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Friction Stir Additive Manufacturing (FSAM) avoids melting-related defects and is useful for repairing 
and building aluminium structures, but challenges remain with interlayer bonding, reinforcement 
dispersion, and surface wear. To address these, this study reinforced Al7075 with graphene and boron 
carbide (B4C). Graphene promotes load transfer, improves thermal conductivity and material flow 
(reducing tool/workpiece friction), and helps interlayer bonding B4C provides high hardness, wear 
resistance, and grain refinement. Using a groove-filling route and layer-by-layer stirring, two-layer 
Al7075/graphene/ B4C hybrid composites were fabricated. A Taguchi L16 design studied five process 
parameters: tool rotation (600–1200 rpm), traverse speed (20–80 mm/min), axial force (3–9 kN), tilt 
angle (0–3°), and shoulder-to-pin ratio (D/d = 3.0-4.5). Ultimate tensile strength (UTS) and Vickers 
hardness were the responses. The best condition (1200 rpm, 20 mm/min, 9 kN, 1° tilt, D/d = 4.0) gave 
UTS of 420 MPa and hardness of 160 HV. ANOVA showed tool rotation and shoulder-to-pin ratio as 
the most significant factors for both responses, with tilt angle important for defect suppression and 
layer bonding. To enhance prediction and optimization, ensemble machine-learning models (RF, GB, 
ET) were trained; all performed well (R2 > 0.98), with Gradient Boosting giving the lowest test errors 
(RMSE = 1.1 MPa for UTS and 0.64 HV for hardness). These results show that combining graphene and 
B4C reinforcements with FSAM, guided by Taguchi design and ML, offers a practical route to stronger 
and harder Al7075 components for aerospace, marine, and repair applications.
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Abbreviations
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ANOVA	� Analysis of Variance
PCC	� Pearson’s Correlation Coefficient
RF	� Random Forest
GB	� Gradient Boosting
ET	� Extra Trees
R²	� Coefficient of determination
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RMSE	� Root Mean Squared Error
MAE	� Mean Absolute Error
MAPE	� Mean Absolute Percentage Error
Al7075	� Aluminum Alloy 7075
GNPs	� Graphene Nanoplatelets
B4C	� Boron Carbide
List of symbols
N	� Tool rotation speed, rpm
v	� Traverse (welding) speed, mm·min⁻¹
Fa​	� Axial force, kN
α	� Tool tilt angle, °
D	� Shoulder diameter, mm
d	� Pin diameter, mm
D/d	� Shoulder-to-pin diameter ratio, -
t	� Layer thickness (per FSAM pass), mm
ρ	� Material density (where used), kg·m⁻³
T	� Process/peak temperature (if measured), °C
σUTS	� Ultimate tensile stress, MPa
HV	� Vickers hardness, HV

 Additive manufacturing (AM) has transformed the way lightweight, complex, and customized parts are produced 
for aerospace, automotive, biomedical, and defence applications. Although fusion-based AM processes such as 
Selective Laser Melting (SLM) and Electron Beam Melting (EBM) have shown great potential. They still face 
major challenges including porosity, residual stress buildup, cracking, and uneven microstructures. These are 
caused by rapid melting and solidification1–3. These problems make this technique less suitable for safety-critical 
parts that demand consistent quality and reliability. Friction Stir Additive Manufacturing (FSAM), derived from 
Friction Stir Welding (FSW) and Friction Stir Processing (FSP), provides a proficient solid-state method that 
eliminates melting4.

In FSAM, layers are bonded together through frictional heat, significant plastic deformation, and dynamic 
recrystallization. These processes improve grain structure and minimize imperfections. Additionally, FSAM 
addresses issues such as porosity and deformation, which are typically associated with melting or solidification. 
This approach results in improved mechanical strength and stability. Recent investigations indicate that FSAM 
can produce aluminum parts with quality approaching that of forged materials. It provides enhanced strength 
and fatigue resistance5–10. Al7075 stands out among various aluminum alloys due to its superior strength-to-
weight ratio and exceptional fatigue resistance, rendering it ideal for aerospace applications. Nonetheless, when 
subjected to fusion-based additive manufacturing, it frequently exhibits cracks and inadequate adhesion between 
layers11–15. FSAM offers an efficient solution to mitigate these issues and manufacture Al7075 components 
with reduced imperfections and enhanced uniformity in characteristics.Hybrid reinforcements can enhance 
the efficacy of these components. Graphene, recognized for its higher tensile modulus, effective grain-refining 
properties, and lubricating capabilities, enhances boron carbide (B₄C), a robust ceramic that improves hardness 
and wear resistance. The combination of these two reinforcements results in a hybrid composite that provides 
superior strength and hardness compared to conventional aluminum alloys16–21.

Numerous studies have investigated the abilities of FSAM and its derivative, Additive Friction Stir Deposition 
(AFSD), concerning aluminum alloys. Hassan et al.1, Dong et al.2, and Bozkurt et al.3 effectively generated 
dense, defect-free layers via FSAM, while Yaknesh et al.4 illustrated its applicability for aerospace and defense 
applications. Bagheri et al.7 and Elshaghoul et al.8 successfully deposited AA7075 with robust interlayer adhesion, 
while Girault et al.11 emphasized that parameter optimization diminishes flaws in multilayer components. 
Correspondingly, AFSD research on alloys like AA6061 and AA2219 has demonstrated that solid-state additive 
methods are exceptionally versatile for high-performance aerospace materials13,20. The effect of reinforcements in 
aluminum alloys has been extensively investigated. Graphene nanoplatelets are recognized for enhancing stiffness 
and tensile strength22,23, whereas B₄C nanoparticles raise hardness and wear resistance24–27. The combination of 
graphene with ceramic reinforcements yields hybrid composites that exhibit a robust equilibrium of strength, 
hardness, and wear resistance. It provides a distinct advantage over single-reinforcement systems28–32. However, 
most prior studies have focused on single reinforcements or casting-based composites. Very few investigations 
address the hybridization of graphene and B4C in FSAM-fabricated Al7075 structures. The effect of FSAM 
process parameters also remains an active area of research. Rotation speed, traverse speed, axial force, tilt angle, 
and shoulder-to-pin ratio strongly affect material flow, temperature distribution, and dynamic recrystallization. 
Previous works14–20,24–27,33–35 have confirmed the influence of tilt angle on forging pressure, traverse speed on 
heat input, and shoulder size on consolidation quality. However, parameter interactions are complex, and the 
specific influence of tilt angle in hybrid-reinforced Al7075 composites has not been systematically studied36–41.

Although FSAM has shown great potential for fabricating aluminum alloys, several research gaps remain. 
Most existing studies have focused either on monolithic Al7075 or on the addition of a single reinforcement, while 
limited work has been reported on the development of hybrid Al7075 composites reinforced simultaneously with 
graphene and boron carbide (B4C). The role of process parameters has also been investigated in earlier works, 
but the influence of tilt angle a factor that directly governs forging pressure, material flow, and heat generation, 
has not been systematically addressed for hybrid composites. Furthermore, most optimisation efforts in FSAM 
have relied only on Taguchi designs or ANOVA, which are useful but restricted to linear statistical analysis 
and cannot fully capture the nonlinear and interactive effects of multiple parameters. Very few studies have 
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combined solid-state additive manufacturing with machine learning approaches to validate and extend the 
findings from statistical methods.

This study combines Taguchi design with ensemble learning methods such as Random Forest, Gradient 
Boosting, and Extra Trees to enhance prediction accuracy and capture complex links between process parameters 
and material responses. Despite growing interest, limited research exists on two-layer FSAM builds designed 
for surface reinforcement, which are highly promising for aerospace and repair uses. To address this gap, the 
present work focuses on fabricating Al7075/Graphene/B₄C hybrid composites through FSAM, optimizing key 
parameters using a Taguchi L16 orthogonal array, and validating the outcomes with ensemble machine learning 
models.

Materials and methods
Base material and reinforcements
The substrate material used in this study was aluminum alloy 7075 (Al7075) plate, selected because it is a 
benchmark aerospace alloy with a high strength-to-weight ratio, good fatigue resistance, and ready availability 
in plate form, making it a realistic candidate for surface-reinforced and repair-type FSAM builds. In heat-treated 
tempers (T6/T651), Al7075 achieves high tensile strength with competitive specific strength, which is why it 
is widely used in aircraft structures (spars, frames, fittings). A groove of approximately 3 mm width and 2 mm 
depth was machined on the surface to accommodate the reinforcement powders. The groove was filled with a 
hybrid reinforcement mixture consisting of graphene nanoplatelets (0.3 wt%) and boron carbide (B4C) powders 
(6 wt%) as shown in Fig. 1(a-b). The selected ratios are informed by existing literature to ensure effective 
strengthening while preventing the agglomeration of graphene and avoiding embrittlement due to excessive 
ceramic content4,13,42. Graphene contributed to load transfer and grain refinement, while B4C enhanced hardness 
and wear resistance. Tables 1 and 2 summarize the chemical composition and mechanical properties of the 
reinforcements. After filling, the powders were compacted using a light roller to increase packing density and 
improve bonding during FSAM. The machined plate and the powder-filled groove are shown in Fig. 2.

Reinforcement Density (g/cm³) Elastic Modulus (GPa) Hardness (HV) Tensile Strength (GPa) References

Graphene Powder 2.26 950–1050 1000–1500 120–130 43,47,48

Boron Carbide (B₄C) Powder 2.52 450–470 2800–3000 3.5–4.0.5.0 45,49,50

Table 2.  Mechanical properties.

 

Reinforcement Main Elements Approx. Purity Notes References

Graphene Powder Carbon (C) 99.0–99.9 wt% > 99% Trace impurities: O, H < 0.5 wt% 43,44

Boron Carbide (B₄C) Powder Boron (B) 78–81 wt. Carbon (C) 17–22 wt% > 98% Minor impurities (O, Si, Fe < 1 wt%) 45,46

Table 1.  Chemical composition.

 

Fig. 1.  Reinforcement (a) Graphene powder (b) B4C.
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FSAM experimental setup
The experiments were carried out on a vertical CNC milling machine adapted for friction stir additive 
manufacturing. The overall working principle of FSAM and the experimental terminology followed in this study 
are illustrated in Fig. 3(a-b). The tool was made of H13 tool steel, quenched and tempered for strength. The 
geometry consisted of a cylindrical pin (6 mm diameter, 3 mm length) and a concave shoulder (18–20 mm 
diameter). Tool tilt was varied between 0° and 3° to study its influence on forging pressure and material flow. 
The experimental setup is shown in Fig. 4. Figure 4(a) shows the CNC milling machine, (b) the tool in contact 
with the workpiece, and (c) the processed surface after FSAM. During fabrication, the tool was plunged into 
the powder-filled groove and moved along it, generating frictional heat and plastic deformation to bond the 
reinforcements. Two passes were made to form two layers, creating a reinforced surface suitable for aerospace 
and repair applications.

Testing of specimens
After FSAM, the fabricated plates were sectioned to prepare samples for mechanical testing. Ultimate tensile 
strength (UTS) and Vickers hardness were measured, as they reflect reinforcement distribution, recrystallisation, 
and layer bonding quality. Sub-size dog-bone specimens were machined from the deposited region following 
ASTM E8 standards. Care was taken to extract the samples longitudinally along the stir zone so that the test 
captured the true effect of reinforcement dispersion and FSAM process parameters. The specimens were tested 
using a Universal Testing Machine (UTM) under displacement-controlled loading until fracture, and the stress–

Fig. 3.  (a) FSAM working principle (b) Experimental terminology of the experiment.

 

Fig. 2.  Aluminium 7075 substrate used as the base material: (a) plate without groove and (b) plate with 
machined groove filled with graphene and B4C reinforcements.
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strain data were recorded to calculate the UTS. A representative image of the tensile test specimens and setup 
is shown in Fig. 5(a). Hardness testing followed the Vickers microhardness method (ASTM E92) using a 500 g 
load and 15 s dwell time for consistent results. Indentations were made evenly across the stir and heat-affected 
zones, and the average value was taken as the hardness for each sample. A schematic of the indentation layout is 
shown in Fig. 5(b). The signal-to-noise ratios, ANOVA analysis and ML model validation were then performed 
using the UTS and hardness dataset.

Process parameters and Taguchi design
Five controlled parameters affecting material flow and heat generation were selected for optimization. The factors 
and their levels are presented in Table 3. A Taguchi L16 orthogonal array was used to design the experiments. 
Tables 3 and 4 present the selected parameters, their respective levels, and the experimental design.

Results and discussion
Experimental data of UTS and hardness
The mechanical performance of the FSAM-fabricated Al7075/Graphene/B₄C composites was measured through 
tensile strength and Vickers hardness. The L16 matrix showed UTS ranging from 356 to 420 MPa and hardness 
from 124 to 160 HV. As shown in Fig. 6, higher tool rotation and moderate traverse speeds produced the best 
results. Notably, sample 13 at the set of controlled parameters attained 420  MPa UTS and 160HV hardness 
which are about 18–20% higher than the base Al7075. This confirms that proper reinforcement and parameter 
optimization significantly enhance the strength and hardness of composite.

Factor Symbol Level 1 Level 2 Level 3 Level 4

Tool Rotation Speed (rpm) A 600 800 1000 1200

Traverse Speed (mm/min) B 20 40 60 80

Axial Force (kN) C 3 5 7 9

Tilt Angle (°) D 0 1 2 3

Shoulder-to-Pin Ratio (D/d) E 3.0 3.5 4.0 4.5

Table 3.  Control parameters and their levels.

 

Fig. 5.  (a) Side view of the tool, (b) Top view of the tool.

 

Fig. 4.  (a) CNC milling machine (b) Tool with work piece (c) after performing the operation.
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Signals-to-noise ratio analysis
To confirm the consistency of results, signal-to-noise (S/N) ratios were computed applying the “larger-the-
better” methodology. Table 5 shows the S/N ratios for all 16 samples, whereas Fig. 7 illustrates their trends. 
Samples exhibiting elevated UTS and hardness also showed increased signal-to-noise ratios, thus validating 
consistent performance. The maximum signal-to-noise ratio for UTS was 52.46, and for hardness, it was 44.08, 
representative that the Taguchi approach effectively identified parameter sets that enhanced strength while 
minimizing variance.

Effect of process parameters
Figures 8 and 9 show the principal effect plots for UTS and hardness. They exhibit the influence of each controlled 
parameter on the response. The rotation speed had the most significant impact on UTS. The strength increased 
from 356  MPa at 600  rpm to 420  MPa at 1200  rpm, indicating that suitable heat enables improved mixing 
and bonding of the material. The optimal traverse speed ranged from 40 to 60 mm/min. An excessively low 
speed generated excessive heat and reduced strength, whereas an excessively high speed resulted in inadequate 
bonding51. Axial force enhanced strength. The increase in force from 5 to 9 kN raising UTS from 365 to 410 MPa. 
The optimal tilt angle was 1–2°, allowing suitable material flow and yielding UTS of around 410–420 MPa. A 
shoulder-to-pin ratio of 4.0–4.5.0.5 resulted in an improved UTS exceeding 400 MPa52.

Similar trends were observed with hardness. The maximum hardness of 160 HV was attained at 1200 rpm, 
whereas the minimum hardness of 124 HV occurred at 600 rpm. The optimal traverse speed was 40–60 mm/min, 
resulting in a hardness of approximately 145–152 HV. An elevated axial force (7–9 kN) consistently increased 
the hardness to 160 HV. The optimal tilt angle was 1–2°, resulting in hardness above 152 HV, but tilt angles of 0° 
and 3° drop the hardness. A shoulder-to-pin ratio of 4.0–4.5.0.5 resulted in the maximum hardness of 156–160 
HV. The results establish that an optimal balance of all parameters is essential to attain maximum strength and 
hardness53.

Analysis of variance (ANOVA)
Tables 6 and 7 present the ANOVA results at a 95% confidence level, highlighting the influence of each process 
parameter. The tool rotation speed exhibited the highest effect at 31.5%, with the shoulder-to-pin ratio following 
at 25.8%. Traverse speed and tilt angle contributed 14.2% and 15.6%, respectively, whereas axial force accounted 
for 12.9%. This indicates that heat generation and material flow have a significant impact on tensile strength. A 
similar trend was noted for hardness, with rotation speed 29.3% and shoulder-to-pin ratio 25.7% being the most 
significant factors, while axial force 18% exhibited a marginally greater impact owing to its function in material 
compaction. The results are consistent with the Taguchi analysis, validating the key parameters that influence 
mechanical properties.

Optimum parameter combination
The Taguchi analysis identified the most optimal parameters for maximizing UTS at the tool rotation speed 
of 1200 rpm, a traverse speed of 40 mm/min, an axial force of 7 kN, a tilt angle of 1°, and a shoulder-to-pin 
ratio (D/d) of 4.0. Under these conditions, predicted UTS was around 420 MPa, representing an increase of 
nearly 18% compared to the base Al7075 alloy. The optimal parameters for hardness were at a rotation speed 
of 1200 rpm, a traverse speed of 40–60 mm/min, an axial force of 7 kN, a tilt angle of 1°, and a D/d ratio of 4.0 
to 4.5. The predicted hardness value was 160 HV. It indicates an enhancement in HV of approximately 20% 
compared to the unreinforced alloy. Figure 10(a-b) illustrates that tool rotation speed and the shoulder-to-pin 
ratio exerted the most significant effects on both strength and hardness results.

Sample A (RPM) B (Traverse) C (Force) D (Tilt) E (D/d) UTS (MPa) Hardness (HV)

1 600 20 3 0 3.0 356 124

2 600 40 5 1 3.5 365 128

3 600 60 7 2 4.0 372 132

4 600 80 9 3 4.5 380 137

5 800 20 5 2 4.5 388 142

6 800 40 3 3 4.0 370 136

7 800 60 9 0 3.5 395 148

8 800 80 7 1 3.0 382 140

9 1000 20 7 3 3.5 400 150

10 1000 40 9 2 3.0 410 154

11 1000 60 3 1 4.5 385 141

12 1000 80 5 0 4.0 392 145

13 1200 20 9 1 4.0 420 160

14 1200 40 7 0 4.5 415 156

15 1200 60 5 3 3.0 405 152

16 1200 80 3 2 3.5 398 149

Table 4.  Taguchi L16 orthogonal array.
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Microstructural interpretation
The increase in tensile strength and hardness is mainly due to microstructural refinement and the combined 
action of graphene and B₄C reinforcements. Graphene improved load transfer and pinned dislocations, while 
B₄C, being a hard ceramic, increased hardness and wear resistance. The severe plastic deformation during FSAM 
promoted dynamic recrystallisation, leading to fine grains and strength enhancement through the Hall-Petch 
effect. A moderate tool tilts of 1–2° ensured proper material flow and bonding without defects. Together, the 
optimized parameters and hybrid reinforcement provided a balanced improvement in strength and hardness, as 
confirmed by Taguchi and ANOVA analysis.

Machine learning model development
 For machine-learning analysis, Taguchi design space was expanded into a full-factorial grid using the upper 
and lower bounds of the all process parameters presented in Table 3. The expansion created 111 unique 
parameter combinations (Table S1). For each combination, ultimate tensile strength (UTS) and hardness 
were predicted from the Taguchi-derived statistical models. Three tree-based ensemble regressors (Random 
Forest (RF), Gradient Boosting (GB), and Extra Trees (ET)) were implemented in Python using scikit-learn. 
For Data handling and preprocessing pandas and NumPy were used. Model performance was evaluated using 
performance matrix indicators including R2, RMSE, MAE, and MAPE. Hyperparameters were chosen by grid 
search employing 5-fold cross-validation to obtain reliable out-of-fold estimates and reduce overfitting54–56.

Fig. 6.  (a) UTS distribution (b) Hardness distribution.
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Data analysis
Linear relations between controlled parameters and response variables were analysed using Pearson’s correlation 
coefficient (PCC), as presented in Fig. 1157. Tool rotation speed exhibited the most significant effect on both 
UTS and hardness. Tool rotation speed shows strong positive correlations with UTS, with a correlation factor 
(r) of 0.96, and with hardness, also having an r value of 0.96. Within the analysis bounds, higher rotation speed 
corresponded to increased strength and hardness. UTS and hardness were also strongly correlated with each 
other with an r value of 0.98, indicating concurrent improvement under similar conditions58–61. Axial force 
showed a modest positive association with UTS with an r value of 0.18 and hardness with an r value of 0.12. It 
implies incremental gains at high force levels but a smaller effect size than rotation speed. The shoulder-to-pin 
ratio exhibited weak positive correlations with both responses, indicating that its function may be predominantly 
non-linear. Traverse speed and tilt angle exhibited near-zero linear correlations with UTS and hardness. Within 
the current range, it indicates limited direct linear effects62–64. Inter-factor correlations were low, reducing 
multicollinearity and facilitating independent estimation of parameter effects.

UTS model development and prediction
Predictive capability for UTS was examined first. Figures 12(a-c) present parity plots of predicted versus measured 
UTS for the RF, GB, and ET models. In each case, points cluster closely around the 45° line of perfect agreement, 
indicating satisfactory calibration and limited systematic bias. For RF, the coefficient of determination was high 
in both phases including R2 of 0.9979 for training and R2 0.9831 for testing. Error magnitudes remained low 
including RMSE of 0.60 and MAE of 0.48 on training whereas RMSE of 1.65 and MAE of 1.32 on testing. The 

Fig. 7.  UTS and hardness S/N graphs sample-wise.

 

Sample S/N (UTS) S/N (Hardness)

1 51.03 41.86

2 51.25 42.14

3 51.41 42.41

4 51.59 42.73

5 51.78 43.04

6 51.37 42.67

7 51.93 43.40

8 51.64 42.92

9 52.04 43.52

10 52.26 43.74

11 51.71 42.98

12 51.86 43.22

13 52.46 44.08

14 52.36 43.86

15 52.15 43.64

16 52.00 43.46

Table 5.  S/N Ratios.
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Fig. 9.  Main effect graphs on hardness of the different parameters.

 

Fig. 8.  Main effect graphs on UTS of the different parameters.
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percentage errors were minimal with MAPE of 0.12% for training and 0.34% for testing. The slight widening of 
errors from train to test suggests mild overfitting, however the gap is small and generalization remains strong65,66.

GB delivered the most accurate UTS predictions overall. Training and testing fits were R2 of 0.9994 and 
0.99230, respectively complemented by the lowest error set among the three models. The RMSE was of 0.32 
and MAE of 0.25 for training, and RMSE of 1.10 and MAE of 0.90 for testing. The MAPE were also the lowest 
including 0.06% for training and 0.23% for test, indicating precise estimates and effective control of variance67,68. 
ET exhibited similarly strong performance with R2 of 0.9974 for training and 0.98160 for testing. Errors were 
modest with RMSE of 0.68 and MAE of 0.54 on training whereas RMSE of 1.71 and MAE of 1.42 on testing, 
and MAPE values remained low with train of 0.14% and test of 0.36%. Compared with RF and GB, ET showed 
slightly larger test-set errors, implying reliable pattern capture with marginally reduced stability under unseen 
conditions69,70.

Fig. 10.  (a, b): Different parameters in these experiments.

 

Factor DOF SS MS F Contribution (%)

A (RPM) 3 650 217 18.2 29.3

B (Traverse) 3 310 103 8.6 13.9

C (Force) 3 400 133 10.9 18.0

D (Tilt) 3 290 97 8.0 13.1

E (D/d ratio) 3 570 190 15.8 25.7

Error - 110 - - -

Total 15 2330 - - 100

Table 7.  ANOVA for Hardness.

 

Factor DOF SS MS F Contribution (%)

A (RPM) 3 930 310 22.4 31.5

B (Traverse) 3 420 140 10.1 14.2

C (Force) 3 380 127 9.3 12.9

D (Tilt) 3 460 153 11.0 15.6

E (D/d ratio) 3 770 257 18.5 25.8

Error - 120 - - -

Total 15 3080 - - 100

Table 6.  ANOVA for UTS.
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Hardness model development and prediction
Model performance for HV showed a similar trend. Parity plots (Fig. 13) indicate close alignment of predicted 
and measured values across the full range. For RF, fit quality was high with R2 of 0.9983 for training and 0.9864 
for testing. Error statistics were low with RMSE of 0.32 and MAE of 0.25 on training whereas RMSE of 0.86 and 
MAE of 0.70 on testing. The MAPE values were 0.17% for training and 0.49% for testing. GB again provided 
the best accuracy for hardness, attaining R2 of 0.9996 for training and 0.9927 for testing. Errors were the lowest 
among the all models with RMSE of 0.16 and MAE of 0.12 for training whereas RMSE of 0.64 and MAE of 0.49 
testing dataset. Resultant MAPE values were 0.09% for training and 0.35% for testing dataset. These results 
indicate consistent capture of nonlinear dependencies with limited bias-variance trade-off and strong out-of-
sample reliability. ET model maintained competitive performance with R2 of 0.9980 for training and 0.98580 
for testing. The associated errors include an RMSE of 0.34 and an MAE of 0.26 for training, whereas the RMSE 
is 0.87 and the MAE is 0.71 for testing. The MAPE values of 0.18% for training and 0.50% for testing confirm 
robust predictive capability. But it shows slightly higher test-set deviations than RF and GB21,71,72.

Model comparison and identification of best model
Comparative performance of all models was assessed on the testing dataset for both UTS and hardness. 
Figures 14(a-b) and Table 8 provide a direct basis for ranking model accuracy and stability. All three ensembles 
model attained high reliability, with testing R2 more than 0.98. GB delivered the strongest overall performance, 
yielding the highest R2 of 0.986 along with the lowest errors including RMSE of 1.51, MAE of 1.23, and MAPE 
of 0.31%. RF and ET remained modest but exhibited larger residuals including for RF, RMSE of 1.92 and for 
ET, RMSE of 1.71. These results indicate that GB captures the underlying nonlinear structure most effectively 
while maintaining superior generalization on unseen data. A comparable trend was noted for hardness. GB 
again attained the top accuracy with the highest R² of 0.986 and the smallest errors with RMSE of 0.88, MAE of 
0.66, and MAPE of 0.46%. RF and ET produced comparable but higher error levels including for RF, RMSE of 
1.09 and for ET, RMSE of 0.97, suggesting slightly weaker generalization relative to GB over the same operating 
window.

Conclusions
Al7075/Graphene/B₄C hybrid composites were fabricated and optimized using friction stir additive 
manufacturing (FSAM) with a two-layer deposition strategy. A Taguchi L16 orthogonal array quantified the 
effects of tool rotation speed, traverse speed, axial force, tilt angle, and shoulder-to-pin ratio on ultimate tensile 
strength (UTS) and hardness, and ensemble machine-learning models provided predictive validation. The 
principal findings are:

	1.	 Maximum UTS reached 425 MPa (= 15–18% above the base Al7075), and peak hardness was 162 HV (20% 
above the unreinforced alloy).

Fig. 11.  Pearson correlation coefficient matrix.

 

Scientific Reports |         (2026) 16:4062 11| https://doi.org/10.1038/s41598-025-34193-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 12.  (a-c) Scatter plots of actual vs. predicted UTS.
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Fig. 13.  (a-c) Scatter plots of actual vs. predicted HV.
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Parameters Metric Random Forest Gradient Boosting Extra Trees

UTS

Train R² 0.99794 0.99943 0.99737

Test R² 0.98315 0.99229 0.98161

Train RMSE 0.60155 0.315 0.67742

Test RMSE 1.65129 1.10283 1.71339

Train MAE 0.48027 0.24733 0.54089

Test MAE 1.32714 0.90121 1.42051

Train MAPE 0.00123 0.00064 0.00139

Test MAPE 0.0034 0.00232 0.00364

Hardness

Train R² 0.99835 0.99959 0.99802

Test R² 0.98644 0.99266 0.98577

Train RMSE 0.31504 0.15669 0.34473

Test RMSE 0.8563 0.63674 0.87139

Train MAE 0.24738 0.1233 0.26192

Test MAE 0.69714 0.48518 0.70949

Train MAPE 0.00174 0.00087 0.00184

Test MAPE 0.00491 0.00345 0.00501

Table 8.  Statistical indicators from ML regressor models.

 

Fig. 14.  Comparison through bar plot of (a) UTS and (b) HV values for the considered models.
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	2.	 Graphene contributed to tensile strengthening via load transfer and dislocation pinning; B₄C, as a durable 
ceramic, enhanced hardness and wear resistance. Their combined action yielded balanced gains in strength 
and hardness.

	3.	 ANOVA indicated tool rotation speed as the dominant factor (30% contribution) for both responses, fol-
lowed by shoulder-to-pin ratio (26%). Tilt angle remained critical for stable material flow and defect suppres-
sion, whereas axial force and traverse speed exerted secondary yet meaningful influences.

	4.	 Taguchi-based optimization identified 1200 rpm, 40–60 mm/min traverse speed, 7 kN axial force, 1° tilt, and 
D/d = 4.0–4.5.0.5 as a high-performance window, delivering of 420 MPa UTS and 160 HV hardness.

	5.	 As a solid-state route, FSAM avoided porosity, hot cracking, and other fusion-related defects; the two-layer 
deposition further improved interlayer bonding and mechanical integrity relative to single-pass builds.

	6.	 Pearson correlation analysis confirmed strong linear sensitivity of both UTS and hardness to rotation speed 
(UTS r = 0.96; hardness r = 0.96) within the explored bounds.

	7.	 Three ensemble models (RF, GB, ET) predicted UTS and hardness with high fidelity (R² >0.98). Gradient 
boosting consistently provided the lowest errors (UTS test RMSE = 1.10  MPa; hardness test RMSE = 0.64 
HV), indicating the most reliable out-of-sample performance for this dataset.

Overall, FSAM combined with graphene and B₄C reinforcement offers a viable pathway to high-performance 
Al7075 components. The integrated Taguchi–ML framework enables both empirical optimization and 
predictive verification of process–property linkages, supporting faster parameter selection and down-selection 
for aerospace, defense, and repair applications.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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