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This study proposes a novel Multi Curvelet Transformer Network (MCTN) for fine-grained human 
behavior recognition in dynamic video scenarios. A key challenge in this field lies in accurately 
identifying human actions under adverse conditions such as motion blur, occlusion, and varying 
illumination. To address this, we introduce a motion blur restoration module leveraging the curvelet 
transform to enhance motion image clarity, thereby improving downstream behavior detection. 
Furthermore, we enhance the Transformer architecture by embedding curvelet-based multi-scale 
attention mechanisms, which significantly improve the model’s ability to extract spatial-temporal 
features at different resolutions. The proposed network also adopts a multi-curvelet transform 
structure to deepen semantic representation. Experimental results on benchmark datasets, including 
an action recognition dataset and the MSCOCO dataset, demonstrate that MCTN achieves superior 
performance, reaching a mean average precision (mAP) of 0.822. These results underscore the 
potential of MCTN in real-time intelligent video analysis and human-computer interaction applications.
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Accurate recognition of human behavior states in dynamic environments is essential for a wide range of intelligent 
video applications, including sports performance analysis, human–computer interaction, and surveillance. With 
the rapid development of image processing and computer vision technologies, it has become feasible to analyze 
and interpret human postures and actions from video data with increasing precision1–5. Such capabilities not 
only facilitate performance monitoring but also enable targeted guidance in both professional training and 
automated systems.

However, human behavior recognition in high-speed and complex environments remains a significant 
challenge6–8. Fast-paced actions such as rapid gestures, sudden turns, and subtle limb movements often occur 
within fractions of a second, making them difficult to capture and classify accurately. Moreover, the variability in 
individual motion patterns, including unconventional postures and spontaneous reactions, cannot be effectively 
handled by rigid rule-based methods. External environmental factors—such as dynamic lighting conditions, 
motion blur, occlusions, and camera noise—further degrade the reliability of visual features9–11. Additionally, in 
scenarios where multiple subjects or objects (e.g., players and sports equipment) interact simultaneously, real-
time tracking and behavior recognition become even more complicated due to frequent occlusion and spatial-
temporal interference.

Another critical limitation lies in the availability and quality of annotated datasets. For niche activities or 
fine-grained motion analysis, labeled data often require expert involvement, leading to high annotation costs 
and limited sample sizes12,13. These constraints highlight the urgent need for robust models capable of handling 
complex visual scenes with limited supervision, adaptable to various dynamic human activities.

Around these difficulties, player behavior detection14–18 has been proposed one after another. Nicolai et al.19 
proposed the DeepSORT algorithm, which is a strategy for object tracking by the object detection. It uses the 
Hungarian algorithm to associate the tracking box and the detection box, fuses the appearance information 
and the Mahalanobis distance to obtain the best matching value, and then predicts the position of the tracking 
box at the next moment according to the Kalman filter. Finally, it decides whether to update the detection box 
according to the result and the strategy. Wu et al.20 used a residual convolutional neural network to estimate 
the continuous 2D upper body pose of a table tennis player and then used a recurrent long short-term memory 
network to learn the serving motion of the player and predict the landing point of the table tennis player. 
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Huang et al.21 used OpenPose as a mankindkey point detection to recognize posture, and corrected the exercise 
training elements through the index scores to reduce the sports injuries of athletes. Aiming at the blurring 
phenomenon of acquired images caused by high-speed motion, the MixSort tracker proposed by Cui et al.22–24 is 
based on ByteTrack, OC-SORT, and MixFormer for end-to-end connection. However, despite the performance 
improvement, the algorithm still faces the challenges of real-time and computational resource consumption, 
especially when dealing with complex scenes and a large number of targets. Han et al.25 suggested a combined 
asymmetric net and triple loss function of the tracking, which can prove the effectiveness of the complex moving 
object in the guarantee and the number of cases.

These methods have achieved certain results in the field of athlete behavior state detection research, and they 
have high accuracy for the state recognition of a single frame. However, complex environments and large motion 
actions need to solve image problems such as motion blur. To solve these problems, we propose a Multi Curvelet 
Transformer Network for Athlete Behavior Detection. The main contributions of this paper are as follows:

	(1)	 We propose a curvelet transformer-based motion blur restoration method, which exploits the relation be-
tween consecutive video frames to compensate for the information lost due to motion blur.

	(2)	 By incorporating curvelet transform into the self-attention mechanism, we deepen the understanding of the 
relationship between video content and improve the accuracy of action detection. At the same time, we also 
innovatively design a multi-curvelet transform structure, which can capture image information at different 
scales and deeply mine the deep semantic features of images.

Related works
Recent advancements in athlete behavior state detection have seen significant contributions, especially in the field 
of human pose detection. In the domain of 2D state detection, Wang et al.26 proposed an hourglass structure that 
adaptively extracts features at multiple scales to better accommodate diverse human poses. While this approach 
is promising, it struggles with high computational complexity during the convolution process, despite efforts to 
mitigate this through downsampling and upsampling operations. Chen et al.27 utilized a multi-scale pyramid 
method, dividing the image into various scales and processing them separately. Although this method improves 
accuracy by handling different scales individually, it suffers from the limitations of static feature extraction and 
does not account for dynamic changes in the athlete’s movement. Sun et al.28 introduced HRNet, a model that 
retains high-resolution feature information across multiple resolutions to improve the accuracy and speed of 
attitude detection. However, while HRNet excels at capturing detailed feature maps, it may face challenges in 
real-time processing, especially in highly dynamic environments such as sports. Xu et al.29 proposed a multi-
person pose detection system that first detects the object in the input image, isolates the human body, and then 
applies a separate network for keypoint detection. While this method is effective in handling multiple subjects, it 
requires robust handling of occlusion and interaction between players, which may not be adequately addressed 
in some cases.

In the field of 3D state detection, Ji et al.30 demonstrated the feasibility of using a deep neural network (CNN) 
to directly predict 3D human pose with acceptable accuracy. However, despite the network’s ability to predict 
3D coordinates, the method struggles to generalize across complex and varying postures, particularly in the 
context of fast-paced athletic movements. Heravi et al.31 employed a combined model of CNNs and RNNs to 
learn both the spatial structure of human poses and the relative positions of joints. While these hybrid methods 
offer an improvement in capturing temporal information32–34, it can still be computationally intensive, making 
it less suitable for real-time applications in sports. Jiang et al.35 introduced a domain-based 3D human pose 
distribution model that predicts more diverse human poses with greater complexity. However, despite its 
capacity to predict a variety of poses, this method can suffer from inaccuracies in predicting poses with extreme 
angles or fast movements, which are typical in sports environments.

While recent techniques have achieved notable success in athlete behavior detection36,37, they still exhibit 
critical limitations when deployed in fast-paced scenarios such as niche sports. In particular, applications to 
sports like pickleball are challenged by frequent motion blur, rapid temporal transitions, and multi-object 
occlusion, which significantly degrade model performance. Moreover, the scarcity of labeled training data in 
such domains—where annotations often rely on domain experts—further restricts the effectiveness of data-
driven approaches and hinders generalization.

Methods
Aiming at the serious motion blur problem in motion images, we propose a multi curvelet Transformer network 
for athlete behavior detection method. To deal with the challenge of image blur during sports, we specially 
design the motion blur recovery (MBR) module, and refine the internal structure of the Transformer. This 
innovative design enables our model to effectively detect the behavior of blurred samples. An overview of the 
entire network is present in Fig. 1.

Fig. 1.  The framework of MCTN for athlete behavior detection.
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Motion blur restoration module based on curvelet transform
For any image F of a player, we first decompose it into a series of video frames, and represent these video frames 
by {fi} to form a video sequence. For the blurred frames, a homography model based on warp bundling is used 
to register multiple adjacent video frames to the blurred frame. To improve the registration, we employ the block 
method in the process of calculating the registration images of blurred video frames and their adjacent video 
frames. Specifically, we divide each video frame into several uniform blocks, and let the number of blocks in each 
video frame be Q, Ii,q is a block in the video frame fi, where q ranges from [1, Q]. To obtain the homography Gi, n,q, 
we use a warping-based motion model, which is described as Eq. (1):

	 Ĉi,n,q = Gi,n,q • Ci,n,q � (1)

 where Ĉi,n,q  and Ci, n,q represent the position coordinates from image block Ii, n,q to block Ii,q before and after 
warping respectively, and the value range of n is [0, N], where N denotes the account of adjacent video frames 
waiting for registration. The formula for calculating the registered image is Eq. (2):

	 Ii,n,q→ i,q = Gi,n,q • Ii,q � (2)

 where Gi, n,q is further defined as the trainable homography, which represents the registration process from 
image block Ii, n,q to block Ii,q, denoted as Ii, n,q→i, q. In particular, when n = 0, Ii, n,q→i, q​ represents the image block I 
itself. The adjacent video frame fi, n,q→i, q after registration is composed of all the registered image blocks Ii, n,q→i, q, 
where the value of q is in the range [1, Q].

Equations (1) and (2) describe how each block of an adjacent video frame is geometrically warped to align 
with the corresponding block in the blurred reference frame. Conceptually, this can be understood as “shifting 
and stretching” small image patches so that overlapping structures (e.g., edges of limbs or equipment) match 
across frames. This alignment reduces inconsistencies caused by rapid motion. Once registered, the frames 
are processed in the frequency domain using the curvelet transform. Unlike the Fourier transform, which 
decomposes signals into sinusoidal waves, the curvelet transform provides multi-scale, multi-orientation 
representations, making it particularly adept at capturing directional features such as edges and contours.

Then, we process the registered video frames in the frequency domain. Given the continuous and large spatial 
span characteristics of motion actions, we introduce curvelet transform into MBR. The curvelet transform 
shows superior performance over the traditional transform in capturing edges and other exotic features. The 
curvelet transform contains three key parameters: scale (s), orientation (o) and position (p), which are used 
to accurately describe the characteristics of the transform. The basis function of the curvelet transform can be 
expressed as δs,o,p. The construction of the curvelet transform is based on the radial window function and angle 
window function. The radial window function, designated as µ(w), is defined over the domain w ∈ [1/2, 1], while 
the angular window function, denoted as ν(x), operates within the domain x ∈ [− 1, 1]. Both functions must 
adhere to specific mathematical constraints, as outlined in Eqs. (3–4).However, since the frames of an image are 
discontinuous in both time series and pixel space, it is necessary to further convert them into discrete functional 
forms. Then, the curvelet transform is performed on the registered video frames to obtain the discrete curvelet 
coefficients ∂ ′ (s, o, p). The method of updating these coefficients is described by Eq. (9).

	
∂ ′

fi
(s, o, p) =

∑
N
n=0Wfi (s, o, p) δ s,o,p (yfi )� (3)

 where ∂ ′
fi

(s, o, p) denotes the discrete curvelet coefficient of video frame fi. δ s,o,p (yfi ) denotes the 
continuous curvelet coefficient of video frame fi at position y, and Wfi (s, o, p) is the corresponding weight of 
the coefficient. The specific way to calculate the weight is given by Eq. (10).

	
Wfi (s, o, p) = eδ s,o,p(yfi )

∑
N
n=0eδ s,o,p(yfi ) � (4)

 where i in fi is the set of low, middle and high frequency information of the image.
To facilitate understanding of the motion blur restoration pipeline, we provide a pseudo-code.
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Algorithm 1: Pseudo-code for motion blur restoration using curvelet transform.

Refining transformer with MBR
Using the MBR module, we optimize and upgrade the Transformer to effectively deal with motion blur in images.

We make a structural improvement to the self-attention mechanism by introducing MBR, as shown in Fig. 2. 
In this improved structure, we input the video frame F into the ResNet to obtain the corresponding features. 

Fig. 2.  The framework of refined attention block with MBR (∂′).
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Subsequently, these features are used as query (Q), key (K), and value (V), which are fed into the attention 
mechanism. The formula for the original self-attention mechanism (SA) is shown in Eq. (5) :

	

SA (F ) = e
(fnW Q)(fmW K)T

√
d

∑ n

k=1e
(fnW Q)(fpW K)T

√
d

fjW V � (5)

Our process of using MBR to improve self-attention is shown in Eqs. (6–8):

	 fi′ = ∂ ′ (fi)� (6)

	
σ i,j =

(
fi′ W Q

) (
fi′ W K

)T

√
d

� (7)

	
TM = eσ i,j /

∑ n

k=1
eσ i,j • fi′ W V � (8)

where M refers to a set that contains information in low, middle and high frequency. To integrate and utilize 
these features from different frequency bands, we adopt the strategy of concatenation and apply the inverse 
curvelet transform to the concatenation results, as shown in Eqs. (9–10) : 

	 T = W ([TL, TM , TH ])� (9)

	 F ′ = Inverse (T )� (10)

 where W is a trainable matrix, [,] denotes the concatenation of features, and Inverse() is the inverse curvelet 
transform calculation. We fully optimize the Transformer architecture by using MBR-improved self-attention 
(MSA). In addition, in the network architecture, we construct a Polycurvelet Transform (PCT) structure as 
shown in Fig. 3, which can deeply mine the content features in Fy.

We apply MCTN to the motion image processing of players. The proposed MCTN can not only effectively 
remove image noise, but also solve the problem of motion blur. Finally, we embed MCTN into various 
transformer-based behavior detection models to ensure accurate and efficient evaluation of the actions of players.

Equations  (13)–(15) describe the integration of frequency-domain information into the self-attention 
mechanism. The intuition is that standard attention treats all pixel-level features uniformly, whereas the 
proposed MBR-enhanced attention assigns different importance to low-, mid-, and high-frequency components. 
Low-frequency signals capture global shape, mid-frequency signals capture texture and contour information, 
and high-frequency signals capture fine edges. By concatenating these multi-frequency features (Eqs. 16, 17) 
and performing an inverse curvelet transform, the model reconstructs feature maps that retain both global 
consistency and fine structural details. This enhancement enables the Transformer to more robustly attend to 
motion-relevant regions, even under severe blur or occlusion.

Fig. 3.  The framework of multi curvelet transformation.
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Algorithm 2: MBR-enhanced self-attention.

Experiment and analysis
Dataset and details
To evaluate the effectiveness of the proposed behavior state analysis framework, we conducted experiments on 
both domain-specific and general-purpose datasets. Specifically, we utilized the Pickleball Dataset (source) to 
assess the model’s performance in a specialized sports context characterized by rapid and irregular movements. 
This dataset serves as a representative case for challenging real-world scenarios involving motion blur and 
fine-grained athlete behavior recognition. In parallel, we employed the widely-used MS COCO dataset38 to 
validate the robustness and generalization capability of the model under diverse conditions. The COCO dataset 
includes annotations for 17 body keypoints per person, with over 1.5 million object instances spanning 80 object 
categories. It contains data from approximately 250,000 individuals, averaging 2 annotated persons per image, 
with some images featuring up to 13 individuals.

Parameters Value

Initial learning rate 2 × 10−4

Training rounds 40

Runtime per epoch 20.2 min

Batch-size 20

Decay 0.85

Optimizer SGD

Loss functions Cross entropy

CPU Ryzen 7 9700X

GPU RTX 4090

Image input size 512 × 512

Image feature dimension 1024

Table 1.  Model parameter settings during training.
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In the training pipeline, the model configuration parameters are shown in Table 1, covering the key elements 
of learning rate, training rounds, batch size, decay, and gradient descent. In the early stage of training, the model 
first uses the cross-entropy loss function for 20 rounds of basic training, aiming to obtain a relatively stable 
preliminary model. Subsequently, based on this, we further implemented 10 rounds of reinforcement learning 
training, aiming to deeply optimize the model through specific evaluation indicators. It is worth noting that the 
learning rate adopts a decreasing strategy during the training process. After every two rounds of training, the 
learning rate is reduced by 20% until the whole training process is completed. We adopt DETR39 as the baseline 
model for our method.

In addition, to accurately evaluate the performance of MCTN, we use mAP (mean Average Precision) and 
OKS (Object Keypoint Similarity) as evaluation criteria, whose formulas are shown in Eqs. (11–13):

	
AP = P ×

∑
n (Rn − Rn−1)� (11)

	
mAP =

∑
N
i=1APi� (12)

	
OKS = 1

N

∑
N
i=1vie

(−
d2

i
2σ 2 )� (13)

 where N refers to the total number of keypoints, d and v represent the Euclidean distance and visibility label of 
keypoints, respectively, and σ is a scale parameter.

Parameter experiments
Before conducting ablation experiments and comparison experiments, we need to determine some parameters 
of the model. Our parameter experiments, including the number of adjacent video frames N, the number of 
encod-decoder layers M of Transformer, and the number of CNN + Curvelet block layers L of PCT, are all 
performed in the complete MCTN.

Firstly, given that there is an interactive relationship between N and M, we decide to experiment on these two 
parameters simultaneously. The N parameter directly determines the number of relevant frames to be sampled, 
which has the influence on the curvelet transform. The M parameter is directly related to the output of MCTN. 
To ensure the accuracy of the parameter determination, we removed the PCT structure from the model during 
this experiment. The experimental results are reported in Fig. 4. After careful analysis, we find that when M is 
set to 6 and N is set to 5, the model can achieve the highest mAP of 0.856. This finding provides an important 
reference for us to optimize the model performance in the future.

Subsequently, we determined the parameter L. In the experiment, we adopted the optimal configuration 
determined earlier, that is, M is set to 6 and N is set to 5. The results are presented in Fig. 5. Through observation, 
we find that when the value of L is 4, the performance reaches the best, and the specific performance is AP50, AP75 
and AP achieve 0.813, 0.912 and 0.837, respectively. We repeated the experiment several times and made sure 
that the conditions of each experiment were as consistent as possible. The results demonstrate that the model is 
stable and excellent under the condition of L = 4, which proves the effectiveness of the parameter configuration.

Ablative studies
To evaluate the effect of the three modules MBR, MSA, and PCT, ablative studies will be performed. Given that 
MBR is the basis of MSA and PCT, the specific setup of the experiment is shown in Table 2. In this table, we 
analyze the role of MBR in MSA and PCT in detail, and the results show that MBR improves the performance of 
MSA and PCT by 2.5% and 1.2% of AP scores, respectively. Further observed, MSA increased by 1.3% compared 
with the baseline model of AP scores, while PCT based on the MSA (w/MBR) of 1.2% of AP score again. Finally, 
when the three modules of MBR, MSA, and PCT are combined, the overall performance reaches the best, with 
the AP score of 0.813, AP50 score of 0.912, AP75 score of 0.837, APM score of 0.775 and APL score of 0.822.

As a base module, MBR is effective in the performance enhancement of subsequent modules. By introducing 
multi-scale and multi-direction curvelet transform, MBR enhances the model’s ability to capture image features, 
and provides a richer information basis for the subsequent self-attention mechanism and Transformer. By 
improving the self-attention mechanism, MSA effectively uses the features provided by MBR, thereby improving 
the AP score, indicating that MSA can more accurately capture the key information and increase the accuracy 
of behavior detection. PCT further improves the AP score by 1.2%. This is due to the polycurvelet transform 
structure, which can deeply mine the deep semantic features of images at different scales. When the three 
modules of MBR, MSA and PCT are used together, the performance reaches the best, indicating that these 
three modules complement each other in function and jointly optimize the behavior detection. MBR provides 
a wealth of multi-scale and multi-direction features. MSA effectively utilizes these features by improving the 
self-attention mechanism. PCT further mines the deep semantic information of images. The collaborative work 
of these three modules enables the model to achieve significant improvement in multiple evaluation indicators.

Comparisons with state-of-the-art models
We compared the performance of our method with the SOTA (State-of-the-Art) methods, including SwinT40, 
SimpleBaseline41, DERK42, HigherHRNet + SWAHR43, AECA44, EBA45, TokenPose46, RIFormer47, TransPose48, 
HRNet28, PRTR49, BCIR50, and SimCC51. To verify the broad applicability and extensibility of our method, 
experiments are implemented on the Pickleball Dataset and MSCOCO dataset respectively.
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Comparisons on the pickleball dataset
First, we evaluate the performance of MCTN on the Pickleball Dataset. According to the data in Table 3, MCTN 
shows excellent performance, with an AP score of 0.813, an AP75 score of 0.837, an APM score of 0.775, and an 
APL score of 0.822, which surpasses all the methods participating in the comparison. Furthermore, we optimized 
and upgraded the backbone of MCTN by replacing the original DERT with the more advanced RT-DETRv352. 
This change resulted in significant performance improvements, with the AP score jumping to 0.822, AP75 to 
0.846, APM to 0.780, and APL to 0.844. This result strongly proves that MBR, MSA and PCT modules have 
excellent plug-and-play characteristics, which can be easily integrated into different backbones to improve 
performance. In MCTN, MBR enhances video frame clarity through deblurring algorithms, providing high-
quality input for subsequent analysis. MSA strengthens the correlation of spatiotemporal features via multi-
head parallel computation, enabling precise capture of athletes’ dynamic motion patterns. PCT, through multi-
scale and multi-directional geometric decomposition, breaks down complex motions into directionally sensitive 
feature sub-bands, enhancing the representation of details such as limb rotations and rapid movements. Together, 
these three components achieve full-pipeline optimization, spanning blur restoration, feature refinement, and 
high-dimensional semantic extraction. In addition, we also deeply study the influence of frame input size on 
model performance. By comparing the performance results of models with different frame sizes, we find that 
appropriately increasing the frame size can further improve the model to a certain extent.

Secondly, we conduct a comparative analysis of the running time, frame per second (FPS) and the parameters 
of the MCTN model, and the results are shown in Fig.  6. At the same time, Fig.  6 also visually shows the 

Fig. 4.  The measurement of parameters M and N.
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performance of each model in the form of a line chart. It can conclude that the model of MCTN(w/ DETR) 
has 24.5  M parameters and the execution time is 96ms (10.4 FPS). The MCTN(w/ RT-DETRv3) model has 
more parameters, reaching 32.8  M, and its running time is a little longer, 126ms (7.9 FPS). Compared with 
other methods, it can be concluded that the improvement of the performance of MCTN depends not only on 
the increase of the parameters and running time, but also on the rationality of the model structure design and 
the effectiveness of the algorithm optimization. By introducing innovative modules such as MBR, MSA and 
PCT, MCTN realizes the efficient capture and accurate analysis of the key information of the image, to achieve 
performance improvement while maintaining low computational complexity.

Finally, we present the behavior analysis results of player images in the form of visualization, as shown in 
Fig. 7. For each athlete, the top row shows the input frames under four conditions—Original, Motion Blur, Low 
Light, and High Light—while the bottom row presents the corresponding pose estimation outputs generated by 
the proposed model.

Methods Backbone Frame size AP AP75 APM APL

SwinT SwinT 256 × 192 0.755 0.795 0.723 0.801

SimpleBaseline ResNet-50 256 × 192 0.748 0.768 0.704 0.781

DERK HRNet-W32 512 × 512 0.751 0.776 0.743 0.802

HigherHRNet + SWAHR HRNet-W32 512 × 512 0.786 0.799 0.771 0.793

AECA ResNet-18 384 × 288 0.769 0.787 0.762 0.810

EBA ResNet-18 256 × 255 0.799 0.821 0.756 0.809

TokenPose TokenPose-L/D24 256 × 192 0.796 0.819 0.751 0.810

RIFormer HRFormer-B 256 × 192 0.801 0.818 0.764 0.813

MCTN DETR 256 × 192 0.813 0.837 0.775 0.822

MCTN RT-DETRv3 256 × 192 0.822 0.841 0.778 0.846

MCTN DETR 384 × 288 0.816 0.837 0.777 0.827

MCTN RT-DETRv3 384 × 288 0.822 0.846 0.780 0.844

Table 3.  Compare with methods on the pickleball dataset. In this experiment, we re-implement the SOTA 
methods on this dataset.

 

Methods AP AP50 AP75 APM APL

Baseline 0.751 0.846 0.795 0.741 0.773

+MSA (w/o MBR) 0.764 0.864 0.799 0.742 0.786

+MSA (w/MBR) 0.789 0.869 0.812 0.756 0.798

++PCT (w/o MBR) 0.801 0.885 0.821 0.771 0.815

++PCT (w/MBR) 0.813 0.912 0.837 0.775 0.822

Table 2.  Ablation experiments on pickleball dataset.

 

Fig. 5.  The choice of parameter L.
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It can be observed from the figure that MCTN can still stably and accurately capture the keypoints of the 
human body, such as shoulder, elbow, knee, etc., even when the athlete’s movement changes rapidly and the 
image appears to be blurred to a certain extent. This is crucial for subsequent applications such as behavior 
recognition, action analysis, and athlete training feedback. In the original and moderately degraded conditions, 

Fig. 6.  Comparison with other methods on the Pickleball dataset in terms of cost time FPS and parameters.
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the model consistently captures the global body structure and accurately localizes major joints, ensuring reliable 
pose estimation. Under motion blur, the curvelet-based motion restoration and frequency-aware attention 
enable the network to preserve critical edge details, which mitigates the loss of high-frequency information 
and supports stable detection of limb orientations. Similarly, in both low-light and high-light environments, 
the multi-scale curvelet representation provides enhanced adaptability by balancing global shape cues and local 
textures, thereby reducing the negative impact of illumination imbalance. Thanks to its internal MSA and PCT, 
MCTN can capture subtle changes in human posture at different scales, and uses time series information to 
enhance the understanding of motion patterns, to effectively deal with the challenge brought by motion blur. 
Nonetheless, the results also reveal limitations: in extreme cases of blur or strong lighting, distal joints such as the 
ankles or wrists occasionally deviate from their true positions, reflecting the difficulty of capturing fine-grained 
motion details under severe visual degradation. These findings confirm the effectiveness of MCTN in handling 
common real-world disturbances, while suggesting potential improvements through integration with temporal 
modeling or adaptive illumination normalization.

Comparisons on the MSCOCO dataset
To show the stability of MCTN, we conduct extended tests on the MSCOCO Dataset. The experimental results 
of the Validation set are shown in Table 4. It can be found that MCTN achieves the 0.766 AP score, 0.941 AP50 
score and 0.833 AP75 score on the dataset. Meanwhile, MCTN with different backbones and different input sizes 

Methods Backbone Frame size Parameters (M) AP AP50 AP75

TransPose TransPose-H-A4 256 × 192 17.3 0.753 – –

SimCC ResNet-50 256 × 192 25.7 0.708 – –

HRNet HRNet-W32 256 × 192 28.5 0.734 0.895 0.807

PRTR ResNet-50 384 × 288 41.5 0.682 0.882 0.752

EBA ResNet-18 256 × 256 17.0 0.713 0.915 0.781

RIFormer HRFormer-B 256 × 192 43.2 0.756 0.908 0.828

BCIR ResNet-50 256 × 192 34.0 0.675 0.872 0.740

AECA ResNet-18 384 × 288 19.0 0.745 0.925 0.814

MCTN DETR 256 × 192 24.5 0.759 0.926 0.822

MCTN RT-DETRv3 256 × 192 32.8 0.767 0.938 0.836

MCTN DETR 384 × 288 34.6 0.761 0.922 0.828

MCTN RT-DETRv3 384 × 288 40.4 0.766 0.941 0.833

Table 4.  Comparison with other methods on the MSCOCO validation set.

 

Fig. 7.  Visualization of MCTN performance under different input conditions.
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Fig. 8.  Comparison with other methods on the MSCOCO test set.
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achieves good performance results. The experiments on the test set with the input size of 384 × 288 are shown in 
Fig. 8. MCTN w/ DETR achieves 0.766 AP score, 0.935 AP50 score and 0.841 AP75 score. While MCTN w/ RT-
DETRv3 achieves 0.769, 0.941, and 0.843 scores on these indicators, respectively.

To more comprehensively reflect the stability and generalization ability of MCTN, we not only conduct 
extended tests on the MSCOCO Dataset, but also carefully analyze the performance of the model under different 
configurations. The experimental results on the validation set and the test set clearly show that the MCTN 
model shows robust performance on this dataset. These results not only verify the advantages of MCTN in 
dealing with complex scenes and variable target poses, but also highlight its leading position in human keypoint 
detection tasks. Furthermore, we investigate the different backbone and different input sizes on the performance 
of MCTN. Experiments present that MCTN can maintain the excellent performance regardless of the backbone 
or input size, which further proves its strong adaptability and stability.

Discussion
The empirical evaluation of the MCTN reveals its robust performance in complex human behavior recognition 
tasks, particularly in scenarios characterized by fast motion, irregular postures, and degraded visual quality. Across 
both the domain-specific Pickleball dataset and the general-purpose MS COCO dataset, MCTN consistently 
demonstrates superior accuracy and robustness, validating the effectiveness of its architectural innovations. In 
high-speed motion contexts, conventional models often fail to capture subtle spatial transformations and lose 
critical features due to motion blur and occlusion. MCTN overcomes these limitations by introducing a hybrid 
architecture that integrates three functionally complementary modules—each designed to address a specific 
visual degradation or recognition bottleneck—thereby improving both the feature discriminability and the 
model’s generalization ability.

At the module level, the MBR component plays a foundational role by recovering high-frequency texture 
details that are typically suppressed in blurred sequences. Unlike traditional deblurring approaches, which often 
rely on handcrafted priors or simplistic convolutional filters, MBR leverages the directional sensitivity and multi-
resolution capacity of the curvelet transform to reconstruct motion-degraded inputs with minimal information 
loss. This facilitates more stable pose estimation and feature encoding in downstream tasks. The MSA module 
further enhances the model’s ability to adapt to human body variations by allocating attention weights across 
hierarchical spatial scales. This mechanism not only strengthens the model’s sensitivity to small-scale joint 
displacements and limb articulations, but also improves its robustness under pose deformation and partial 
occlusion. Finally, the PCT module introduces frequency-domain semantics into the Transformer architecture, 
allowing the network to capture structural motion features across orientations and scales. The experimental 
ablation studies confirm that the inclusion of these three modules leads to measurable performance gains, with 
each contributing uniquely to the final accuracy, especially in low-quality or cluttered input conditions.

Despite the strong empirical results, several limitations remain that open avenues for future research. First, the 
incorporation of curvelet-based processing increases the computational overhead of both training and inference 
stages, which may hinder real-time deployment, especially in resource-constrained environments. Future work 
could explore model compression techniques or fast approximation algorithms for curvelet transforms to 
address this challenge. Second, the current model requires high-quality labeled data for optimal performance, 
yet annotated datasets for fine-grained motion analysis—particularly in niche sports like pickleball—are often 
scarce and expensive to produce. To alleviate this limitation, future studies may consider semi-supervised or 
self-supervised learning frameworks that leverage unlabeled data through contrastive or generative mechanisms. 
Additionally, the static-frame-based architecture of MCTN could be extended to incorporate temporal 
dynamics through modules such as temporal attention, graph-based spatio-temporal modeling, or recurrent 
units, thereby enhancing its ability to model continuous motion and behavior evolution in video sequences. 
These enhancements would further expand MCTN’s applicability in domains such as rehabilitation monitoring, 
intelligent coaching systems, and real-time interactive environments.

Conclusion
The MCTN proposed in this study addresses several critical challenges in human behavior recognition from 
video data, including motion blur, scale variation, and structural complexity of human posture. By incorporating 
curvelet-based restoration and multi-scale representation into a Transformer framework, the model effectively 
captures both low-level visual cues and high-level semantic features. The experimental results affirm the 
advantages of this integrated design, especially in scenarios involving rapid motion and occlusion. Beyond its 
performance gains, the modular architecture of MCTN offers flexibility for integration with other temporal 
or multimodal systems. This research not only contributes to the advancement of multi-scale representation 
learning in vision tasks but also provides a scalable foundation for future development in behavior understanding 
systems across various domains.

Data availability
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