe (www.vytelle.com) and Intergado (www.intergado.com) feeding systems. Each 
performance trial was conducted using a single feeding system brand and the same data collection protocol, 
ensuring that all animals within the same group were evaluated under the same recording conditions. Detailed 
descriptions of diet composition, management, and the evaluated traits are provided in Silva Neto et al.28. 
Descriptive statistics for the traits studied and environmental descriptor (THI) are reported in Table 1.

The herds are genetically connected through the extensive use of common sires via artificial insemination, 
with at least five genetic links across feeding trials, as confirmed using the AMC package29. The animals were 
raised on pasture-based systems, with a predominance of the Urochloa brizantha cv forage. The commercial 
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herds adopted different nutritional practices with some farms providing protein and mineral supplementation, 
especially during the dry season, while others provided only urea supplementation28.

Genomic data
A total of 18,567 animals born between 2014 and 2022 were genotyped with a SNP panel containing 65,414 
markers (Clarifide® Nelore 3.0, Zoetis, Kalamazoo, MI). The genotypes were imputed to a high-density (HD) SNP 
panel (Illumina BovineHD; San Diego, CA, USA) containing 735,964 autosomal markers using the Fimpute 3.0 
software30. Before genotype imputation, we removed non-autosomal markers and autosomal SNPs with GenCall 
< 0.60 to remove genotyping problems31.

The reference population for genotype imputation consisted of 963 representative sires from the main Nellore 
lineages in Brazil (i.e., Karvadi, Golias, Godhavari, Taj Mahal, Akasamu, and Nagpur), born between 1995 and 
2015 and genotyped with the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA, USA). The quality 
control in imputed genotypes was performed using the qcf90 software32, removing samples and SNPs with call 
rate < 0.90, markers with Mendelian conflicts > 1%, extreme deviations from Hardy-Weinberg equilibrium (p-
value ≤ 10− 8), and minor allele frequency (MAF) < 0.05. After filtering, 18,567 genotyped animals and 452,283 
SNPs remained for further analyses.

Weather data
Meteorological data corresponding to the days when the evaluated traits were recorded (2011–2023) were 
retrieved from NASA POWER (https://power.larc.nasa.gov/) based on each herd’s geographical coordinates. 
The addresses for each herd were converted to latitude and longitude coordinates using Google Maps Geocoding 
(​h​t​t​p​s​:​​/​/​d​e​v​e​​l​o​p​e​r​s​​.​g​o​o​g​l​​e​.​c​o​m​​/​m​a​p​s​/​​d​o​c​u​m​e​​n​t​a​t​i​o​​n​/​g​e​o​c​o​d​i​n​g).

The Temperature–Humidity Index (THI) was calculated according to NRC33:

	 T HI = [(1.8 x Tdb + 32)] − (0.55 − (0.0055 x RH) x (1.8 x Tdb − 26))]

where Tdb is the dry bulb temperature (in Celsius degrees) and RH  is the relative humidity. This equation 
has been frequently applied in similar studies to evaluate the GxE across heat stress conditions19,34–36. As THI 
is a composite index that weights both temperature and relative humidity, different T–RH pairs can lead to 
the same THI value. For example, combinations such as 33 °C with ~ 20% RH, or 27 °C with ~ 65% RH, yield 
THI values very close to 76. The annual mean variation of the THI during the years in which feed efficiency 
trials were conducted, the seasonal distribution of THI values, and the relative frequency of instances in which 
THI was equal to or exceeded 76 (threshold indicating the onset of thermal stress for the Nellore breed) are 
detailed in Silva Neto et al.19. These data provide important environmental context, emphasizing the intensity 
and frequency of heat stress exposure experienced by the animals throughout the feed efficiency trials.

Given the THI range observed during the feed efficiency trials (~ 66–81), and with the aim of facilitating the 
biological interpretation of the results, we selected three representative points along the environmental gradient 
to present and contrast the GWAS results: THI 66 (the mildest/thermoneutral condition available), THI 74 
(close to the center of the gradient, where the first Legendre coefficient was ≈ 0 and very close to the reported 
onset of heat stress in Nellore cattle), and THI 81 (the condition of greatest thermal challenge within the dataset).

Genome-wide association analyses (GWAS)
GWAS were conducted independently for each EG (Low = THI 66, Medium = THI 74, and High = THI 81). The 
same population of 22,838 Nellore cattle, of which 18,567 were genotyped, was used in all analyses. No phenotypic 
stratification by EG was applied, instead, the environment-specific variance components previously estimated 

Variable RFI (kg/day) DMI (kg/day) THI

Number of records 22,838 22,838 239

Average 0.000 8.530 74.37

Standard deviation 0.842 2.151 3.52

Minimum − 7.109 2.519 66.86

Maximum 6.940 20.658 81.66

Feeding trials information

Number of trials with only males 209

Number of trials with only females 87

Animals in the pedigree 46,383

Sires 2,816

Dams 21,749

Sires with progeny records 817

Dams with progeny records 10,339

Number of contemporary groups 742

Table 1.  Descriptive statistics for residual feed intake (RFI), dry matter intake (DMI), and temperature and 
humidity index (THI) during feed efficiency trials in Nellore cattle.
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using a single-step genomic reaction norm model for the same population and described in detail by Silva Neto 
et al.19, were used as inputs for the respective GWAS models. Integrating these variance components ensured 
methodological consistency between the genetic parameter estimates and the environmental conditions under 
which the phenotypes were expressed, so that association tests were carried out under the same environmental 
structure in which genetic parameters were obtained, making SNP detection consistent with the previously 
modeled G×E structure along the THI gradient and preserving coherence among phenotypic adjustments, 
environmental characterization, and marker detection. Additional descriptive statistics by THI classes and the 
distribution of records along the THI gradient, which were used to fit the reaction norm model in the previous 
study, are presented in Silva Neto et al.19.

The single-step genome-wide association study (ssGWAS) method proposed by Wang et al.37 was used for the 
analyses. The general linear mixed model used for the traits studied was:

	 y = Xβ + Za + e

where y is the vector of phenotypic information for DMI and RFI; X is an incidence matrix relating the phenotypes 
to the fixed effects; β  is the vector of fixed effect of CG, which was defined by concatenating the effects of farm, 
year and season of the feeding trial, and sex (males and females were evaluated in separate groups), and the 
age of the animal at the beginning of the feed efficiency trials as a linear covariate; Z is the incidence matrix 
relating the records to the additive genetic effects; a is the vector of random animal additive genetic effects with 
a ∼N(0,H σ 2

u​), and e is the vector of residual effects with e ∼N(0, I σ 2
e ​).

The inverse of the hybrid relationship matrix H−1 was constructed as38:

	
H−1 = A−1 +

[ 0 0
0 G−1 − A−1

22

]

where A−1 is the inverse of the pedigree-based relationship matrix; A−1
22 represents the inverse of the 

relationship matrix based on pedigree for the genotyped animals; and G−1 is the inverse of the genomic 
relationship matrix obtained according to the first method proposed by VanRaden39.

SNP effects were estimated by back-solving from the genomic estimated breeding values (GEBVs) of 
genotyped animals, following the procedure described by Wang et al.37 and implemented in the postGSf9040 of 
the BLUPf90 suite. All SNPs were considered to contribute equally to the total additive genetic variance, and no 
weighting scheme was applied. The SNP effects were derived as:

	 û = Z′ (
ZZ′)−1

â

where û is the vector of estimated additive genetic effects for the SNP markers; â is the vector of GEBVs for the 
genotyped animals; Z is the centered genotype matrix (each genotype coded as 0, 1, or 2, centered by subtracting 
2p, where p is the allele frequency of the reference allele). All computations were performed using postGSf90, 
which executes this back solving algorithm internally.

The p-value of the SNP effect was calculated based on the prediction error variance as40:

	
Pi = 2

(
1 − Φ

(∣∣∣∣
ai

sd (ai)

∣∣∣∣
))

where αi is the SNP effect estimate; sd is the standard deviation; and Φ is the standard normal cumulative 
distribution function. The p-values were generated by back-solving the SNP effects from the GEBVs.

After performing the GWAS, the genomic inflation factor (λGC) was calculated to assess potential biases 
in the statistics, such as those arising from population stratification. The λGC value was computed as the ratio 
between the median of the observed test statistic distribution and its expected median, with a 95% confidence 
interval subsequently derived41. Multiple testing correction was applied using the Bonferroni method (α = 
0.05)42, resulting in a genome-wide significance threshold of at P = 0.05 / 452,283 (P < 1.11 × 10⁻⁷), equivalent 
to − log₁₀(P) ≈ 6.96. To avoid type I and II errors, a chromosome-wide significance threshold was considered 
based on the number of independent chromosomal segments (Me)

43 as: Me = 2NeLk / log (NeL), where Me is 
a function of effective population size; L is the length of each chromosome in Morgans; and k is the number 
of chromosomes. Ne was set to 100 based on linkage disequilibrium patterns observed in the population25. 
Quantile-quantile (Q-Q) plots were created using the CMplot R package44.

Gene enrichment analyses
The annotation of candidate genes was performed using the GALLO package45 available in R (R Core Team). 
For that, a window of 100Kb up and downstream from the significant SNP marker was used considering the 
assembly Bos taurus ARS-UCD1.2 as the reference genome46. After annotation, the positional candidate genes 
were subjected to functional enrichment analysis using the “clusterProfiler” R package47. Gene Ontology (GO) 
terms including biological processes (BP), metabolic functions (MF), and cellular components (CC), as well as 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (p < 0.05) were used to explore the biological 
relevance of the associated genomic regions. Interactions between protein-coding genes were predicted using 
the STRING database with default settings48.
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Results
Significant markers
The significant SNPs associated with feed efficiency traits were evaluated across three EG levels: low (THI 66), 
medium (THI 74), and high (THI 81). For RFI (Fig. 1; Table 2), 51 genome-wide significant SNPs were identified 
across chromosomes BTA3, BTA4, BTA9, BTA11, BTA12, BTA13, BTA19, BTA20, BTA24, and BTA28 under 
the three EG levels, with 37 SNPs in the low EG, 40 in the medium EG, and 41 in the high EG (Table 2). BTA12 
stood out by presenting a substantial number of significant SNPs in all environments, particularly in the medium 

Fig. 1.  Manhattan and quantile-quantile (QQ) plots of genome-wide association study results for residual feed 
intake (RFI) in Nellore cattle. (a) Manhattan plot and (b) QQ plot for the Low environmental gradient (EG); 
(c) Manhattan plot and (d) QQ plot for the Medium EG; (e) Manhattan plot and (f) QQ plot for the High EG; 
Low (THI 66), Medium (THI 74), and High (THI 81).
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(n = 24) and high (n = 24) EGs, followed by the low EG (n = 22). BTA19 also showed an increased number of 
SNPs under more challenging environmental conditions: 5 under low EG, 11 under medium EG, and 12 under 
high EG.

For DMI (Fig. 2; Table 3), 136 significant SNPs were detected, distributed across chromosomes BTA2, BTA4, 
BTA5, BTA6, BTA10, BTA11, BTA14, BTA16, BTA19, BTA20, BTA21, BTA22, BTA24, and BTA29, with 40 SNPs 
identified under the low EG, 124 under the medium EG, and 85 under the high EG (Table 3). BTA6 exhibited the 
highest number of significant SNPs (n = 110) under the medium EG, followed by the high EG (n = 71) and the 
low EG (n = 15). Additionally, BTA10, BTA11, BTA14, and BTA29 also stood out due to changes in significant 
SNPs across different gradients.

Specific and shared distribution of significant SNPs across the EGs
The overlap of significant SNPs across the different EG for feed efficiency traits was analyzed using Venn 
diagrams (Fig.  3). For RFI (Fig.  3a, Supplementary Table S1), 27 SNPs were found to be shared among all 
three environments (low, medium, and high EG), indicating genomic regions associated with RFI regardless of 
environmental variation. However, a considerable number of significant SNPs were unique to specific EGs, such 
as 10 SNPs (BTA9: 2, BTA11: 1, BTA12: 1, BTA13: 2, BTA19: 1, and BTA28: 3) exclusive to the low EG, and 1 SNP 
(BTA19) exclusive to the high EG (Supplementary Table S2). Detailed information on the significant SNPs for 
each EG, including chromosome, position, allele frequency, proportion of additive genetic variance explained, 
and effects are provided in Additional File 1: Tables S3 (low EG), S4 (medium EG), and S5 (high EG).

For DMI (Fig. 3b, Supplementary Table S6), 28 SNPs were shared across all three EG levels, while 12 SNPs 
(BTA2: 1, BTA5: 1, BTA10: 1, BTA11: 2, BTA16: 2, BTA21: 2, BTA24: 2, and BTA29: 1) were exclusive to the 
lowest THI group (Supplementary Table S7). In the medium EG, 39 exclusive SNPs were identified, all located 
on BTA6 (Supplementary Table S7). No SNPs were exclusive to the high EG, but 57 markers identified under 
this condition were shared with the medium EG. Detailed information on the significant SNPs per EG, including 
chromosome, position, allele frequency, proportion of additive genetic variance explained, and effect are 
provided in Additional File 1: Supplementary Tables S8 (low EG), S9 (medium EG), and S10 (high EG).

SNP effects across environmental gradients
Figure 4 illustrates the variation in the effects of significant SNPs across low (THI 66), medium (THI 74), and 
high (THI 81) EG for RFI (panel a) and DMI (panel b) in Nellore cattle. For both traits, a similar pattern is 
observed, a more pronounced change in SNP effects between the low and medium EGs, followed by a slight 
fluctuation between the medium and high EGs.

Candidate genes identified under different thermal conditions for RFI and DMI
Candidate gene annotation was carried out for RFI and DMI under three distinct thermal conditions: low (THI 
66), medium (THI 74), and high (THI 81). The results are illustrated in the Venn diagram presented in Fig. 5, 
which summarizes the exclusive and shared genes across the different EG. Additional information, including 
chromosomal position, associated significant SNPs, gene boundaries (start and end positions), and functional 
classification (gene biotype), is available in Supplementary Tables S11 (EG Low), S12 (EG Medium), and S13 (EG 
High) for RFI, and S14 (EG Low), S15 (EG Medium), and S16 (EG High) for DMI.

Nineteen genes were found to be commonly associated with RFI across the three EG levels, suggesting robust 
genetic effects independent of environmental variation (Fig.  5a). Under low heat conditions (THI < 66), 16 
candidate genes were identified as specifically associated with this environment (Fig. 5a). No genes were uniquely 
associated with RFI in either medium (THI = 74) or high (THI = 81) heat stress environments (Fig. 5a). Nine 
genes were commonly identified under both moderate (THI = 74) and high (THI = 81) heat stress conditions. 
For DMI, a total of 58 candidate genes were annotated across the three thermal conditions (Fig. 5b), with 22 

Environment gradient

Significant SNP Low Medium High

BTA 3 1 1 1

BTA 4 – 1 1

BTA 9 2 – –

BTA 11 1 – –

BTA 12 22 24 24

BTA 13 2 – –

BTA 19 5 11 12

BTA 20 1 2 2

BTA 24 – 1 1

BTA 28 3 – –

Total number of significant SNPs 37 40 41

Table 2.  Distribution of significant single nucleotide polymorphisms (SNPs) by chromosome (BTA) across 
low, medium, and high environmental gradients for residual feed intake (RFI) in Nellore cattle. Low (THI 66), 
Medium (THI 74), and High (THI 81).
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genes exclusively associated with the EG Low and 5 with the EG Medium. 12 genes were both identified in the 
EG Medium and EG High, while 19 genes were commonly detected across all three EG. No genes were exclusive 
to the High EG.

Functional network analysis for RFI across EG
The analysis of interaction networks of candidate genes associated with RFI in Nellore cattle in the low EG 
(THI = 66) displayed a high density of functional connections and the formation of well-defined clusters (Fig. 6a). 

Fig. 2.  Manhattan and quantile-quantile (QQ) plots of genome-wide association study results for dry matter 
intake (DMI) in Nellore cattle. (a) Manhattan plot and (b) QQ plot for the Low environmental gradient (EG); 
(c) Manhattan plot and (d) QQ plot for the Medium EG; (e) Manhattan plot and (f) QQ plot for the High EG; 
Low (THI 66), Medium (THI 74), and High (THI 81).
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A particularly prominent cluster involved members of the keratin gene family (KRT31, KRT32, KRT33A, 
KRT36), which exhibited strong interconnectivity. Another relevant cluster includes BEN Domain Containing 
7 (BEND7) and PHYH, which appear centrally connected in the network and are functionally associated with 
the keratin group. Additional co-expression relationships were observed between SLC35F3 and KCNK1, and 
between IRAK1BP1 and PHIP.

The functional network observed under moderate heat stress (THI 74) was relatively sparse and decreased 
density of functional modules (Fig. 6b). A central interaction involves General Transcription Factor IIF Subunit 
2 (GTF2F2) and Potassium Channel Tetramerization Domain Containing 4 (KCTD4). The PIPOX gene was also 
located near the network center. Several new genes emerged in the network compared to low EG (THI 66), 
including CCR7, RARA, Dystrobrevin Alpha (DTNA), IGFBP4, Acid Sensing Ion Channel Subunit 2 (ASIC2), DNA 
Topoisomerase II Alpha (TOP2A) and Tensin 4 (TNS4), most of which aggregated into small, lowly connected 
groups (Fig. 6b), yet suggesting functional relevance.

Fig. 3.  Venn diagram of significant single nucleotide polymorphisms, highlighting those that are specific and 
shared among the environmental gradients (EG): Low (THI 66), Medium (THI 74), and High (THI 81) for 
residual feed intake (RFI) (a) and dry matter intake (DMI) (b) in Nellore cattle.

 

Environment gradient

Significant SNP Low Medium High

BTA 2 1 – –

BTA 4 1 1 1

BTA 5 1 – –

BTA 6 15 110 71

BTA 10 2 1 1

BTA 11 3 1 1

BTA 14 1 2 2

BTA 16 2 – –

BTA 19 1 1 1

BTA 20 1 1 1

BTA 21 2 – –

BTA 22 3 3 3

BTA 24 2 – –

BTA 29 5 4 4

Total number of significant SNPs 40 124 85

Table 3.  Distribution of significant single nucleotide polymorphisms by chromosome (BTA) across low, 
medium, and high environmental gradients for dry matter intake (DMI) in Nellore cattle. Low (THI 66), 
medium (THI 74), and high (THI 81).
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The functional network under high heat stress conditions (THI 81) revealed a pattern similar to that observed 
under moderate heat stress (Fig. 6c). Both networks exhibited sparse links, with a predominance of isolated 
genes or genes with few direct interactions, as well as the presence of a recurrent functional core.

Functional network analysis for DMI across EG
The analysis of interaction networks of candidate genes associated with DMI under low heat load conditions 
(THI = 66), exhibited high connectivity, dense formation of functional modules, and the presence of genes 
with central regulatory roles (Fig.  7a). Among the main interaction groups, the module composed of Non-
SMC Condensin I Complex Subunit G (NCAPG), Ligand Dependent Nuclear Receptor Corepressor Like (LCORL), 
Family With Sequence Similarity 184 Member B (FAM184B), DDB1 And CUL4 Associated Factor 16 (DCAF16), 
Family With Sequence Similarity 13 Member A (FAM13A), HECT And RLD Domain Containing E3 Ubiquitin 
Protein Ligase 3 (HERC3) and Nucleosome Assembly Protein 1 Like 5 (NAP1L5), stood out as the largest cluster 
in the network. Others relevant functional cluster is composed by the genes Fibroblast Growth Factor 19 
(FGF19), Cyclin D1 (CCND1) and MNAT1 Component of CDK Activating Kinase (MNAT1), as well, the genes 
SIX Homeobox 1 (SIX1) and 4 (SIX4), members of the SIX homeobox gene family, and the pair ASPG–KIF26A.

Under moderate heat stress (THI = 74), the network exhibits both conserved elements and notable changes 
in the composition and organization of the associated genes within the STRING network (Fig. 7b). The major 
central cluster identified under low EG, involving the genes NCAPG, LCORL, FAM184B, DCAF16, FAM13A, 
HERC3, and NAP1L5, remains present. However, the genes XKR4, Coiled-Coil Serine Rich Protein 1 (CCSER1), 
Trimethylguanosine Synthase 1 (TGS1) and Transmembrane Protein 68 (TMEM68) emerged as interacting 
partners within this cluster, forming a more complex network of gene interactions. Additional gene sets formed 
distinct clusters, including CCKAR, TBC1 Domain Family Member 19 (TBC1D19) and Stromal Interaction 
Molecule 2 (STIM2) as well, the SMIM20, SEL1L3, Sep (O-Phosphoserine) TRNA: Sec (Selenocysteine) TRNA 
Synthase (SEPSECS), and Leucine Rich Repeat LGI Family Member 2 (LGI2), which represents a connected 
cluster (Fig. 7b).

The comparison of functional networks associated with DMI under moderate (THI = 74) and high (THI = 81) 
heat stress revealed a highly similar structural organization between the two environments (Fig.  7c). Both 
networks exhibit strong connectivity among core genes, maintaining a functional nucleus that forms a robust 
and recurrent interactive axis.

Functional genomic enrichment for RFI across EG
The functional genomic enrichment of candidate genes associated with RFI under low heat load conditions (THI 
66) revealed overrepresentation of metabolic processes, particularly those related to amino acid and organic acid 
metabolism (Table 4). Significant GO terms included, proteinogenic amino acid metabolic process (GO:0170039), 
L-amino acid metabolic process (GO:0170033), organic acid catabolic process (GO:0016054), and carboxylic acid 
catabolic process (GO:0046395). These terms were mainly driven by SEPHS1, PIPOX, and PHYH.

At the pathway level, two KEGG pathways were significantly associated: the estrogen signaling pathway 
(bta04915) and peroxisome pathway (bta04146) (Table  4). The estrogen signaling pathway, involving keratin 
genes (KRT31, KRT32, KRT33A, KRT36, KRT37), while the peroxisome pathway, driven by PHYH and PIPOX. 
No significantly enriched biological processes and metabolic pathways were identified under medium and high 
heat stress conditions.

Fig. 4.  Effect of significant single nucleotide polymorphisms among the environmental gradients (EG): Low 
(THI 66), Medium (THI 74), and High (THI 81) for residual feed intake (RFI) (a) and dry matter intake (DMI) 
(b) in Nellore cattle.
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Functional genomic enrichment for DMI in the low EG
The functional analysis of candidate genes associated with DMI in Nellore cattle under low heat load conditions 
(THI 66) revealed the involvement of highly organized biological processes (Table 5). Among the significantly 
enriched terms, regulation of cyclin-dependent protein kinase activity (GO:0000079; GO:1904029) and positive 
regulation of cell cycle (GO:0045787), stood out, involving the genes CCND1 and MNAT1. The mitotic cell cycle 
process (GO:1903047) also showed enrichment, with the involvement of NCAPG.

In parallel, biosynthetic processes were activated, including tRNA metabolic process (GO:0006399), tRNA 
aminoacylation for protein translation (GO:0006418), and amino acid activation (GO:0043038), associated with 
IARS2, EPRS1, and THUMPD2 (Table 5). Protein phosphorylation regulation constituted another important 
functional axis, as evidenced by terms such as regulation of phosphorylation (GO:0042325), regulation of protein 
kinase activity (GO:0045859), regulation of protein phosphorylation (GO:0001932) and positive regulation of protein 
phosphorylation (GO:0001934). Genes such as FGF19, CCND1, and MNAT1 emerged as central components 
within this group of processes. Other significantly enriched processes included amino acid metabolic process 
(GO:0006520), regulation of transferase activity (GO:0051338) and monoatomic ion homeostasis (GO:0050801), 
where WNK1 stood out.

The KEGG pathway analysis also revealed the involvement of the Aminoacyl-tRNA biosynthesis (bta00970) 
and Oxytocin signaling pathway (bta04921), with genes IARS2, EPRS1, CACNA2D3, and CCND1.

Fig. 5.  Venn diagram of genes associated with significant single nucleotide polymorphisms, highlighting those 
that are specific and shared among the environmental gradients (EG): Low (THI 66), Medium (THI 74), and 
High (THI 81) for residual feed intake (RFI) (a) and dry matter intake (DMI) (b) in Nellore cattle.
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Functional genomic enrichment for DMI in the medium EG
The functional analysis of genes associated with DMI in Nellore cattle under moderate heat stress conditions 
(THI 74) revealed the activation of complex biological processes (Table 6). The processes regulation of cyclin-
dependent protein kinase activity (GO:0000079; GO:1904029), positive regulation of cell cycle (GO:0045787), and 
mitotic cell cycle process (GO:1903047) were strongly associated with the genes CCND1 and MNAT1. Notably, 
an enrichment of terms associated with glutamatergic synaptic transmission and trans-synaptic signaling 
was observed, including synaptic transmission, glutamatergic (GO:0035249), modulation of chemical synaptic 
transmission (GO:0050804), and regulation of trans-synaptic signaling (GO:0099177), mediated by the genes 
GRM7 and GRID2. In addition, activation of the pathways response to growth factor (GO:0070848) and cellular 
response to growth factor stimulus (GO:0071363), involving the genes BMPR1B and FGF19, remain relevant in 
the modulation of feed intake.

Several terms related to protein phosphorylation and modification were significant, including positive 
regulation of phosphorylation (GO:0042327), positive regulation of protein modification process (GO:0031401), 
and positive regulation of kinase activity (GO:0045859) mainly driven by FGF19, CCND1, and MNAT1. Finally, 
RNA modification (GO:0009451) and regulation of transferase activity (GO:0051338), were linked to genes such 
as TGS1, SEPSECS, and MNAT1. The enriched KEGG pathways include critical signaling cascades such as the 
Wnt signaling pathway (bta04310), Hippo signaling pathway (bta04390), Oxytocin signaling pathway (bta04921), 
and Calcium signaling pathway (bta04020), with key contributions from CCKAR, FGF19, and STIM2 (Table 6).

Functional genomic enrichment for DMI in the high EG
The functional analysis of genes associated with DMI in Nellore cattle under high heat stress (THI 81) 
revealed a strong overrepresentation of processes related to cell cycle regulation, protein phosphorylation, and 

Fig. 6.  Functional network of genes mapping significant single-nucleotide polymorphisms for residual feed 
intake (RFI) at the low (EG = THI 66; a), medium (EG = THI 74; b) and high (EG = THI 81; c) environmental 
gradient in Nellore cattle. Each node represents a gene, while the lines connecting the nodes indicate known 
functional interactions or associations between these genes. The different colors of the nodes and lines indicate 
distinct types of interactions or classifications of biological functions, based on the network analysis.
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GO/KEGG ID Description p-value Gene ID

GO:0170039 Proteinogenic amino acid metabolic process 0.003 SEPHS1, PIPOX

GO:0170033 L-amino acid metabolic process 0.004 SEPHS1, PIPOX

GO:0050793 Regulation of developmental process 0.006 PHIP, TMEM178A, SEZ6

GO:0016054 Organic acid catabolic process 0.007 PHYH, PIPOX

GO:0046395 Carboxylic acid catabolic process 0.007 PHYH, PIPOX

GO:1901605 Alpha-amino acid metabolic process 0.008 SEPHS1, PIPOX

GO:0019752 Carboxylic acid metabolic process 0.009 PHYH, SEPHS1, PIPOX

GO:0043436 Oxoacid metabolic process 0.009 PHYH, SEPHS1, PIPOX

GO:0006082 Organic acid metabolic process 0.010 PHYH, SEPHS1, PIPOX

GO:0044282 Small molecule catabolic process 0.011 PHYH, PIPOX

bta04915 Estrogen signaling pathway < 0.001 KRT37, KRT36, KRT33A, KRT31, KRT32

bta04146 Peroxisome 0.005 PHYH, PIPOX

Table 4.  Significant gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) 
pathways associated with residual feed intake (RFI) in the low environmental gradient (EG) in Nellore cattle.

 

Fig. 7.  Functional network of mapping significant single nucleotide polymorphisms for dry matter intake 
(DMI) at the low (EG = THI 66; a), medium (EG = THI 74; b) and high (EG = THI 81; c) environmental 
gradient in Nellore cattle. Each node represents a gene, while the lines connecting the nodes indicate known 
functional interactions or associations between these genes. The different colors of the nodes and lines indicate 
distinct types of interactions or classifications of biological functions, based on the network analysis.
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synaptic signaling, similar to the patterns observed under moderate stress, but with higher levels of statistical 
significance (Table 7). A distinct set of functional processes was identified that were absent under moderate 
stress, most notably the enrichment of terms related to synaptic signaling, such as chemical synaptic transmission 
(GO:0007268), anterograde trans-synaptic signaling (GO:0098916), trans-synaptic signaling (GO:0099537), and 
synaptic signaling (GO:0099536), mediated by the genes GRM7 and GRID2. In addition, the term regulation of cell 
cycle (GO:0051726) was uniquely detected under high THI. In contrast, the Wnt signaling pathway (bta04310), 
which was present under moderate THI conditions and associated with the genes CCND1 and DKK2, was no 
longer detected under high heat stress (Table 7).

Discussion
Genomic implications of significant markers detected
The distribution of significant SNPs across different THI environments highlights the dynamic genetic regulation 
of feed efficiency traits in response to thermal load. BTA12 was consistently associated with RFI across all 
environmental conditions (Table 2), suggesting it may contain core regulatory regions influencing residual 
feed intake irrespective of thermal conditions. In contrast, BTA19 showed increased association under more 
severe heat stress, indicating potential environment-specific gene activation. This latter pattern is in line with the 
findings of Brunes et al.49, who identified a genomic window on BTA19 (42.98 to 43.76 Mb) associated with RFI 
in Nellore cattle, located near the significant SNP detected in the present study (41.59 Mb), thereby reinforcing 
the relevance of this chromosomal region for the genetic regulation of feed efficiency in beef cattle. For DMI, 
the prominent role of BTA6, particularly under medium and high EGs (Table 3), suggests this chromosome may 
harbor key regulators involved in the physiological response to increased thermal load. The detection of multiple 
significant SNPs on BTA6, as well as additional associations on BTA10, BTA11, BTA14, and BTA29 under high 
THI levels, underscores the involvement of diverse genomic regions in feed intake regulation under challenging 
conditions. Notably, the significant SNP identified on BTA14 in this study (22.99 Mb) overlaps with the genomic 
windows reported by Brunes et al.49 (22.29 to 22.98 Mb) and Mota et al.50 (22.62 to 24.71 Mb), meaning that both 
previous studies converge on the same BTA14 segment highlighted here, thereby strengthening the evidence that 
this locus plays a central role in the genetic background of DMI in Nellore cattle. The identification of genomic 
regions with either stable or environment-specific effects provides valuable insights for designing targeted 

GO/KEGG ID Description p-value Gene ID

GO:0000079 Regulation of cyclin-dependent protein serine/threonine kinase activity 0.002 CCND1, MNAT1

GO:1904029 Regulation of cyclin-dependent protein kinase activity 0.002 CCND1, MNAT1

GO:0006399 tRNA metabolic process 0.002 THUMPD2, IARS2, EPRS1

GO:0006418 tRNA aminoacylation for protein translation 0.002 IARS2, EPRS1

GO:0043039 tRNA aminoacylation 0.002 IARS2, EPRS1

GO:0043038 Amino acid activation 0.002 IARS2, EPRS1

GO:0045787 Positive regulation of cell cycle 0.002 CCND1, MNAT1

GO:0071900 Regulation of protein serine/threonine kinase activity 0.005 CCND1, MNAT1

GO:0001932 Regulation of protein phosphorylation 0.006 FGF19, CCND1, MNAT1

GO:0031399 Regulation of protein modification process 0.010 FGF19, CCND1, MNAT1

GO:0042325 Regulation of phosphorylation 0.010 FGF19, CCND1, MNAT1

GO:0045859 Regulation of protein kinase activity 0.014 CCND1, MNAT1

GO:0019220 Regulation of phosphate metabolic process 0.014 FGF19, CCND1, MNAT1

GO:0051174 Regulation of phosphorus metabolic process 0.014 FGF19, CCND1, MNAT1

GO:0034660 ncRNA metabolic process 0.018 THUMPD2, IARS2, EPRS1

GO:0043549 Regulation of kinase activity 0.025 CCND1, MNAT1

GO:0001934 Positive regulation of protein phosphorylation 0.027 FGF19, MNAT1

GO:0051338 Regulation of transferase activity 0.029 CCND1, MNAT1

GO:0031401 Positive regulation of protein modification process 0.034 FGF19, MNAT1

GO:0006520 Amino acid metabolic process 0.035 IARS2, EPRS1

GO:0050801 Monoatomic ion homeostasis 0.035 WNK1, TMEM178A

GO:0042327 Positive regulation of phosphorylation 0.041 FGF19, MNAT1

GO:0010562 Positive regulation of phosphorus metabolic process 0.043 FGF19, MNAT1

GO:0045937 Positive regulation of phosphate metabolic process 0.043 FGF19, MNAT1

GO:1903047 Mitotic cell cycle process 0.049 CCND1, NCAPG

bta00970 Aminoacyl-tRNA biosynthesis 0.006 IARS2, EPRS1

bta04921 Oxytocin signaling pathway 0.031 CACNA2D3, CCND1

bta05202 Transcriptional misregulation in cancer 0.048 SIX1, SIX4

Table 5.  Significant gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) 
pathways associated with dry matter intake (DMI) in the low environmental gradient (EG) in Nellore cattle.
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selection strategies. Such strategies could be tailored to improve feed efficiency while simultaneously enhancing 
resilience to climate variability, a crucial goal for sustainable beef production in tropical regions.

Insights into specific and shared SNPs across thermal environments
The overlap and exclusivity patterns of SNPs across the THI gradients provide insight into how thermal stress 
modulates the genetic architecture of feed efficiency traits (Fig.  3). For RFI, the 27 SNPs shared across all 
three environments likely represent core genomic regions influencing this trait regardless of heat stress level. 
Conversely, the SNPs exclusive to the low EG and the single SNP detected only under high EG suggest that 
certain loci exert environment-specific effects, which aligns with the presence of G×E interactions. For DMI, the 
clustering of 39 exclusive SNPs on BTA6 under medium EG reinforces the importance of this chromosome in 
regulating feed intake when animals are exposed to moderate thermal stress. The fact that no SNPs were exclusive 
to the high EG, yet many were shared between medium and high EG, suggests that as heat stress intensifies, 
the genetic regulation becomes more reliant on loci already active at intermediate levels of stress, rather than 
recruiting entirely new genomic regions. These findings highlight a nuanced genetic response to environmental 
challenges, where some loci are consistently important across environments, while others are “activated” only 
under specific thermal conditions. This dynamic profile is critical for developing genomic selection programs 
that aim to improve feed efficiency and resilience to climate stress, as it allows breeders to differentiate between 
stable and environment-sensitive genomic targets.

Environmental modulation of SNP effects
The pattern of SNP effect variation across THI gradients (Fig. 4) suggests the presence of phenotypic plasticity, 
i.e., the ability of a genotype to alter its expression or effect in response to environmental changes26,51. The greater 
variation in SNP effects between the low and medium EGs may reflect a transitional environmental phase (onset 
of moderate heat stress) in which environmentally sensitive loci begin to modulate their activity. In contrast, the 

GO/KEGG ID Description p-value Gene ID

GO:0000079 Regulation of cyclin-dependent protein serine/threonine kinase activity 0.002 CCND1, MNAT1

GO:1904029 Regulation of cyclin-dependent protein kinase activity 0.002 CCND1, MNAT1

GO:0035249 Synaptic transmission, glutamatergic 0.002 GRM7, GRID2

GO:0045787 Positive regulation of cell cycle 0.002 CCND1, MNAT1

GO:0071900 Regulation of protein serine/threonine kinase activity 0.005 CCND1, MNAT1

GO:0001932 Regulation of protein phosphorylation 0.006 FGF19, CCND1, MNAT1

GO:0031399 Regulation of protein modification process 0.009 FGF19, CCND1, MNAT1

GO:0050804 Modulation of chemical synaptic transmission 0.009 GRM7, GRID2

GO:0099177 Regulation of trans-synaptic signaling 0.009 GRM7, GRID2

GO:0042325 Regulation of phosphorylation 0.009 FGF19, CCND1, MNAT1

GO:0045859 Regulation of protein kinase activity 0.012 CCND1, MNAT1

GO:0019220 Regulation of phosphate metabolic process 0.013 FGF19, CCND1, MNAT1

GO:0051174 Regulation of phosphorus metabolic process 0.013 FGF19, CCND1, MNAT1

GO:0009451 RNA modification 0.015 TGS1, SEPSECS

GO:0043549 Regulation of kinase activity 0.023 CCND1, MNAT1

GO:0070848 Response to growth factor 0.023 BMPR1B, FGF19

GO:0071363 Cellular response to growth factor stimulus 0.023 BMPR1B, FGF19

GO:0001934 Positive regulation of protein phosphorylation 0.025 FGF19, MNAT1

GO:0051338 Regulation of transferase activity 0.027 CCND1, MNAT1

GO:0007267 Cell-cell signaling 0.030 GRM7, GRID2, DKK2

GO:0031401 Positive regulation of protein modification process 0.032 FGF19, MNAT1

GO:0042327 Positive regulation of phosphorylation 0.038 FGF19, MNAT1

GO:0010562 Positive regulation of phosphorus metabolic process 0.040 FGF19, MNAT1

GO:0045937 Positive regulation of phosphate metabolic process 0.040 FGF19, MNAT1

GO:1903047 Mitotic cell cycle process 0.045 CCND1, NCAPG

bta04020 Calcium signaling pathway 0.007 CCKAR, FGF19, STIM2

bta04080 Neuroactive ligand-receptor interaction 0.022 CCKAR, GRM7, GRID2

bta04921 Oxytocin signaling pathway 0.024 CACNA2D3, CCND1

bta04390 Hippo signaling pathway 0.025 BMPR1B, CCND1

bta04310 Wnt signaling pathway 0.031 CCND1, DKK2

bta04081 Hormone signaling 0.049 BMPR1B, CCKAR

Table 6.  Significant gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) 
pathways associated with dry matter intake (DMI) in the medium environmental gradient (EG) in Nellore 
cattle.
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relative similarity in SNP effects between the medium and high EGs suggests the involvement of more stable loci 
that maintain their effects even under extreme environmental conditions. In other words, phenotypic plasticity 
appears to be more evident in transitional environments (THI ≈ 74) than under extreme heat stress conditions 
(THI ≥ 81).

The reduction in additive genetic variance under higher heat stress conditions19 may also be associated with 
the stabilization observed in genetic effects, suggesting that beyond a certain environmental threshold (THI ≈ 
74), additive genetic effects become more consistent, even as environmental conditions worsen up to THI 81. This 
pattern may indicate a lower sensitivity to environmental fluctuations under more severe heat stress, as genetic 
mechanisms related to adaptation may have already been activated. This finding has important implications for 
genomic selection in tropical production systems, as it indicates greater genetic variability for heat adaptation 
under intermediate stress conditions. In such environments, the stress level is sufficient to trigger detectable 
adaptive responses without masking the genetic variability among animals, making it particularly useful for 
identifying individuals that are genetically more resilient to heat stress.

Candidate genes identified under different thermal conditions for RFI
Among the nineteen genes found associated with RFI across the three EG levels suggest robust genetic effects 
independent of environmental variation (Fig. 5a). The Nuclear Factor IA (NFIA, BTA3), a transcription factor 
implicated in lipid metabolism and adipocyte differentiation, may influence basal energy expenditure52,53. 
Pipecolic Acid And Sarcosine Oxidase (PIPOX, BTA19) is involved in amino acid catabolism and nitrogen 
balance, reinforcing its relevance in maintaining cellular energetics54. Myosin XVIIIA (MYO18A, BTA19) is 
an unconventional myosin involved in maintaining myofiber integrity through cytoskeletal organization and 

GO/KEGG ID Description p-value Gene ID

GO:0000079 Regulation of cyclin-dependent protein serine/threonine kinase activity 0.001 CCND1, MNAT1

GO:1904029 Regulation of cyclin-dependent protein kinase activity 0.001 CCND1, MNAT1

GO:0035249 Synaptic transmission, glutamatergic 0.001 GRM7, GRID2

GO:0045787 Positive regulation of cell cycle 0.002 CCND1, MNAT1

GO:0071900 Regulation of protein serine/threonine kinase activity 0.003 CCND1, MNAT1

GO:0001932 Regulation of protein phosphorylation 0.004 FGF19, CCND1, MNAT1

GO:0031399 Regulation of protein modification process 0.006 FGF19, CCND1, MNAT1

GO:0042325 Regulation of phosphorylation 0.006 FGF19, CCND1, MNAT1

GO:0050804 Modulation of chemical synaptic transmission 0.007 GRM7, GRID2

GO:0099177 Regulation of trans-synaptic signaling 0.007 GRM7, GRID2

GO:0019220 Regulation of phosphate metabolic process 0.009 FGF19, CCND1, MNAT1

GO:0051174 Regulation of phosphorus metabolic process 0.009 FGF19, CCND1, MNAT1

GO:0045859 Regulation of protein kinase activity 0.009 CCND1, MNAT1

GO:0009451 RNA modification 0.011 TGS1, SEPSECS

GO:0043549 Regulation of kinase activity 0.017 CCND1, MNAT1

GO:0070848 Response to growth factor 0.017 BMPR1B, FGF19

GO:0071363 Cellular response to growth factor stimulus 0.017 BMPR1B, FGF19

GO:0001934 Positive regulation of protein phosphorylation 0.019 FGF19, MNAT1

GO:0051338 Regulation of transferase activity 0.021 CCND1, MNAT1

GO:0031401 Positive regulation of protein modification process 0.024 FGF19, MNAT1

GO:0042327 Positive regulation of phosphorylation 0.029 FGF19, MNAT1

GO:0010562 Positive regulation of phosphorus metabolic process 0.031 FGF19, MNAT1

GO:0045937 Positive regulation of phosphate metabolic process 0.031 FGF19, MNAT1

GO:1903047 Mitotic cell cycle process 0.035 CCND1, NCAPG

GO:0007268 Chemical synaptic transmission 0.041 GRM7, GRID2

GO:0098916 Anterograde trans-synaptic signaling 0.041 GRM7, GRID2

GO:0099537 Trans-synaptic signaling 0.041 GRM7, GRID2

GO:0099536 Synaptic signaling 0.044 GRM7, GRID2

GO:0051726 Regulation of cell cycle 0.047 CCND1, MNAT1

bta04020 Calcium signaling pathway 0.006 CCKAR, FGF19, STIM2

bta04080 Neuroactive ligand-receptor interaction 0.018 CCKAR, GRM7, GRID2

bta04921 Oxytocin signaling pathway 0.021 CACNA2D3, CCND1

bta04390 Hippo signaling pathway 0.022 BMPR1B, CCND1

bta04081 Hormone signaling 0.043 BMPR1B, CCKAR

Table 7.  Significant gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) 
pathways associated with dry matter intake (DMI) in the high environmental gradient (EG) in Nellore cattle.
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Golgi function55. Disruption of MYO18A affects muscle morphology and intracellular trafficking, indicating its 
potential to influence basal energy expenditure and overall metabolic efficiency.

Under low heat load conditions (THI < 66), the genes were associated with roles in key biological processes 
related to feed efficiency (Fig. 5a). The detection of these genes suggests that milder thermal conditions may 
offer a more stable physiological baseline, reducing the environmental effects of stress-induced responses. 
Among these, Pleckstrin Homology Domain Interacting Protein (PHIP, BTA9), a key component of the insulin 
signaling through its interaction with IRS-1, may influence energy homeostasis and nutrient partitioning56. 
Interleukin 1 Receptor Associated Kinase 1 Binding Protein 1 (IRAK1BP1, BTA9) modulates NF-κB signaling, and 
its association suggests a possible role of subclinical immune activation in energy expenditure57. Transmembrane 
Protein 178 A (TMEM178A, BTA11), related to calcium signaling58, and Selenophosphate Synthetase 1 (SEPHS1, 
BTA13), involved in antioxidant defense via selenoprotein biosynthesis59, may contribute to cellular homeostasis 
and oxidative balance, both important processes for metabolic efficiency under thermoneutral conditions.

In addition to the four genes described above, other candidates such as Phytanoyl-CoA 2-Hidroxilase (PHYH, 
BTA13), Potassium Two Pore Domain Channel Subfamily K Member 1 (KCNK1, BTA28), and Solute Carrier Family 
35 Member F3 (SLC35F3, BTA28) may also contribute to residual feed intake regulation under thermoneutral 
conditions (THI 66). PHYH is involved in lipid metabolism via peroxisomal oxidation60. Alterations in its function 
can affect lipid catabolism, thereby influencing basal energy expenditure and overall feed efficiency. KCNK1 
encodes a potassium channel potentially linked to energy homeostasis and cellular excitability61,62. Changes in 
its activity may indirectly impact tissue-level energy efficiency, particularly in metabolically active tissues such 
as skeletal muscle and liver. Finally, SLC35F3 participates in thiamine transport, essential for mitochondrial 
energy production. Genetic variation in this transporter may influence feed efficiency by modulating thiamine 
availability and, consequently, the efficiency of carbohydrate and energy metabolism63,64.

The absence of genes uniquely associated with RFI in either medium (THI = 74) or high (THI = 81) heat 
stress environments (Fig. 5a), likely reflects the activation of shared regulatory mechanisms across stress levels. 
The genes commonly identified under both moderate (THI = 74) and high (THI = 81) heat stress conditions, 
confirming the presence of regulatory mechanisms that are consistently activated in response to thermal 
challenges (Fig. 5a). The recurrence of these genes across environments may indicate the involvement of 
biological processes associated with adaptive response to heat stress, potentially contributing to the maintenance 
of metabolic stability under adverse conditions. Among these genes, Insulin Like Growth Factor Binding Protein 
4 (IGFBP4, BTA19) regulates IGF signaling and may influence growth and metabolic adaptation65,66. C-C Motif 
Chemokine Receptor 7 (CCR7, BTA19) is involved in immune cell trafficking67, and this may reflect the energetic 
cost of immune system activation during heat stress. Retinoic Acid Receptor Alpha (RARA, BTA19) a nuclear 
receptor associated with lipid metabolism and adipogenesis68, further supports the importance of metabolic 
regulation in feed efficiency under climatic stressful conditions.

Overall, the identification of both shared and environment-specific candidate genes associated with 
RFI highlights the complex interplay between genetic regulation and thermal stress. The presence of 
shared associations across all THI classes suggests a conserved genetic basis for feed efficiency, whereas the 
environment-specific signals particularly under low heat load indicate that milder conditions may enhance the 
detection of functionally relevant loci. These findings provide valuable insights into the genetic architecture of 
RFI under variable climatic scenarios and support the development of genomic selection strategies targeting 
both metabolic efficiency and environmental resilience. For a better understanding of the genetic mechanisms 
underlying RFI variation within each EG, the functions of most identified genes, as well as their interactions and 
potential functional implications, are presented in detail on the network patterns section.

Candidate genes identified under different thermal environments for DMI
The findings suggest a dynamic genomic response to thermal stress, with both specific and conserved biological 
mechanisms regulating feed intake under varying degrees of heat stress. Nineteen genes were identified as 
commonly associated with DMI across all three EG, indicating the presence of constant mechanisms involved 
in the regulation of intake, independent of heat stress intensity (Fig. 5b). The recurrence of these genes across 
diverse climatic conditions suggests a stable genomic influence on feed intake that may reflect core physiological 
mechanisms. Among these, NCAPG (BTA6) has been previously associated with growth traits and feed intake 
in cattle69,70. This gene is involved in cell cycle regulation and it has been associated with growth rate and body 
size in several cattle breeds71,72. NCAPG influences feed intake by modulating growth demands, where larger or 
faster-growing animals require more feed to meet their energy needs73. Thus, the association of NCAPG with 
DMI occurs indirectly, mediated by physiological processes related to growth and energy homeostasis. LCORL 
(BTA6) is a transcription factor associated with skeletal growth and body size in humans, horses, and cattle74,75. 
LCORL has been linked to growth traits and feed efficiency in cattle, often acting in concert with NCAPG76,77. 
Polymorphisms in the LCORL gene have been associated with variability in feed intake and gain, particularly in 
beef cattle (Angus, Hereford, Simmental, Limousin, Charolais, Gelbvieh and Red Angus)70. Its role in skeletal 
growth may be crucial for determining body size and the corresponding feed requirements, thereby influencing 
DMI. The Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta 3 (CACNA2D3, BTA22) may contribute 
to neuroregulatory control of feeding behavior, given the importance of calcium signaling in appetite regulation 
and neuronal excitability78,79. Furthermore, Glutamate Metabotropic Receptor 7 (GRM7, BTA22) may also 
participate in the neural regulation of feed intake through its role in synaptic signaling and behavioral responses 
to environmental stimuli80.

Under low thermal conditions (THI 66), 22 genes were uniquely associated with DMI (Fig. 5b). These genes 
likely reflect genetic mechanisms that are more detectable in thermoneutral conditions. Among these, WNK 
Lysine Deficient Protein Kinase 1 (WNK1, BTA5) and Ubiquitin Protein Ligase E3 Component N-recognin 3 
(UBR3, BTA2), are of particular interest. WNK1, a kinase involved in ion transport and osmoregulation81, could 
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contribute to water and electrolyte balance, a factor closely related to feed intake. UBR3, a component of the E3 
ubiquitin ligase complex, plays a role in protein turnover and cellular quality control82,83. These pathways may 
influence metabolic efficiency and systemic adaptation under more physiologically stable conditions.

In contrast, five genes were exclusively identified under moderate heat stress conditions (THI 74), including 
Small Integral Membrane Protein 20 (SMIM20, BTA6), SEL1L Family Member 3 (SEL1L3, BTA6), PDZ And 
LIM Domain 5 (PDLIM5, BTA6), Ro60-Associated Y3 (Y_RNA, BTA6), and Dickkopf WNT Signaling Pathway 
Inhibitor 2 (DKK2, BTA6). The limited number of unique associations observed in this EG may reflect a 
transitional physiological state, in which the onset of systemic stress responses begins to interfere with the 
genetic regulation of feed intake. However, despite their statistical association with DMI, the biological roles of 
these genes particularly in the context of heat stress adaptation and intake regulation in Bos taurus indicus cattle 
are not yet well characterized. Some of these genes lack direct functional links to thermal stress or metabolic 
processes in ruminants, underscoring the need for further functional annotation and gene expression studies to 
clarify their potential contributions under intermediate heat stress conditions.

Notably, no genes were exclusively associated with DMI under high heat stress conditions (Fig. 5b). This lack 
of specific associations may be attributed to the systemic physiological disruptions caused by high thermal stress, 
which can reduce the expression of genetic effects associated with DMI regulation. In such environments, the 
organism response is likely dominated by heat stress response pathways aimed at preserving basic cellular and 
metabolic stability, rather than by mechanisms adjusted to feed intake modulation84. Additionally, the increased 
phenotypic variability and reduced genetic variability under more extreme conditions may further limit the 
detection of environment-specific genetic signals19.

A subset of 12 genes was associated with DMI in medium (THI 74) and high (THI 81) EGs, suggesting 
the presence of biological mechanisms that are gradually involved in response to increasing thermal challenge. 
Among these, Cholecystokinin A Receptor (CCKAR, BTA6) is particularly noteworthy due to its established role 
in satiety signaling and feed intake regulation through the cholecystokinin (CCK) pathway85. The XK Related 4 
(XKR4, BTA14) gene encodes a protein involved in apoptosis and membrane remodeling86,87. XKR4 is expressed 
in a wide range of tissues, including the nervous system and muscles87. Given that DMI influences muscle 
growth and energy balance, and that XKR4 has been associated with feed intake and average daily gain88,89, its 
role in muscle-related processes may indicate functional relevance for energy metabolism under thermal stress 
conditions.

Overall, the identification of shared genes highlights the presence of genomic regions influencing DMI 
regardless of the heat stress level which the animals are being exposed to. These candidates may serve as valuable 
targets for future functional validation and for the development of breeding strategies aimed at improving feed 
efficiency across diverse environments. For a better understanding of the genetic mechanisms underlying DMI 
variation within each EG, the functions of most identified genes, as well as their interactions and potential 
functional implications, are presented in detail on the network patterns section.

RFI network patterns in the low EG
Before describing the environment-specific networks, it is important to note that our interpretation of the 
STRING graphs is qualitative and depends on the subset of genes that map to significant SNP windows at each 
environmental gradient. The underlying protein–protein interaction evidence in STRING is fixed and does not 
change with THI; what changes across EGs are the significant SNPs and, consequently, the genes included in 
each network. Thus, when only part of a functional module remains associated in a given environment, the 
genes that are no longer supported by significant SNPs are simply not displayed, and the interactions that relied 
on them disappear from the graph. Apparent gains, losses, or fragmentation of modules across environments 
should therefore be interpreted as reflecting differences in the set of associated genes captured at each EG, rather 
than true changes in protein–protein connectivity.

Under low heat load conditions, the RFI network exhibited a clearly structured architecture dominated by 
a keratin cluster (Fig. 6a). These type I keratin isoforms are essential for epithelial integrity90, and mutations in 
KRT32 disrupt immune homeostasis91. Although classically associated with skin, their coordinated activity may 
also influence epithelial renewal in metabolically relevant tissues, including the gastrointestinal epithelium. The 
interaction between BEND7, an epigenetic regulator associated with insulin metabolism92, and PHYH, involved 
in peroxisomal α-oxidation93, suggests an epigenetic-metabolic link within this cluster. Additional connections 
among SLC35F3 (mitochondrial thiamine transport63,64, KCNK1 (membrane excitability62,94, IRAK1BP1 
(Toll-like receptor-mediated inflammation57,95, and PHIP (insulin signaling and energy balance56,96 indicate 
coordinated regulation of mitochondrial metabolism, immune reactivity, and endocrine function.

In summary, the gene network associated with RFI under low thermal conditions (THI = 66) suggests that 
feed efficiency in this context is supported by the coordinated action of multiple biological processes. These 
include pathways related to epithelial integrity and tissue maintenance, metabolic activity, and epigenetic 
regulation. In addition, genes involved in mitochondrial function, immune signaling, and hormonal pathways 
reinforce the idea that more efficient animals are better able to balance energy production, inflammatory 
responses, and growth. Altogether, the observed network highlights the complex and integrated nature of the 
biological mechanisms contributing to feed efficiency, particularly under favorable environmental conditions.

RFI network patterns in the medium EG
The functional network associated with RFI under moderate heat stress (THI = 74) became markedly less 
integrated (Fig. 6b). Central genes such as GTF2F2, involved in transcription initiation and stress-responsive 
inflammatory, hormonal, neurobehavioral, and epigenetic pathways97–99, and KCTD4, associated with ionic 
homeostasis, mitochondrial dysfunction, inflammatory signaling, and hypothalamic–pituitary axis activity100–102, 
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indicate that transcriptional and intracellular signaling mechanisms gain prominence under these conditions. 
PIPOX, involved in lysine degradation and redox homeostasis54, remained a consistent metabolic node.

Several new genes emerged, though with limited connectivity. These included CCR7 (T-cell migration 
and inflammation resolution103–105, RARA (retinoic-acid signaling and metabolic regulation68,106–108, DTNA 
(sarcolemmal structural integrity109–111, IGFBP4 (IGF-mediated growth and adipogenesis65,112–114, and ASIC2, 
which links pH sensing to metabolic and autonomic control115–117. Their dispersed configuration suggests that, 
under moderate heat stress, feed efficiency depends on multiple partially coordinated biological systems rather 
than on the cohesive metabolic–epithelial core observed at THI 66. This pattern indicates a more heterogeneous 
and potentially less efficient adaptive response, requiring greater physiological plasticity to sustain energy 
balance.

The moderate heat stress network suggests a possible decrease in functional integration among active genes 
in this context. This configuration may reflect more complex adaptive challenges imposed by intermediate 
thermal stress. The identified interactions indicate that feed efficiency under these conditions may rely on the 
coordinated activity of multiple biological systems, including transcriptional regulation, energy metabolism, 
inflammatory signaling, and neuroendocrine control. The emergence of new genes with limited connectivity 
but potential functional relevance points to a more heterogeneous and possibly less efficient adaptive response. 
These findings suggest that, under moderate thermal stress, maintaining homeostasis and bioenergetic efficiency 
may require greater physiological plasticity and the activation of compensatory pathways.

RFI network patterns in the high EG
The functional network under high heat stress conditions (THI 81, Fig. 6c) revealed to be like that observed 
under moderate heat stress (THI 74). The observed structural convergence suggests the existence of conserved 
genetic mechanisms regulating feed efficiency, regardless of the severity of thermal challenge. The persistence 
of pathways associated with energy metabolism, transcriptional regulation, and cellular signaling supports the 
hypothesis that thermal stress adaptation occurs primarily through the modulation of pre-established essential 
functional routes, rather than through the activation of novel gene modules. This organization underscores 
the polygenic complexity and multifactorial nature of the mechanisms regulating feed efficiency in thermally 
challenging environments, potentially reflecting a state of physiological overload, with the activation of multiple 
pathways in response to environmentally induced cellular damage or dysfunction, which remain consistently 
active even under increased heat stress.

DMI network patterns in the low EG
Under low heat load conditions (THI = 66, Fig. 7a), the main interaction module included NCAPG and LCORL, 
well-established GWAS candidates for body weight and DMI69,70,118, together with FAM184B and FAM13A, 
genes involved in growth regulation, lipid metabolism, and energy homeostasis across species119–124. HERC3, 
an E3 ubiquitin ligase implicated in intracellular protein regulation and homeostasis125,126, was also part of this 
core. Collectively, these genes suggest coordinated control of somatic growth, metabolic efficiency, and protein 
turnover under favorable environmental conditions.

A second module included FGF19, CCND1, and MNAT1. FGF19 plays central roles in hepatic metabolism, 
bile acid homeostasis, lipid regulation, and insulin-like signaling127–129. CCND1 regulates the G1/S transition 
and cell proliferation130–132, while MNAT1 is part of the CDK-activating kinase complex and is responsive to 
oxidative and metabolic stress133–136. This axis indicates tight coupling between nutrient availability, proliferative 
activity, and metabolic state.

Additional genes included SIX Homeobox 1 (SIX1) and 4 (SIX4), which regulate muscle differentiation and 
fiber-type programming137–139, potentially influencing basal metabolic demand. The Asparaginase (ASPG) 
and Kinesin Family Member 26 A (KIF26A) pair links nitrogen metabolism140,141 to gastrointestinal signaling 
and development142, suggesting integration between amino acid utilization and digestive function. Overall, 
the network in favorable environmental conditions (THI 66) highlights strong functional connectivity among 
genes involved in growth, lipid metabolism, protein turnover, and muscular development, supporting a highly 
coordinated regulation of DMI in favorable thermal environments.

DMI network patterns in the medium EG
Under moderate heat stress (THI = 74, Fig. 7b), the central cluster composed of NCAPG, LCORL, FAM184B, 
DCAF16, FAM13A, HERC3, and NAP1L5 remained active, indicating a conserved regulatory core for growth 
and metabolism. However, new interacting partners emerged, including XKR4, CCSER1, TGS1, and TMEM68, 
suggesting remodeling of metabolic and stress-response pathways. XKR4 has been associated with feed intake, 
growth, and endocrine modulation under environmental stress89,143,144. TGS1 participates in RNA maturation, 
gluconeogenesis, and inflammatory signaling145–147, whereas TMEM68 contributes to triacylglycerol synthesis 
and lipid homeostasis148–150.

Genes linked to neuroendocrine and metabolic regulation also appeared. CCKAR, a key receptor in satiety, 
gastrointestinal motility, and glucose regulation, directly affects feed intake151–156. STIM2 functions as a 
calcium sensor and stabilizer of intracellular Ca²⁺ signaling157–159, connecting stress perception to metabolic 
adjustments. SMIM20 encodes the precursor of the orexigenic neuropeptide Phoenixin, which stimulates feed 
intake and regulates appetite-related pathways160–162. SEL1L3 and SEPSECS contribute to metabolic adaptation 
and oxidative stress protection through roles in energy balance and selenoprotein biosynthesis163–168.

In summary, the functional network for DMI under moderate heat stress (THI 74) reveals a combination 
of conserved regulatory cores and newly emerging components, indicating both stability and adaptation in 
response to thermal challenges. While central clusters involved in growth and metabolism remain active, the 
incorporation of new genes related to satiety signaling, energy metabolism, and cellular homeostasis suggests 
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a dynamic remodeling of regulatory pathways. These interactions reflect the activation of neuroendocrine and 
metabolic mechanisms aimed at maintaining feed intake and physiological balance under stress. The presence of 
genes involved in appetite regulation, lipid metabolism, oxidative stress response, and calcium signaling points 
to a multifaceted adaptive strategy. Overall, the network suggests that under moderate thermal stress, feed intake 
efficiency is supported by the integration of central and peripheral signals, helping to sustain metabolic function 
and promote resilience in challenging environmental conditions.

DMI network patterns in the high EG
The convergence between moderate (THI = 74) and high (THI = 81, Fig. 7c) heat stress suggests the existence 
of shared genetic mechanisms that consistently regulate feed intake regardless of the severity of thermal stress. 
The persistence of connections among genes involved in transcriptional regulation, hormonal signaling, cell 
proliferation, and energy metabolism supports the hypothesis that the adaptive response to extreme heat stress 
occurs through functional adjustments in already established pathways. Moreover, the stability of the network 
indicates that the genetic control of DMI in Nellore cattle is highly resilient, potentially reflecting a conserved 
regulatory system aimed at maintaining feed intake even under adverse environmental conditions. Collectively, 
these results support the hypothesis that functional coordination among DMI associated genes represents a key 
component of metabolic adaptation to heat stress.

RFI enriched pathways across EG
Under low thermal conditions (THI 66), the enrichment profile for RFI indicates that feed efficiency is strongly 
linked to amino acid and organic acid metabolism (Table 4). The overrepresentation of pathways involved in 
proteinogenic and L-amino acid turnover, mainly driven by SEPHS1, PIPOX and PHYH, suggests that efficient 
nitrogen recycling and oxidative catabolism of small molecules are key mechanisms through which animals 
minimize residual feed intake under thermally mild conditions. This pattern is consistent with a metabolic 
configuration that favors precise matching between nutrient supply and energy demands.

The KEGG enrichment for the estrogen signaling pathway, involving several keratin genes, points to potential 
interactions between hormonal regulation, tissue turnover and metabolic efficiency. In parallel, the peroxisome 
pathway, driven by PHYH and PIPOX, highlights the importance of peroxisomal oxidative metabolism and lipid 
catabolism in shaping variation in RFI. Together, these findings suggest that, when heat load is low or absent, 
animals with superior feed efficiency tend to rely on coordinated control of amino acid degradation, organic acid 
catabolism and hormone-mediated regulation of energy metabolism.

Although the number of significant SNPs was similar across the different environmental gradients (37 in 
the Low EG, 40 in the Medium EG, and 41 in the High EG), significantly enriched biological processes and 
metabolic pathways were identified only under the low heat load conditions. This result indicates that the number 
of associated SNPs was not a limiting factor for the detection of functional enrichment. A possible explanation 
is that, under moderate and severe heat stress, the genetic background of feed efficiency becomes more diffuse, 
possibly due to a greater functional dispersion of the associated genes, as observed in the functional gene 
networks (THI 74 and THI 81). In these environments, the identified SNPs may be linked to biologically diverse 
functions, lacking convergence into specific pathways169. Furthermore, more intense heat stress may induce the 
activation of nonspecific or redundant genetic responses, involving multiple compensatory mechanisms that 
reduce the functional cohesion among the mapped genes169. It is also important to consider the reduction in 
trait heritability and the increase in residual variance19, factors that compromise the statistical consistency of 
the detected loci. Additionally, the increased environmental variability under moderate to severe heat stress may 
further reduce the statistical power required to identify genomic regions associated with the genetic variation 
in RFI.

DMI enriched pathways in the low EG
Under low heat load (THI 66, Table 5), the functional profile associated with DMI revealed a predominantly 
anabolic molecular signature, suggesting that cattle express feed intake variation largely through pathways 
that support cellular growth and metabolic stability. The enrichment of cell-cycle regulators such as CCND1, 
MNAT1, and NCAPG indicates active tissue turnover in metabolically relevant organs, consistent with greater 
digestive and absorptive capacity when thermal constraints are minimal. The strong signal for tRNA metabolism 
and aminoacylation, driven by IARS2, EPRS1, and THUMPD2, points to increased translational demand and 
enhanced protein synthesis machinery. This pattern is compatible with animals sustaining higher rates of 
structural and enzymatic protein production, which may contribute to differences in feed utilization efficiency 
under favorable conditions.

Finally, enrichment for phosphorylation-dependent signaling, involving FGF19, CCND1, and MNAT1, 
highlights the role of intracellular signaling networks in coordinating nutrient sensing, hormonal responses, 
and metabolic homeostasis. Together, these pathways depict a coherent anabolic framework through which 
genetic variation in DMI is most effectively expressed when environmental stress is minimal. Such mechanisms 
may help explain why superior feed efficiency phenotypes tend to manifest more strongly under thermally mild 
conditions.

DMI enriched pathways in the medium EG
Under moderate heat stress (THI 74), the functional profile associated with DMI revealed a combination of 
anabolic signaling and neuroendocrine regulation, indicating that feed intake at this intermediate environmental 
level depends on both cellular growth processes and central modulation of appetite (Table 6). As observed under 
low heat load, enrichment for cell-cycle regulators such as CCND1 and MNAT1 suggests that tissue renewal and 
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basal anabolic activity remain important components of DMI variation even when animals experience moderate 
thermal challenge.

A key difference at this EG was the strong signal for glutamatergic synaptic transmission, driven by GRM7 and 
GRID2, which points to a more prominent involvement of central neuroendocrine pathways in the control of feed 
intake. This enrichment is consistent with increased reliance on neural and metabolic integration when animals 
begin to experience thermal strain. In parallel, pathways associated with growth-factor signaling, particularly 
those involving FGF19 and BMPR1B, indicate continued coordination between hormonal regulation, energy 
balance and digestive function.

The additional enrichment of phosphorylation-dependent signaling and calcium-mediated pathways (e.g., 
involving CCKAR, FGF19 and STIM2) further supports the idea that feed intake under moderate heat stress is 
governed by a tightly regulated intracellular communication network. Together, these results suggest that, at THI 
74, DMI reflects a shift from a predominantly anabolic configuration (as observed under THI 66) toward a more 
complex, multifactorial regulatory system, integrating cellular signaling, neuroendocrine communication and 
adaptive responses to environmental stress.

DMI enriched pathways in the high EG
Under high heat stress (THI 81), the enrichment profile for DMI showed the recurrence and amplification of similar 
biological themes with moderate stress levels, suggesting a progressive recruitment of adaptive mechanisms in 
response to increasing environmental challenges (Table 7). Although cell-cycle and phosphorylation processes 
remained present, as previously observed under low and medium heat load, the most distinctive feature at 
this EG was the intensified enrichment for synaptic signaling, particularly glutamatergic and trans-synaptic 
communication mediated by GRM7 and GRID2. This pattern indicates that, under severe thermal stress, feed 
intake becomes increasingly governed by central neural circuits involved in appetite regulation, behavioral 
modulation, and the integration of metabolic stress cues.

Another notable feature was the unique enrichment of pathways associated with cell-cycle checkpoint 
regulation, suggesting heightened control of mitotic progression, potentially reflecting cellular responses to 
oxidative stress and heat-induced damage. At the same time, the disappearance of pathways linked to Wnt 
signaling, which were detected under moderate heat stress, may indicate suppression of growth and cell renewal 
programs in favor of short-term adaptive responses that prioritize survival and systemic homeostasis. This shift, 
from anabolic maintenance under mild conditions to neuroendocrine compensation under severe heat load, 
highlights a progressive reorganization of physiological mechanisms as environmental stress intensifies.

Collectively, the results suggest that DMI regulation in Nellore cattle at high THI relies on a multilayered 
adaptive network, where neural signaling, hormonal coordination, and stress-response pathways become 
increasingly dominant as growth-related signaling is down-regulated. These findings underscore the relevance 
of GxE interactions for feed efficiency traits and reinforce the need to consider thermal variability when 
interpreting genomic mechanisms and designing breeding strategies for tropical production systems.

Challenges and future directions
Although stratifying thermal conditions into discrete THI levels (66, 74, and 81) allowed for a structured 
assessment of G×E interactions, this approach presents inherent limitations. Heat stress is a dynamic and 
temporally variable phenomenon, often characterized by marked diurnal fluctuations in ambient temperature, 
relative humidity, and solar radiation. In the present study, we used average THI values and phenotypic means 
per feeding trial to classify environmental conditions, which, while facilitating G×E modeling, may mask 
short-term thermal effects on feed efficiency traits. Studies have shown that THI at specific hours of the day, 
particularly during peak heat, can significantly alter metabolic responses and feeding behavior170, with cattle 
typically reducing intake during hotter periods and compensating later in cooler hours. This temporal plasticity, 
however, is not captured when using averaged environmental and phenotypic data.

As highlighted by Silva Neto et al.19, future studies should prioritize the collection of longitudinal data to 
identify critical time windows during which heat stress exerts the greatest impact on DMI and RFI, to characterize 
individual adaptation patterns and feeding strategies in response to thermal stress, and to enable the modeling 
of phenotypic variation based on real-time environmental fluctuations rather than static period-based averages. 
The integration of continuous phenotypic and environmental data into G×E GWAS frameworks holds promise 
for improving the detection of environment-sensitive genomic regions, refining the estimation of SNP effects 
under variable thermal conditions, and ultimately enhancing the accuracy of genomic evaluations for selecting 
animals with greater resilience and metabolic stability in tropical production systems facing intensifying climate 
challenges.

Conclusions
The genetic control of feed intake and feed efficiency in Nellore cattle is not only complex and polygenic but 
also sensitive to thermal stress conditions. The variation in genomic associations and gene network organization 
across different levels of heat stress reinforces the multifactorial nature of adaptation to tropical environments. 
In summary, the genetic networks appeared more integrated under low THI conditions, reflecting a more stable 
architecture when animals were not exposed to heat stress, whereas at higher THI levels additional loci became 
associated with the traits, suggesting that heat stress may reshape the genetic architecture by activating stress-
related regions and reducing overall network integration. The identification of both environment-specific and 
recurrent candidate genes, together with the distinct functional patterns observed between environments, 
provides useful insights for refining genetic improvement strategies aimed at sustaining animal performance 
under increasing thermal stress. .
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Data availability
The data analyzed in this study were obtained from the National Association of Breeders and Researchers 
(ANCP). The phenotypic and genotypic information was provided to the authors for academic research pur-
poses only. The following restrictions apply: the dataset is not publicly available and its use requires formal 
authorization. Requests to access these datasets should be directed to Dr. João Carlos G. Giffoni Filho, President 
of ANCP (email: presidencia@ancp.org.br).
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