
Enhancing crayfish sex 
identification with Kolmogorov-
Arnold networks and stacked 
autoencoders
Yasin Atilkan1, Berk Kirik2, Eren Tuna Acikbas3, Fatih Ekinci4, Koray Acici1,4, 
Tunc Asuroglu5,6, Recep Benzer7, Mehmet Serdar Guzel4,8 & Semra Benzer9

Crayfish play an important role in freshwater ecosystems, and sex classification is crucial for 
analyzing their demographic structures. This study performed binary classification using traditional 
machine learning and deep learning models on tabular and image datasets with an imbalanced class 
distribution. For tabular classification, features related to crayfish weight and size were used. Missing 
values were handled using different methods to create various datasets. Kolmogorov-Arnold networks 
demonstrated the best performance across all metrics, achieving accuracy rates between 95 and 100%. 
Image data were generated by combining at least five images of each crayfish. Autoencoders were 
employed to extract meaningful features. In experiments conducted on these extracted features, 
support vector machines achieved 84% accuracy, and multilayer perceptrons achieved 82% accuracy, 
outperforming other models. To enhance performance, a novel architecture based on stacked 
autoencoders was proposed. While some models experienced performance declines, Kolmogorov-
Arnold networks showed an average improvement of 3.5% across all metrics, maintaining the highest 
accuracy. To statistically evaluate performance differences, McNemar’s and Wilcoxon tests were 
applied. The results confirmed significant differences between Kolmogorov-Arnold networks, support 
vector machines, multilayer perceptrons, and naive Bayes. In conclusion, this study highlights the 
effectiveness of deep learning and machine learning models in crayfish sex classification and provides a 
significant example of hybrid artificial intelligence models incorporating autoencoders.

Keywords  Crayfish, Sex identification, Deep learning, Machine learning, Kolmogorov-Arnold networks, 
Stacked autoencoders

 Crayfish are organisms that play a significant role in freshwater ecosystems and are used as biological indicators1. 
Various species of crayfish generally belong to the Malacostraca class, which includes terrestrial organisms that 
have adapted to live underwater2. These organisms are crucial in assessing water quality and the health of the 
ecosystem because their bodies are sensitive to environmental changes, providing essential information about 
water quality3.

The narrow-clawed crayfish (Astacus leptodactylus Eschscholtz, 1823), also described as synonymous with 
Pontastacus leptodactylus Eschscholtz, 18234, is Turkey’s only significant freshwater crayfish species and is 
considered one of the most valuable and economically important freshwater crayfish in Europe4,5.

The cleanliness of the environment in which crayfish live is directly related to the health and presence of 
these species. In clean water ecosystems, the presence and health of crayfish indicate that the chemical and 
physical properties of the water are in good condition6. Due to their sensitivity to water pollution, a decline in 
water quality or ecosystem degradation leads to noticeable changes in the number and health of these organisms. 

1Department of Artificial Intelligence and Data Engineering, Ankara University, Ankara 06830, Turkey. 2Department 
of Biomedical Engineering, Ankara University, Ankara 06830, Turkey. 3Department of Petroleum and Natural Gas 
Engineering, Middle East Techical University, Ankara 06800, Turkey. 4Institute of Artificial Intelligence, Ankara 
University, Ankara 06560, Turkey. 5Faculty of Medicine and Health Technology, Tampere University, Tampere 
33720, Finland. 6VTT Technical Research Centre of Finland, Tampere 33101, Finland. 7Department of Management 
Information System, Ankara Medipol University, Ankara 06050, Turkey. 8Department of Computer Engineering, 
Ankara University, Ankara 06830, Turkey. 9Department of Science Education, Gazi University, Ankara 06500, 
Turkey. email: tunc.asuroglu@tuni.fi

OPEN

Scientific Reports |         (2026) 16:3971 1| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-34095-z&domain=pdf&date_stamp=2025-12-30


Therefore, monitoring crayfish and assessing their health is an important indicator of ecosystem cleanliness 
and sustainability7. The population dynamics and health status of crayfish provide valuable data for shaping 
ecosystem management and conservation strategies8.

Sex determination in crayfish is important for three main reasons. The first is to understand the reproductive 
cycles and demographic structures of crayfish populations9; the second is to determine fishing strategies and 
management of crayfish species10; and finally, for the systematic classification and taxonomic identification of 
crayfish species11. Sex determination is critical for understanding the reproductive cycles and demographic 
structures of crayfish populations. During breeding seasons, males and females may exhibit different behaviors, 
reproductive strategies, and habitat use; therefore, accurate sex determination is essential for reproductive 
management and understanding population dynamics9. Sex determination in crayfish is also important for 
optimizing fishing strategies and management practices for commercially valuable crayfish species. Protecting 
female crayfish during breeding seasons is particularly crucial for sustainable fishing practices10. Additionally, sex 
determination is important in the systematic classification and taxonomic studies of crayfish species. Specifically, 
identifying new species and determining sexual characteristics contribute to understanding biological diversity11.

Deep learning and machine learning algorithms have become powerful tools for solving complex problems, 
revolutionizing many scientific fields in recent years. These technologies, especially when working with large 
datasets, offer the ability to perform more accurate, faster, and more efficient analyses by surpassing the 
limitations of traditional methods12. Machine learning, and particularly deep learning algorithms, have been 
successfully applied in various domains such as image recognition, natural language processing, and genetic 
analysis, paving the way for discoveries and innovations in these fields13,14. One of the biggest advantages of 
these methods is their ability to extract meaningful patterns and features from large datasets without the need 
for human intervention12. As a result, it has become possible to analyze complex data in disciplines such as 
biology, medicine, and engineering, leading to more accurate predictions. In biological research, in particular, 
deep learning and machine learning techniques have led to groundbreaking advancements in areas such as 
species identification15, sex determination16, disease diagnosis17, and the identification of genetic variations18. 
These techniques eliminate the challenges and limitations of traditional methods, enabling the analysis of more 
complex and large datasets. For example, deep learning applications in image recognition are used to distinguish 
various species and subspecies, contributing to a better understanding of biodiversity.

Deep learning and machine learning also hold great potential in fisheries research, such as in the sex 
determination of crayfish19,20. These algorithms accelerate the process of automatically identifying and 
analyzing complex sex characteristics, offering significant advantages in both scientific studies and commercial 
applications. These technologies are considered revolutionary tools for obtaining critical information necessary 
for the conservation of biodiversity, management of aquatic ecosystems, and sustainable fishing practices20.

Studies on sex determination and species identification in crayfish and other aquatic products highlight the 
importance of deep learning and machine learning algorithms. For instance, Atilkan et al. (2024) compared 
deep learning and canonical machine learning models using weight, size, and sex data of healthy and diseased 
crayfish, along with images, achieving the highest accuracy by combining ResNet50 and RF algorithms17. 
Hasan and Siregar (2021) successfully identified the species, sex, and age of marine crayfish in Indonesia using 
computer vision techniques21. Ye et al. (2023) developed an automated sorting system that classified crayfish 
size and maturity with 98.8% accuracy using an improved YOLOv5 algorithm22. Garabaghi et al. (2022) used a 
support vector machine (SVM) algorithm to classify healthy and unhealthy freshwater crayfish, evaluating the 
performance of the SVM model with various kernel functions19. Wang et al. (2022) developed a convolutional 
neural network (CNN)-based system for assessing the freshness of crayfish23, while Favaro et al. (2021) explored 
the potential of support vector machines for detecting the presence of white-clawed crayfish24. Chen et al. (2024) 
improved the SSD model with MobileNetv3 and used the Soft-NMS technique to develop a method for detecting 
crayfish heads, tails, and claws in real time with high accuracy and speed25. Li et al. (2022) applied deep learning 
in aquatic products for image detection, video detection, species classification, biomass estimation, behavior 
analysis, and food safety20. Zhang et al. (2020) achieved 97.9% accuracy in detecting sea cucumbers (120 
samples) using deep learning (Stochastic Gradient Descent (SGD))26. Borowicz et al. (2019) developed a system 
for recognizing whale species in aerial images using deep-learning models27. Eickholt et al. (2020) trained deep 
learning models to automatically identify fish species, thus enabling more effective monitoring and management 
of fish populations28. These studies demonstrate the high accuracy and efficiency of deep learning techniques in 
sex determination and species classification of crayfish.

These studies and findings emphasize that sex determination in crayfish is not only biologically and 
ecologically important but also critical from an economic and management perspective. Accurate sex 
determination plays a fundamental role in understanding the reproductive cycles and demographic structures of 
crayfish populations, contributing to the optimization of reproductive management and population dynamics. 
Additionally, the protection of female crayfish during their breeding seasons is necessary to improve the fishing 
strategies and resource management of commercial crayfish species. In this context, this study aims to achieve 
sex determination in crayfish using deep learning methods. It is anticipated that deep learning technologies will 
provide significant advantages in both scientific and commercial applications by making this determination 
faster, more accurate, and more efficient.

Although machine learning algorithms perform well in classification tasks, several studies have aimed to 
enhance their performance by modifying key components, combining different classifiers, or employing 
alternative architectures such as Transformers instead of conventional deep learning models. For example, Kim 
et al. (2024) proposed a method called Heterogeneous Random Forest, which enhances the diversity — a key 
strength of the algorithm — to further improve its performance29. Nanni et al. (2023) conducted a promising 
study in the field of medical classification by combining convolutional neural networks with support vector 
machines through ensemble techniques to achieve improved performance30. Xie et al. (2025) proposed a two-

Scientific Reports |         (2026) 16:3971 2| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


stage framework called GAdaBoost, based on the AdaBoost algorithm, to address the label noise problem 
in classification tasks. The proposed method demonstrated strong performance in terms of robustness and 
efficiency31. Lu et al. (2025) proposed LRAD-ViT, a Vision Transformer–based model for Alzheimer’s disease 
detection, showing strong diagnostic performance and high computational efficiency32. Lu et al. (2025) 
proposed LAFAN-Net, a deep learning framework for tuberculosis and pneumonia diagnosis that integrates 
visual and textual information. The model effectively extracts clinically meaningful features, demonstrating its 
potential for improving diagnostic accuracy in chest X-ray analysis33. Lu et al. (2025) proposed CTBViT, a Vision 
Transformer–based model for tuberculosis classification that focuses on the most relevant image regions while 
effectively mitigating the overfitting problem34.

In this study, we aimed to compare both traditional and recently introduced classification methods for the 
crayfish sex identification problem using tabular and image-based datasets.

For the binary classification task, conventional machine learning algorithms, including Naïve Bayes, Support 
Vector Machines, Random Forest, K-Nearest Neighbors, and Artificial Neural Networks, were employed. In 
addition, a recently proposed method, the Kolmogorov–Arnold Network (KAN), was incorporated to provide 
a comparative evaluation against these traditional approaches. Furthermore, in the image-based part of the 
study, autoencoder and stacked autoencoder architectures based on convolutional neural networks were utilized 
as feature extraction mechanisms, and their performances were systematically compared across the same 
classification models.

To the best of our knowledge, our study is the first to use Kolmogorov-Arnold networks and autoencoders 
for sex classification in crayfish. Additionally, a unique feature extraction mechanism was developed by utilizing 
multiple autoencoders, and this architecture has significantly improved performance in Kolmogorov-Arnold 
networks, though not in all models.

In the other parts of the study, Sect. 2 provides information on data acquisition, statistical properties of the 
data, data preprocessing, machine learning models, the deep learning model, and autoencoders. Section 3 presents 
the evaluation metrics of the experiments, statistical tests, experimental setup, and the results of the experiments 
and tests. In Sect.  4, the results are interpreted, and potential future studies are discussed. Additionally, the 
Appendix details the search space used in hyperparameter optimization and the selected hyperparameters.

Materials and methods
Image dataset
Individuals of the species Pontastacus leptodactylus Eschscholtz, 1823 were obtained from local fishermen 
during the 2017 and 2018 fishing seasons in Eğirdir Lake, Beyşehir Lake, and Hirfanlı Lake. In this study, a 
total of 112 crayfish were examined, including 62 females and 50 males35. The specimens were transported to 
the laboratory for measurements such as weight (W), carapace length (CL), carapace width (Cw), abdomen 
length (AL), abdomen width (Aw), cheliped length (ChlL), cheliped width (Chw), and cheliped height (ChL). 
Additionally, the sex of the specimens was determined, and after the organism was inverted, at least five images 
were taken from both the top and bottom and recorded according to standard measurement specifications. A 
total of 1,277 images were used in the research. The sex of the crayfish was determined by examining specific 
anatomical features such as reproductive organs (gonopores, size, and shape of the abdomen, claspers, coloration, 
and size)36.

In the tabular dataset, the class ratio among the total of 112 samples was calculated as 0.806:1. First, to ensure 
a balanced evaluation of the dataset, the data was shuffled according to the 10-fold cross-validation method, 
ensuring a balanced class distribution in each fold. Using this method, the distribution of female and male 
samples presented in Table 1 was obtained.

After the balancing process, missing values were handled using mean, median, mode, and the k-nearest 
neighbors algorithm with the five nearest neighbors as a hyperparameter. As a result, four different tabular 
datasets were created. In these datasets, outliers were corrected using the interquartile range (IQR) method for 
each numerical feature. In the IQR method, outliers are defined as values that fall outside the lower or upper 
boundary. These values are replaced with the closest boundary. Equations 1 and 2 are used to calculate the lower 
and upper boundaries, respectively.

	 Lower Boundary = Q1 − (IQR ∗ Multiplier )� (1)

	 Upper Boundary = Q3 − (IQR ∗ Multiplier)� (2)

Q1 represents the value below which 25% of the data falls, while Q3 represents the value below which 75% 
of the data falls. IQR is the difference between Q3 and Q1. In this study, the multiplier was set to 3. These 
operations were performed for each numerical feature.

In this study, the dataset created using Min-Max normalization was used as the fifth dataset. Since the dataset 
filled with mode demonstrated better performance in the cumulative total of accuracy metric results across all 
models compared to other datasets, Min-Max normalization was applied to it. The normalization process was 

Sex Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Female 7 7 6 6 6 6 6 4 7 7

Male 5 5 5 5 5 5 5 7 4 4

Table 1.  Female - Male count distribution for each fold.

 

Scientific Reports |         (2026) 16:3971 3| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


performed using the MinMaxScaler class from the Scikit-learn library. This class applies the operations defined 
in Eqs. 3 and 4. As the feature range was set to [0,1], the data was scaled within this range.

	
Xstd = X − Xmin

Xmax − Xmin
� (3)

	 Xscaled = Xstd ∗ (max − min) + min� (4)

In this study, The MinMaxScaler class was used with its default hyperparameters. In this equation, Xmin and 
Xmax represent the minimum and maximum values of the corresponding feature, respectively. Xstd denotes 
the normalized values of the features. Xscaled represents the transformed version of the normalized data based 
on the specified minand max values. In this study, the data was normalized within the range of [0, 1].

Except for the dataset created with Min-Max normalization, data standardization was performed during the 
training and testing phases using the StandardScaler class from the Scikit-learn library. The data standardization 
process can be expressed by Eq. 5.

	
Z = x − u

s
� (5)

In this study, the StandardScaler class was used with its default hyperparameters. In this equation, u represents 
the mean of the training data, while s denotes the standard deviation of the training data. For the standardization 
of the test data, the mean u and standard deviation s values obtained from the training data were used.

The image dataset of 112 specimens contains a total of 1,277 samples. Among these samples, 717 belong to 
female individuals, while 560 belong to male individuals. The class ratio in the dataset was calculated as 0.781:1. 
The dataset was split into 70% training and 30% testing, with this ratio being approximately maintained in both 
the training and test sets. The training set consists of a total of 895 samples, of which 501 are female and 394 are 
male. The test set contains a total of 382 samples, with 216 being female and 166 being male.

The image data was recorded in .jpg format with the RGB (red, green, and blue) color system, consisting of 
three channels and a resolution of 4608 × 3456 pixels. In this study, these images were converted to grayscale 
(one-channel) format and then resized to 28 × 28 pixels. The grayscale and resized images were transformed into 
tensor format and normalized with a mean of 0.5 and a standard deviation of 0.5. Using the preprocessed image 
data, training and test sets were obtained with the help of an autoencoder.

One of the main limitations of this study concerns potential variations in the image acquisition process. 
Although all samples were collected from three different lakes during the 2017–2018 fishing seasons, the dataset 
was created in collaboration with local fishermen. Therefore, it cannot be confirmed whether all images were 
captured using the same equipment or by the same operator. Such differences may have caused variations in 
lighting, shooting angle, or overall image quality, which could, in turn, affect the model’s ability to generalize to 
new conditions. Considering that real-world data are often collected by different people using different devices, 
it would be useful for future studies to examine how the proposed models perform under varying imaging setups 
and environmental conditions.

Differences in equipment and operators are commonly referred to in the literature as domain shift or 
device-induced variability, and are recognized as major factors that can hinder model generalization37,38. 
Previous research has shown that even when using the same network architecture, model performance can drop 
significantly if the data are collected with different cameras, scanners, or acquisition protocols38. For instance, 
Brown et al. (2024) reported that simply changing the camera used for image collection could alter classification 
outcomes39. Similarly, systematic reviews highlight that variations in acquisition conditions can lead to 
distributional shifts, ultimately impacting model performance38. From this perspective, the dataset used in our 
study may also have been affected by such variations in acquisition settings. To mitigate this limitation, future 
research could adopt season-based or location-based grouped validation strategies (e.g., leave-season-out or 
leave-location-out cross-validation), which help minimize data leakage and provide a more realistic assessment 
of model performance under real-world conditions40.

General framework
In this study, machine learning and deep learning algorithms were trained and tested on tabular datasets 
generated during the data preprocessing stage, as described in Sect.  2.1, to perform binary classification of 
crayfish as male or female. Additionally, using image data of crayfish, convolutional autoencoder and stacked 
convolutional autoencoder were employed to extract more abstract and meaningful features from the images. 
These newly extracted features were then used to train and test the same algorithms in a similar manner. Figure 1 
illustrates the overall workflow of the proposed study, summarizing the main stages from data collection to 
model evaluation for both tabular and image datasets. The three general frameworks utilized in this study are 
presented in Figs. 2 and 3, and 4.

Figure 2 presents the overall workflow designed for the experiments conducted on the tabular datasets. The 
workflow consists of three main steps. In the first step, data preparation and preprocessing were performed, where 
the .xlsx files were generated using different imputation methods such as mean, median, mode, and K-Nearest 
Neighbors, as described in Sect.  2.1 Data. In the second step, hyperparameter optimization was carried out 
to determine the most appropriate hyperparameters for each machine learning algorithm using the Ten-Fold 
Cross-Validation method. In the third step, the models were trained and evaluated, and the details of this process 
are provided in Sect. 3.3 Experimental Setups. Once the optimal hyperparameter sets were identified, each fold 
was used as a test set to assess the overall model performance, as specified in Table 1. This process was repeated 
ten times, ensuring that all data were used for both training and testing phases.

Scientific Reports |         (2026) 16:3971 4| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Within the framework presented in Fig.  3, a two-layer encoder-decoder architecture was employed for a 
convolutional autoencoder. This autoencoder was trained using the preprocessed image training dataset 
described in Sect. 2.1. For each layer, the number of input and output channels, kernel size, stride, and padding 
parameters were specified. After training, the trained weights were utilized to generate feature sets through the 
autoencoder. Once the feature sets were obtained, hyperparameter optimization was conducted using the Ten-
Fold Cross Validation method on the training feature dataset for each algorithm. After determining the optimal 
hyperparameters, the models were trained with these parameters and subsequently tested.

The architecture shown in Fig. 4 has been improved by adding an additional autoencoder to the previous 
design. The feature set obtained from the encoder layer of the first autoencoder is used as the input data for the 
second autoencoder. The number of encoder layers in the second autoencoder is the same as in the first one; 
however, the number of input and output channels differs. Additionally, the decoder structure of the second 
autoencoder has been redesigned differently from the first one to accommodate an input with 128 channels. 
In this context, the training and feature extraction procedure of the autoencoder remains the same as in Fig. 3.

Fig. 2.  General framework for canonical machine learning and deep learning algorithms on tabular datasets.

 

Fig. 1.  Overview of the proposed crayfish sex classification workflow.

 

Scientific Reports |         (2026) 16:3971 5| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Canonical machine learning methods
Support Vector Machines (SVM) find the optimal hyperplane to separate data points in classification problems41. 
The distance between the hyperplane and the data samples called support vectors is the margin. The hyperplane 
with the widest margin between classes is achieved with the optimal margin. During model training, support 
vectors are identified, and the hyperplane is optimized accordingly42. For linearly non-separable datasets, 
higher-dimensional space is created using functions. The most commonly used functions for this purpose are 
polynomial and radial basis functions43.

During the classification process of an input vector, it is compared with support vectors and mapped to a 
high-dimensional space through a kernel function. The values obtained from the function are weighted using 
Lagrange multipliers to predict the class to which the input belongs41.

Naïve Bayes (NB) is a probabilistic model that utilizes Bayes’ theorem. It assumes that each feature in the 
dataset is independent. The posterior probability is the probability that a given example belongs to a specific 
class, given its feature vector. In calculating this probability, prior probability, conditional probability, and 
evidence values are used. The prior probability represents the probability of an example belonging to a class. 
The conditional probability is the probability of a feature vector occurring given the class information. Here, the 
assumption of conditional independence of features is applied, and the conditional probabilities of each feature 
are multiplied. Evidence, on the other hand, is the probability of a feature vector occurring without considering 
class information44.

The NB classifier selects the highest posterior probability as its prediction. This probability is calculated by 
dividing the product of the prior probability and the conditional probability by the evidence probability. Different 
methods can be used to compute conditional probability. For data with continuous values, the Gaussian kernel 
is used. In this case, the standard deviation and mean of the features are calculated from the training data and 
applied accordingly44.

The K-Nearest Neighbors (KNN) method uses the nearest neighbor rule on pre-labeled data to classify a 
given sample. The value of K represents the number of neighbors considered in the labeled dataset. The sample is 
assigned to the class of the majority of its nearest neighbors45. KNN-based density estimation offers an alternative 

Fig. 3.  General framework for feature set obtained from the autoencoder.

 

Scientific Reports |         (2026) 16:3971 6| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


approach to the fixed volume approach used in kernel-based methods. In the data space, while estimating local 
densities, the K value is kept constant, and the local density volume is estimated46.

In the KNN method, there is no active training process for parameter optimization. The constructed model 
only uses labeled training data. When assigning a class to a given sample, the distances of K data points in the 
training set are measured based on specific distance metrics. Euclidean, Manhattan, Minkowski, and Hamming 
distances are among these metrics47.

Multilayer Perceptrons (MLP) are deep learning models also referred to as deep feedforward networks48. 
These architectures include a function that processes the input and is used as a classification model. Typically, the 
input represents the feature vector of the instance to be classified. Instead of making a classification based on the 
output of a single function, the output of a function applied to the input vector can serve as the input to another 
function. Similarly, the output of this function can be used as the input to yet another function. This chain 
structure continues depending on the network design, and the number of such functions determines the depth 
of the network. Each function in this structure corresponds to a layer, and the final layer, which determines the 
network’s output, is called the output layer.

Each layer consists of processing units, known as neurons, that operate in parallel. These neurons are 
connected to the neurons in the previous layer through weighted connections. The information received by 
a neuron is obtained by multiplying the input vector from the previous layer with the connection weights and 
summing the resulting values. The obtained value is then processed by the neuron’s activation function to 
produce the final neuron output48.

The training of an MLP is conducted to align the outputs corresponding to input feature vectors with the true 
labels. This process is achieved by appropriately optimizing the connection weights within the network. First, the 
feedforward process is performed to obtain the predicted values at the output layer. Then, these predictions are 
compared with the true labels to calculate an error value. This error is expressed as a single cost value through 
a predefined loss function. Subsequently, the weights are updated using the backpropagation algorithm and 

Fig. 4.  General framework for feature set obtained from the stacked autoencoders.

 

Scientific Reports |         (2026) 16:3971 7| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


gradient-based optimization methods based on this cost value. This process iterates until a predefined stopping 
criterion is met48.

Random Forest (RF) consists of multiple decision trees and utilizes the ensemble learning technique49. In RF, 
each decision tree has a vote for class prediction, and the final class prediction is determined based on this voting 
process. Each tree has a different structure, and the correlation between trees is reduced. Using a method called 
bagging, random samples from the training set are selected for each tree. During the splitting process in decision 
trees, the use of randomly selected features makes the model more robust to noise, enhancing its generalization 
ability.

After creating datasets for each tree using bagging, each decision tree is trained using Classification and 
Regression Tree (CART) algorithms50. Different types of metrics can be used to determine the feature that 
enables the split in tree construction. These metrics include Gini impurity, information gain, and mean squared 
error.

Stacked convolutional autoencoders
An autoencoder is a type of neural network composed of an encoder and a decoder mechanism48. The encoder 
transforms the input of the network into a lower-dimensional representation. The decoder reconstructs this 
representation to reproduce it in a way similar to the network’s input. Autoencoders are architectures that do not 
directly copy the input data to the output. The learning process of an autoencoder involves minimizing the loss 
function between the input data and the reconstructed data.

Convolutional neural networks (CNNs) are used for classification by extracting features from image data 
through convolutional layers, subsampling layers, and classification layers51. Convolutional layers extract 
features such as edges and shapes from image data to create representations. The subsampling process further 
reduces the size of feature maps, lowering computational cost. The classification layer uses the extracted features 
to perform classification.

Convolutional Autoencoders (CAEs) preserve the 2D structure of images and learn local features, unlike 
fully connected autoencoders52. In traditional autoencoders, each feature is spread across the entire image, 
whereas in CAEs, weight sharing through kernel usage enables a parameter-efficient approach. This allows the 
model to discover repeating patterns, obtain better representations, and reconstruct images in small patches, 
making it more effective in computer vision models. Multiple CAEs can be stacked together to form Stacked 
CAE (SCAE) structures. These autoencoders can serve as feature extraction mechanisms, providing datasets for 
classifiers such as SVM.

Stacked Convolutional Autoencoders (SCAEs) have demonstrated superior performance in feature extraction 
and classification tasks compared to Stacked Denoising Autoencoders (SDAs). Specifically, experiments 
on the MNIST dataset and real-world video data have shown that SCAEs produce more effective feature 
representations53. The SDAs method aims to enhance the robustness of autoencoders by adding artificial noise to 
the input data. Based on this approach, a different study combined SDA and SCAE techniques in a hybrid manner 
to develop the Stacked Convolutional Denoising Autoencoder (SCDAE) model. SCDAE has improved feature 
representations on datasets such as MNIST and CIFAR-10, thereby enhancing the performance of classifier 
models54. The Stacked Convolutional Sparse Autoencoder (SCSAE) model, based on the idea that neurons 
are not active at a certain time, was developed and achieved successful results on the CIFAR-10 and MNIST 
datasets55. SCAEs can be used as an initialization mechanism to improve the feature extraction performance of 
CNN models. Instead of initializing CNNs with random weights, starting training with convolutional kernels 
learned by SCAE significantly enhances the classification performance of traditional CNNs56.

Kolmogorov Arnold networks
The Kolmogorov-Arnold Network (KAN) is an artificial neural network designed based on the Kolmogorov-
Arnold theorem, which decomposes complex functions into univariate components. Particularly effective in 
classification and regression tasks, KAN is distinguished by its capacity to learn linear and nonlinear components 
separately, making it well-suited for modeling high-dimensional data. Unlike traditional neural networks, KAN 
employs B-spline-based transformations to decompose input features into multiple subcomponents, enabling it 
to capture both global and local variations, thereby enhancing generalization performance.

The fundamental principle of KAN is rooted in Kolmogorov’s universal representation theorem, which 
asserts that any continuous function can be expressed as a composition of univariate functions. Leveraging this 
concept, KAN applies B-spline interpolation to decompose multivariate input features, facilitating more effective 
modeling. Two key hyperparameters underpin its architecture: grid size (G), which determines the partitioning 
of the data space, and spline degree (S), which defines the nonlinear transformation capacity of each segment. 
This structure offers a significant advantage by enabling flexible modeling of nonlinear relationships in high-
dimensional data spaces57.

KAN’s network architecture differs from conventional feedforward networks (MLPs). The input layer 
consists of neurons corresponding to each feature in the dataset, while the hidden layers incorporate B-spline-
based transformation mechanisms that integrate linear and nonlinear transformations. The output layer utilizes 
sigmoid or softmax activation functions for classification tasks. By replacing traditional activation functions with 
adaptive B-spline transformations, KAN enables a more flexible and interpretable learning process, effectively 
mitigating common deep learning challenges such as vanishing gradients and saturation.

Although machine learning techniques such as Support Vector Machines (SVMs) and Artificial Neural 
Networks (ANNs) effectively learn nonlinear decision boundaries, KAN’s spline-based structure provides a 
more detailed feature transformation, leading to improved accuracy. Ultimately, spline-based transformations 
enhance classification performance by distinguishing linear and nonlinear components separately, while also 
increasing the model’s sensitivity to data distribution58.

Scientific Reports |         (2026) 16:3971 8| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Results
Evaluation metrics
In this study, the performance of different sex classification models was evaluated using metrics such as accuracy, 
sensitivity, precision, specificity, F1 score, and Matthews correlation coefficient (MCC). These performance 
metrics are calculated based on the true positive (TP), true negative (TN), false positive (FP), and false negative 
(FN) values obtained from the classification results.

According to the prediction performance of a classification model, correctly predicting samples with the 
actual value of male as male is defined as TP, while incorrectly predicting samples with the actual value of female 
as male is referred to as FP. Similarly, correctly predicting samples with the actual value of female as female is 
defined as TN, whereas incorrectly predicting samples with the actual value of male as female is defined as FN.

Accuracy is the ratio of the correct predictions made by the model to the total number of samples. Recall 
is the model’s ability to correctly identify the samples that should be predicted as positive. Specificity is the 
model’s ability to correctly identify the samples that should be predicted as negative. Precision is the proportion 
of correctly predicted positive samples among all samples predicted as positive. The F1 score is a metric that 
balances the performance of the model in terms of precision and recall. The MCC metric is a measure that 
considers all values in the confusion matrix. The metric calculations are presented in Table 2.

Statistical tests
Wilcoxon test
The Wilcoxon signed-rank test is a non-parametric statistical test method used to examine the significant 
difference in classification prediction accuracies between two models. The formula used in this method is given 
in Eq. 6.

	
W = min

(∑
i:di>0

Ri,
∑

i:di<0
Ri

)
� (6)

In the equation, di represents the difference between predictions for the same sample, while Ri​ denotes the 
ranking of absolute differences. The W value is calculated by comparing it with the critical values from the 
Wilcoxon signed-rank distribution table. Additionally, the p-value can be computed to determine statistical 
significance.

McNemar’s test
The non-parametric McNemar statistical method uses model predictions to determine the statistical significance 
of the performance difference between two classification models. In a binary classification task, positive samples 
can be labeled as 1 and negative samples as 0. The models to be compared can be tested on n samples, denoted 
as CM1 and CM2, respectively. McNemar’s test focuses on the samples where the models make different 
classification predictions. To perform the McNemar test, a contingency table is constructed, in which the values 
n11​, n10​, n01​, and n00 are calculated. n11 represents the number of samples classified as positive by both 
models, while n00 represents the number of samples classified as negative by both models. n10 represents the 
number of samples classified as positive by CM1 but negative by CM2, whereas n01​ represents the number of 
samples classified as negative by CM1 but positive by CM2.

The McNemar test statistic uses the n10 and n01 values from this table and is calculated as shown in Eq. 7.

	
X2 = (|n10 − n01| − 1)2

n10 + n01
� (7)

Statistical significance can also be determined by calculating the p-value.

Experimental setup
In the five tabular datasets described in the preparation phase in Sect. 2.1 Data, Ten-Fold Cross Validation was 
performed both during hyperparameter optimization and after determining the optimal hyperparameters in the 
training and testing phases. During hyperparameter optimization, models were trained and tested using each 
combination set specified in the hyperparameter set, with one fold used for testing while the remaining folds 
were used for training. The best hyperparameter set was determined using the accuracy metric. Afterward, the 

Accuracy
T P + T N

T P + F P + T N + F N

Sensitivity T P
T P + F N

Specificity T N
T N + F P

Precision T P
T P + F P

F1 score 2× P recision × Sensitivity
P recision + Sensitivity

MCC
T P × T N − F P × F N√

(T P + F P )× (T P + F N)× (T N + F P )× (T N+F N)

Table 2.  Equations for metric calculations.

 

Scientific Reports |         (2026) 16:3971 9| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


model training process was repeated ten times, where nine folds were used for training and one fold for testing. 
The folds used in each iteration were different. As a result, a confusion matrix with 112 samples was generated 
for each model. For NB models, hyperparameter optimization was not performed, and the models were trained 
and tested with default settings. In all datasets, except for the one created using Min-Max normalization, the 
data standardization process shown in Eq. 5 was applied during both the hyperparameter optimization and the 
training and testing phases.

To generate datasets through feature extraction using the autoencoder, the autoencoder models were first 
trained. The hyperparameters of the convolutional layers are provided in Figs. 3 and 4. While preparing the 
train and test sets, the DataLoader object was used with a batch size of 16 and shuffle set to True. The Adam 
optimizer was used with a learning rate of 0.001 and an epoch count of 100. However, an early stopping method 
was applied using patience set to 5 and delta set to 0.001. After completing the autoencoder training with the 
training data, the feature extraction method was executed using the learned weights, and the extracted features 
were used to generate training and test datasets for machine learning and deep learning models.

After obtaining the training and test data through feature extraction, the procedure is similar to the other 
four datasets, except for the dataset created using Min-Max normalization. The difference here is that the best 
hyperparameters are determined using Ten-Fold Cross Validation on 70% of the training data. Then, the model 
is trained on the training data using the selected hyperparameters. The trained model is tested on the remaining 
30% of the test data, and a confusion matrix is generated. The sizes of the training and test sets extracted from the 
autoencoder architecture shown in the framework in Fig. 3 are (895, 12800) and (382, 12800), respectively. The 
sizes of the training and test sets extracted from the stacked autoencoder architecture shown in the framework 
in Fig. 4 are (895, 18432) and (382, 18432), respectively.

The experiments within the framework shown in Fig. 2 were conducted using Python-based Scikit-learn, 
NumPy, and Pandas tools59–61. The models were used in the experiments with the Scikit-learn library. These 
models were derived from the MLPClassifier, KNeighborsClassifier, GaussianNB, RandomForestClassifier, and 
SVC classes. The StandardScaler class was used for data standardization, and the MinMaxScaler class was used 
for Min-Max normalization. GridSearchCV and Pipeline classes were utilized for hyperparameter optimization. 
The Pipeline includes standardization and the model. NumPy and Pandas libraries were used for processing and 
data analysis. The autoencoder architecture shown in the frameworks in Figs. 3 and 4 was implemented using the 
PyTorch library62. The convolutional layers were derived from the nn.Conv2d and nn.ConvTranspose2d classes. 
The nn.ReLU and nn.Sigmoid classes were used for activation function layers. The custom classes written for the 
autoencoders inherited from the nn.Module class. The optim.Adam class was used for autoencoder training, the 
nn.MSELoss class for loss computation, and the DataLoader class for data handling.

The KAN model was developed using the specialized KANLinear class, which facilitates spline-based 
nonlinear transformations. The architecture comprises six layers, with an input layer of 11 neurons, followed 
by hidden layers containing 256, 128, 64, and 32 neurons, respectively, and a sigmoid activation function in 
the output layer. During the learning process, input features undergo adaptive B-spline transformations, which 
integrate both spline-based and linear components to effectively capture global and local relationships within 
the data.

To optimize the model, a Grid Search method was employed to identify optimal hyperparameters, selecting 
the most effective parameters based on accuracy metrics. Additionally, the Stochastic Gradient Descent (SGD) 
and Adam optimization algorithms were compared, with experimental results indicating that the Adam 
optimizer achieved superior accuracy. Consequently, the Adam algorithm was adopted for model training.

To mitigate overfitting, an early stopping mechanism was implemented, ensuring the training process was 
halted when further improvement was no longer observed. Furthermore, the ReduceLROnPlateau algorithm was 
applied to dynamically adjust the learning rate, enhancing the model’s adaptability and convergence efficiency.

The hyperparameter sets used in the frameworks in Figs. 2, 3, and 4, as well as the training hyperparameters 
obtained from the optimization process, are provided in the appendix of the paper. For MLP, KNN, GNB, RF, 
and SVM, the remaining hyperparameters are the default hyperparameters of Scikit-learn version 1.5.0. The 
hyperparameter optimization of KAN models was also performed using GridSearchCV, and the hyperparameter 
details are provided in the appendix of the paper.

Experimental results
The experimental results obtained on the datasets shown in the framework provided in Fig. 2 are presented in 
Tables 3, 4, 5, 6 and 7. Based on the results obtained from all tabular datasets, the KAN model achieved the best 
performance across all metrics. In gender classification, accuracy is a relatively more important metric compared 
to others, and SVM was the second-best performing model in this regard. The methods used for handling 
outliers, including mean, median, mode, and KNN algorithms, have influenced model performances. The sum 
of the accuracy columns for each table is 4.597, 4.608, 4.625, and 4.58 for Tables  3, 4, 5 and 6, respectively. 
The results of experiments using Min-Max normalization instead of standardization are presented in Table 7, 
where the total accuracy is 4.626. However, the performance of the best models, KAN and SVM, has decreased 
compared to the results in Table 5. On the other hand, the accuracy performance of the distance-based KNN 
method has increased by approximately 4%.

The results obtained from the autoencoder framework in Fig.  3 and the stacked autoencoder framework 
in Fig. 4 are presented in Tables 8 and 9, respectively. On the feature datasets extracted using the autoencoder, 
SVM achieved the best performance in terms of accuracy, while the MLP model showed the second-highest 
performance. The performance of the KAN model, however, decreased in experiments conducted on feature sets 
extracted from image data. On the higher-dimensional feature dataset extracted using stacked autoencoders, the 
KAN model improved its accuracy performance by 3%, achieving the best results. Although the SVM model 
experienced a 4% decrease in accuracy performance, it still demonstrated the second-best performance.

Scientific Reports |         (2026) 16:3971 10| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Model Accuracy Recall Specificity Precision F1-score MCC

MLP 0.813 0.800 0.823 0.784 0.792 0.622

KNN 0.750 0.660 0.823 0.750 0.702 0.491

NB 0.616 0.400 0.790 0.606 0.482 0.208

RF 0.661 0.540 0.758 0.643 0.587 0.306

SVM 0.813 0.800 0.823 0.784 0.792 0.622

KAN 0.973 0.960 0.984 0.98 0.970 0.946

Table 7.  Experimental results with data filled using mode – Min-Max normalized.

 

Model Accuracy Recall Specificity Precision F1-score MCC

MLP 0.804 0.800 0.807 0.769 0.784 0.605

KNN 0.732 0.660 0.790 0.717 0.688 0.455

NB 0.571 0.300 0.790 0.536 0.385 0.104

RF 0.661 0.560 0.742 0.636 0.596 0.307

SVM 0.830 0.820 0.839 0.804 0.812 0.658

KAN 0.982 1.0 0.968 0.962 0.980 0.965

Table 6.  Experimental results with data filled using KNN and standardized.

 

Model Accuracy Recall Specificity Precision F1-score MCC

MLP 0.786 0.720 0.839 0.783 0.750 0.565

KNN 0.714 0.640 0.774 0.696 0.667 0.419

NB 0.616 0.400 0.790 0.606 0.482 0.208

RF 0.688 0.580 0.774 0.674 0.624 0.362

SVM 0.830 0.820 0.839 0.804 0.812 0.658

KAN 0.991 1.0 0.984 0.980 0.990 0.982

Table 5.  Experimental results with data filled using mode and Standardized.

 

Model Accuracy Recall Specificity Precision F1-score MCC

MLP 0.795 0.720 0.855 0.800 0.758 0.583

KNN 0.741 0.700 0.774 0.714 0.707 0.475

NB 0.589 0.380 0.758 0.559 0.452 0.149

RF 0.688 0.580 0.774 0.674 0.624 0.362

SVM 0.813 0.760 0.855 0.809 0.784 0.619

KAN 0.982 0.980 0.982 0.980 0.980 0.964

Table 4.  Experimental results with data filled using median and Standardized.

 

Model Accuracy Recall Specificity Precision F1-score MCC

MLP 0.804 0.800 0.807 0.769 0.784 0.605

KNN 0.705 0.660 0.742 0.674 0.667 0.403

NB 0.571 0.360 0.742 0.529 0.429 0.110

RF 0.696 0.580 0.790 0.691 0.630 0.380

SVM 0.821 0.780 0.855 0.813 0.796 0.638

KAN 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.  Experimental results with data filled using mean and standardized.

 

Scientific Reports |         (2026) 16:3971 11| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Wilcoxon test and McNemar’s test were performed on the model results obtained from the Min-Max 
normalized tabular dataset and the datasets extracted from autoencoders. The Min-Max normalized dataset 
was selected because it had the highest total accuracy in the first framework shown in Fig. 2. The results of the 
Wilcoxon test and McNemar’s test are presented in Tables 10, 11, 12, 13, 14 and 15, respectively. A 5% threshold 
was chosen, and if there was a statistically significant difference between the two models, the corresponding 
value was highlighted in bold. Additionally, an arrow was added to the relevant cell to indicate the model that 
performed better in terms of accuracy.

Statistical analysis of the Wilcoxon test results indicates that, based on the tabular dataset results in Table 10, 
there is a significant difference between KAN and GNB, MLP and GNB, and SVM and GNB. Accordingly, these 
three models performed better than the GNB model. Based on the test results of the dataset obtained from the 
autoencoder in Table 11, there is a significant difference between GNB and all other models, as well as between 
KAN and RF, KAN and KNN, MLP and RF, SVM and KNN, and SVM and RF. The results show that the GNB 
model performed worse than the other models. The RF model also showed lower performance compared to 

p < 0.05

Classifier KAN MLP SVM KNN RF NB

KAN 0.241 0.686 0.035 ↑ 0.001 ← 0.023 ←

MLP 0.303 0.179 0.006 ← 0.001 ←

SVM 0.044 ← 0.001 ← 0.009 ←

KNN 0.299 0.000 ←

RF 0.000 ←

NB

Table 11.  Wilcoxon test results for the feature set obtained from the autoencoder.

 

p < 0.05

Classifier KAN MLP SVM KNN RF NB

KAN 0.655 0.655 0.336 0.250 0.014 ←

MLP 1.000 0.127 0.083 0.002 ←

SVM 0.144 0.083 0.002 ←

KNN 0.593 0.063

RF 0.083

NB

Table 10.  Wilcoxon test results for the dataset filled using mode - Min-Max normalized.

 

Model Accuracy Recall Specificity Precision F1-score MCC

MLP 0.783 0.771 0.792 0.740 0.755 0.560

KNN 0.796 0.759 0.824 0.768 0.764 0.584

NB 0.636 0.681 0.602 0.568 0.619 0.280

RF 0.780 0.711 0.833 0.766 0.738 0.550

SVM 0.806 0.807 0.806 0.761 0.784 0.609

KAN 0.819 0.807 0.829 0.784 0.795 0.634

Table 9.  Experimental results on feature sets extracted using stacked autoencoders.

 

Model Accuracy Recall Specificity Precision F1-score MCC

MLP 0.819 0.813 0.824 0.780 0.797 0.635

KNN 0.801 0.759 0.833 0.778 0.768 0.594

NB 0.631 0.705 0.574 0.560 0.624 0.278

RF 0.778 0.705 0.833 0.765 0.734 0.544

SVM 0.840 0.855 0.829 0.793 0.823 0.680

KAN 0.780 0.795 0.769 0.725 0.759 0.560

Table 8.  Experimental results on feature sets extracted using Autoencoder.

 

Scientific Reports |         (2026) 16:3971 12| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the KAN, SVM, and MLP models. While the KNN model performed worse than the SVM model, it performed 
better than the KAN model. Based on the test results of the dataset obtained from the stacked autoencoder in 
Table 12, the GNB model showed the lowest performance compared to all other models. The RF model also 
performed worse than the KAN, MLP, and SVM models.

Statistical analysis of the McNemar’s test results revealed similar outcomes to those of the Wilcoxon tests 
across all experiments. The same model comparisons can be reiterated for this test as well. The most significant 
difference in these tests is that, in the dataset obtained using the autoencoder, the p-value calculated from the 
predictions of the SVM and KNN models is slightly above 0.05. Other statistical significances (or differences) 
observed in the Wilcoxon test have been confirmed in the same manner.

p < 0.05

Classifier KAN MLP SVM KNN RF NB

KAN 0.864 0.442 0.470 0.030 ← 0.013 ←

MLP 0.749 0.362 0.020 ← 0.023 ←

SVM 0.195 0.006 ← 0.042 ←

KNN 0.326 0.003 ←

RF 0.000 ←

NB

Table 15.  McNemar’s test results for the feature set obtained from the stacked autoencoder.

 

p < 0.05

Classifier KAN MLP SVM KNN RF NB

KAN 0.298 0.788 0.045 ↑ 0.001 ← 0.028 ←

MLP 0.392 0.222 0.009 ← 0.002 ←

SVM 0.057 0.001 ← 0.011 ←

KNN 0.356 0.000 ←

RF 0.000 ←

NB

Table 14.  McNemar’s test results for the feature set obtained from the autoencoder.

 

p < 0.05

Classifier KAN MLP SVM KNN RF NB

KAN 0.824 0.824 0.442 0.324 0.020 ←

MLP 1.000 0.189 0.122 0.003 ←

SVM 0.210 0.122 0.003 ←

KNN 0.791 0.090

RF 0.122

NB

Table 13.  McNemar’s test results for the dataset filled using mode and Min-Max normalized.

 

p < 0.05

Classifier KAN MLP SVM KNN RF NB

KAN 0.732 0.336 0.399 0.022 ← 0.001 ←

MLP 0.631 0.305 0.015 ← 0.019 ←

SVM 0.157 0.005 ← 0.033 ←

KNN 0.275 0.002 ←

RF 0.000 ←

NB

Table 12.  Wilcoxon test results for the feature set obtained from the stacked autoencoder.

 

Scientific Reports |         (2026) 16:3971 13| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Discussion
In this study, machine learning and deep learning models were trained and tested using tabular datasets created 
by handling missing values in different ways for the crayfish sex classification problem. Since sex classification 
was performed, although the results of different types of metrics are shared, accuracy can be used as the main 
evaluation criterion. For all models except the GNB model, key hyperparameters were selected and optimized. 
In the training and testing conducted with the selected hyperparameters for each model, the KAN model 
achieved the highest performance in terms of both the accuracy metric and other metrics compared to the 
other models. The exceptional performance of the KAN model can be attributed to its hybrid architectural 
framework, which seamlessly integrates both linear and nonlinear representations through B-spline-based 
transformations. By leveraging this adaptive transformation mechanism, KAN effectively captures global 
structural patterns while simultaneously preserving local variations within the data. This capability enhances the 
model’s expressiveness and generalization capacity, leading to more precise decision boundaries and improved 
classification performance across diverse feature distributions. Among the models, except for the KAN model, 
the SVM model achieved the highest accuracy performance. In the SVM model, the radial basis function (RBF) 
was used to linearly separate the data in a high-dimensional space. In the classification performed on the tabular 
datasets with 11 features in this study, the use of the RBF function was one of the key factors contributing to 
the better performance of the SVM model. The GNB model demonstrated lower performance in the applied 
metrics across all datasets compared to the other models. This suggests that the features in the datasets used in 
this study may have strong correlations. The dataset in which missing values were filled using the mode value of 
each feature performed better in terms of total accuracy. Therefore, a new dataset was created using Min-Max 
normalization, and the experiments were repeated. Additionally, data standardization was not applied to this 
dataset. In this dataset, an improvement of approximately 3% in the MLP model and 5% in the KNN model 
was observed in terms of accuracy. Since the KNN model is a method based on the distance between samples 
in the dataset, applying Min-Max normalization is a significant factor in the performance improvement. The 
dataset with Min-Max normalization has enabled better learning of weights in the MLP model and improved 
the effectiveness of activation functions.

In the second phase of the study, classification was performed by extracting features from image data. Two 
different architectures were designed for feature extraction. The first is the most basic autoencoder architecture, 
while the second is the stacked autoencoder architecture, created by combining two autoencoders side by side. 
Based on the datasets obtained from the autoencoder architecture, the SVM model achieved the highest accuracy 
performance at 84%. The second-best performance was achieved by the MLP model, while the GNB model 
showed the lowest performance. Except for the KAN model, all other models performed better on accuracy 
compared to their performance on tabular datasets. The higher-level features extracted by the autoencoders 
effectively improved these models’ performance. One of the most significant findings here is the substantial 
decline in the KAN model’s performance compared to its results on tabular datasets. The accuracy of the KAN 
model decreased by approximately 20%. Since the input layer of the KAN model is structured to match the 
number of features in the dataset, the amount of information entering the model’s input layer increases directly 
with high-dimensional datasets. However, the gradual reduction in the number of neurons in subsequent 
layers led to the loss of some features, resulting in information loss during the learning process. Specifically, 
the inability of KAN’s adaptive grid structure to effectively optimize in very high-dimensional feature spaces 
limited the model’s generalization ability, causing a drop in accuracy. Finally, the study aimed to enhance model 
performance by obtaining higher-level features using stacked autoencoders. However, the MLP and SVM 
models experienced a 3% decrease in accuracy performance. The high-dimensional dataset negatively impacted 
these models’ performance. Meanwhile, the KAN model achieved the best performance with an accuracy of 
approximately 82%, improving by 4%. This success is attributed to KAN’s spline-based transformations, which 
help reduce the influence of irrelevant components by learning only the most discriminative variables in high-
dimensional feature spaces. The adaptive grid structure enabled the model to balance both global and local 
patterns in data distribution, minimizing the risk of overfitting. Consequently, KAN demonstrated stable and 
reliable predictions even on high-dimensional feature sets. In this context, KAN achieving an 82% accuracy 
rate can be attributed to its ability to minimize information loss while simultaneously creating flexible and 
generalizable decision boundaries.

In this study, Wilcoxon tests and McNemar’s tests were conducted to statistically evaluate the comparison 
of model predictions. Both tests yielded largely similar results. The KAN, MLP, and SVM models demonstrated 
statistically significantly better performance than the GNB model in all tests. In four tests related to the image 
dataset, the KAN, MLP, and SVM models showed statistically significantly better performance than the RF 
model.

Conclusion
In this study, an original dataset containing both tabular and image data was used to address the crayfish sex 
classification problem, and classical machine learning as well as deep learning algorithms were compared. The 
effects of different missing-value imputation techniques, normalization procedures, and autoencoder-based 
feature extraction approaches on model performance were examined.

The obtained results indicated that the KAN model achieved the highest overall accuracy across both data 
types. The features extracted through the autoencoder architecture enhanced the performance of classical 
models, with the SVM and MLP models showing strong results on image-based datasets. With the stacked 
autoencoder architecture, the KAN model not only improved its performance but also outperformed the other 
models, demonstrating better adaptability in high-dimensional feature spaces. The applied statistical tests 

Scientific Reports |         (2026) 16:3971 14| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


(Wilcoxon and McNemar) confirmed that the KAN, MLP, and SVM models achieved statistically significantly 
better performance compared to the GNB model.

Future research can improve the results by building upon this study. First, the amount of data can be 
increased through natural data collection methods or by generating synthetic data using deep learning-based 
generative approaches. Then, all the processes used in this study can be repeated in the same manner. Additional 
classification methods can be incorporated into the established frameworks, or the feature extraction mechanism 
used with autoencoders can be improved. Furthermore, the existing classification architectures in this study can 
be applied to other species where sex classification is important.

Data availability
The datasets generated and/or analysed during the current study are available in the Zenodo repository: ​h​t​t​p​s​
:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​7​5​1​6​9​6​3​. The source codes developed for the experiments are stored in a GitHub 
repository at https:​​​//gith​ub.​com/yasinatilk​an60/Cra​yfi​sh​-Sex-Identification.

Received: 3 April 2025; Accepted: 24 December 2025

References
	 1.	 Pastorino, P. et al. The invasive red swamp crayfish (Procambarus clarkii) as a bioindicator of microplastic pollution: insights from 

lake Candia (northwestern Italy). Ecol. Ind. 150, 110200 (2023).
	 2.	 Piscart, C. et al. In Identification and Ecology of Freshwater Arthropods in the Mediterranean Basin 157–223 (Elsevier, 2024).
	 3.	 Muruganandam, M. et al. Impact of climate change and anthropogenic activities on aquatic ecosystem–A review. Environ. Res. 

238, 117233 (2023).
	 4.	 Özdoğan, H. B. & Koca, H. U. Effects of different diets on growth and survival of first feeding second-stage juvenile Pontastacus 

leptodactylus (Eschscholtz, 1823)(Decapoda, Astacidea). Crustaceana 96, 673–682 (2023).
	 5.	 Đuretanović, S., Rajković, M. & Maguire, I. Ecological Sustainability of Fish Resources of Inland Waters of the Western Balkans: 

Freshwater Fish Stocks, Sustainable Use and Conservation 341–374 (Springer, 2024).
	 6.	 Suryanto, M. E. et al. Using crayfish behavior assay as a simple and sensitive model to evaluate potential adverse effects of water 

pollution: emphasis on antidepressants. Ecotoxicol. Environ. Saf. 265, 115507 (2023).
	 7.	 Kazery, J. A. et al. Internal and external Spatial analysis of trace elements in local crayfish. Environ. Technol., 1–14 (2024).
	 8.	 Jin, S. et al. Length-based stock assessment for Procambarus Clarkii aquaculture management in china: an alarming of ongoing 

recruitment overfishing. Aquaculture 579, 740182 (2024).
	 9.	 McLay, C. L., van den Brink, A. M., Longshaw, M. & Stebbing, P. Crayfish growth and reproduction. Biol.  Ecol. Crayfish 62–116 

(2016).
	10.	 Budd, A. M., Banh, Q. Q., Domingos, J. A. & Jerry, D. R. Sex control in fish: approaches, challenges and opportunities for 

aquaculture. J. Mar. Sci. Eng. 3, 329–355 (2015).
	11.	 Crandall, K. A. & De Grave, S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a 

complete species list. J. Crustacean Biology. 37, 615–653 (2017).
	12.	 Dargan, S., Kumar, M., Ayyagari, M. R. & Kumar, G. A survey of deep learning and its applications: a new paradigm to machine 

learning. Arch. Comput. Methods Eng. 27, 1071–1092 (2020).
	13.	 Lan, K. et al. A survey of data mining and deep learning in bioinformatics. J. Med. Syst. 42, 1–20 (2018).
	14.	 Lauriola, I., Lavelli, A. & Aiolli, F. An introduction to deep learning in natural Language processing: Models, techniques, and tools. 

Neurocomputing 470, 443–456 (2022).
	15.	 Bambil, D. et al. Plant species identification using color learning resources, shape, texture, through machine learning and artificial 

neural networks. Environ. Syst. Decisions. 40, 480–484 (2020).
	16.	 Khanmohammadi, R., Mirshafiee, M. S., Ghassemi, M. M. & Alhanai, T. Fetal gender identification using machine and deep 

learning algorithms on phonocardiogram signals. arXiv (2021).
	17.	 Atilkan, Y. et al. Advancing crayfish disease detection: A comparative study of deep learning and canonical machine learning 

techniques. Appl. Sci. 14, 6211 (2024).
	18.	 Korfmann, K., Gaggiotti, O. E. & Fumagalli, M. Deep learning in population genetics. Genome Biol. Evol. 15, evad008 (2023).
	19.	 Garabaghi, F. H., Benzer, R., Benzer, S. & Günal, A. Ç. Effect of polynomial, radial basis, and pearson VII function kernels in 

support vector machine algorithm for classification of crayfish. Ecol. Inf. 72, 101911 (2022).
	20.	 Li, J. et al. Deep learning for visual recognition and detection of aquatic animals: A review. Reviews Aquaculture. 15, 409–433 

(2023).
	21.	 Hasan, Y. & Siregar, K. Computer vision identification of species, sex, and age of Indonesian marine lobsters. INFOKUM 9, 478–

489 (2021).
	22.	 Ye, X. et al. Rapid and accurate crayfish sorting by size and maturity based on improved YOLOv5. Appl. Sci. 13, 8619 (2023).
	23.	 Wang, C. et al. Convolutional neural network-based portable computer vision system for freshness assessment of crayfish 

(Prokaryophyllus clarkii). J. Food Sci. 87, 5330–5339 (2022).
	24.	 Favaro, L., Tirelli, T. & Pessani, D. Modelling habitat requirements of white-clawed crayfish (Austropotamobius pallipes) using 

support vector machines. Knowl. Manag. Aquat. Ecosyst. 21 (2011).
	25.	 Chen, Y. et al. Study on positioning and detection of crayfish body parts based on machine vision. J. Food Meas. Charact. 18, 

4375–4387 (2024).
	26.	 Zhang, H., Yu, F., Sun, J., Shen, X. & Li, K. Deep learning for sea cucumber detection using stochastic gradient descent algorithm. 

Eur. J. Remote Sens. 53, 53–62 (2020).
	27.	 Borowicz, A. et al. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery. PloS One. 14, e0212532 

(2019).
	28.	 Eickholt, J., Kelly, D., Bryan, J., Miehls, S. & Zielinski, D. Advancements towards selective barrier passage by automatic species 

identification: applications of deep convolutional neural networks on images of dewatered fish. ICES J. Mar. Sci. 77, 2804–2813 
(2020).

	29.	 Kim, Y., Kim, S. Y. & Kim, H. Heterogeneous random forest. arXiv (2024).
	30.	 Nanni, L., Brahnam, S., Loreggia, A. & Barcellona, L. Heterogeneous ensemble for medical data classification. Analytics 2, 676–693 

(2023).
	31.	 Xie, Q., Zhang, Q., Xia, S., Zhou, X. & Wang, G. GAdaBoost: an efficient and robust adaboost algorithm based on granular-ball 

structure. Knowl. Based Syst., 113898 (2025).
	32.	 Lu, S. Y., Zhang, Y. D. & Yao, Y. D. A regularized transformer with adaptive token fusion for alzheimer’s disease diagnosis in brain 

magnetic resonance images. Eng. Appl. Artif. Intell. 155, 111058 (2025).

Scientific Reports |         (2026) 16:3971 15| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

https://doi.org/10.5281/zenodo.17516963
https://doi.org/10.5281/zenodo.17516963
https://github.com/yasinatilkan60/Crayfish-Sex-Identification
http://www.nature.com/scientificreports


	33.	 Lu, S. Y., Zhu, Z., Zhang, Y. D. & Yao, Y. D. Tuberculosis and pneumonia diagnosis in chest X-rays by large adaptive filter and 
aligning normalized network with report-guided multi-level alignment. Eng. Appl. Artif. Intell. 158, 111575 (2025).

	34.	 Lu, S. Y., Zhu, Z., Tang, Y., Zhang, X. & Liu, X. CTBViT: A novel ViT for tuberculosis classification with efficient block and 
randomized classifier. Biomed. Signal Process. Control. 100, 106981 (2025).

	35.	 Benzer, S. Crayfish Sex Classification Dataset.  https://doi.org/10.5281/zenodo.17516963%3E (2025).
	36.	 Yazicioglu, B., Reynolds, J. & Kozák, P. Different aspects of reproduction strategies in crayfish: A review. Knowl.  Manag. Aquat. 

Ecosyst., 33 (2016).
	37.	 Guan, H. & Liu, M. Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69, 1173–1185 (2021).
	38.	 Matta, S. et al. A systematic review of generalization research in medical image classification. Comput. Biol. Med. 183, 109256 

(2024).
	39.	 Brown, J., Nguyen, A. & Raj, N. Effect of camera choice on Image-Classification inference. Appl. Sci. 15, 246 (2024).
	40.	 Bradshaw, T. J., Huemann, Z., Hu, J. & Rahmim, A. A guide to cross-validation for artificial intelligence in medical imaging. 

Radiology: Artif. Intell. 5, e220232 (2023).
	41.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	42.	 Nalepa, J. & Kawulok, M. Selecting training sets for support vector machines: a review. Artif. Intell. Rev. 52, 857–900 (2019).
	43.	 Jakkula, V. Tutorial on support vector machine (svm). School EECS Wash. State Univ. 37, 3 (2006).
	44.	 Raschka, S. Naive bayes and text classification i-introduction and theory. arXiv (2014).
	45.	 Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13, 21–27 (1967).
	46.	 Bishop, C. M. & Nasrabadi, N. M. Pattern Recognition and Machine Learning Vol. 4 (Springer, 2006).
	47.	 What is the k-nearest neighbors (KNN) algorithm? https://www.ibm.com/think/topics/knn (2025).
	48.	 Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1 (MIT press Cambridge, 2016).
	49.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	50.	 What is random forest?  https://www.ibm.com/think/topics/random-forest (2025).
	51.	 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE. 86, 2278–

2324 (1998).
	52.	 Masci, J., Meier, U., Cireşan, D. & Schmidhuber, J. in Artificial neural networks and machine learning–ICANN 2011: 21st 

international conference on artificial neural networks, espoo, Finland, June 14–17, Proceedings, Part i 21. 52–59 (Springer, 2011).
	53.	 Schmid, U., Günther, J. & Diepold, K. Stacked denoising and stacked¨ convolutional autoencoders. (2017).
	54.	 Du, B. et al. Stacked convolutional denoising auto-encoders for feature representation. IEEE Trans. Cybernet. 47, 1017–1027 

(2016).
	55.	 Zhu, Y., Li, L. & Wu, X. Stacked convolutional sparse auto-encoders for representation learning. ACM Trans. Knowl. Discovery 

Data (TKDD). 15, 1–21 (2021).
	56.	 Tan, S. & Li, B. Signal and Information Processing Association Annual Summit and Conference (APSIPA).  1–4 (IEEE, 2014).
	57.	 Liu, Z. et al. Kan: Kolmogorov-arnold networks. arXiv (2024).
	58.	 Ibrahum, A. D. M., Shang, Z. & Hong, J. E. How resilient are Kolmogorov–Arnold networks in classification tasks? A robustness 

investigation. Appl. Sci. 14, 10173 (2024).
	59.	 Harris, C. R. et al. Array programming with numpy. Nature 585, 357–362 (2020).
	60.	 McKinney, W. Data structures for statistical computing in python. SciPy 445, 51–56 (2010).
	61.	 Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	62.	 Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. Adv.  Neural Inform. Process. Syst. 32 (2019).

Author contributions
Conceptualization, R.B. and S.B.; Methodology, Y.A., K.A. and T.A.; Software, Y.A., E.T.A. and B.K.; Validation, 
M.S.G. and F.E.; Data Curation, R.B. and S.B.; Writing—Original Draft Preparation, Y.A., E.T.A., K.A., T.A. and 
R.B.; Writing—Review and Editing, Y.A., K.A., T.A., R.B., M.S.G. and F.E.; Visualization, Y.A., K.A. and T.A.; 
Supervision, T.A., K.A., M.S.G., R.B. and S.B. All authors have read and agreed to the published version of the 
manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​3​4​0​9​5​-​z​​​​​.​​

Correspondence and requests for materials should be addressed to T.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2026 

Scientific Reports |         (2026) 16:3971 16| https://doi.org/10.1038/s41598-025-34095-z

www.nature.com/scientificreports/

https://doi.org/10.5281/zenodo.17516963%3E
https://www.ibm.com/think/topics/knn
https://www.ibm.com/think/topics/random-forest
https://doi.org/10.1038/s41598-025-34095-z
https://doi.org/10.1038/s41598-025-34095-z
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Enhancing crayfish sex identification with Kolmogorov-Arnold networks and stacked autoencoders
	﻿﻿Materials and methods
	﻿﻿Image dataset
	﻿General framework
	﻿Canonical machine learning methods
	﻿Stacked convolutional autoencoders
	﻿Kolmogorov Arnold networks

	﻿﻿Results
	﻿Evaluation metrics
	﻿Statistical tests
	﻿Wilcoxon test
	﻿McNemar’s test


	﻿﻿Experimental setup
	﻿Experimental results
	﻿﻿Discussion
	﻿Conclusion
	﻿References


