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Abstract: Drilling efficiency analysis typically relies on manual post-event analysis, which is
subjective and arbitrary, failing to accurately reflect real-time field conditions in a timely
manner. To enable real-time, accurate, and automatic identification of drilling conditions and
improve drilling efficiency, the authors developed an intelligent identification model based on
artificial neural networks. Using Pearson correlation coefficient for correlation analysis, eight
drilling parameters from comprehensive logoing data were selected as input for network
training: well depth, bit position, hook height, hook load, weight on bit, rotary speed, torque,
flow rate, and standpipe pressure. By comparing the performance of Long Short-Term Memory
(LSTM) neural networks, PP, and CNN in real-time intelligent identification of drilling
conditions in deep formations, it was found that LSTM outperformed the others. The LSTM
model achieved a recognition accuracy of 97%, demonstrating its efficiency and reliability
while providing important theoretical and technical support for effective drilling condition
identification.

Keywords: Neural Networks; Machine Learning; Drilling Conditions; Intelligent
Identification; Prediction

0 Introduction

Drilling is a multifaceted and high-risk process due to the complexity and interdependence of
its numerous stages and parameters. During operations, various drilling conditions such as pipe
connection and tripping are encountered, each imposing specific requirements on drilling
equipment and drilling fluid parameters. Failure to accurately identify the current drilling
conditions may lead to improper operations, thereby causing drilling accidents. Therefore,
accurate identification of drilling conditions is a critical measure to ensure the safety of drilling
operations and improve their efficiency [1-3]. Drilling condition identification technology is

one of the key technologies in drilling automation and intelligence. Real-time monitoring and



identification of different operational conditions during drilling help accurately analyze drilling
efficiency, enhance drilling performance, and ensure operational safety, providing decision
support and operational guidance for on-site construction [4-6]. Traditional drilling condition
identification methods rely on real-time mud logging data trends and expert threshold rules for
recognition. However, the threshold rule method has certain limitations in practical applications,
manifesting as complex judgment logic, ambiguous threshold boundaries, and low
identification accuracy for conditions with indistinct features. Traditional drilling condition
identification methods rely on real-time mud logging data trends and expert threshold rules for
recognition. However, the threshold rule method has certain limitations in practical applications,
manifesting as complex judgment logic, ambiguous threshold boundaries, and low
identification accuracy for conditions with indistinct features.

Some scholars have conducted relevant research on identification of drilling condition. For the
field of neural networks, Yang used principal component analysis to reduce the dimensionality
of feature parameters and then employed an artificial neural network to detect gas kicks [2].
Osarogiagbon utilized a long short-term memory recurrent neural network to learn the temporal
relationships in time-series data composed of D-exponent data and riser pressure data,
achieving early kick detection [7]. Muojeke combined artificial neural networks (ANN), binary
classifiers, and downhole drilling flow parameter detection to establish a data-driven Kick
detection model [8]. Sun proposed a real-time intelligent drilling condition identification
method based on support vector machines, addressing multi-classification problems by
combining multiple SVMs [9]. Hou performed data cleaning and sample labeling, adopting an
artificial neural network-hased technique to identify nine common drilling conditions,
including pipe connection, tripping out, tripping in, reaming up, reaming down, circulation,
rotary drilling, slide drilling, and others [10]. For the field of machine learning, Li proposed an
intelligent early kick identification method based on Support Vector Machines (SVM) and D-S
evidence theory, introducing a posterior probability output model on the foundation of
traditional SVM [1]. Liu Gang built upon conventional drilling anomaly warning methods and
established adaptive models of SVMs based on multi-source information and kernel-function,
effectively improving the accuracy of drilling incident and complexity warnings [11]. Liu
proposed an intelligent drilling condition identification method based on decision trees, which
to some extent meets the demands of oilfield digitalization and intelligence [12]. Mao proposed
a drilling condition identification method based on the gradient boosting decision tree algorithm,
using a moving window approach to select the optimal window for enhancing data stability,
achieving significant results [13].

Although some progress has been made in utilizing machine learning and artificial neural
networks to establish identification models for drilling conditions, the following limitations still

exist [14]. The theory of BP neural networks makes it difficult to determine how to adjust



weights to reduce errors, and it requires relatively high data accuracy. When drilling conditions
(such as kick, lost circulation, drill string washout, nozzle blockage, and other complex
conditions) are not well linearly separable, the resulting model performs poorly. SVM do not
suffer from local minima issues, but for large-scale training data, the transposition of high-
dimensional matrices consumes significant machine memory and computational time [15].
Multi-layer SVM is a potential method for solving multi-classification problems, but it is
difficult to implement for large-scale training samples and is sensitive to missing data [16].
Random Forests (RF) do not yield good classification results with small datasets or low-
dimensional data, and when the number of decision trees is high, the model runs slowly, making
it unsuitable for drilling condition identification projects with high real-time requirements [17].
The author conducted a comparative analysis of the adaptability of drilling condition
identification algorithm models using field-collected drilling data. By evaluating the
advantages and disadvantages of BP, CNN, and LSTM models, the effectiveness and
adaptability of the proposed approach were validated.

1 Optimal selection of prediction methods of drilling conditions

1.1 Manual experience-based methods for drilling conditicns

Comprehensive mud logging data serves as an effective approach for production control centers
to achieve dynamic monitoring of field operations. By summarizing data trends and threshold
ranges of drilling conditions based on driiling experience, and utilizing continuously measured
drilling engineering parameters, real-time monitoring of drilling site conditions can be realized.
Currently, manual experience-based methods can identify five drilling conditions: set slips,
drilling, tripping out, tripping in, and maintaining the original condition. In this workflow
discrimination chart, only four key parameters, inlet flow rate, hook height, hook load, and bit
position, along with two threshold parameters, standard well depth and set slip threshold, are
required for condition judgment. The flowchart for manual experience-based drilling condition

judgment is shown in Fig. 1 below.
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Fig. 1 Flowchart of experience-based identification of drilling conditions
1.2 BP Neural Network
The BP neural network is a multi-layer feedforward network trained according to error
backpropagation algorithm, and is one of the most widely applied neural network models (Fig.
2). Its fundamental principle involves continuously adjusting the weights and thresholds of the
network through forward propagation of input signals and backward propagation of errors,

thereby minimizing the output error of the network.
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Fig. 2 Structure of the BP Neural Network
ANN are numerical computation-based knowledge processing systems, inspired by the
structure of biological neural networks in the human brain. As a machine learning model, they
consist of numerous simple processing units interconnected to form a complex network. The
primary task for achieving intelligent identification of drilling conditions is to select the most
suitable neural network algorithm based on the characteristics of the sample dataset.
Subsequently, evaluation metrics such as accuracy, precision, recall, and F1 score are used to

assess the classification performance of the machine learning model. The overall workflow for



predicting drilling conditions using artificial neural networks is illustrated in Fig. 3 below.
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Fig. 3 The workflow based on neural network for the identification of drilling conditions

Process 2

Drilling condition identification falls under the category of “classification” in supervised
learning. Supervised learning is the process of adjusting the parameters of a neural network
classifier using labeled samples to achieve the desired performance. The primary goal of a
supervised learning model is to discover the relationship between input variables and output
variables from data. By establishing this relationship, new data can be fed into the trained model
to predict the values of the output variables. In this context, labeled samples (e.g., eight types
of drilling conditions) are used to train the model parameters, which are then employed for
training the neural network model.

In the context of drilling condition identification, the BP neural network can learn complex
nonlinear relationships beiween drilling parameters (such as hook load, pump pressure, torque,
etc.) and downhole conditions. During training, sample data is used to iteratively correct the
network’s connection weights. Once training is complete, the model can effectively identify
downhole conditions like kicks, lost circulation, and stick-slip. However, the BP neural network
also has certain limitations. Actually, it is prone to falling into local minima, relies heavily on
a large amount of high-quality training data, has a network structure that is difficult to determine
theoretically, and exhibits poor generalization ability when dealing with small sample sets. In
practical drilling applications, these factors must be carefully considered in the design and
optimization of the network.

1.3 Long short-term memory network (LSTM)

Based on the long-time-series characteristics required for intelligent drilling condition
identification, this study conducts structural analysis and comparative principle evaluation of
three common neural network algorithms, thereby establishing an algorithmic foundation for
intelligent drilling condition discrimination.

RNN is one of the most frequently used deep learning models for processing temporal sequence

problems. Its architecture incorporates the hidden layer nodes from the previous time step t-1



as input for the current time step t, granting its exceptional performance in handling sequential
data. However, the RNN’s chain structure, which uses identical parameters across all time steps,
makes it susceptible to the vanishing gradient problem during training. Gradients can diminish
to zero, leading to what is known as the “long-term dependency” issue. This means that as the
time interval increases, the RNN loses its ability to learn information from distant time steps.
Consequently, the standard RNN is not suitable for intelligent drilling condition identification,
which inherently involves long-time-series characteristics.

In 1997, Hochreiter and Schmidhuber proposed the LSTM-RNN model and demonstrated that
the LSTM possesses the capability to remember both long- and short-term information,
effectively resolving the long-term dependency problem of traditional RNNs. Recently, LSTM
have undergone rapid development and have been successfully applied in the field of petroleum
engineering. For instance, in 2019, Lee successfully predicted shale gas production using the
LSTM.

Through detailed analysis of the structures of BP, RNN, and LSTM, and considering the long-
time-series nature of comprehensive mud logging data, the LSTM, which excels at learning
temporal sequence information and handling long-range dependencies, has been selected as the
optimal algorithm for intelligent drilling condition identification.

The LSTM is a significant improvement upon RNN, replacing the standard neurons in the
traditional RNN hidden layer with LSTM memory cells. When unfolded, the LSTM is
equivalent to a feedforward neural network, where the input of each layer serves as the input
for the next, and parameters are shared across all layers. The basic structure of the LSTM
network is shown in Fig. 4. Its fundamental unit contains three gates, namely, the input gate,
the forget gate, and the output gate. These three gates establish a self-loop mechanism within
the internal state of the LSTM. Specifically: 1) The input gate determines how the current time
step's input and the previous time step's internal state are updated; 2) The forget gate controls
how much of the previous internal state is retained or forgotten for the current time step; 3) The
output gate governs the extent to which the internal state influences the final output of the
system. This architecture allows the LSTM model to capture parameter information at the
current moment while retaining the changing trends of historical parameter information. The
key reason LSTM can solve the long-term dependency problem of RNNSs lies in its introduction
of the forget gate fi, input gate i;, and output gate o; to regulate the flow and loss of features.
The unfolded chain structure of the LSTM is depicted in Fig. 4.
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Fig. 4 Operational Principle of the LSTM Network’s Recurrent Unit at Time Step t
In Fig. 4, the long horizontal line running from left to right at the top allows learned knowledge
to pass directly along it without easy alteration, thereby enabling the LSTM network to possess
“long-term” memory and solving the “long-term dependency” problem of RNNs. The
combined use of “short-term memory” and “long-term memory” allows LSTM to learn both
“short-term” and “long-term” patterns over long sequences. When the long-term cell state
passes through the neural network, the forget gate f; “forgets (deletes)” part of the memory
information, the input gate i; “inputs (adds)” part of the memory information, and finally, after
processing by the output gate, the result is output. Fig. 4 shows the structure of the recurrent
unit of the LSTM network at time step t. As shown in Fig. 1, the output of the hidden layer at
time t-1 and the input at time t are first copied into four parts each, and different weights are
randomly initialized. Then, h.y and X vectors are concatenated. Finally, nonlinear
transformation is performed through the activation functions (sigmoid or tanh) to obtain the
activation vectors for the forget gate, input gate, output gate, and the transformed cell state

vector. The calculation formulas are as follows:

f,=a(W, [, x]+b;) 1)
i =a(W,-[h,x]+b) @)
o, =a(W,-[h_,x]+b,) 3)
¢, =tanh(W, -[h_, % ]+h,) @)

Where: fi, i;, and o are the activation vectors of the forget gate, input gate, and output gate at

time step t, respectively; Ct' is denotes the cell state candidate vector at time step t, obtained

after transformation through the tanh layer. W is the weight matrix associated with different



stages. b is the bias vector associated with different stages. x; is the input at time step t. hea is

the output of the hidden layer at the previous time step t-1. & is the sigmoid activation function.

These components work together within the LSTM architecture to regulate information flow,
enabling the network to effectively capture and retain long-term dependencies in sequential
data. The forget gate f; and input gate i:is used to discard part of the useless stored information
and retain part of the useful information at time t, thereby updating the internal memory cell c..

The calculation formula is as follows:
C = ft Cyt+ it -G (%)

Where: ¢ is the updated memory cell at time t; ce..1 is the preserved memory cell from the
previous time step t-1. The output gate o, selects useful information from c; and transmits it to

the hidden state h;. The calculation formula is as follows:

h, =o,-tanh(c,) (6)

Where: hy is output of the hidden layer at time t.

2 Performance evaluation metrics for machine learning models

Generally, the generalization error is used to evaluate the performance of a machine learning
model. A smaller generalization error indicates better model performance. The test set is
employed to assess the mode!’s classification and discrimination capabilities, and the test error
from the test set is used as an approximation of the generalization error. This paper adopts four
evaluation metrics: Accuracy, Precision, Recall, and F1-score. Based on the actual categories
and the model's predicted categories, the classification results are organized. The confusion
matrix for binary classification is shown in Table 1, and the confusion matrix for multi-class
classification is shown in Fig. 5. Here, TP represents true positives, FP represents false positives,
TN represents true negatives, and FN represents false negatives.

Table 1 Confusion matrix of binary classification results

Predicted values
Positive Negative
True TP FN
False FP TN

Actual values
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Fig. 5 Confusion matrix for multi-class classification problem
Different metrics directly reflect the performance of classification. “Accuracy” is the most
common evaluation criterion, which is the number of correctly classified samples divided by
the total number of samples. For balanced classification problems, a higher accuracy generally
indicates a better classifier. “Precision” and “Recall” are a pair of contradictory metrics.
“Precision” reflects how many predictions for a certain class are coirect and how many are
incorrect. “Recall” shows how many of the predictions for a certain class are correct. The “F1-
score” is the harmonic mean of precision and recall.
3 Dataset description and organization
3.1 Types of mud logging data
The data was sourced from actual drilling operations in the Western Mining Area. A
comprehensive mud logging unit collected over 100 drilling parameters, including time, well
depth, and bit position, resulting in a total of 2 million recorded data entries. The extensive
parameters in the mud logging data can be categorized into three types: drilling parameters,
drilling fluid parameters, and gas logging parameters. The specific classifications and details
are presented in Table 2.
Table 2 The types of parameters of composite mud logging

Composite data Content of data
Well depth, Bit position, Hook height, Hook load, Weight on bit, Rotary

Drilling parameters )
speed, Torque, Flow rate, Standpipe pressure

Inflow/outflow drilling fluid density, Inflow/outflow drilling fluid

Drilling fluid parameters
temperature

Gas logging parameters Total hydrocarbons, Methane, Hydrogen sulfide

3.2 Data normalization
1) Abnormal data processing
In mud logging data, sensor interruptions or distortions may result in abnormal data points with



a fixed value of “-999”. To prevent these anomalous values from adversely affecting model
accuracy, this study employs the method of directly removing entire rows containing such
abnormal values. Given that the drilling time-series data in this research has a sampling interval
of 4-5 seconds, the dataset is sufficiently large, and the frequency of abnormal values is
relatively low. Removing these data points does not significantly impact the continuity or
overall integrity of the dataset.

Furthermore, as sensor data from the near-wellbore region tend to exhibit substantial distortions,
this study excludes logging data from the first 2000 meters to further enhance data quality and
reduce interference in model training. Only data beyond 1000 meters is used for model training
and analysis. This processing strategy effectively improves data reliability and model
robustness.

2) Data normalization processing

Data normalization is a commonly used data preprocessing operation aimed at handling data of
different scales and dimensions, scaling them to the same data range and scope to reduce the
impact of scale, features, and distribution differences on the miodel. Common data
normalization methods include Z-Score and min-max. Considering that drilling is a sequential
process that varies with depth, parameters such as wel!l depth and drilling pressure do not follow
a normal distribution. To eliminate dimerisions and reduce the impact of different magnitudes
of parameters on model performarice, this study adopts the min-max normalization method to

linearly transform the original logging data, constraining the data to the range [0, 1], namely:

% X=X
X" = min (7)

Xinax ~ Xmin

Where: x™ is the normalized value; Xmax is the maximum value in the training data; Xmin is the
minimum value in the training data.

3.3 Correlation analysis

In the actual drilling process, various logging parameters are not isolated from each other; there
exists a certain causal relationship among them. Correlation analysis involves calculating the
correlation coefficient between datasets to determine the changing characteristics between two
parameters. Generally, it can be categorized into two types of relationships: positive correlation
and negative correlation. A positive correlation indicates that as one parameter increases, the
other also increases, and as one decrease, the other decreases. Conversely, a negative correlation
implies the opposite. Through correlation analysis of data, parameter relationships can be

quickly identified, and key parameters can be extracted. Commonly used correlation



coefficients include the Pearson correlation coefficient and the Spearman correlation coefficient.

(1) Pearson correlation coefficient
The Pearson correlation coefficient is generally used to analyze the relationship between two

continuous variables and is a linear correlation coefficient. The formula is:

n

2 (6 =x)(v-v)

r =—= (8

B S

n
i=1 i=1

Where: r, is the Pearson correlation coefficient value between two drilling parameters. A value
greater than 0 indicates a positive correlation, while a value less than 0 indicates a negative

correlation; n is the number of drilling parameters; x;, yi are the recorded values of the two
drilling parameters; X 9 are mean value of drilling parameters.

(2) Spearman correlation coefficient

The Pearson correlation coefficient requires that the values of contiriuous variables follow a
normal distribution. For variables that do not follow & normai distribution, or for measuring
associations between categorical or ordinal variabies, Spearman’s rank correlation coefficient,

also known as the rank correlation coefficient, can be used. The formula is:

63 (R-Q)
r,=1-—=

n(n2 —1) ®)

Where: rs is the Spearman’s rank correlation coefficient between two drilling parameters. A
value greater than O indicates a positive correlation, while a value less than O indicates a
negative correlation. n is the number of drilling parameters. The paired values of the two
variables are ranked in ascending (or descending) order, respectively. R; is the rank of x;; Qi is
the rank of yi; (Ri-Qi) is the difference in ranks between x; and y;.

To ensure that the selected working condition parameters are independent yet exhibit a certain
degree of correlation, the Pearson correlation coefficient was used for analysis. As shown in
Fig. 3, which presents the Pearson correlation coefficient plot of the working condition
parameters, the horizontal and vertical axes represent each drilling parameter variable listed in
the table. The value at the intersection of the horizontal and vertical axes indicates the
correlation between two drilling parameter variables. The closer the absolute value is to 1, the
stronger the correlation between the two parameters. In the plot, darker shades indicate a higher

degree of correlation, while lighter shades indicate greater independence between the two



parameters. Negative values indicate a negative correlation between the two parameters. Larger
absolute values signify a stronger correlation, while smaller absolute values indicate weaker

correlation and greater independence between the two parameters.

As can be seen from Fig. 6, eight drilling parameters in the comprehensive logging data, such
as well depth, bit position, hook height, hook load, weight on bit, rotary speed, torque, flow
rate, and standpipe pressure, exhibit strong correlations. Therefore, these eight logging
parameters were selected as feature parameters for model training to accurately identify eight
drilling conditions, including rotary drilling, sliding drilling, downward washing, reaming,

upward washing, back reaming, tripping out, and tripping in.
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Fig. 6 Drilling parameter correlation heatmap
3.4 Sample data labeling



A sample set for working condition identification, as shown in Table 3, was established based
on the collected drilling dataset. The drilling condition at each time point serves as the output
for network training. However, the drilling condition status cannot be directly obtained from
the drilling dataset. Therefore, before model training, the drilling conditions must be manually
labeled with reference to drilling logs. The data distribution and labels for the eight drilling
conditions used in the classification task are shown in Table 3. It can be observed that the data
distribution for three drilling conditions, sliding drilling, stationary, and downward washing,
accounts for less than 5% of the total, indicating an imbalanced classification problem.
Consequently, recall rates will need to be analyzed in subsequent steps.
Table 3 Statistical analysis of sample dataset

Drilling parameters Minimum Maximum Mean Standard deviation
Bit depth/m 0 5286.22 2025.32 450.35
Measured depth/m 552.00 5286.45 2621.57 398.38
Hook height/m 1.53 39.58 15.76 4.78
Weight on bit/kN 0 279.85 90.55 26.89
Hook load/kN 0 4956.79 998.53 202.75
RPM/(r-mint) 0 175.00 70.36 15.97
Torque/(kN-m) 0 55.67 16.45 4.19
Standpipe 2.
Pressure/MPa 0 50.88 13.71 3.16

The comprehensive logging dataset from deep farmations used in this section contains a total
of 20,000,000 rows of sample data. Among these, 75% is allocated as the training set and 25%
as the test set. Algorithms are then employed for learning and validation to achieve
classification and prediction of drilling conditions. The manual labeling rules for the eight
typical drilling conditions are detailed in Table 4, while the remaining logging data from deep
formations corresponding to other drilling conditions are labeled as “Other”.

Table 4 Labeling rules for the eight typical drilling conditions

Drilling conditions Data volume Distribution of data Label One-hot Encoding
volume (%)
Rotary drilling 9125378 40.09 0 100 000 00
Sliding drilling 492 549 2.16 1 010 000 00
Downward washing 890 724 3.91 2 001 000 00
Reaming 2 950 845 12.97 3 000 100 00
Upward circulation 885 973 3.89 4 000 010 00
Reverse reaming 2 659 467 11.69 5 000 001 00
Tripping out 3225795 14.18 6 000 000 10
Tripping in 2525879 11.00 7 000 000 01
Total 22756 610 100

4. Network structure and parameter settings
4.1 BP neural network structure and hyperparameter settings

Table 5 Parameter settings of BP

Parameters Values
Normalization StandardScaler
Number of input layers 32




Number of neurons of hidden layers 128
Number of neurons of output layers 2
Initial learning rate 0.001
Activation function Relu
Optimizer Adam
Iterations 400

Table 5 presents the network architecture and parameter settings summarized through multiple
experiments. The value range of standard well depth in drilling data is not fixed, so standard
normalization was selected to process the input data. The original drilling data had 33 features.
After removing the irrelevant time field, 32 features remained as network inputs. The hidden
layer was configured with 128 neurons to achieve better network convergence. Since the
network output is a binary classification, the output layer was set with 2 neurons. The learning
rate should not be set too high, as an excessively large value might cause the model to skip the
global optimum and fail to converge. A learning rate of 0.001 was chosen to ensure final model
convergence. The ReLU activation function was used due to its simple derivative calculation,
reduced computational time, and absence of gradient vanishing issues. The Adam optimizer
was selected for its relatively shorter computational time, and the nurnber of iterations was set
to 400.
4.2 Structure and hyperparameter settings of .STM
Based on multiple experimental results, the architecture and hyperparameter settings of LSTM
are summarized in Table 6. The normaiization method selected was StandardScaler. The
sequence length was set to 6, as this value was determined to be optimal based on label
continuity. The feature dimension is 32, with 128 neurons in each LSTM cell. The ReLU
activation function was chosen, and the hidden layer was configured with 128 neurons. The
output layer consists of 2 neurons. The initial learning rate was set to 0.01, the Adam optimizer
was selected, and the number of iterations was set to 100.

Table 6 LSTM Neural Network Parameter Settings

Parameters Values
Normalization StandardScaler
Length of sequence 6
Feature dimension 32
The number of neurons in the Cell 128
Activation function Relu
Number of neurons of hidden layers 128
Number of neurons of output layers 2
Initial learning rate 0.01
Optimizer Adam
Iterations 100

5 Comparison

5.1 BP neural network experimental results



(1) Loss curve analysis
The loss variations during the training process for each drilling condition are shown in Fig. 7.
The loss value for each condition decreased rapidly at the beginning of training, indicating that
the model effectively learned the patterns for condition identification. Around 200 iterations,
the loss curve stabilized, demonstrating that setting the total number of iterations to 400 was
reasonable. The loss values eventually converged to approximately 0.3, reflecting successful
training outcomes.
(2) Analysis of accuracy, precision, recall, and F1-Score of the model
The statistical results for accuracy, precision, recall, and F1-Score of these seven BP neural
network models are presented in Table 7. The average F1-Score of the BP neural network
models reached 0.9694, indicating that the trained models possess strong recognition
capabilities. This step also ensures the objectivity and accuracy of the subsequent analysis of
high-weight fields for drilling conditions.

Table 7 Evaluation of BP neural network models

Drilling conditions | Accuracy Precision Recall B F1 score
Rotary drilling 0.9261 0.9236 09433 | 00518
Slide drilling 0.9357 0.9341 09512 0.9367
Washing down 0.9279 0.9239 0.9425 0.9455
Reaming 0.9356 0.9259 | 0.9417 0.9329
Washing up 0.9416 0.9518 A 0.9625 0.9658
Back reaming 0.9518 0.9638 0.9431 0.9839
Tripping out 0.9029 0.8859 0.9035 0.9158
Tripping in 0.9153 0.5967 0.9015 0.9217
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Fig. 7 Changes in loss during the training process under various conditions. (a) Rotary
drilling; (b) Slide drilling; (c) Washing down; (d) Reaming; (e) Washing up; (f) Back reaming;

(9) Tripping out; (h) Tripping in
5.2 The experimental results of LSTM

The experimental results of the LSTM neural network model are presented in Table 8. As shown
in the results, the average F1-Score reached 0.9741, and the accuracy for all drilling conditions
exceeded 95%. This demonstrates that the LSTM neural network, which leverages time-series
features, can better distinguish corresponding drilling conditions by extracting temporal

information from drilling data.



Table 8 Evaluation results of LSTM model

Drilling conditions | Accuracy Precision Recall F1 score
Rotary drilling 0.9721 0.9684 0.9760 0.9721
Slide drilling 0.9743 0.9631 0.9865 0.9746
Washing down 0.9566 0.9255 0.9930 0.9580
Reaming 0.9848 0.9715 0.9989 0.9850
Washing up 0.9803 0.9657 0.9960 0.9806
Back reaming 0.9910 0.9871 0.9950 0.9910
Tripping out 0.9223 0.8962 0.9551 0.9247
Tripping in 0.9259 0.9055 0.9228 0.9355

5.3 Comparison of algorithm results
The primary goals of optimizing drilling operations are to minimize time consumption during

condition identification and to maximize the accuracy of predictive methods, two standard
metrics for evaluating performance, as compared in Table 9. A significant challenge arises
because non-essential activities can account for 30% of total operational time. Consequently,
the accurate real-time identification of drilling conditions and the reduction of such non-
productive time are fundamental to lowering costs and improving overail efficiency. However,
conventional approaches that depend on expert interpretation or theoretical deductions are often
hampered by subjective bias, a reliance on scarce expertise, end inherent time delays.

A comparative analysis of the CNN, BP, and LSTM models on the drilling dataset is presented
in Table 9 and Fig. 8. In terms of classification accuracy, LSTM achieved the highest mean F1-
Score of 0.9741, outperforming BP (0.9694) and CNN (0.962). This performance advantage is
corroborated by its computational efficiency. The LSTM model completes condition
identification in 6.9 seconds cn average, which is notably faster than BP (10.6 s) and CNN (13.8
s), indicating a substantia! rmargin of efficiency.

Table 9 Comparison of algorithms and models

. Rota Slide Washin . Washin Back Trippin Trippin
Indicator Model driIIir?g/; drilling downg Reaming up ) reaming gﬁt ’ FIJE ’
CNN 0.8556 0.9023 0.9156 0.9016 0.8859 0.8936 0.8652 0.8529

Accuracy BP 0.9261 0.9357 0.9279 0.9356 0.9416 0.9518 0.9029 0.9153
LSTM 0.9721 0.9743 0.9566 0.9848 0.9803 0.9910 0.9223 0.9259

CNN 0.8723 0.8958 0.9034 0.9126 0.9011 0.8861 0.8925 0.8639

Precision BP 0.9236 0.9341 0.9239 0.9259 0.9518 0.9638 0.8859 0.8967
LSTM 0.9684 0.9631 0.9255 0.9715 0.9657 0.9871 0.8962 0.9055

CNN 0.8962 0.9124 0.9065 0.9139 0.8992 0.9214 0.8859 0.9163

Recall BP 0.9433 0.9512 0.9425 0.9417 0.9625 0.9431 0.9035 0.9015
LSTM 0.9760 0.9865 0.9930 0.9989 0.9960 0.9950 0.9551 0.9228

CNN 0.8981 0.9251 0.9168 0.8995 0.9284 0.9197 0.8998 0.9201

F1 score BP 0.9518 0.9367 0.9455 0.9329 0.9658 0.9839 0.9158 0.9217
LSTM 0.9721 0.9746 0.9580 0.9850 0.9806 0.9910 0.9247 0.9355
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5.4 Feasibility and Future work
The traditional method for identifying working conditions is limited by issues such as data
collection and geological conditions. It fails to deeply explore the intrinsic connections of
drilling data changes, making the traditional method difficult to be widely applied. By
comparing the recognition effects of BP, CNN, LSTM model, it was found that LSTM was
capable of extracting information from long-term sequences and had betier recognition effects
than CNN, but performed poorly in recognizing dense and repetitive conditions. Owing that the
identification system was being studied, the predicted cases were conducted based on the
established models. Presently, it was being studied more focused on the method and test. It still
needed time to develop the comprehensive identification system integrating these models and
then was applied in the drilling. The MS proposed the new idea on the identification of drilling
conditions and this idea has been validated. Subsequently, it could help accelerate the research
of the identification software based on the LSTM model and be popularized on the real-world
drilling operations.
While intelligent drilling methods show promise, they still require further refinement. Surface
sensors at drilling sites are subjected to prolonged exposure to wind, sunlight, rain, and moisture,
causing internal electronic components to degrade prematurely. As a result, the quality of
drilling parameter curves may decline continuously or intermittently. Artificial intelligence
algorithms, unable to distinguish between authentic data artifacts and true anomalies, often
generate false alarms. To address these issues, the following recommendations are proposed:
1) Enhance the monitoring system. In areas where logging curves cannot reliably identify
operational conditions, it is advisable to integrate image or video recognition technology. This
would enable comprehensive oversight of onsite activities and facilitate the development of
distinct early-warning models for various drilling scenarios. Such an approach would help
eliminate ambiguities where a single data source corresponds to multiple potential
interpretations.

2) Improve sensor performance. Upgrading sensor sealing and adopting components with



proven stability in harsh environments is essential. These measures will help ensure the
authenticity and reliability of source data.

3) Strengthen system training and algorithm development. Although artificial intelligence
has been introduced into drilling engineering in recent years, and numerous researchers and
experts have explored its use for early warning and incident management, most applications
remain in preliminary stages. Given the complexity of drilling processes and the demanding
hardware environment, continued efforts should focus on refining algorithms to filter
interference and on developing adaptable solutions for diverse operational and environmental
conditions.

6 Conclusions

(1) Four evaluation metrics, such as accuracy, precision, recall, and F1-score, were adopted to
assess the classification performance of the machine learning models. The generalization error
was selected to evaluate the model performance, where a smaller generalization error indicates
better model performance.

(2) To ensure that the selected drilling condition parameters are indepandent yet exhibit a
certain degree of correlation, Pearson correlation coefficient analysis was conducted. This
analysis identified eight drilling parameters from the comprehensive logging data as input
variables for network training: well depth, bit position, hook height, hook load, weight on bit,
rotational speed, torque, flow rate, and standpipe pressure.

(3) A comparative analysis of the strengths and weaknesses of three algorithms, traditional
CNN, BP, and LSTM, revealed that the LSTM outperforms both the CNN and BP in drilling
condition classification. This demonstrates the unique advantage of LSTM in handling long-
time-series, high-dimerisional, nonlinear complex mapping relationships.
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