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Interpretable deep learning reveals
distinct spectral and temporal
drivers of perceived musical
emotion

Yiming Gu'**, Chen Shao%***", Jingze Li**“ & Yinghan Fan3

This study addresses a fundamental question in music psychology: which specific, dynamic acoustic
features predict human listeners’ emotional responses along the dimensions of valence and arousal.
Our primary objective was to develop and validate an interpretable computational model that can
serve as a tool for testing and advancing theories of music cognition. Using the publicly available DEAM
dataset, containing 1,802 music excerpts with continuous valence-arousal ratings, we developed a
novel, theory-guided neural network. This proposed model integrates a convolutional pathway for
local spectral analysis with a Transformer pathway for capturing long-range temporal dependencies.
Critically, its learning process is constrained by established principles from music psychology to
enhance its plausibility. A core finding from an analysis of the model’s attention mechanisms was

that distinct acoustic patterns drive the two emotional dimensions: rhythmic regularity and spectral
flux emerged as strong predictors of arousal, whereas harmonic complexity and musical mode were
key predictors of valence. To validate our analytical tool, we confirmed that the model significantly
outperformed standard baselines in predictive accuracy, achieving a Concordance Correlation
Coefficient (CCC) of 0.67 for valence and 0.73 for arousal. Furthermore, an ablation study demonstrated
that the theory-guided constraints were essential for this superior performance. Together, these
findings provide robust computational evidence for the distinct roles of temporal and spectral features
in shaping emotional perception. This work demonstrates the utility of interpretable machine learning
as a powerful methodology for testing and refining psychological theories of music and emotion.

Keywords Music psychology, Emotion science, Computational modeling, Interpretable models, Arousal-
Valence model

Music is a universal and profoundly influential feature of human culture, with a well-documented capacity to
evoke affective experiences and express emotional meaning'~*. From the joyous anthems of celebration to the
somber melodies of remembrance, the power of music to shape our inner world is undeniable. Yet, a fundamental
scientific question persists: what are the precise underlying mechanisms that map complex, dynamic acoustic
signals onto our subjective emotional experiences? Understanding this mapping process is not only a central
goal of music psychology but also holds significant implications for the broader fields of affective science,
neuroscience, and potential clinical applications®>.

To systematically investigate this phenomenon, contemporary psychological science often conceptualizes
emotion using dimensional models, with Russell’s circumplex model being a dominant framework in this
domain®. Crucially, when modeling these dimensions, a theoretical distinction must be drawn between
perceived emotion—the emotion recognized in the musical structure by the listener—and induced emotion—
the subjective affective state felt by the listener’”. While these two processes are often correlated, they are distinct
psychological mechanisms. The present study, utilizing the DEAM dataset, specifically focuses on modeling
perceived emotion. As detailed in the dataset’s benchmarking protocol, annotators were instructed to identify
the emotion expressed by the music (“What do you think the overall arousal of this song is?“) rather than
their own physiological or subjective state®. This framework has proven particularly valuable for computational
research, as it provides a continuous and quantifiable target space for modeling the nuanced variations in
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emotional responses to music>!’. Building on this model, decades of music cognition research have established
foundational links between specific acoustic features and these emotional dimensions. For instance, fast tempi
and bright timbres are reliably associated with high arousal and positive valence, while slow tempi and minor
modes are linked to low arousal and negative valence!!13.

While these findings provide an essential theoretical bedrock, the correlational methods often used to obtain
them struggle to capture the non-linear, dynamic, and hierarchical nature of the music-emotion relationship'®!4,
Music is not a static collection of features but a structured process that unfolds over time, and our emotional
responses are similarly dynamic, evolving as the piece progresses. The advent of deep learning offers a new
kind of “computational microscope” capable of learning directly from complex acoustic representations and
discovering patterns inaccessible to traditional methods. Within psychology, such models should be viewed not
merely as engineering tools but as a methodological revolution, enabling researchers to analyze complex stimuli
with unprecedented granularity and thus drive theoretical development!*1¢,

However, the power of these deep learning models is accompanied by a significant challenge for scientific
inquiry: their “black box” nature, a well-recognized challenge in the field of Explainable Artificial Intelligence
(XAI) that hinders trust and scientific progress'’~'°. A model that accurately predicts an emotional response but
offers no insight into its decision-making process is of limited value for theory building. This “interpretability gap”
is a fundamental barrier, as science progresses by constructing and testing falsifiable theories about underlying
mechanisms. An unexplainable model is an untestable one; we cannot know if it operates on psychologically
realistic principles or simply exploits statistical artifacts. For a computational model to contribute meaningfully to
psychology, it must be interpretable, transforming it from a prediction engine into a computational instantiation
of a psychological theory'>*. Only when a model can reveal which acoustic features influence emotion in what
way can it be used to validate, refine, or challenge our existing scientific understanding.

To address this critical gap, the present study aimed to develop and test a theory-inspired, interpretable
computational model to identify the specific, dynamic spectro-temporal features that predict listeners’ perceived
valence and arousal in music. The core purpose was not merely to improve predictive accuracy, but to leverage
the model’s interpretability to gain psychological insights into the mechanisms of the music-emotion map. Based
on this objective, we formulated and tested three primary hypotheses:

1. Predictive Validity (Hypothesis 1): We hypothesized that a hybrid model integrating local spectral features
with long-range temporal dependencies would predict listeners’ valence and arousal ratings more accurately
than baseline models relying on a single feature type.

2. Interpretability and Psychological Plausibility (Hypothesis 2): We hypothesized that the model’s interpret-
ability mechanisms would reveal distinct patterns of acoustic cues for valence and arousal, and that these
patterns would be consistent with established findings in music psychology.

3. Value of Theoretical Constraints (Hypothesis 3): We hypothesized that explicitly guiding the model’s learn-
ing process with a priori psychological knowledge would simultaneously improve its predictive accuracy and
the psychological plausibility of its interpretations, compared to an unconstrained counterpart.

By testing these hypotheses, this study ultimately sought to determine if the emotional dimensions of valence
and arousal are driven by distinct and acoustically separable sets of musical features, a proposition central to
dimensional theories of emotion yet challenging to verify with traditional methods.

Materials and methods

Participants

The data for this study were sourced from the publicly available MediaEval Database for Emotional Analysis
in Music (DEAM)3. The emotion ratings were originally collected from participants recruited via the Amazon
Mechanical Turk (MTurk) platform?!. According to the dataset’s documentation, the annotation density varied
across the collection phases. For the 2013 and 2014 subsets, each excerpt was annotated by a minimum of
10 workers. However, for the 2015 subset, the number of annotators per song was reduced to five, although
these workers were specifically recruited based on their performance consistency in previous tasks. While
this recruitment strategy aimed to ensure data quality, the relatively low number of annotators per item—
particularly in the 2015 set—represents a limitation. In affective computing, larger annotator pools are typically
preferred to stabilize the high subjective variance inherent in emotional perception; thus, the “ground truth”
values derived from these smaller groups may be more susceptible to individual biases than those in datasets
with higher annotator density. Specific demographic information for the annotators, such as age, gender, or
cultural background, was not provided with the dataset. The potential implications of this limitation, particularly
regarding the sample’s generalizability, are addressed in the Discussion section.

Materials and apparatus

Musical stimuli

All musical stimuli were taken from the DEAM dataset, which comprises 1,802 music tracks in MP3 format
(44.1 kHz sampling rate). The collection includes 1,744 45-second excerpts and 58 full-length songs, covering a
diverse range of Western popular music genres (e.g., rock, pop, electronic, jazz), thus providing varied acoustic
input for the model®.

Emotion annotation apparatus
The original emotion annotations were collected using a two-dimensional graphical interface where participants
continuously rated the emotional content perceived in the music on the dimensions of valence and arousal while

listening to the music®.
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Procedure

The experimental procedure described here follows the protocol of the original DEAM dataset collection.
Participants, recruited via MTurk, were presented with the musical stimuli through the online interface. They
were instructed to move a cursor on a 2D grid to continuously report the perceived valence (x-axis) and arousal
(y-axis) of the music in real-time. The annotation sampling rate was subsequently normalized to a uniform 2
Hz. To account for initial response latency and stabilization, the annotations corresponding to the first 15 s of
each excerpt were excluded from the final analysis by the dataset’s creators. The resulting continuous time-series
data for valence and arousal, scaled from — 1 to + 1, served as the dependent variables for our modeling task®22.

Data analysis

Our data analysis strategy was designed to test the study’s three primary hypotheses. This involved (a) converting
raw audio into a psychoacoustically plausible input representation, (b) developing and training our primary
computational model (PVAN) along with several baseline models, and (c) evaluating the models based on both
predictive performance and interpretability.

Audio feature representation

To prepare the audio for model input, raw waveforms were first converted into a time-frequency representation
using the Constant-Q Transform (CQT)?*. The CQT was chosen over the more common Short-Time Fourier
Transform due to its logarithmic frequency resolution, which more closely aligns with human auditory perception
and the tonotopic organization of the auditory cortex, making it a more psychologically grounded choice?.

The PVAN computational model

To test our hypotheses, we developed the Psychologically Validated Attention Network (PVAN), an interpretable
neural network designed for time-series analysis of music emotion. The overall architecture of the PVAN model
is illustrated in Fig. 1. The model’s architecture consists of three key components:

o Dual-Pathway Encoder: The model processes the CQT input through two parallel encoders. A Convo-
lutional Neural Network (CNN) pathway captures local spectro-temporal patterns, which are analogous to
perceptual features like timbre and texture?. A Transformer-based self-attention pathway models long-range
temporal dependencies, analogous to the perception of musical form and narrative?.

o  Theory-Guided Constraint: A central innovation of the model is a regularization loss term, Lsensitivity »
designed to inject prior knowledge from music psychology into the training process. This “soft constraint”
guides the model’s attention to align with theoretically important acoustic events without requiring manual
annotations. This was operationalized by encouraging a positive correlation between the model’s attention
weights, A (¢), and the time-series of a pre-computed, theoretically relevant acoustic feature, Fyuide (%)
The selection of these guidance features adheres to the paradigm of Theory-Guided Data Science (TGDS),
which advocates integrating established scientific knowledge into machine learning models to improve gen-
eralizability and interpretability?”. Specifically, for the arousal dimension, we utilized rhythmic energy as the
guidance feature. This choice is grounded in the “energy-arousal” link derived from physiological entrain-
ment, and is empirically supported by Husain et al. (2002), who demonstrated a double dissociation where
tempo manipulations selectively altered perceived arousal but not valence?. For the valence dimension, we
utilized harmonic stability (chroma feature variance) to guide attention. This aligns with psychoacoustic
theories positing that harmonic uncertainty and root ambiguity (characteristics of minor/complex chords)
are the primary drivers of negative valence?”. By embedding these robust psychological priors as inductive
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Fig. 1. Schematic overview of the psychologically validated attention network (PVAN) architecture.
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biases, the constraint effectively prunes the search space of biologically implausible solutions and mitigates
the risk of the model learning spurious correlations from the limited training data. The loss is defined as:
Lsensitivity =1- COI'I'(A (t) 7Fguidc (t))

o  Prediction Head: The features from both pathways are fused and fed into a final set of layers that output
continuous predictions for valence and arousal over time.

Training and evaluation

A 5-fold cross-validation protocol was used for all model training and evaluation, with artist-level stratification
to prevent data leakage. Model performance was primarily assessed using the Concordance Correlation
200 z0 y

(CCC)*, a stringent metric for continuous data agreement, defined as: CCC = —— 7
EERE

Coeflicient

- To test Hypothesis 1, the PVAN model was compared against three baseline models representing traditional
(OpenSMILE feature-set)’!, spectral-based (DeepSpectrum CNN)32, and temporal-based (Music Transformer)
approaches®. To test Hypothesis 2 and 3, the trained PVAN model was subjected to interpretability analysis (via
Grad-CAM) and a systematic ablation study>.

Results
This section presents the research findings objectively and concisely. All results are presented in the context of
the research hypotheses, without subjective interpretation.

Hypothesis 1: predictive performance of PVAN
To test the first hypothesis (H1)—that a hybrid spectro-temporal model would outperform unimodal baseline
models—the predictive performance of PVAN was compared with the three baseline models. As shown in Table 1,
the PVAN model achieved the highest Concordance Correlation Coefficient (CCC) scores for both valence and
arousal prediction. The proposed model demonstrates a clear and statistically significant improvement over all
baseline approaches (all paired t-tests, p <.001). Notably, the performance gain is more pronounced compared to
the traditional hand-crafted feature model, highlighting the advantage of deep feature learning.

These results provide strong support for Hypothesis 1, indicating that an architecture integrating both
local spectral information and long-range temporal dependencies is superior for modeling the music-emotion
relationship.

Hypothesis 2: interpretable feature analysis

To test our second hypothesis (H2)—that the model would identify distinct and psychologically plausible
acoustic drivers for valence and arousal—we employed Gradient-weighted Class Activation Mapping (Grad-
CAM) to visualize the model’s internal feature importance.

Figure 2 provides a qualitative visualization of these learned patterns for two illustrative musical excerpts.
As depicted in Fig. 2a, for a high-arousal prediction on a rock excerpt, the model’s attention (indicated by the
heatmap) is concentrated on the sharp, vertical spectro-temporal transients. These visual patterns correspond to
the acoustic impact of drum hits, which are proxies for features like high Tempo and Spectral Flux. Conversely,
as shown in Fig. 2b, when making a low-valence prediction for a classical excerpt, the model focuses its attention
on the stable, horizontal harmonic structures of the sustained cello and piano notes. These patterns are acoustic
representations of low Harmonic Complexity.

These visualizations provide initial qualitative support for H2, suggesting that the model indeed learns
to focus on different types of acoustic events for arousal and valence predictions. To formally quantify these
observations, we conducted a multiple regression analysis. For each musical excerpt, we regressed the model’s
aggregated attention weights for a given prediction (e.g., high arousal) onto a set of standard, interpretable
acoustic features extracted using the librosa library®>.

Table 2 presents the standardized beta coeflicients (B) from this analysis. The quantitative results reveal a clear
dissociation in the feature patterns, corroborating our qualitative observations from Fig. 2. As hypothesized,
arousal was most strongly predicted by features related to time and energy, such as Tempo (B = 0.55, p <.001)
and Spectral Flux (f = 0.48, p <.001). This statistically confirms the pattern observed in Fig. 2a. In contrast,
valence was most strongly and negatively predicted by Harmonic Complexity (B = — 0.43, p <.001), which aligns
with the model’s focus on stable harmonic structures for the low-valence excerpt in Fig. 2b. These findings are

Model Valence (CCC) | Arousal (CCC)
Hand-crafted Features | 0.51 0.58
DeepSpectrum (CNN) | 0.59 0.65
Music Transformer 0.62 0.68
PVAN (Full Model) 0.67 0.73

Table 1. Predictive performance (concordance correlation coefficient) of the PVAN model and baselines for
Valence and arousal. Note: CCC = Concordance Correlation Coefficient. All models were evaluated on the
DEAM dataset using 5-fold cross-validation.
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Fig. 2. Grad-CAM Visualization of Salient Spectro-Temporal Regions for High-Arousal and Low-Valence
Excerpts.

Tempo (BPM) 0.09 0.55%%*
Spectral Centroid (Brightness) 0.31%* 0.18%
Spectral Flux (Timbral Variation) | —0.11 0.48%*
Harmonic Complexity —0.43*+* 0.15
Rhythmic Regularity 0.26%* 0.35%4%%

Table 2. Standardized beta (f) coeflicients from a regression analysis predicting model attention from key
acoustic features. Note:  represents the standardized regression coefficient. * p <.05, *p <.01, **p <.001.

highly consistent with the established music psychology literature and provide strong quantitative support for
Hypothesis 2112,

Hypothesis 3: ablation study of model components
To test the third hypothesis (H3)—the importance of theoretical constraints—an ablation study was conducted
by systematically removing key components from the full PVAN model and evaluating the resulting performance
degradation. The results are shown in Table 3.

The results clearly demonstrate the contribution of each component. Removing the psychological constraint
resulted in the most substantial performance degradation for both valence (ACCC = —0.09) and arousal (ACCC =
—0.11), underscoring its critical role. This finding strongly supports Hypothesis 3. Furthermore, removing either
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Model configuration Valence (CCC) | Arousal (CCC)
PVAN (Full Model) 0.67 0.73
Removed Psychological Constraint 0.58 0.62
Removed Temporal Attention (Transformer) | 0.61 0.69
Removed Spectral Attention (CNN) 0.63 0.66

Table 3. Results of the ablation study on PVAN model components, showing performance (CCC) after
removing each component.

the temporal or spectral pathway also significantly impaired performance, confirming their complementary
importance and justifying the hybrid dual-pathway design.

Discussion

This study sought to deconstruct the complex mapping between music’s acoustic features and human emotional
perception by developing and validating an interpretable computational model. Our results successfully
demonstrated that a hybrid neural network, guided by principles from music psychology, can accurately predict
dynamic emotional responses in terms of valence and arousal. The central finding of this research is the clear
dissociation of acoustic cues driving these two emotional dimensions: the model’s interpretable analysis revealed
that temporal and timbral-flux features (e.g., tempo, spectral flux) are primary drivers of arousal, while harmonic
and tonal features (e.g., harmonic complexity, modality) are the principal drivers of valence. As hypothesized,
the model’s hybrid architecture outperformed simpler baselines (H1), its interpretations were consistent with
established psychological theory (H2), and the inclusion of a theory-guided constraint was critical to its success
(H3). These findings offer not only a robust predictive model but also significant theoretical and methodological
contributions to the study of music and emotion.

Theoretical implications for music psychology

The findings of this study are not merely about the performance of a computational model; more importantly,
they provide computational evidence for psychological theories, which is the core contribution of this research
to the field of psychology.

First, the results of the ablation study (Table 3) provide strong computational evidence for multi-pathway
processing theories in music perception. The finding that removing either the spectral pathway (CNN) or the
temporal pathway (Transformer) leads to a significant drop in performance suggests that emotion perception
is not a monolithic process. It appears to depend on the parallel processing of timbre/texture (captured by the
spectral pathway) and musical structure/form (captured by the temporal pathway). This finding resonates with
theories that advocate for music cognition as a multifaceted, multi-level process and provides a computational
instantiation for these theories®®%.

Second, one of the most significant findings of this study is that constraining the model with our proposed
Theory-Guided Feature Sensitivity Constraint (Hypothesis 3) greatly enhances its performance. This result has
profound theoretical implications. It provides strong computational evidence for the “theory-driven” nature
of human music perception. The results show that a purely data-driven model (the unconstrained version)
performs poorly, whereas the model’s overall performance improves significantly when it is guided to focus
on acoustically relevant cues that are already known to be psychologically important (like rhythmic energy).
This provides a computational instantiation of ‘top-down processing’ in cognitive psychology*®*. Our model
does not passively receive acoustic information; rather, it more effectively parses emotion-related structures
from the complex signal stream under the guidance of a “prior expectation”” This offers a novel, operationalized
computational validation pathway for frameworks like Predictive Coding and Expectation Theory in the music
domain®*-%3,

Finally, the analysis of interpretable features (Table 2) provides quantitative support for many long-standing
but often qualitative observations in music theory. For example, the model found that rhythm is a primary
driver of arousal, while harmonic complexity and minor-mode characteristics strongly influence valence. These
findings not only validate the psychological plausibility of the model but also precisely describe the relative
importance of these features through quantitative measures (such as specific regression coefficients), providing
an empirical basis for the future refinement of theory.

Methodological contribution: interpretable Al as a tool for theory Building

In addition to its theoretical implications, this study provides a methodological paradigm for how interpretable
artificial intelligence (AI) can be used for theory building and testing in psychology'>. Traditionally,
computational models in psychology have been used either as simplified “simulations” or as purely predictive
tools. This study demonstrates a third way: designing complex AI models as testable, formalized systems to
instantiate and test psychological theories.

By linking the model’s architecture to psychological processes (like parallel processing) and its constraints
to theoretical knowledge (like prior expectations), this study transforms an engineering tool into a scientific
instrument. Its value is no longer just in the accuracy of its predictions (“what”), but in the explanations it
provides (“how” and “why”). This methodology holds promise for application in other areas of psychology
where research involves complex stimuli and dynamic responses, which could benefit from this interpretable
modeling approach.
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Limitations and future directions

Scope of emotional modeling

It is important to acknowledge the distinction between the acoustic encoding of emotion and the subjective
experience of the listener. The ground truth labels in the DEAM dataset reflect perceived emotion—the
consensus on what the music expresses—rather than induced emotion (what the listener feels). While prior
research suggests a strong link between the two, particularly for basic emotions, they can dissociate due to
individual differences in personality, mood, or listening context’. Therefore, the “drivers” identified by our
model (e.g., rhythmic regularity for arousal) should be interpreted as the acoustic cues that convey emotional
expression in the signal, which act as the stimulus for, but are not identical to, the felt emotional response. This
distinction is particularly relevant given the nature of the musical stimuli used in this study.

Dataset and stimuli limitations

Although the DEAM dataset is large, its composition imposes specific constraints on generalizability. The
musical stimuli were primarily harvested from royalty-free repositories (e.g., Jamendo, Free Music Archive)
and research-oriented multitrack collections (MedleyDB), which are frequently used as background music
for video content or commercial environments®. This functional nature differs from commercially produced
popular music designed for active engagement and strong emotional induction. Furthermore, the data collection
protocol necessitated a highly unusual mode of listening: participants were required to actively self-monitor and
continuously report their emotional perception. This dual-task paradigm imposes a cognitive load that diverges
from the holistic nature of naturalistic music consumption, potentially prioritizing analytical processing over
immersive emotional experience!?. Consequently, the resulting annotations may be biased towards salient,
bottom-up acoustic features (such as sudden rhythmic changes or loudness) that are easier to track in real-time.
Another critical factor is the obscurity of the artists in the DEAM dataset. While using unknown music offers the
methodological advantage of minimizing confounding effects from prior exposure or specific autobiographical
associations, it simultaneously eliminates a potent mechanism of emotional induction: familiarity. Research
in music neuroscience has established that familiarity enhances emotional engagement through predictive
processing and episodic memory*°. By relying on unfamiliar stimuli, our model effectively isolates bottom-up,
acoustic-driven emotional perception but may overlook the top-down, memory-driven affect that characterizes
real-world listening experiences. Beyond familiarity, the temporal integrity of the musical stimuli is also
compromised by the dataset’s construction. The excerpts were randomly cropped, often removing natural
onsets (introductions) and cadences (endings)®. In music cognition, these structural boundaries are critical for
establishing expectation and providing resolution—key mechanisms of emotional induction?*. The absence
of complete narrative arcs presents a challenge for the Transformer pathway, which is designed to model long-
range dependencies, and potentially limits the model’s ability to capture emotion driven by macro-structural
form*”. Finally, the annotations rely on MTurk crowdsourced participants who may lack demographic diversity.
Therefore, the findings of this study may not be directly generalizable to other cultures or musical traditions. It
is a well-known fact that the emotional perception of music is heavily influenced by cultural background*®*.

Model limitations

While the model’s architecture is psychologically inspired, it is just one of many possibilities. In particular, the
“Theory-Guided Feature Sensitivity Constraint” we employed, while effective, may itself introduce a degree of
confirmation bias. By pre-selecting guidance features based on existing theories (e.g., thythm is important for
arousal), we may bias the model to “rediscover” relationships we already know, while ignoring or suppressing
novel feature-emotion associations that are not yet fully explained by current theories®. A true breakthrough
might lie precisely in those patterns that are “inconsistent” with existing theories.

Future directions

Based on these limitations, future research could proceed in several directions. First, applying this modeling
approach to cross-cultural datasets could test the extent to which the acoustic-emotion mappings found in this
study are universal. Additionally, to address the ecological validity concerns regarding the musical stimuli, future
work should validate the model on datasets comprising commercially released recordings or live performances,
ensuring that the identified features generalize to music designed for active emotional engagement. Second,
future models could attempt to integrate individual listener difference data (such as personality traits, musical
training background, familiarity with the stimuli, and current mood state). Crucially, incorporating these listener-
centric variables would allow researchers to move beyond modeling perceived emotion (as in the current study)
to predicting the truly subjective induced emotional response of the individual listener. Finally, extending the
model to process longer musical excerpts or complete works would overcome the structural fragmentation of the
current dataset, allowing for a deeper investigation into the impact of long-range musical narrative on emotion.

Conclusion

This study successfully deconstructed the complex relationship between music’s acoustic properties and human
emotion by developing and validating a novel, interpretable computational model. Our primary contribution is
the robust computational evidence demonstrating that the core emotional dimensions of valence and arousal are
driven by distinct and separable sets of acoustic features. Specifically, we found that temporal and timbral-flux
characteristics primarily govern arousal, while harmonic and tonal properties predominantly shape valence.
This was achieved by introducing a new methodology where a psychologically-guided neural network serves
not as a “black box” predictor, but as a transparent scientific instrument for testing and refining psychological
theory. By bridging the gap between data-driven machine learning and theory-driven cognitive science, this
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work paves the way for a more precise, empirically-grounded understanding of one of humanity’s most profound
experiences: the emotional power of music.

Data availability
The data that support the findings of this study are openly available in the MediaEval Database for Emotional
Analysis in Music (DEAM) at https://cvml.unige.ch/databases/DEAM/.
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