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Abstract: Drilling efficiency analysis typically relies on manual post-event analysis, which is 

subjective and arbitrary, failing to accurately reflect real-time field conditions in a timely 

manner. To enable real-time, accurate, and automatic identification of drilling conditions and 

improve drilling efficiency, the authors developed an intelligent identification model based on 

artificial neural networks. Using Pearson correlation coefficient for correlation analysis, eight 

drilling parameters from comprehensive logging data were selected as input for network 

training: well depth, bit position, hook height, hook load, weight on bit, rotary speed, torque, 

flow rate, and standpipe pressure. By comparing the performance of Long Short-Term Memory 

(LSTM) neural networks, BP, and CNN in real-time intelligent identification of drilling 

conditions in deep formations, it was found that LSTM outperformed the others. The LSTM 

model achieved a recognition accuracy of 97%, demonstrating its efficiency and reliability 

while providing important theoretical and technical support for effective drilling condition 

identification.  

Keywords: Neural Networks; Machine Learning; Drilling Conditions; Intelligent 

Identification; Prediction 

0 Introduction 

Drilling is a multifaceted and high-risk process due to the complexity and interdependence of 

its numerous stages and parameters. During operations, various drilling conditions such as pipe 

connection and tripping are encountered, each imposing specific requirements on drilling 

equipment and drilling fluid parameters. Failure to accurately identify the current drilling 

conditions may lead to improper operations, thereby causing drilling accidents. Therefore, 

accurate identification of drilling conditions is a critical measure to ensure the safety of drilling 

operations and improve their efficiency [1-3]. Drilling condition identification technology is 

one of the key technologies in drilling automation and intelligence. Real-time monitoring and 
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identification of different operational conditions during drilling help accurately analyze drilling 

efficiency, enhance drilling performance, and ensure operational safety, providing decision 

support and operational guidance for on-site construction [4-6]. Traditional drilling condition 

identification methods rely on real-time mud logging data trends and expert threshold rules for 

recognition. However, the threshold rule method has certain limitations in practical applications, 

manifesting as complex judgment logic, ambiguous threshold boundaries, and low 

identification accuracy for conditions with indistinct features. Traditional drilling condition 

identification methods rely on real-time mud logging data trends and expert threshold rules for 

recognition. However, the threshold rule method has certain limitations in practical applications, 

manifesting as complex judgment logic, ambiguous threshold boundaries, and low 

identification accuracy for conditions with indistinct features.  

Some scholars have conducted relevant research on identification of drilling condition. For the 

field of neural networks, Yang used principal component analysis to reduce the dimensionality 

of feature parameters and then employed an artificial neural network to detect gas kicks [2]. 

Osarogiagbon utilized a long short-term memory recurrent neural network to learn the temporal 

relationships in time-series data composed of D-exponent data and riser pressure data, 

achieving early kick detection [7]. Muojeke combined artificial neural networks (ANN), binary 

classifiers, and downhole drilling flow parameter detection to establish a data-driven kick 

detection model [8]. Sun proposed a real-time intelligent drilling condition identification 

method based on support vector machines, addressing multi-classification problems by 

combining multiple SVMs [9]. Hou performed data cleaning and sample labeling, adopting an 

artificial neural network-based technique to identify nine common drilling conditions, 

including pipe connection, tripping out, tripping in, reaming up, reaming down, circulation, 

rotary drilling, slide drilling, and others [10]. For the field of machine learning, Li proposed an 

intelligent early kick identification method based on Support Vector Machines (SVM) and D-S 

evidence theory, introducing a posterior probability output model on the foundation of 

traditional SVM [1]. Liu Gang built upon conventional drilling anomaly warning methods and 

established adaptive models of SVMs based on multi-source information and kernel-function, 

effectively improving the accuracy of drilling incident and complexity warnings [11]. Liu 

proposed an intelligent drilling condition identification method based on decision trees, which 

to some extent meets the demands of oilfield digitalization and intelligence [12]. Mao proposed 

a drilling condition identification method based on the gradient boosting decision tree algorithm, 

using a moving window approach to select the optimal window for enhancing data stability, 

achieving significant results [13].  

Although some progress has been made in utilizing machine learning and artificial neural 

networks to establish identification models for drilling conditions, the following limitations still 

exist [14]. The theory of BP neural networks makes it difficult to determine how to adjust 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



weights to reduce errors, and it requires relatively high data accuracy. When drilling conditions 

(such as kick, lost circulation, drill string washout, nozzle blockage, and other complex 

conditions) are not well linearly separable, the resulting model performs poorly. SVM do not 

suffer from local minima issues, but for large-scale training data, the transposition of high-

dimensional matrices consumes significant machine memory and computational time [15]. 

Multi-layer SVM is a potential method for solving multi-classification problems, but it is 

difficult to implement for large-scale training samples and is sensitive to missing data [16]. 

Random Forests (RF) do not yield good classification results with small datasets or low-

dimensional data, and when the number of decision trees is high, the model runs slowly, making 

it unsuitable for drilling condition identification projects with high real-time requirements [17]. 

The author conducted a comparative analysis of the adaptability of drilling condition 

identification algorithm models using field-collected drilling data. By evaluating the 

advantages and disadvantages of BP, CNN, and LSTM models, the effectiveness and 

adaptability of the proposed approach were validated.  

1 Optimal selection of prediction methods of drilling conditions 

1.1 Manual experience-based methods for drilling conditions 

Comprehensive mud logging data serves as an effective approach for production control centers 

to achieve dynamic monitoring of field operations. By summarizing data trends and threshold 

ranges of drilling conditions based on drilling experience, and utilizing continuously measured 

drilling engineering parameters, real-time monitoring of drilling site conditions can be realized. 

Currently, manual experience-based methods can identify five drilling conditions: set slips, 

drilling, tripping out, tripping in, and maintaining the original condition. In this workflow 

discrimination chart, only four key parameters, inlet flow rate, hook height, hook load, and bit 

position, along with two threshold parameters, standard well depth and set slip threshold, are 

required for condition judgment. The flowchart for manual experience-based drilling condition 

judgment is shown in Fig. 1 below.  
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Fig. 1 Flowchart of experience-based identification of drilling conditions 

1.2 BP Neural Network 

The BP neural network is a multi-layer feedforward network trained according to error 

backpropagation algorithm, and is one of the most widely applied neural network models (Fig. 

2). Its fundamental principle involves continuously adjusting the weights and thresholds of the 

network through forward propagation of input signals and backward propagation of errors, 

thereby minimizing the output error of the network. 

 
Fig. 2 Structure of the BP Neural Network  

ANN are numerical computation-based knowledge processing systems, inspired by the 

structure of biological neural networks in the human brain. As a machine learning model, they 

consist of numerous simple processing units interconnected to form a complex network. The 

primary task for achieving intelligent identification of drilling conditions is to select the most 

suitable neural network algorithm based on the characteristics of the sample dataset. 

Subsequently, evaluation metrics such as accuracy, precision, recall, and F1 score are used to 

assess the classification performance of the machine learning model. The overall workflow for 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



predicting drilling conditions using artificial neural networks is illustrated in Fig. 3 below. 

 
Fig. 3 The workflow based on neural network for the identification of drilling conditions 

Drilling condition identification falls under the category of “classification” in supervised 

learning. Supervised learning is the process of adjusting the parameters of a neural network 

classifier using labeled samples to achieve the desired performance. The primary goal of a 

supervised learning model is to discover the relationship between input variables and output 

variables from data. By establishing this relationship, new data can be fed into the trained model 

to predict the values of the output variables. In this context, labeled samples (e.g., eight types 

of drilling conditions) are used to train the model parameters, which are then employed for 

training the neural network model.  

In the context of drilling condition identification, the BP neural network can learn complex 

nonlinear relationships between drilling parameters (such as hook load, pump pressure, torque, 

etc.) and downhole conditions. During training, sample data is used to iteratively correct the 

network’s connection weights. Once training is complete, the model can effectively identify 

downhole conditions like kicks, lost circulation, and stick-slip. However, the BP neural network 

also has certain limitations. Actually, it is prone to falling into local minima, relies heavily on 

a large amount of high-quality training data, has a network structure that is difficult to determine 

theoretically, and exhibits poor generalization ability when dealing with small sample sets. In 

practical drilling applications, these factors must be carefully considered in the design and 

optimization of the network.  

1.3 Long short-term memory network (LSTM)  

Based on the long-time-series characteristics required for intelligent drilling condition 

identification, this study conducts structural analysis and comparative principle evaluation of 

three common neural network algorithms, thereby establishing an algorithmic foundation for 

intelligent drilling condition discrimination.  

RNN is one of the most frequently used deep learning models for processing temporal sequence 

problems. Its architecture incorporates the hidden layer nodes from the previous time step t-1 
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as input for the current time step t, granting its exceptional performance in handling sequential 

data. However, the RNN’s chain structure, which uses identical parameters across all time steps, 

makes it susceptible to the vanishing gradient problem during training. Gradients can diminish 

to zero, leading to what is known as the “long-term dependency” issue. This means that as the 

time interval increases, the RNN loses its ability to learn information from distant time steps. 

Consequently, the standard RNN is not suitable for intelligent drilling condition identification, 

which inherently involves long-time-series characteristics.  

In 1997, Hochreiter and Schmidhuber proposed the LSTM-RNN model and demonstrated that 

the LSTM possesses the capability to remember both long- and short-term information, 

effectively resolving the long-term dependency problem of traditional RNNs. Recently, LSTM 

have undergone rapid development and have been successfully applied in the field of petroleum 

engineering. For instance, in 2019, Lee successfully predicted shale gas production using the 

LSTM.  

Through detailed analysis of the structures of BP, RNN, and LSTM, and considering the long-

time-series nature of comprehensive mud logging data, the LSTM, which excels at learning 

temporal sequence information and handling long-range dependencies, has been selected as the 

optimal algorithm for intelligent drilling condition identification.  

The LSTM is a significant improvement upon RNN, replacing the standard neurons in the 

traditional RNN hidden layer with LSTM memory cells. When unfolded, the LSTM is 

equivalent to a feedforward neural network, where the input of each layer serves as the input 

for the next, and parameters are shared across all layers. The basic structure of the LSTM 

network is shown in Fig. 4. Its fundamental unit contains three gates, namely, the input gate, 

the forget gate, and the output gate. These three gates establish a self-loop mechanism within 

the internal state of the LSTM. Specifically: 1) The input gate determines how the current time 

step's input and the previous time step's internal state are updated; 2) The forget gate controls 

how much of the previous internal state is retained or forgotten for the current time step; 3) The 

output gate governs the extent to which the internal state influences the final output of the 

system. This architecture allows the LSTM model to capture parameter information at the 

current moment while retaining the changing trends of historical parameter information. The 

key reason LSTM can solve the long-term dependency problem of RNNs lies in its introduction 

of the forget gate ft, input gate it, and output gate ot to regulate the flow and loss of features. 

The unfolded chain structure of the LSTM is depicted in Fig. 4.  
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Fig. 4 Operational Principle of the LSTM Network’s Recurrent Unit at Time Step t 

In Fig. 4, the long horizontal line running from left to right at the top allows learned knowledge 

to pass directly along it without easy alteration, thereby enabling the LSTM network to possess 

“long-term” memory and solving the “long-term dependency” problem of RNNs. The 

combined use of “short-term memory” and “long-term memory” allows LSTM to learn both 

“short-term” and “long-term” patterns over long sequences. When the long-term cell state 

passes through the neural network, the forget gate ft “forgets (deletes)” part of the memory 

information, the input gate it “inputs (adds)” part of the memory information, and finally, after 

processing by the output gate, the result is output. Fig. 4 shows the structure of the recurrent 

unit of the LSTM network at time step t. As shown in Fig. 1, the output of the hidden layer at 

time t-1 and the input at time t are first copied into four parts each, and different weights are 

randomly initialized. Then, ht-1 and xt vectors are concatenated. Finally, nonlinear 

transformation is performed through the activation functions (sigmoid or tanh) to obtain the 

activation vectors for the forget gate, input gate, output gate, and the transformed cell state 

vector. The calculation formulas are as follows: 

  ,t t t  
f 1 f

f σ W h x b                        (1) 

  ,t t t  
i 1 i

i σ W h x b                         (2) 

  ,t t t  
o 1 o

o σ W h x b                         (3) 

  ' tanh ,t t t  
c 1 c

c W h x b                        (4) 

Where: ft, it, and ot are the activation vectors of the forget gate, input gate, and output gate at 

time step t, respectively; 
'

tc  is denotes the cell state candidate vector at time step t, obtained 

after transformation through the tanh layer. W is the weight matrix associated with different 
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stages. b is the bias vector associated with different stages. xt is the input at time step t. ht-1 is 

the output of the hidden layer at the previous time step t-1. σ is the sigmoid activation function.  

These components work together within the LSTM architecture to regulate information flow, 

enabling the network to effectively capture and retain long-term dependencies in sequential 

data. The forget gate ft and input gate it is used to discard part of the useless stored information 

and retain part of the useful information at time t, thereby updating the internal memory cell ct. 

The calculation formula is as follows:  

'

1t t t t t   c f c i c                         (5) 

Where: ct is the updated memory cell at time t; ct-1 is the preserved memory cell from the 

previous time step t-1. The output gate ot selects useful information from ct and transmits it to 

the hidden state ht. The calculation formula is as follows:  

 tanht t t h o c                         (6) 

Where: ht is output of the hidden layer at time t.  

2 Performance evaluation metrics for machine learning models  

Generally, the generalization error is used to evaluate the performance of a machine learning 

model. A smaller generalization error indicates better model performance. The test set is 

employed to assess the model’s classification and discrimination capabilities, and the test error 

from the test set is used as an approximation of the generalization error. This paper adopts four 

evaluation metrics: Accuracy, Precision, Recall, and F1-score. Based on the actual categories 

and the model's predicted categories, the classification results are organized. The confusion 

matrix for binary classification is shown in Table 1, and the confusion matrix for multi-class 

classification is shown in Fig. 5. Here, TP represents true positives, FP represents false positives, 

TN represents true negatives, and FN represents false negatives.  

Table 1 Confusion matrix of binary classification results 

Actual values 
Predicted values 

Positive Negative 

True TP FN 

False FP TN 

 

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



 
Fig. 5 Confusion matrix for multi-class classification problem 

Different metrics directly reflect the performance of classification. “Accuracy” is the most 

common evaluation criterion, which is the number of correctly classified samples divided by 

the total number of samples. For balanced classification problems, a higher accuracy generally 

indicates a better classifier. “Precision” and “Recall” are a pair of contradictory metrics. 

“Precision” reflects how many predictions for a certain class are correct and how many are 

incorrect. “Recall” shows how many of the predictions for a certain class are correct. The “F1-

score” is the harmonic mean of precision and recall.  

3 Dataset description and organization  

3.1 Types of mud logging data 

The data was sourced from actual drilling operations in the Western Mining Area. A 

comprehensive mud logging unit collected over 100 drilling parameters, including time, well 

depth, and bit position, resulting in a total of 2 million recorded data entries. The extensive 

parameters in the mud logging data can be categorized into three types: drilling parameters, 

drilling fluid parameters, and gas logging parameters. The specific classifications and details 

are presented in Table 2.  

Table 2 The types of parameters of composite mud logging 

Composite data Content of data 

Drilling parameters 
Well depth, Bit position, Hook height, Hook load, Weight on bit, Rotary 

speed, Torque, Flow rate, Standpipe pressure 

Drilling fluid parameters 
Inflow/outflow drilling fluid density, Inflow/outflow drilling fluid 

temperature 

Gas logging parameters Total hydrocarbons, Methane, Hydrogen sulfide 

 

3.2 Data normalization 

1) Abnormal data processing 

In mud logging data, sensor interruptions or distortions may result in abnormal data points with 
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a fixed value of “-999”. To prevent these anomalous values from adversely affecting model 

accuracy, this study employs the method of directly removing entire rows containing such 

abnormal values. Given that the drilling time-series data in this research has a sampling interval 

of 4-5 seconds, the dataset is sufficiently large, and the frequency of abnormal values is 

relatively low. Removing these data points does not significantly impact the continuity or 

overall integrity of the dataset. 

Furthermore, as sensor data from the near-wellbore region tend to exhibit substantial distortions, 

this study excludes logging data from the first 1000 meters to further enhance data quality and 

reduce interference in model training. Only data beyond 1000 meters is used for model training 

and analysis. This processing strategy effectively improves data reliability and model 

robustness. 

2) Data normalization processing 

Data normalization is a commonly used data preprocessing operation aimed at handling data of 

different scales and dimensions, scaling them to the same data range and scope to reduce the 

impact of scale, features, and distribution differences on the model. Common data 

normalization methods include Z-Score and min-max. Considering that drilling is a sequential 

process that varies with depth, parameters such as well depth and drilling pressure do not follow 

a normal distribution. To eliminate dimensions and reduce the impact of different magnitudes 

of parameters on model performance, this study adopts the min-max normalization method to 

linearly transform the original logging data, constraining the data to the range [0, 1], namely:  

min

max min

x x
x

x x

 



                            (7) 

Where: x* is the normalized value; xmax is the maximum value in the training data; xmin is the 

minimum value in the training data.  

3.3 Correlation analysis 

In the actual drilling process, various logging parameters are not isolated from each other; there 

exists a certain causal relationship among them. Correlation analysis involves calculating the 

correlation coefficient between datasets to determine the changing characteristics between two 

parameters. Generally, it can be categorized into two types of relationships: positive correlation 

and negative correlation. A positive correlation indicates that as one parameter increases, the 

other also increases, and as one decrease, the other decreases. Conversely, a negative correlation 

implies the opposite. Through correlation analysis of data, parameter relationships can be 

quickly identified, and key parameters can be extracted. Commonly used correlation 
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coefficients include the Pearson correlation coefficient and the Spearman correlation coefficient.  

(1) Pearson correlation coefficient 

The Pearson correlation coefficient is generally used to analyze the relationship between two 

continuous variables and is a linear correlation coefficient. The formula is: 

  

   

1
p

2 2

1 1

n

i i

i

n n

i i

i i

x x y y

r

x x y y



 

 



 



 

                      (8) 

Where: rp is the Pearson correlation coefficient value between two drilling parameters. A value 

greater than 0 indicates a positive correlation, while a value less than 0 indicates a negative 

correlation; n is the number of drilling parameters; xi, yi are the recorded values of the two 

drilling parameters; x , y  are mean value of drilling parameters. 

(2) Spearman correlation coefficient 

The Pearson correlation coefficient requires that the values of continuous variables follow a 

normal distribution. For variables that do not follow a normal distribution, or for measuring 

associations between categorical or ordinal variables, Spearman’s rank correlation coefficient, 

also known as the rank correlation coefficient, can be used. The formula is:  

 

 

2

1

2

6

1
1

n

i i

i
s

R Q

r
n n





 



                       (9) 

Where: rs is the Spearman’s rank correlation coefficient between two drilling parameters. A 

value greater than 0 indicates a positive correlation, while a value less than 0 indicates a 

negative correlation. n is the number of drilling parameters. The paired values of the two 

variables are ranked in ascending (or descending) order, respectively. Ri is the rank of xi; Qi is 

the rank of yi; (Ri-Qi) is the difference in ranks between xi and yi.  

To ensure that the selected working condition parameters are independent yet exhibit a certain 

degree of correlation, the Pearson correlation coefficient was used for analysis. As shown in 

Fig. 3, which presents the Pearson correlation coefficient plot of the working condition 

parameters, the horizontal and vertical axes represent each drilling parameter variable listed in 

the table. The value at the intersection of the horizontal and vertical axes indicates the 

correlation between two drilling parameter variables. The closer the absolute value is to 1, the 

stronger the correlation between the two parameters. In the plot, darker shades indicate a higher 

degree of correlation, while lighter shades indicate greater independence between the two 
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parameters. Negative values indicate a negative correlation between the two parameters. Larger 

absolute values signify a stronger correlation, while smaller absolute values indicate weaker 

correlation and greater independence between the two parameters.  

As can be seen from Fig. 6, eight drilling parameters in the comprehensive logging data, such 

as well depth, bit position, hook height, hook load, weight on bit, rotary speed, torque, flow 

rate, and standpipe pressure, exhibit strong correlations. Therefore, these eight logging 

parameters were selected as feature parameters for model training to accurately identify eight 

drilling conditions, including rotary drilling, sliding drilling, downward washing, reaming, 

upward washing, back reaming, tripping out, and tripping in.  

 
Fig. 6 Drilling parameter correlation heatmap  

3.4 Sample data labeling 
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A sample set for working condition identification, as shown in Table 3, was established based 

on the collected drilling dataset. The drilling condition at each time point serves as the output 

for network training. However, the drilling condition status cannot be directly obtained from 

the drilling dataset. Therefore, before model training, the drilling conditions must be manually 

labeled with reference to drilling logs. The data distribution and labels for the eight drilling 

conditions used in the classification task are shown in Table 3. It can be observed that the data 

distribution for three drilling conditions, sliding drilling, stationary, and downward washing, 

accounts for less than 5% of the total, indicating an imbalanced classification problem. 

Consequently, recall rates will need to be analyzed in subsequent steps.  

Table 3 Statistical analysis of sample dataset 

Drilling parameters Minimum Maximum Mean Standard deviation 

Bit depth/m 0 5286.22 2025.32 450.35 

Measured depth/m 552.00 5286.45 2621.57 398.38 

Hook height/m 1.53 39.58 15.76 4.78 

Weight on bit/kN 0 279.85 90.55 26.89 

Hook load/kN 0 4956.79 998.53 202.75 

RPM/(r·min-1) 0 175.00 70.36 15.97 

Torque/(kN·m) 0 55.67 16.45 4.19 

Standpipe 

Pressure/MPa 
0 50.88 13.71 3.16 

 

The comprehensive logging dataset from deep formations used in this section contains a total 

of 20,000,000 rows of sample data. Among these, 75% is allocated as the training set and 25% 

as the test set. Algorithms are then employed for learning and validation to achieve 

classification and prediction of drilling conditions. The manual labeling rules for the eight 

typical drilling conditions are detailed in Table 4, while the remaining logging data from deep 

formations corresponding to other drilling conditions are labeled as “Other”.  

Table 4 Labeling rules for the eight typical drilling conditions 

Drilling conditions Data volume Distribution of data 

volume (%) 

Label One-hot Encoding 

Rotary drilling 9 125 378 40.09 0 100 000 00 

Sliding drilling 492 549 2.16 1 010 000 00 

Downward washing 890 724 3.91 2 001 000 00 

Reaming 2 950 845 12.97 3 000 100 00 

Upward circulation 885 973 3.89 4 000 010 00 

Reverse reaming 2 659 467 11.69 5 000 001 00 

Tripping out 3 225 795 14.18 6 000 000 10 

Tripping in 2 525 879 11.00 7 000 000 01 

Total 22 756 610 100  

 

4. Network structure and parameter settings 

4.1 BP neural network structure and hyperparameter settings 

Table 5 Parameter settings of BP  

Parameters Values 

Normalization StandardScaler 

Number of input layers 32 
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Number of neurons of hidden layers 128 

Number of neurons of output layers 2 

Initial learning rate 0.001 

Activation function Relu 

Optimizer Adam 

Iterations 400 

 

Table 5 presents the network architecture and parameter settings summarized through multiple 

experiments. The value range of standard well depth in drilling data is not fixed, so standard 

normalization was selected to process the input data. The original drilling data had 33 features. 

After removing the irrelevant time field, 32 features remained as network inputs. The hidden 

layer was configured with 128 neurons to achieve better network convergence. Since the 

network output is a binary classification, the output layer was set with 2 neurons. The learning 

rate should not be set too high, as an excessively large value might cause the model to skip the 

global optimum and fail to converge. A learning rate of 0.001 was chosen to ensure final model 

convergence. The ReLU activation function was used due to its simple derivative calculation, 

reduced computational time, and absence of gradient vanishing issues. The Adam optimizer 

was selected for its relatively shorter computational time, and the number of iterations was set 

to 400.  

4.2 Structure and hyperparameter settings of LSTM 

Based on multiple experimental results, the architecture and hyperparameter settings of LSTM 

are summarized in Table 6. The normalization method selected was StandardScaler. The 

sequence length was set to 6, as this value was determined to be optimal based on label 

continuity. The feature dimension is 32, with 128 neurons in each LSTM cell. The ReLU 

activation function was chosen, and the hidden layer was configured with 128 neurons. The 

output layer consists of 2 neurons. The initial learning rate was set to 0.01, the Adam optimizer 

was selected, and the number of iterations was set to 100.  

Table 6 LSTM Neural Network Parameter Settings 

Parameters Values 

Normalization StandardScaler 

Length of sequence 6 

Feature dimension 32 

The number of neurons in the Cell 128 

Activation function Relu 

Number of neurons of hidden layers 128 

Number of neurons of output layers 2 

Initial learning rate 0.01 

Optimizer Adam 

Iterations 100 

 

5 Comparison  

5.1 BP neural network experimental results 
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(1) Loss curve analysis 

The loss variations during the training process for each drilling condition are shown in Fig. 7. 

The loss value for each condition decreased rapidly at the beginning of training, indicating that 

the model effectively learned the patterns for condition identification. Around 200 iterations, 

the loss curve stabilized, demonstrating that setting the total number of iterations to 400 was 

reasonable. The loss values eventually converged to approximately 0.3, reflecting successful 

training outcomes.  

(2) Analysis of accuracy, precision, recall, and F1-Score of the model  

The statistical results for accuracy, precision, recall, and F1-Score of these seven BP neural 

network models are presented in Table 7. The average F1-Score of the BP neural network 

models reached 0.9694, indicating that the trained models possess strong recognition 

capabilities. This step also ensures the objectivity and accuracy of the subsequent analysis of 

high-weight fields for drilling conditions.  

Table 7 Evaluation of BP neural network models 

Drilling conditions Accuracy Precision Recall F1 score 

Rotary drilling 0.9261 0.9236 0.9433 0.9518 

Slide drilling 0.9357 0.9341 0.9512 0.9367 

Washing down 0.9279 0.9239 0.9425 0.9455 

Reaming 0.9356 0.9259 0.9417 0.9329 

Washing up 0.9416 0.9518 0.9625 0.9658 

Back reaming 0.9518 0.9638 0.9431 0.9839 

Tripping out 0.9029 0.8859 0.9035 0.9158 

Tripping in 0.9153 0.8967 0.9015 0.9217 

 

 
Fig. 7 Changes in loss during the training process under various conditions. (a) Rotary 

drilling; (b) Slide drilling; (c) Washing down; (d) Reaming; (e) Washing up; (f) Back reaming; 

(g) Tripping out; (h) Tripping in 

5.2 The experimental results of LSTM 

The experimental results of the LSTM neural network model are presented in Table 8. As shown 

in the results, the average F1-Score reached 0.9741, and the accuracy for all drilling conditions 

exceeded 95%. This demonstrates that the LSTM neural network, which leverages time-series 

features, can better distinguish corresponding drilling conditions by extracting temporal 

information from drilling data.  
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Table 8 Evaluation results of LSTM model 

Drilling conditions Accuracy Precision Recall F1 score 

Rotary drilling 0.9721 0.9684 0.9760 0.9721 

Slide drilling 0.9743 0.9631 0.9865 0.9746 

Washing down 0.9566 0.9255 0.9930 0.9580 

Reaming 0.9848 0.9715 0.9989 0.9850 

Washing up 0.9803 0.9657 0.9960 0.9806 

Back reaming 0.9910 0.9871 0.9950 0.9910 

Tripping out 0.9223 0.8962 0.9551 0.9247 

Tripping in 0.9259 0.9055 0.9228 0.9355 

 

5.3 Comparison of algorithm results 

The primary goals of optimizing drilling operations are to minimize time consumption during 

condition identification and to maximize the accuracy of predictive methods, two standard 

metrics for evaluating performance, as compared in Table 9. A significant challenge arises 

because non-essential activities can account for 30% of total operational time. Consequently, 

the accurate real-time identification of drilling conditions and the reduction of such non-

productive time are fundamental to lowering costs and improving overall efficiency. However, 

conventional approaches that depend on expert interpretation or theoretical deductions are often 

hampered by subjective bias, a reliance on scarce expertise, and inherent time delays.  

A comparative analysis of the CNN, BP, and LSTM models on the drilling dataset is presented 

in Table 9 and Fig. 8. In terms of classification accuracy, LSTM achieved the highest mean F1-

Score of 0.9741, outperforming BP (0.9694) and CNN (0.962). This performance advantage is 

corroborated by its computational efficiency. The LSTM model completes condition 

identification in 6.9 seconds on average, which is notably faster than BP (10.6 s) and CNN (13.8 

s), indicating a substantial margin of efficiency.  

Table 9 Comparison of algorithms and models 

Indicator Model 
Rotary 

drilling 

Slide 

drilling 

Washing 

down 
Reaming 

Washing 

up 

Back 

reaming 

Tripping 

out 

Tripping 

in 

 

Accuracy 

CNN 0.8556 0.9023 0.9156 0.9016 0.8859 0.8936 0.8652 0.8529 

BP 0.9261 0.9357 0.9279 0.9356 0.9416 0.9518 0.9029 0.9153 

LSTM 0.9721 0.9743 0.9566 0.9848 0.9803 0.9910 0.9223 0.9259 

 
Precision 

CNN 0.8723 0.8958 0.9034 0.9126 0.9011 0.8861 0.8925 0.8639 

BP 0.9236 0.9341 0.9239 0.9259 0.9518 0.9638 0.8859 0.8967 

LSTM 0.9684 0.9631 0.9255 0.9715 0.9657 0.9871 0.8962 0.9055 

 

Recall 

CNN 0.8962 0.9124 0.9065 0.9139 0.8992 0.9214 0.8859 0.9163 

BP 0.9433 0.9512 0.9425 0.9417 0.9625 0.9431 0.9035 0.9015 

LSTM 0.9760 0.9865 0.9930 0.9989 0.9960 0.9950 0.9551 0.9228 

 
F1 score 

CNN 0.8981 0.9251 0.9168 0.8995 0.9284 0.9197 0.8998 0.9201 

BP 0.9518 0.9367 0.9455 0.9329 0.9658 0.9839 0.9158 0.9217 

LSTM 0.9721 0.9746 0.9580 0.9850 0.9806 0.9910 0.9247 0.9355 
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Fig.8 The comparison of consuming time between different models 

5.4 Feasibility and Future work  

The traditional method for identifying working conditions is limited by issues such as data 

collection and geological conditions. It fails to deeply explore the intrinsic connections of 

drilling data changes, making the traditional method difficult to be widely applied. By 

comparing the recognition effects of BP, CNN, LSTM model, it was found that LSTM was 

capable of extracting information from long-term sequences and had better recognition effects 

than CNN, but performed poorly in recognizing dense and repetitive conditions. Owing that the 

identification system was being studied, the predicted cases were conducted based on the 

established models. Presently, it was being studied more focused on the method and test. It still 

needed time to develop the comprehensive identification system integrating these models and 

then was applied in the drilling. The MS proposed the new idea on the identification of drilling 

conditions and this idea has been validated. Subsequently, it could help accelerate the research 

of the identification software based on the LSTM model and be popularized on the real-world 

drilling operations.  

While intelligent drilling methods show promise, they still require further refinement. Surface 

sensors at drilling sites are subjected to prolonged exposure to wind, sunlight, rain, and moisture, 

causing internal electronic components to degrade prematurely. As a result, the quality of 

drilling parameter curves may decline continuously or intermittently. Artificial intelligence 

algorithms, unable to distinguish between authentic data artifacts and true anomalies, often 

generate false alarms. To address these issues, the following recommendations are proposed: 

1) Enhance the monitoring system. In areas where logging curves cannot reliably identify 

operational conditions, it is advisable to integrate image or video recognition technology. This 

would enable comprehensive oversight of onsite activities and facilitate the development of 

distinct early-warning models for various drilling scenarios. Such an approach would help 

eliminate ambiguities where a single data source corresponds to multiple potential 

interpretations.  

2) Improve sensor performance. Upgrading sensor sealing and adopting components with 
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proven stability in harsh environments is essential. These measures will help ensure the 

authenticity and reliability of source data.  

3) Strengthen system training and algorithm development. Although artificial intelligence 

has been introduced into drilling engineering in recent years, and numerous researchers and 

experts have explored its use for early warning and incident management, most applications 

remain in preliminary stages. Given the complexity of drilling processes and the demanding 

hardware environment, continued efforts should focus on refining algorithms to filter 

interference and on developing adaptable solutions for diverse operational and environmental 

conditions.  

6 Conclusions 

(1) Four evaluation metrics, such as accuracy, precision, recall, and F1-score, were adopted to 

assess the classification performance of the machine learning models. The generalization error 

was selected to evaluate the model performance, where a smaller generalization error indicates 

better model performance.  

(2) To ensure that the selected drilling condition parameters are independent yet exhibit a 

certain degree of correlation, Pearson correlation coefficient analysis was conducted. This 

analysis identified eight drilling parameters from the comprehensive logging data as input 

variables for network training: well depth, bit position, hook height, hook load, weight on bit, 

rotational speed, torque, flow rate, and standpipe pressure.  

(3) A comparative analysis of the strengths and weaknesses of three algorithms, traditional 

CNN, BP, and LSTM, revealed that the LSTM outperforms both the CNN and BP in drilling 

condition classification. This demonstrates the unique advantage of LSTM in handling long-

time-series, high-dimensional, nonlinear complex mapping relationships.  
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