www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Language biomarker screening
using Al: a transdiagnostic
approach to the brain

Charalambos Themistocleous!™ & Brielle C. Stark?

Individuals with left-hemisphere damage (LHD), right-hemisphere damage (RHD), dementia, mild
cognitive impairment (MCI), traumatic brain injury (TBI), and healthy controls are characterized by
overlapping clinical profiles affecting communication and social interaction. Language provides a rich,
non-invasive window into neurological health, yet objective and scalable methods to automatically
differentiate between conditions with are lacking. This method aims to develop comprehensive
neurolinguistic measures of these conditions, develop a machine learning multiclass screening and
language assessment model (NeuroScreen) and offer a large comparative database of measures for
other studies to build upon. We combined one of the largest databases, comprising 291 linguistic
biomarkers calculated from speech samples produced by 1,394 participants: 536 individuals with
aphasia secondary to LHD, 193 individuals with dementia, 107 individuals with MCl, 38 individuals
with RHD, 58 individuals with TBI, and 498 Healthy Controls. Employing natural language processing
(NLP) via the Open Brain Al platform (http://openbrainai.com), we extracted multiple linguistic
features from the speech samples, including readability, lexical richness, phonology, morphology,
syntax, and semantics. A Deep Neural Network architecture (DNN) classifies these conditions

from linguistic features with high accuracy (up to 91%). A linear mixed-effects model approach was
employed to determine the biomarkers of the neurological conditions, revealing distinct, quantitative
neurolinguistic properties: LHD and TBI show widespread deficits in syntax and phonology; MCl is
characterized by fine-grained simplification; patients with dementia present with specific lexico-
semantic impairments; and RHD shows the most preserved profile. Ultimately, the outcomes provide
an automatic detection and classification model of key neurological conditions affecting language,
along with a novel set of validated neurological markers for facilitating differential diagnosis, remote
monitoring, and personalized neurological care.

Keywords Left-hemisphere damage, Right-hemisphere damage, Dementia, Mild cognitive impairment,
Traumatic brain injury, Artificial Intelligence

Language is a distinctively human cognitive system that enables individuals to communicate, share information,
and socialize. It includes a complex interplay of spoken, written, and signed modalities, drawing on multiple
linguistic subsystems, including phonology (the sound structure of words), morphology (the internal structure
of words), syntax (rules governing sentence structure), semantics (meaning), and pragmatics (the social use of
language)'2. Even simple tasks, such as ordering a meal, rely on the integration of these linguistic processes.
Language is not only central to social participation but is also tightly linked to broader cognitive functions,
including memory, attention, and executive functioning®. Consequently, when language is disrupted due to
neurological conditions such as left hemisphere damage (LHD), right hemisphere damage (LHD), dementia,
mild cognitive impairment (MCI), or traumatic brain injury (TBI), the consequences extend beyond isolated
cognitive deficits to independence, social participation, and overall quality of life. Yet, despite the critical role of
language in human functioning, assessing and monitoring language functioning in clinical practice and properly
treating it remains challenging.

The distinct underlying pathologies of LHD, RHD, dementia, MCI, and TBI produce unique behavioral
profiles by differentially affecting receptive and expressive language>® (Table 1). These can serve as early linguistic
markers that characterize these patients’. Neurological research has shown that LHD primarily impacts language
and other cognitive functions®!%. RHD can impair spatial awareness, emotions, and nonverbal and pragmatic
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LHD RHD TBI Dementia MCI
. . Stroke (other focal Stroke (other focal . Proteinopathy Prodromal AD,
(Typical) Etiology Tumor/Infection) Tumor/Infection) External Physical Force (Amyloid/Tau) Vascular, etc
Onset Acute Acute Acute Insidious Insidious
. . . Stable / Improving (risk . . Variablg (Stable,
Progression Stable / Improving Stable / Improving for later decline) Progressive Decline | Improving, or
Progressive)
. . Early-stage
. . . . . Focal Contusion and/or | Amyloid Plaques &
Primary Neuropathology | Focal Cortical Lesion Focal Cortical Lesion Diffuse Axonal Injury Tau Tangles AD pathology
common
- . . Lo Episodic Memory
Hallmark Cognitive . . Unilateral Neglect, Dysexecutive Syndrome, | Episodic Memory .
Deficit Aphasia, Apraxia Anosognosia Post-Traumatic Amnesia | Loss Loss (Amnestic

type)

Hallmark Language/
Comm. Deficit

Agrammatism, Anomia,
Paraphasias

Aprosodia, Pragmatic Deficits,

Discourse Incoherence

Disorganized/Tangential
Discourse, Pragmatic
Deficits

Anomic, “Empty”
Speech

Word-finding
difficulty, Reduced
verbal fluency

Awareness of
Deficits

Typically, Present
(often distressed)

Typically, Absent
(Anosognosia)

Often Absent
(Anosognosia)

Variable; Declines
with progression

Typically, Present
(source of concern)

Table 1. Comparative table of neurocognitive conditions. Comprehensive comparison of five major
neurocognitive conditions across key clinical and neurological characteristics. This comparative framework
facilitates differential diagnosis and understanding of the distinct neuropsychological profiles associated
with each condition. Note: Conditions include Left Hemisphere Damage (LHD), Right Hemisphere Damage
(RHD), Traumatic Brain Injury (TBI), Dementia of Alzheimer’s Disease type (AD-Type), and Mild
Cognitive Impairment (MCI). Clinical features compared include: Typical Etiology (underlying cause or
origin), Onset pattern (acute vs. insidious), Disease Progression trajectory (stable, improving, or declining),
Primary Neuropathology (underlying brain pathology), Hallmark Cognitive Deficit (characteristic cognitive
impairments), Hallmark Language/Communication Deficit (distinctive language and communication
problems), and Awareness of Deficits (patient insight into their condition, including anosognosia—lack of
awareness of deficits). Technical terms: Aphasia (language impairment), Apraxia (motor planning deficits),
Aprosodia (prosodic speech deficits), Agrammatism (grammatical impairments), Anomia (word-finding
difficulties), Paraphasias (word substitution errors), and Dysexecutive Syndrome (executive function
impairments).

communication!!~!*>. Both LHD and RHD can language deficits, but the specific nature of these deficits
differs'¢*°. MCI, an early cognitive decline, is typically amnestic in nature (affecting memory), but also typically
impacts language and other critical cognitive domains, such as attention, and executive functions?*-?>. Dementia
is a progressive deterioration of the brain health due to neurodegeneration, affecting multiple cognitive domains,
such as memory, language, attention, and movement?*-28. TBI is a heterogeneous disorder, resulting in open or
closed head trauma by an external force, such as a blow to the head, a fall, a car accident, and a penetrating injury.
It can range from mild (e.g., concussion) to severe, with varying degrees of physical, cognitive, emotional, and
behavioral effects®.

Conventional language assessment tools
Conventional language assessment tools, including structured tasks (e.g., Philadelphia Naming Test®,
Boston Naming Test?!, standardized batteries Western aphasia battery (revised) (WAB-R)2, Quick Aphasia
Battery (QAB)* and the Boston Diagnostic Aphasia Examination (BDAE)**, and patient- and clinician-rated
evaluations*~%, are widely used to support diagnosis and guide treatment decisions. These methods often provide
a narrow window into specific abilities like object naming, overlooking the multidimensional nature of everyday
communication. Furthermore, their time-intensive and stressful nature makes them ill-suited for widespread
screening. Clinicians may instead use general neurocognitive screeners like the Montreal Cognitive Assessment
(MoCA) or Mini-Mental State Examination (MMSE)*#-%0, but these still require in-person assessment and may
not be sensitive enough to detect subtle language impairments characteristic of conditions like mild cognitive
impairment (MCI). This creates a critical challenge for early detection and prognosis. A powerful solution lies
in combining large-scale language corpora with computational methods such as Natural Language Processing
(NLP) and Machine Learning (ML). This approach can enable automated screening and provide a deeper,
comparative understanding of these conditions against each other and normative data from healthy individuals.
We address a critical limitation in neurolinguistics—the tendency to study conditions in isolation—by
creating a unified analytical framework. Analyzing connected speech and discourse—how individuals use
language in natural, extended communication—is widely regarded by researchers and clinicians as a best
practice for assessing language abilities?!. This approach captures real-world communicative competence
and can reveal subtle linguistic deficits that standardized, isolated tasks often overlook. However, despite its
advantages, discourse analysis remains underused in clinical practice due to its time-intensive nature, lack
of scalable and standardized tools, and the manual effort required for transcription and coding®?. Moreover,
traditional assessments are typically conducted in controlled clinical environments, which may not reflect an
individual’s everyday communication patterns, thereby limiting ecological validity. Consequently, subtle or
early-stage language impairments—especially those associated with heterogeneous conditions such as mild
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cognitive impairment (MCI) or early dementia—often go undetected until more pronounced cognitive or
functional decline is evident.

Recent advances in artificial intelligence (AI), NLP, ML, and automated speech analysis have opened new
possibilities for addressing these limitations. By leveraging Al-driven approaches to extract and quantify
linguistic features from spontaneous speech, we and others have demonstrated their potential for objective,
reproducible, and ecologically valid measures of language production from transcripts or audio files?:43-45,
These computational methods can quantify automatically domains of language disorder—spanning lexical
diversity*®, phonological structure?*®, morphological patterns®!%4°-52, syntactic complexity>*~>’, semantic
content, and readability*®-*!—represent a promising class of digital biomarkers with the potential to support
early detection?263, differential diagnosis?!**%4-%, and ongoing monitoring of neurological conditions®’~%.
Despite that these studies demonstrates that automated language analysis holds significant promise as a digital
health tool, several challenges must be addressed before it can be fully integrated into clinical practice.

Automated language analysis is progressively recognized as a digital health tool’®”, yet its clinical translation
is constrained by several critical gaps. For these computational tools to improve patient outcomes in a meaningful
way, they must first move beyond the current landscape of proof-of-concept studies, which often use small,
homogenous datasets from isolated clinical populations but rely on rigorous validation across large, diverse,
and multi-condition populations is essential. This validation must also establish robust normative data from
healthy controls, enabling clinicians to benchmark an individual’s performance to accurately assess pathology
and severity. Also, the development of sophisticated computational pipelines must be paired with a focus on
practical application: creating scalable, automated, and openly accessible tools that can integrate seamlessly into
clinical workflows to reduce clinician burden and enhance diagnostic precision. Addressing these interconnected
challenges is the essential next step toward realizing language as a clinically actionable digital biomarker.

Study aims

This study has an overarching aim to advance a novel paradigm for neurological assessment to corroborate
existing neurological assessments and to establish spoken language as a scalable and clinical digital biomarker by
evaluate a comprehensive set of measures from the key linguistic domains, readability, phonology, morphology,
syntax, semantics, and lexicon (Supplementary Data 1 offers a detailed description see also the Methods section).

This provides a two-fold aim. The first aim is to develop a multi-class machine learning approach for
neurological screening (NeuroScreen) that can discriminate patients from Healthy Controls (HCs) and the
subtype individual patient subgroups from each other. Ultimately, the MLs aim to answer two primary research
questions (1) How well do the models distinguish patients and healthy controls? And (2) How well does the ML
model distinguish each sub-group in the data? By answering these two questions, we will be able to determine
how well the models can be employed in real-life scenarios for detecting patients and in the clinic to subtype
patients, and which of them with high confidence. To achieve aim we have developed an end-to-end Al-driven
procedure to analyze a large and diverse database of over 9,900 speech samples based on an end-to-end ML
model that combines NLP pipelines that employ Open Brain AI®!, a platform we have developed to extract the
linguistic features. Subsequently, we preprocessed and standardized the calculated measures and passed them
to a set of ML models, namely Random Forrest, Support Vector Machine, Logistic Regression, and Deep Neural
Networks. These models were tuned through hyperparameter tuning and evaluated.

(2) The second aim is to provide explainable measures, namely the linguistic signatures of five major
neurological conditions (LHD, RHD, dementia, MCIL, and TBI). This is critical to understanding the effects of
each condition on language and to providing therapeutic targets for novel clinical approaches. In other words, we
will determine (1) Which linguistic measures differ most due to diagnostic groups? (2) Which are the distinctive
features for each neurological condition compared to HC? And (3) What do language measures reveal for each
patient group? To achieve this aim, we developed (generalized) linear mixed effect models while controlling for
the effects of task and the participant.

This computational approach moves beyond prior research by leveraging ecologically valid data from
everyday communicative tasks to create a comprehensive, multi-faceted portrait of how language changes in
response to brain injury and disease, aiding in differential diagnosis, particularly for disorders with overlapping
symptoms like MCI and early dementia, and offering a non-invasive, low burden means for monitoring disease
progression and treatment response over time. Ultimately, this research contributes to the digital transformation
of clinical practice by providing a validated set of open-access linguistic biomarkers, this study creates new
opportunities for remote, low-burden monitoring of neurological health, supporting a future of more accessible,
data-driven, and personalized care.

Methodology

Participants

The individuals for this study were drawn from Neural Databank collected and developed by the second author”?,
now part of the Aphasia Bank, and data from the TalkBank consortium (https://talkbank.org), which following
a similar protocol. Each clinical bank (e.g., AphasiaBank, RHDBank) has an established discourse protocol that

elicits a variety of discourse genres’>.

(i) Aphasia Bank: The database contains spoken discourse samples from individuals with LHD and control
participants, designed to study language production and its neural foundations. The research emphasizes
connected speech (discourse) rather than single words or isolated sentences. Participants completed a
full discourse protocol twice within a short timeframe to assess the test-retest reliability and stability of

discourse measures. The participants contain both people with LHD (536 individuals) and HCs (359 indi-
viduals)”2.
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(ii) Right Hemisphere Damage Bank (RHD Bank): This is a specialized database focused on communication in
individuals with RHD. The database serves as a resource for understanding and treating communication
disorders following RHD, particularly focusing on pragmatic language abilities, discourse coherence, and
real-world communication challenges’*. This bank includes 38 individuals with RHD and 40 Healthy Con-
trols.

(iii) Traumatic Brain Injury (TBI Bank): This is a multimedia database focused on studying communication
disorders in individuals with TBI. TBIBank protocol includes discourse tasks such as the Cinderella story
retell, following similar methodology to other TalkBank databases. The protocol consists of discourse gen-
res including personal narratives, picture descriptions, story retelling, and procedural discourse. TBIBank
is a longitudinal study in which brain injured people are videoed at 6 different time points post injury per-
forming a uniform set of tasks, with the goal of identifying recovery patterns. The database enables auto-
mated language analysis, diagnostic profiling, comparative evaluation of treatment effects, and profiling of
recovery patterns in TBI populations, supporting both research and clinical applications in understanding
cognitive-communication disorders following brain injury. This bank includes 58 individuals with TBI.

(iv) Dementia Bank—Delaware MCI dataset: This corpus is part of DementiaBank and includes language pro-
ductions by 71 adults with MCI, from the Delaware Corpus and Baycrest Centre Corpus. This data con-
tributes to early detection of subtle changes in language and cognition and provide insight into MCI sub-
types based on discourse profiles”. The MCI Delaware corpus contains mostly individuals with amnestic
MCI, were the language-variant should not be predominant. However, they have language differences from
HCs%.

(v) Dementia Bank—Pitt Study (Pitt Study): A comprehensive description of this dataset is provided in Becker,
Boiler”®.Briefly, the study includes a picture description task from the Boston Diagnostic Aphasia Exami-
nation’’, a widely used diagnostic tool for detecting language abnormalities. In this task, participants were
shown the “Cookie Theft” picture stimulus and instructed to describe everything they observed. Their
responses were audio-recorded and later transcribed verbatim. This study includes 193 individuals with
Dementia and 99 Healthy Controls.

This study presents a comprehensive analysis of linguistic measures across various diagnostic groups by
combining data from multiple discourse tasks (see Supplementary Data 1). Our primary analysis provides a
consolidated overview of these linguistic features (Table 2; Supplementary Data 2, provides a more comprehensive
data breakdown of Data Count by Group, Project, and Task). Recognizing that different tasks may elicit distinct
communication patterns, we have preemptively accounted for potential task-specific effects within our statistical
models by adding the task in the random effects. To ensure full transparency and to allow for a more granular
examination of these variations, we provide a detailed breakdown of the linguistic signatures for each task in the
Supplementary Tables.

Participants participated in different tasks providing often more than one samples, the analysis is based on
9955 language samples drawn from multiple clinical databases produced by the individuals reported in Table
3 (see also, Table 2 and Supplementary Data 2). These databases exhibit significant clinical heterogeneity. For
instance, the LHD database contains participant groups classified by subtype, including anomic, Wernicke’s, and
Brocas aphasia. The Pitt study’s dementia subgroup (N'=193) further illustrates this diversity; it is composed
primarily of patients with dementia (91%), who present with lower average Mini-Mental State Examination

Diagnosis | Task List

LHD Cat, Cinderella, Flood, Important Event, Sandwich,
Speech, Stroke, Umbrella, Window
MCI Cookie Theft

Cat, Cinderella, Cookie Theft, Flood, Illness, Important Event,
Sandwich, Speech, Umbrella, Window

Cat, Cinderella, Cookie Theft, Rockwell, Sandwich,
Umbrella, Window

Dementia | Cooke Theft

HC

MCI

HC Cookie Theft
RHS Cat, Cinderella, Cookie Theft, Sandwich, Speech, Stroke
TBI Brain Injury, Cat, Cinderella, Important Event, Recovery,

Sandwich, Speech, Umbrella, Window

Table 2. Cognitive assessment tasks administered across diagnostic groups and research studies. Note:
Cat=A description of a single picture, in which a cat is being rescued from a tree; Cinderella = retelling of the
fictional narrative Cinderella, which is done after looking at a wordless picture book; Flood = A description of
a single picture of a rescue during a flood; Important Event=a personal narrative about an important event;
Sandwich =a procedural narrative describing how to make a peanut butter and jelly sandwich; Stroke or
Recovery = A personal narrative about one’s brain injury and recovery; Umbrella = A multiple scene picture
sequence, in which a boy and mother interact about taking an umbrella into the rain; Window = A multiple
scene picture sequence, in which a boy kicks a soccer ball through a man’s window, shattering it; Cookie
Theft = A description of a single picture, in which two kids steal a cookie; Rockwell= A description of a single
picture, which is Norman Rockwell’s “Coming and Going”
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Diagnosis | Project Speakers | Age at testing | Education
Aphasia Bank 359 56.89 (15.91) | 15.91(2.64)
HC RHD Bank 40 47.95(13.54) 17.09 (2.93)
Pitt Study 99 63.7 (7.9) 13.9(2.5)
LHD Aphasia Bank 536 61.04(12.4) 15.7 (2.91)
Dementia | Pitt Corpus 193 71.0 (8.6) 12.2(2.9)
PhD: 10.81%,
MCI Dementia Bank | 71 73.5(8.03) Bachelor/MA: 67.57%
Vocational Training: 21.62%
RHD RHD Bank 38 57.4 (12.33) 17.10 (3.99)
TBI TBI Bank 58 36.25(13.47) | 13.91 (3.05)

Table 3. Participant demographics across diagnostic groups and research databases. The table presents
sample sizes, mean ages, and educational attainment for participants in each diagnostic group across different
research corpora. Age is reported as mean years (standard deviation). Education is reported as mean years of
formal education (standard deviation) except for the MCI group where educational categories are presented
as percentages. Note: LHD: left hemisphere damage, RHD: right hemisphere damage, MCI: Mild Cognitive
Impairment, and TBI: Traumatic Brain Injury. The Dementia group is composed primarily of patients with
Alzheimer’s-type dementia (91%), with MMSE scores of 17-18 (out of 30), alongside individuals with MCI
(whose MOCA scores are typically <23 out of 30).

(MMSE) scores of 17-18, alongside individuals with MCI. We chose to incorporate these databases in their
entirety for several reasons. This approach maintains the ecological validity of the data, ensuring our findings
reflect the natural heterogeneity of clinical populations. Furthermore, it preserves the integrity of these standard
corpora, which is crucial for the reproducibility and comparability of our results within the wider research
community.

Measures
Texts were automatically preprocessed using a python algorithm to remove TalkBank’s Computerized Language
Analysis CHAT/CLAN coding, labels, and tags (e.g., prosodic markers, time-aligned tiers with annotations,
CHAT metadata) and prepare clean texts for further analysis. Subsequently, the text samples were analyzed
using Open Brain AI (http://openbrainai.com; Fig. 1), a custom clinical linguistics platform developed by the
first author®! to facilitate automatic audio and linguistic analysis of texts. Unlike generic computational models,
Open Brain AI was designed specifically for phenotyping of language features through a clinical lens, enabling
hypothesis-driven research into speech pathology and neurogenic communication disorders. The platform
calculates linguistic metrics in real-time as participants type or as clinicians transcribe speech samples, enabling
immediate quantitative analysis of discourse features relevant to neurological conditions. Additional analysis
modules accessible via the toolbar include syntactic complexity measures, semantic density calculations, and
comparative normative data. This example demonstrates the platform’s capability to automatically extract
objective linguistic measures from naturalistic discourse samples, facilitating evidence-based assessment of
communication disorders across various neurological populations. Open Brain AI executed a cascade of NLP
techniques. Core NLP steps included tokenization (segmenting text into individual words or tokens), part-of-
speech tagging (assigning a grammatical category to each token), and dependency parsing (identifying the
grammatical relationships between words and the syntactic structure of sentences). For each extracted feature,
both raw counts and ratios (to normalize for variations in text length) are computed. These quantitative linguistic
data were automatically exported by our computational platform as spreadsheet files, ready for statistical analysis
(Fig. 2).

From these foundational analyses, a comprehensive suite of linguistic measures was automatically extracted,
quantifying aspects of (Supplementary Data 1 offers a detailed list of the measures):

(i) Readability. Readability of text productions in patients with neurological conditions is a measure that has
been evaluated for the first time concerning all these conditions in this study. Metrics assessing text com-
plexity and perceived ease of understanding for a reader. Readability metrics include the Flesch-Kincaid
Readability Tests, Gunning Fog Index, and SMOG Index*®-%! quantify how easy a text can be to be read
and understood by a reader. It is typically influenced by factors such as sentence length, word complexity,
and the overall structure of the text. Overall, we expect that patient speech should be simpler and more
readable than that of healthy individuals.

(ii) Lexicon and Lexical Information. We have designed features related to the vocabulary richness, diversity,
and usage within the text. This includes measures like Type-Token Ratio, counts of content versus function
words, and average word length. These measures explain the distribution of words and relationships be-
tween types and tokens that can quantify how words are used in different contexts and how they contribute
to the overall meaning of a text such as lexical diversity measures*®.

(iii) Phonology. Characteristics of sound structure, such as counts of words by syllable Number: (e.g., one-syl-
lable, two-syllable words) and the distribution of various Consonant (C) and Vowel (V) syllable structures
(e.g., CV, CVC, CCVC). We designed these measures to quantify how users employ speech sounds, the

Scientific Reports |

(2026) 16:4207 | https://doi.org/10.1038/s41598-025-34257-z nature portfolio


http://openbrainai.com
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

B I U HH 9o EE 9 @® f E = x xX L

Cat oh my goodness . oh this looks like one of those typical incidents with people with a cat and possibly a dog . or it might be a neighborhood dog . anyway the
cat is up in the tree . and the little girl is just very very upset about that . and she is small . she has a tricycle . the dog is scratching at the tree and barking . and
it looks like I'l say dad or someone in the neighborhood climbed up the tree . but the ladder has now fallen down to the ground . he is sitting on a limb hanging
on . and someone has called the emergency people . they have arrived . the two emergency people are coming in with another ladder to get the man down out
of the tree and possibly get the cat down out of the tree . and their vehicle their emergency vehicle is parked nearby . and there's a little bird sitting in the tree
watching all this .

Lexical Measures

Function Words (Total)

Fig. 1. User interface of the Open Brain Al text analysis platform® for neuropsychological assessment. The
web-based platform provides real-time linguistic analysis of narrative discourse samples. The interface displays
a text editor (top panel) containing a participant’s narrative description of the “Cat Rescue” picture stimulus,
commonly used in aphasia and cognitive assessment batteries. The lower panel shows automated lexical
measures including character count (643), word count (161), sentence count (17), and function word analysis
(93 total function words, ratio 0.578).

sound combinations, and the complexity of syllables. Comparing these measures across patients with dif-
ferent language impairments can reveal characteristics that pertain to the effects of impairment on the
cognitive representation of sounds and speech production®’+3,

(i) Morphology. Analysis of word structure, encompassing both the distribution of parts of speech (e.g., counts
and ratios of nouns, verbs, adjectives, and adverbs) and inflectional categories (e.g., tense, Number: Gen-
der: case). Morphological measures quantify the structure and form of words, the distribution of parts of
speech, and inflectional categories, such as tense, Number, Gender, and Case. Comparing patients with
morphology impairments can reveal pathologies, like agrammatism and anomia®1%49-52,

(if) Syntax. Measures of sentence structure and grammatical complexity. This included quantification of var-
ious phrase types (e.g., Noun Phrases, Verb Phrases, Prepositional Phrases), analysis of core syntactic de-
pendencies and relations (e.g., nominal subjects, direct objects, adverbial clause modifiers), and overall
sentence complexity metrics (e.g., Average Sentence Length, T-units, and syntactic tree depth/Yngve load).
These measures quantify impairments of sentence structure (e.g., subject-verb-object order), grammatical
rules (e.g., agreement between subject and verb), and phrase structure (e.g., noun phrases, verb phras-
es)%35.,

(iii) Semantics. Primarily focused on Named Entity Recognition (NER), which involves identifying and cate-
gorizing named entities in text into predefined classes such as persons, organizations, locations, dates, and
quantities.

These grammatical analyses utilized the Universal Dependencies framework for standardized annotation’® and
custom made metrics, which were systematically selected using both established measures based on established
theoretical frameworks in clinical linguistics and their demonstrated sensitivity to pathological language
changes in neurogenic communication disorders (like counts of nouns and verbs) and novel measures that
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Fig. 2. NeuroScreen machine learning pipeline architecture for automated neurological assessment. The
comprehensive workflow shows the development and validation of a diagnostic system that analyzes language
production to distinguish between neurological conditions. Input data comprises speech and text samples from
participants across six diagnostic groups: Left Hemisphere Damage (LHD), Right Hemisphere Damage (RHD),
Dementia, Mild Cognitive Impairment (MCI), Traumatic Brain Injury (TBI), and Healthy Controls. Language
production tasks undergo automated linguistic feature extraction across six domains: Lexicon (vocabulary
richness), Phonology (speech sound patterns), Morphology (word formation), Syntax (grammatical structure),
Semantics (meaning content), and Readability (text complexity). The preprocessing pipeline includes quality
control checks, speaker leakage detection, correlated feature removal, mean imputation for missing values,
z-score standardization, and principal component analysis for dimensionality reduction (retaining 95%
variance). Five machine learning algorithms are systematically evaluated: Logistic Regression (LR), Random
Forest (RF), Support Vector Machine (SVM), Gradient Boosting (GB), and Deep Neural Network (DNN).
Model optimization employs hyperparameter tuning with GroupKFold cross-validation and randomized/
halving grid search. Synthetic Minority Oversampling Technique (SMOTE) addresses class imbalance. The
validated models comprise the NeuroScreen diagnostic tool for objective, automated neurological assessment
based on quantitative linguistic analysis.

aim to encompass microstructural elements (phonology, morphology), macrostructural components (syntax,
semantics), and pragmatic dimensions.

Thus, these measures aim to provide a comprehensive characterization of language impairments that aligns
with current models of linguistic breakdown in clinical populations. By capturing this full spectrum of linguistic
variation, the analysis framework enables detection of subtle but clinically significant changes that might be
overlooked by assessments targeting only isolated linguistic domains. A complete list of all measures and their
detailed operational definitions is provided in Supplementary Data 1. Given this large feature set, the analyses
presented in this paper prioritize a subset of measures selected for their demonstrated high sensitivity and
specificity in distinguishing between the diagnostic groups (LHD, Dementia, MCI, RHS, TBI) and Healthy
Controls, as well as differentiating the clinical groups from one another. An exhaustive output of all statistical
results for every measure is available in the Supplementary Materials.

Visualizing linguistic performance across diagnostic groups

To explore patterns in linguistic performance across diagnostic groups, we conducted an unsupervised
dimensionality reduction analysis. We standardized all linguistic variables (mean=0, SD=1) to ensure equal
weighting. We applied Principal Component Analysis (PCA)”° to identify the main axes of variation in the data
and Uniform Manifold Approximation and Projection (UMAP)®#! to generate a nonlinear, two-dimensional
embedding that preserves local similarities. UMAP was configured with n neighbors=15 and min dist=0.1,
and both methods used a random seed for reproducibility. To enhance interpretability, extreme outliers (beyond
1.5xIQR in the reduced dimensions) were excluded from visualizations (retaining 8,927 and 9,791 participants
for PCA and UMAP, respectively). The resulting embeddings were colored by clinical diagnosis to assess the
degree of separation or overlap among groups.
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Machine learning pipelines

We designed a machine learning pipeline to classify a speaker’s diagnosis into one of six categories based on
statistical features derived from language productions on tasks, namely patient with LHD, RHD, dementia,
MCI, TBI, and HCs. The pipeline is designed to manage speaker-dependent data, address class imbalance, and
a provide comprehensive, comparative evaluation of multiple machine learning (ML) models, namely include
Random Forest, Support Vector Machine (SVM), Logistic Regression, Gradient Boosting, and a Deep Neural
Network (DNN). The entire process, from data preparation to model evaluation, was conducted in a Python
environment utilizing pandas for data manipulation®, scikit-learn®> and imbalanced-learn® for machine
learning algorithms. The deep learning component was build using Tensorflow®®.

Data preparation and cohort definition

The core of our methodology is built upon the principle of speaker-independent validation, which is crucial
for developing models that can generalize to new, unseen individuals rather than memorizing characteristics
of specific speakers in the training set. To facilitate this, a designated speaker identifier column was used to
group data points belonging to the same individual. The dataset was then partitioned into features and the target
variable.

To ensure that the model evaluation provides a realistic estimate of performance on new individuals, a strict
speaker-independent splitting protocol was enforced. The dataset was divided randomly into a training set (80%)
and a hold-out test set (20%) using the GroupShuffleSplit strategy. This method guarantees that all data points
from any given speaker are confined to only one of the sets (either training or testing), completely preventing
data leakage between them. This approach is critical for assessing the model’s ability to generalize beyond the
specific speakers it was trained on.

Preprocessing and feature engineering pipeline

A multi-step preprocessing pipeline was applied sequentially to the data. Crucially, all preprocessing steps were
fitted only on the training data to prevent information from the test set from influencing the training process.
The same fitted transformers were then used to transform both the training and test sets.

(i) Missing values in the feature set were managed by imputing them with the mean of their respective col-
umns, calculated from the training data.

(ii) To reduce multicollinearity and model complexity, highly correlated features were removed. A Pearson
correlation matrix was computed on the training set, and for any pair of features with a correlation coeffi-
cient and we evaluated various threshold features, for correlations greater than 0.90, one of the features was
discarded.

(iii) The features were standardized by removing the mean and scaling to unit variance using the Standard-
Scaler®. This transformation ensures that features with larger scales do not disproportionately influence
model training, which is particularly important for distance-based algorithms like SVM and regularization
models like Logistic Regression.

(iv) Principal Component Analysis (PCA) was employed as the final feature engineering step. PCA transforms
the standardized features into a smaller set of uncorrelated principal components. The number of compo-
nents was chosen to retain 95% of the original variance in the training data, effectively reducing noise and
the dimensionality of the feature space while preserving most of the relevant information.

Model training, imbalance handling, and hyperparameter optimization

We have evaluated five distinct classification models to explore a range of algorithmic approaches: Logistic
Regression (LG), Random Forest, Support Vector Machine (SVM) with an RBF kernel, Gradient Boosting, and
a feedforward Deep Neural Network (DNN). We selected these models to allow for a comprehensive analysis of
the dataset and selection of a model that explain the data. More specifically, the following models were selected:

1. LG is a fundamental linear classification algorithm. It works by fitting a linear equation to the features and
then applying a logistic function (or sigmoid function) to the output to return a probability between 0 and 1.
This probability is then used to predict the class. LG serves as a baseline model®®.

2. RFs is an ensemble learning method; it constructs many individual decision trees during training. It can
capture complex, non-linear relationships in the data without requiring explicit transformations. It is gener-
ally robust to overfitting, especially when compared to a single decision tree as it averages the predictions of
many trees®’.

3. SVM models detect the optimal hyperplane (or decision boundary) that best separates the classes in the
feature space. SVM can model both linear and non-linear boundary by mapping the data into a higher-di-
mensional space, with good generalization performance on unseen data®.

4. GB is another powerful ensemble technique like the RFs, which builds models sequentially. It starts with a
simple model and then iteratively adds new decision trees that are specifically trained to correct the errors
made by the previous ones. RFs, however, build trees independently and in parallel whereas GBs are sequen-
tial with an error-correcting approach leading to more powerful and flexible model®¢.

5. DNN consists of an input layer, multiple “hidden” layers of interconnected nodes (neurons), and an output
layer. The network learns to detect complex patterns and features by adjusting the connection weights be-
tween neurons during training. The DNN approach can uncover patterns in the data than the other, more

traditional machine learning models might miss®.
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The data exhibited an imbalanced class distribution as there are fewer patients with MCI, RHD, and TBI, than
patients with dementia, LHD, and HC. To mitigate the risk of models becoming biased towards the majority
class, we integrated the SMOTE directly into our modeling pipeline®®. For each model, a pipeline was constructed
with SMOTE as the initial step. This approach ensures that over-sampling is performed correctly within each
cross-validation fold: SMOTE is fitted and applied only to the training data partition of a fold, generating
synthetic samples for the minority classes before the classifier is trained. The validation partition of the fold
remains in its original, imbalanced state, providing an unbiased evaluation of the model’s performance. This in-
pipeline application of SMOTE is crucial for preventing data leakage and obtaining a reliable estimate of model
generalizability. We defined a custom DynamicSMOTE class to automatically adjust the k neighbors parameter,
preventing errors in cross-validation folds where a minority class had very few samples.

To identify the optimal set of hyperparameters for each model, we employed a hybrid search strategy using
a participant-aware data partitioning with GroupKFold cross-validation (with 5 folds) to maintain speaker
independence. For the traditional models (Logistic Regression, Random Forest, SVM, Gradient Boosting), we
used HalvingRandomSearchCV. This efficient method starts by evaluating many hyperparameter combinations
on a small subset of the data and iteratively prunes fewer promising candidates, allocating more resources to the
best-performing ones.

For the computationally intensive Deep Neural Network (DNN), we used RandomizedSearchCV to sample
a fixed number of hyperparameter combinations from the search space. The performance of each combination
was evaluated based on its default scoring metric. The best hyperparameters for SMOTE’s k neighbors parameter
were also determined during this search. The DNN architecture was also part of the hyperparameter search. Key
parameters tuned included the number of hidden layers, the number of neurons, the dropout rate, batch size,
and the learning rate for the Adam optimizer. An “early stopping callback” was used to prevent overfitting by
halting training when performance on the loss function stopped improving.

Model evaluation

After hyperparameter tuning, the best-performing version of each model was evaluated on the completely
unseen hold-out test set. Model performance was assessed using a comprehensive set of metrics to provide a
holistic view of their classification capabilities:

1. Accuracy is the percentage of predictions that were correct out of all predictions made. If your model cor-
rectly predicts 85 out of 100 cases, your accuracy is 85%.

2. Balanced Accuracy solves this problem by averaging the accuracy within each class. It calculates the recall
(true positive rate) for each class separately, then takes the average. In other words, the balanced accuracy is
defined as the average of sensitivity (true-positive rate) and specificity (true-negative rate) for the two classes
in a binary classification “Patient vs. Healthy Control (HC)”, the Specificity (HC Recall) (1) and the Sensitiv-
ity (Patient Recall) (2) is calculated. Then the Balanced Accuracy is the sum of the Specificity and Sensitivity
divided by two (2), the number of classes in a binary classification.

number of true HCs correctly predicted as HC (1)

SpeCIﬁCIty = Total number of HCs

number of patient samples (any subtype) predicted as patient
- - (2)
Total number of patient samples

Sensitivity / Recall =
3. F1-Score (Weighted) addresses the trade-off between recall (2) and precision (3). The F1-score is the har-
monic mean of these two, giving you a single number that balances both concerns. The weighted version cal-
culates F1-scores for each class and then averages them based on how many samples each class has, making

it appropriate for imbalanced datasets.

P _ TruePositives __ actualpositivesamongallpredictedones
Precision = TruePositives+FalsePositives predictedpositives (3)

4. Cohen’s Kappa measures how much better your model performs compared to random chance. It is particu-
larly valuable because it accounts for the possibility that some correct predictions might just be lucky guesses.
Kappa values range from — 1 to 1: 1.0: Perfect agreement beyond chance and 0.0: Agreement is no better than
random chance; Negative values mean worse than random chance.

5. AUC-ROC (Area Under the Receiver Operating Characteristic Curve). The ROC curve plots your model’s
true positive rate against its false positive rate across all possible classification thresholds. The AUC-ROC
tells you how well your model can distinguish between classes. AUC=1.0: Perfect classifier.

6. AUC-PR (Area Under the Precision-Recall Curve). ROC curves can often be optimistic on imbalanced
datasets, precision-recall curves focus specifically on the positive class performance. This makes AUC-PR
especially valuable when you care more about correctly identifying the minority class. The PR curve plots
precision against recall at different thresholds. AUC-PR is particularly informative for imbalanced data.

7. Confusion matrices were generated for each model to visualize the distribution of correct and incorrect
predictions across the different classes. For tree-based models (Random Forest, Gradient Boosting), feature
importance scores were calculated and visualized to provide insights into the most influential principal com-
ponents for classification. Finally, the best overall model, along with the fitted preprocessing transformers,
was saved for potential future deployment.
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Statistics
To assess the influence of clinical diagnosis on each linguistic outcome variable, we utilized an automated mixed-
effects modeling pipeline. This analysis included participants from the five diagnostic groups (LHD, Dementia,
MCI, RHS, TBI) and the Healthy Control (HC) group. The pipeline, developed in R! was designed to be flexible,
data-driven, and robust to violations of statistical assumptions common in linguistic data.

For each linguistic variable, a mixed-effects model was implemented. Diagnosis was specified as a fixed effect
to determine its influence on the outcome.

As discussed earlier there is variation in the subgroups within the participants and the tasks they perform, to
appropriately account for the non-independence of data arising from the study design, and given the complexity
of the databases, two random intercepts were included in the model:

1. The (1| Speaker) term addresses that multiple observations (i.e., linguistic measures from one or more tasks)
originate from the same individual. By including a random intercept for each speaker, the model accounts for
individual-specific baseline differences in linguistic performance, thereby modeling the repeated measures
dimension of the data.

2. The (1 | Task) term addresses the inherent variability across different elicitation tasks (e.g., “Cinderella,”
“Flood,” and “Cookie Theft,” as listed in Table 1). Given that the study design involved diverse groups of
participants undertaking varying subsets of these tasks, this random intercept allows the model to estimate
an average deviation from the overall mean for each specific task. This effectively controls for baseline differ-
ences in how tasks might elicit certain linguistic features, regardless of the speaker or their diagnosis.

These random effects structure is robust to the unbalanced nature of task administration (i.e., not all participants
completed all tasks, and tasks were not fully crossed with participants). It allows for the estimation of the fixed
effect of ‘Diagnosis’ while simultaneously partitioning out variance attributable to individual speakers and
specific tasks. The general model structure was:

Outcome ~ Diagnosis + (1|Task) + (1|Speaker) (4)

The analytical pipeline systematically selected the most appropriate statistical model based on the distribution of
each dependent variable. This adaptive process involved fitting Gaussian Linear Mixed-Effects Models (LMMs)
for continuous variables, using robust LMMs if residual diagnostics (via the DHARMa package®?) indicated
violations of model assumptions, and employing Generalized Linear Mixed-Effects Models (GLMMs) with
appropriate distributions (e.g., binomial, Poisson, or negative binomial) for binary or count data, including
checks for overdispersion and zero-inflation. If a suitable model could not be fitted through these steps, a rank-
based LMM was applied as a robust fallback. (Further details on the specific model selection criteria and R
packages, such as ImerTest® and robustlmm®.

When a significant main effect of ‘Diagnosis’ was found (typically p <0.05), post-hoc pairwise comparisons
were conducted between all diagnostic groups using estimated marginal means (via the emmeans package®).
Tukey’s method was applied to adjust for multiple comparisons. Group means and confidence intervals are
reported to aid in the interpretation of these differences.

To create a ranked list of linguistic signatures, a key statistic from the post-hoc analysis of your mixed-
effects models. A larger z-ratio indicates a more robust and statistically significant difference. It simultaneously
accounts for the size of the difference and the precision of the measurement. We use the absolute value of the
z-ratio for ranking because we are interested in the magnitude of the difference, regardless of whether a feature’s
value increased or decreased. This allows us to directly compare the most impactful features across all groups.
The direction of the change (increase or decrease) is then indicated separately in the table with arrows.

Results

We examined the distinct linguistic production of each group on a comprehensive set of linguistic automated
measures spanning lexical, morphological, phonological, readability, semantic, and syntactic domains. Figure 3
shows a UMAP plot illustrating the distribution of linguistic profiles across six clinical groups. (It uses all
data, that is before dimensionality reduction.) Centroids (marked with 'x) separate HCs, patients with LHD,
Dementia, from the three other conditions (that is, patients with TBI, RHD, and MCI), which show significant
overlap indicating that individual language abilities vary widely within each diagnosis and often resemble those
of other three diagnostic categories. To study the linguistic differences of the diagnostic groups in detail, we
conducted a supervised ML analysis and designed regression mixed effect models.

To investigate the global structure of linguistic variations across diagnostic groups, we performed a
Uniform Manifold Approximation and Projection (UMAP) analysis®®5!. Figure 3 displays the two-dimensional
embedding of the comprehensive linguistic profiles (derived from the extracted linguistic features) for all
participants. Interpretation of the UMAP Projection Unlike linear projections (e.g., PCA), the axes in Fig. 3
(UMAP 1 and UMAP 2) do not correspond to specific, single linguistic variables. Instead, they represent non-
linear, dimensionless coordinates that preserve the local neighborhood structure of the high-dimensional data.
Consequently, the proximity between data points indicates the similarity of their overall linguistic profiles:
points clustered closely together represent individuals with highly similar speech patterns across the domains of
morphology, syntax, lexicon, and phonology. The X’ markers indicate the centroids (geometric centers) of each
diagnostic group, illustrating the average location of that group’s linguistic profile in the projected space.

The distribution observed in Fig. 3 is a direct result of the feature selection process, where we retained robust,
non-redundant measures across all linguistic levels. This multidimensional approach reveals three primary
patterns of distribution. Firstly, the distinct clusters in LHD and Dementia show that the LHD group forms a
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Fig. 3. Uniform Manifold Approximation and Projection (UMAP) visualization of linguistic profiles across
diagnostic groups. This plot represents the non-linear dimensionality reduction of linguistic features extracted
from speech samples (covering syntax, morphology, phonology, semantics, lexicon, and readability). (A)
The axes (UMAPI1 and UMAP2) are dimensionless coordinates derived to preserve the local neighborhood
structure of the high-dimensional data; absolute values are arbitrary, but proximity between points indicates
similarity in the overall linguistic phenotype. (B) Colored points represent individual participants. The 'X'
markers indicate the centroid (geometric mean) for each diagnostic group, and shaded ellipses illustrate

the general distribution. (C) The spatial separation of Left Hemisphere Damage (LHD) and Dementia from
Healthy Controls (HC) reflects their distinct and severe linguistic deficits (e.g., syntactic simplification and
lexical retrieval issues). Conversely, the significant overlap of Mild Cognitive Impairment (MCI), Right
Hemisphere Damage (RHD), and Traumatic Brain Injury (TBI) with the HC cluster indicates that these
conditions manifest with subtler linguistic deviations and higher individual variability, often preserving core
structural language elements. (Trustworthiness: 0.868).

distinct cluster significantly separated from the HCx. This separation aligns with the severe deficits in syntax and
phonology (e.g., reduced complex syllable structures and functional words) identified in our statistical analysis.
Similarly, the Dementia group separates from HCs, driven by their specific lexico-semantic impairments.

In contrast, the TBI, MCI, and RHD groups show substantial overlap with each other and the HC group. This
visual overlap suggests that while these conditions have unique linguistic markers (as detailed in Table 6), their
overall linguistic footprint is less distinct than that of LHD. The wide dispersion of the LHD and TBI clouds
relative to the tighter HC cluster illustrates the high variance in these populations—reflecting that brain injury
affects language production in heterogeneous ways depending on severity and lesion location. This unsupervised
visualization serves as a validation of the supervised ML results presented in subsequent sections, confirming
that while LHD and Dementia present strong, separable signals, conditions like MCI and RHD present subtler
linguistic deviations that require the high-dimensional discrimination provided by the NeuroScreen models.

How well do the models distinguish patients and healthy controls?

To assess how well the models distinguish patients and HCs, we have collapsed all five patient subtypes into
one “Patient” group, and we can compute the results shown in Table 4. The plethora of available data for this
classification enabled the models to perform exceptional well. LR is essentially perfect at flagging “Patient” vs.
“HC” (balanced accuracy = 99%). The DNN and the SVM both perform close to 95% thresholds; the RF and the
GB (were close to 90%). Taking the best ML models into account (LR, DNN, and SVM), two main findings are
important. First, all the ML models distinguish patients and HCs; second, the linguistic measures used by the
ML models distinguish the groups, so they can function as linguistic markers. Although these are multi-class
rather than pure HC vs. Patient, their reported AUC-ROC and AUC-PR reflect overall separability.
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HC Recall | Patient Recall | Balanced
Model | (Specificity) | (Sensitivity) | accuracy | AUC-ROC | AUC-PR
LR 0.98 0.99 0.99 0.920 0.909
SVM 0.93 0.98 0.96 0.970 0.972
DNN |0091 0.99 0.95 0.966 0.935
GB 0.88 0.93 0.90 0.918 0.925
RF 0.86 0.89 0.88 0.902 0.897

Table 4. Model performance of the binary classification “Patient Group” vs. Healthy Controls.

No

TestSample

LHD
(F1 Score:
96%)

Isit
froma

patient
?

Which Dementia

Best Model Performance on “Is it from a patient?”:

group does
the patient
belong to?

Yes (F1 Score:

86%)

Other
Neurological
Condition (MCI,
TBI, RHD)
(F1 Score: 82%)

Which group does the patient belong to?

Category Support Precision Recall F1-Score
Patient
oo o PO by  AUCROC  Avcen T S N T
(Sensitivity)
HC 573 0.94 0.93 0.94
LR 0.98 0.99 0.99 0.920 0.909 Other 21 0.94 0.72 0.82
DNN LHD 1173 1.00 0.90 0.94
SVM 0.93 0.98 0.96 0.970 0.972 Dementia 47 0.61 0.98 0.75
HC 573 0.97 0.91 0.94
DNN 0.91 0.99 0.95 0.966 0.935 Other 211 0.59 0.93 0.72

Fig. 4. Two-stage hierarchical classification system for distinguishing neurological patients from healthy
controls and subsequent patient subgroup classification. The flowchart illustrates a binary decision tree where
test samples are first classified as either patient or healthy control (HC), followed by multi-class classification
of patient samples into specific neurological conditions. The first stage achieves high performance with F1
scores of 96% for patient detection. Patients are subsequently classified into Left Hemisphere Damage (LHD,
F1=96%), Dementia (F1=86%), or Other Neurological Conditions including Mild Cognitive Impairment
(MCI), Traumatic Brain Injury (TBI), and Right Hemisphere Damage (RHD) (F1=82%).

How well does the ML model distinguish each sub-group in the data?

Above we collapsed all patients into one group, to determine howe well the model identifies patients from HCs.
In this section, we discuss the performance of the models as multiclass classifiers, to determine how well the
model distinguishes each group from each individual subgroup.

When examining the classifier’s performance on all categories, all models demonstrate robust performance
with scores predominantly above 0.8 across most metrics (Fig. 4 and Supplementary Data 4). For the detection
of patients with LHD, all models excel here (F1>0.92), with SVM slightly edging out the others (0.96) thanks
to near-perfect precision (0.94) and recall (0.99). For patients with dementia LR is most balanced (F1=0.88),
combining good precision (0.83) with high recall (0.94). The DNN overcalls patients (precision 0.61) despite high
recall (0.98), yielding a lower F1. The detection of the HC within the LR again leads (F1=0.98), misclassifying
only ~ 2% of controls, while the tree-based models lag (GB 0.85, RF 0.81). For the MCI, SVM outperformed the
other models (F1=0.60) by balancing 0.63 precision with 0.56 recall. The detection of minority classes was poor,
namely patients with RHD (DNN, F=0.56 and low precision 0.17) comes at poor and TBI (SVM, F1=0.58,
combining 0.71 precision with 0.50 recall). These suggests either both the need for more data or that language
markers are overlapping so that the models are not discriminating these groups well. This will become evident
from the following statistical analysis of markers associated with each condition in the following sections.

To address the problem of the minority classes, we collapsed the patient categories with MCI, RHD, and TBI
into a category “Other Neurological Conditions” In this way, the model has an exceptionally good performance,
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allowing the detection of patients with Dementia, LHD, and HCs and all the minority classes together. In this
case, the model-specific performance across all categories. SVM demonstrates consistent performance with
balanced precision and recall across LHD (precision: 0.94, recall: 0.99), Dementia (precision: 0.89, recall: 0.83),
HC (precision: 0.94, recall: 0.93), and Other neurological conditions (precision: 0.94, recall: 0.72). In contrast,
DNN exhibits perfect precision for LHD (1.00) but shows high recall sensitivity for Dementia (0.98) and Other
Neurological conditions (0.93) at the cost of reduced precision (0.61 and 0.59, respectively). Support values
indicate the sample sizes for each category: LHD (n=1173), HC (n=573), Other (n=211), and Dementia
(n=47), with Dementia representing the smallest patient subgroup.

Which linguistic measures differ most due to diagnostic groups?

Healthy Controls (HC) served as the intercept, and the estimates for each diagnostic group (LHD, Dementia,
MCI, RHD, TBI) represent the difference from this HC baseline. The analysis of various linguistic measures
reveals that the diagnosis has a statistically significant and often substantial impact across a wide array of speech
and language characteristics provides the top features with the largest explanatory power related to neurological
condition. The complete results are shown in Appendix 2.

The strength of this impact, however, varies considerably among measures, as indicated by Partial Eta
Squared (Partial #2) values for the Diagnosis and the Marginal R-squared (R2 Marginal) for the overall fixed
effects of the models is shown in Table 5. All p-values for the reported F-statistics are extremely small (e.g.,
p<0.001), indicating high statistical significance for the effect of Diagnosis on these measures. Note that from the
presentation below we have removed measures with extremely high Partial #2 values but very low denominator
degrees of freedom, suggesting their large effect sizes in this sample should be interpreted with caution due to
potential model instability or low power for the inferential test despite the large point estimate of effect, also
removed were measures with non-significant effects of diagnosis.

Diagnosis demonstrates a widespread influence on a multitude of linguistic measures. The strongest
differentiating features (those with large Partial #2 values and robust model fits) are concentrated in areas of
semantic content (especially numerical and definiteness marking), overall lexical production and diversity,
counts of various morphological categories (nouns, adjectives, plurals), and basic phonological/syllable
structure counts. Additionally, measures of syntactic complexity and certain readability characteristics also show
substantial impact.

These findings highlight that the neurological conditions under study manifest with distinct and quantifiable
linguistic profiles. The identified measures with the largest effect sizes are prime candidates for inclusion in
diagnostic models or for tracking linguistic changes associated with these conditions. The high R2 Marginal
values for many of these top-ranking measures further underscore the explanatory power of Diagnosis in
accounting for the observed linguistic variations. A substantial number of linguistic measures demonstrated
large and robust effects of Diagnosis, indicating these are strong candidates for differentiating between the
groups. These involve all the aspects of grammar like phonology, morphology, syntax and semantics, lexical
usage, and readability that is text difficulty.

Measures with medium effects (partial n?~0.06-0.13)

Beyond the large effects, a broad range of other measures showed medium-sized effects of Diagnosis. These span
across all linguistic domains, which we included like the total Number of Function Words (Partial #>=0.14),
phonology, such as the different syllable types, like VC and CCVCC (Partial #?=0.14), morphology including
the Number of Verbs (Partial #2=0.14), syntax like the number of Complex thematic units (T units), the number
of matrix sentences (Root), dependent clauses, and the object of preposition. As discussed below although the
readability measures did not make it to the list shown in Table 5, several readability measures remain important
as they achieve a Partial 7% between 0.14 and 0.13; these include the Estimated Reading Time (sec), Smog Index,
Total Classical Yngve Load, Difficult Words; the latter is a measure based on a standardized dictionary®'.

Which are the distinctive features for each neurological condition compared to HC?
In this section, we summarize the high-level “linguistic signatures” that distinguish each group. Table 6 below
synthesizes the results for each neurological condition, by highlighting the top ten (10) linguistic features that
most strongly distinguish it from Healthy Controls by using the magnitude of the z scores from the post-hoc
analysis (emmeans). The complete list of distinctive linguistic features is provided in the Supplementary Table 5.
Several key patterns emerge from the statistical analysis. Individuals with LHD are characterized by a
widespread disruption across multiple linguistic domains. While the most discriminating feature is an increased
ratio of verb-modifying word types, the majority of the top-10 features are decreases (|), reflecting a reduction
in phonological complexity (e.g., 5 syllables word, CCVCCC), syntactic structures (Complement of preposition
), and the use of specific word types (Pronoun Type: Relative Pronouns). Individuals with Dementia show a
pattern of impairment that is also broad but appears centered on the use of specific content and function words
(Verb Type: Modal) and a decrease relative to HCs on measures of phonological complexity (5 syllables word,
CCVCCQ). Individuals with TBI present a mixed profile of mostly decreases in its top features, suggesting a
unique pattern of linguistic disruption with a notable increases in of ratio of Modal Verbs. Individuals with MCI
is uniquely distinguished by a strong decrease in measures that associated with increased production complexity
like five (5) syllable-words, syllables with complex articulatory patterns (CCVCCC, CCCV) and complex
syntactic patterns such as the number of Clausal Modifier of Nouns and Complement of Prepositions. This
pattern of decreased production in several of the top-ranking features supports the hypothesis that individuals
with MCI more general disruptions in language and domains like memory that can explain their use of simpler
patterns. Individuals with RHD shows the most subtle linguistic profile. Its top discriminators are related to
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Measure Category F Num DF | Den DF | pvalue | Partial 7> | R2Marginal
1 | Indefinite Count Morphology | 87.39 | 2.00 431.02 | 1.38E-32 | 0.29 0.26
2 | Cardinal Number Count Morphology | 90.88 | 2.00 526.94 | 1.24E-34 | 0.26 0.24
3 | Types Lexicon 62.63 | 2.00 598.34 | 2.02E-25 | 0.17 0.19
4 | CvCC Phonology | 63.29 | 2.00 630.04 | 8.96E-26 | 0.17 0.20
5 | Number Plural Count Morphology | 56.81 | 2.00 568.22 | 3.22E-23 | 0.17 0.19
6 | Content Words Unique Lexicon 57.43 | 2.00 577.53 1.79E-23 | 0.17 0.18
7 | Attribute Count Syntax 67.64 | 2.00 683.24 | 1.57E-27 | 0.17 0.24
8 | 2 syllables word Phonology | 57.92 | 2.00 594.29 | 1.05E-23 | 0.16 0.19
9 | Appositional modifier Count Syntax 41.96 | 2.00 431.04 | 2.24E-17 | 0.16 0.21
10 | Degree Positive Count Morphology | 48.38 | 2.00 499.73 | 6.19E-20 | 0.16 0.17
11 | Adjective Count Morphology | 57.71 | 2.00 600.00 | 1.19E-23 | 0.16 0.19
12 | Adjective Phrases Syntax 57.47 |2.00 597.62 | 1.48E-23 | 0.16 0.19
13 | Adjectival modifier Count Syntax 56.27 | 2.00 586.36 | 4.41E-23 | 0.16 0.19
14 | Numeral Count Morphology | 88.21 | 2.00 941.26 | 7.68E-36 | 0.16 0.24
15 | Noun Count Morphology | 52.31 | 2.00 57044 | 1.39E-21 | 0.15 0.17
16 | Expletive Count Morphology | 16.51 | 2.00 180.42 | 2.61E-07 | 0.15 0.11
17 | Syllables Phonology | 53.61 | 2.00 591.15 | 4.03E-22 | 0.15 0.18
18 | CVC Phonology | 53.58 | 2.00 593.36 | 4.07E-22 | 0.15 0.17
19 | Content Words Total Lexicon 51.06 |2.00 576.36 | 3.82E-21 | 0.15 0.18
20 | Total Characters in Text Letters Only | Lexicon 51.64 | 2.00 585.38 | 2.22E-21 | 0.15 0.17
21 | Corrected TTR CTTR Lexicon 82.39 | 2.00 937.05 1.09E-33 | 0.15 0.20
22 | Prepositional modifier Count Syntax 51.04 | 2.00 581.51 | 3.78E-21 | 0.15 0.18
23 | Prepositional Phrases Syntax 51.79 | 2.00 590.31 1.88E-21 | 0.15 0.18
24 | Unclassified dependent Count Syntax 10.19 | 2.00 117.38 | 8.29E-05 | 0.15 0.05
25 | Adposition Count Morphology | 51.23 | 2.00 593.33 | 3.00E-21 | 0.15 0.18
26 | CV Phonology | 59.48 | 2.00 693.62 1.44E-24 | 0.15 0.18
27 | Verb Phrases Syntax 50.38 | 2.00 590.91 6.28E-21 | 0.15 0.17
28 | Direct object Count Syntax 46.34 | 2.00 543.58 | 2.62E-19 | 0.15 0.17
29 | Words Tokens Lexicon 49.53 | 2.00 582.53 1.36E-20 | 0.15 0.17

Table 5. Measures ranked by effect size, highlighting Large and Robust Effect Sizes (Partial #2>0.15). The
table presents the top 29 linguistic features ranked by partial eta-squared values, representing the proportion
of variance in each measure explained by diagnostic group membership. Features are categorized into five
linguistic domains: Morphology (word structure and grammatical forms), Lexicon (vocabulary and word
usage), Phonology (sound patterns and syllable structure), and Syntax (grammatical relationships and phrase
structure). F-statistics, degrees of freedom (Num DF = numerator, Den DF = denominator), p-values, partial
12, and marginal R2 values are reported for each measure. Morphological features dominate the top rankings,
with Indefinite Count showing the largest effect size (partial #2=0.29, F=87.39, p <0.001), followed by
Cardinal Number Count (partial #2=0.26, F=90.88, p <0.001). Lexical diversity measures (Types, Content
Words Unique) and phonological complexity features (CVCC, syllable patterns) also demonstrate substantial
discriminative power. All reported features achieved statistical significance (p <0.001) with effect sizes meeting
the threshold for practical significance in neurological assessment.

the diminished production of the number Comparative Adjectives, Complements of Prepositions and complex
syllable patterns (CCVCCC) and phonological structures (5 syllable-words).

A comprehensive list of all statistical comparisons for every measure, is showing in Supplementary Data 6
and the primary linguistic signatures based on measures that resulted in statistical significance are reported in
Supplementary Table 9.

Discussion

Language is an extraordinarily complex a distributed network, interfacing with human faculties and cognitive
processes such as memory, attention, executive functions, and emotions”®~%8, Damage in brain areas responsible
for language or areas affecting these cognitive systems is intrinsically reflected in an individual’s language®.
An impaired cognitive function is often the earliest indication of neurological conditions, like mild cognitive
impairment (MCI) and dementia, or can designate another acquired damage like left (LHD) and right hemisphere
damage (RHD), and traumatic brain injury (TBI) and can manifest as a subtle or severe change in linguistic
expression, lexical choice, syntactic structure, acoustic properties, and discourse coherence. This makes speech
and language a uniquely rich, non-invasive, and continuously available source of medical information, offering
a veritable window into an individuals brain health and cognitive status. The potential to harness this data for
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Rank | LHD Dementia TBI MCI RHD
1 1 Verb Type: | cevece | Pron Type: | Clausal modifier of | Degree: Comparative
Modal Ratio Relative Count noun Count Count
2 | Complement of preposition + Dative Count | coveee 1 5 syllables | Complement of preposition
Count word Count
| 5 syllables | Degree Comparative | Case marker
3 word Count 1 5 syllables word Count | CCvCCC
| Case marker 1 Verb Type: | Degree Comparative
4 Count Mod Ratio Count | CcvccC 1 5 syllables word
| Complement of preposition . . | Pron Type:
5 1 CCCV Count | Dative Count | Dative Count Relative Count
6 | Pron Type: 1 5 syllables | Complement of preposition | | Complement of preposition | | Degree Comparative
Relative Count word Count Count Ratio
1 Clausal modifier of | Clausal modifier of | Pron Type: | Case marker
7 Leeveee noun Count noun Count Relative Count Count
s | Clausal modifier of | Pron Type: | Case marker | Degree Comparative | Clausal modifier of
noun Count Relative Count Count Count noun Count
1 Degree Comparative 1 Verb Type: 1 Verb Type:
o Ratio rccey Modal Ratio Mod Ratio recey
10 | Dative Count gCase marker 4 DF gree Comparative | CCcv 1 Dative Count
ount Ratio

Table 6. Top 10 distinctive linguistic features for each neurological condition compared to healthy controls.
Features are ranked by absolute ¢-ratio values from post-hoc pairwise comparisons, identifying the most
diagnostically discriminative linguistic markers for each condition. Upward arrows (1) indicate significantly
increased measures in patient groups relative to healthy controls; downward arrows (| ) indicate significantly
decreased measures. Note: Features are ranked based on the absolute t-ratio from post-hoc pairwise
comparisons against the Healthy Control group. (|) indicates a significant decrease and (1) indicates a
significant increase in the measure for the patient group compared to controls. LHD = Left Hemisphere
Damage; TBI = Traumatic Brain Injury; MCI=Mild Cognitive Impairment. Linguistic features span
multiple domains including morphology (verb types, degree markers, case markers, dative constructions),
phonology (syllable patterns: CCVCCC = consonant-consonant-vowel-consonant-consonant-consonant,
CCCYV =consonant-consonant-consonant-vowel, 5-syllable words), syntax (clausal modifiers, complement
structures), and lexicon (pronoun types).

diagnostic and prognostic purposes is immense. Traditional approaches are time-consuming, require controlled
clinical settings, and can be stressful to the patients. These drawbacks of traditional methods can be addressed
by the recent advancements in Machine Learning (ML) and Natural Language Processing (NLP), demonstrating
remarkable capabilities in pattern recognition, data analysis, and predictive modeling. In our previous research,
we have already shown that ML techniques can enhance the diagnostic accuracy for neurodegenerative disorders
by identifying complex patterns in clinical and neuroimaging data that often elude conventional analytical
approaches**>-43, Additionally, this underscores the methodological capacity of Al algorithms to manage and
interpret intricate medical data, a capability directly transferable to the complexities of speech. In this study,
we employed NLP, ML, and robust statistical approach to extract relevant linguistic information and detect
signatures for text productions of patients in a variety of discoursal tasks. That resulted into an analysis of 292
linguistic measures from distinct language domains.

Language discriminates diverse neurological conditions: neuroscreen
Having a high-performing, end-to-end model is critical for its real-world usefulness in a clinical setting. The
excellent performance metrics demonstrate that this system is not just a theoretical exercise but a potentially
powerful diagnostic tool. The model’s ability to distinguish between patients and healthy controls with up to
99% accuracy is its most crucial feature. This near-perfect performance means the system can function as a
reliable screening tool for early detection and characterization of neurological conditions. The model excels
at identifying common and distinct conditions like LHD with a 96% F1 score and Dementia with an 88% F1
score. This provides a strong basis as a useful tool in the clinic to advice the diagnostic process. Since the model
had difficulty with less linguistically distinct conditions (like MCI, RHD, and TBI), we had grouped them into
“Other Neurological Conditions” category. This approach provides a more realistic clinical pipeline, namely first
an early diagnosis is being performed to distinguish this group from HCs, then we distinguish patients with
dementia and patients that require further specialized neurological examination. In this way the NeuroScreen
flags these patients for more specialized expert review at the linguistic level yet, it does not get at propositional,
macrostructural, or pragmatic levels, required for find grained distinctions especially between TBI, RHD, and
MCI where these conditions are known to differ more readily from HCs. Therefore, while NeuroScreen excels in
distinguishing patients from HCs, its diagnostic precision on subtyping between patient groups is not overstated,
being a complementary to, not a substitute for, gold-standard assessments (e.g., WAB-R, BDAE).

Clinicians can trust the model to accurately flag individuals who need further evaluation, minimizing
the chances of missing a patient with a neurological condition. It automates the initial assessment, saving
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valuable time for specialists and allowing healthcare systems to screen more people, more quickly. Beyond
simply identifying a patient, the model’s strength lies in its ability to differentiate between specific neurological
conditions. Knowing which condition a person has is essential for providing the right treatment. In essence,
this two-stage, end-to-end performance creates a complete and practical workflow. It reliably filters the general
population and then provides a highly accurate differential diagnosis for common conditions while intelligently
triaging more complex cases. This makes the system on of the most powerful and scalable tool for clinical
decision support?!:4345:62-6567-69,

The reasons are twofold, we rely on a large dataset and on the large number of computational measures that
we have develop and provide within Open Brain AI°®! covering a wide range of language domains spanning
from textual readability>®5', Lexicon and Lexical Information*®, Phonology'”*8, Morphology>'%*-52, Syntax>3-%7,
and Semantics. Finaly, this approach demonstrates the importance of these metrics to function as linguistic
signatures indicating that symptoms associated with neurological conditions can both facilitate diagnosis and
function as therapeutic targets. The characteristics of these language signatures and their patterns are discussed
next.

Overall language characteristics

The findings revealed condition-specific distinct patterns of linguistic impairments. The most significant
differences were observed in individuals with LH stroke and dementia, TBI, MCI, and finally RHD, which
showed the most preserved language.

Concerning the lexical markers and the vocabulary usage, we found that individuals with LHD and TBI
showed significant reductions in the number of words produced and lexical diversity. Patients with dementia
also exhibited reduced word production and diversity, though to a lesser extent while patients with MCI and
RHD lexical profile was closer to that of HCs. Concerning the phonological measurements, such as key syllable
patterns and syllable complexity, patients with LHD, TBI, and dementia groups produced fewer words of varying
syllable lengths and less complex syllable structures. Patients with RHD produced similar phonological patterns
to HCs.

In addition to the lexicon and phonology, key morphological measures that involve both the distribution of
part of speech (POS) production and inflectional morphology presented key differences among group in the
distribution of these measures!'®-1%%, Patients with LHD and TBI demonstrated widespread reductions in the use
of most word classes, including determiners, adjectives, nouns, and verbs. Patients with dementia also showed
a decline in the use of several word classes whereas patients with RHD showed relatively minor differences
compared to HCs.

In line with earlier findings , syntactic complexity was significantly reduced in individuals with LHD
and TBI, who produced shorter and structurally simpler sentences. Patients with dementia also showed notable
reductions in syntactic complexity. The MCI group presented mostly reductions of the core syntactic measures
whereas patients with RHD provided fewer distinct patterns compared to HCs.

The statistical models about the readability of the text, a novel measure that we employed in this study, reveal
several important insights about the language production in the patient groups. Individuals with LHD, TBI,
and dementia was generally rated as less complex and easier to read by various readability indices. Patients with
LHD, TBI, and dementia groups used fewer named entities like cardinal numbers and dates.

104-106

Overall patterns across diagnostic groups
In many clinical contexts, gross differential diagnosis (e.g., stroke vs. neurodegenerative dementia) is often
straightforward based on history, imaging, and basic cognitive screening, yet this study tested whether language
can serve as a scalable signal to augment established workflows—not only for early screening before individuals
reach a specialist, but also for tracking disease progression, monitoring treatment response, and stratifying risk
in already-diagnosed populations. This broader potential is critical because many people with cognitive change
are never flagged by family, resist specialist visits, face economic or logistical barriers, or live far from tertiary
care. Language is produced ubiquitously in daily life and can be captured passively and non-invasively, enabling
remote and longitudinal monitoring. With advances in transcription and automatic speech recognition (ASR)
embedded in common digital platforms, language-based analytics could help identify individuals with subjective
cognitive complaints who are at elevated risk for mild cognitive impairment or dementia, but also characterize
evolving disease trajectories, detect meaningful within-person change, and support clinical decision-making
over time. This study demonstrates that language can augment detection, monitoring, and management across
the continuum of disease—extending cognitive assessment into primary care, telehealth, and other settings
beyond specialized neurology clinics. Therefore, these signatures not only aid differential diagnosis but also
stratify patients for targeted intervention, aligning with precision medicine approaches in neurorehabilitation.
Table 7 associates these linguistic signatures to therapeutic targets, showing their clinical pertinence.
Expectedly, individuals with LHD consistently demonstrated the most extensive and pronounced differences
from HCs across nearly all linguistic categories as detailed in the results section. The majority of these were
characterized by significantly lower scores (negative estimates), particularly in measures of lexical production
and diversity, morphological complexity, phonological output, and syntactic complexity. These findings
corroborate our existing understanding about the grammatical difficulties'?’, reduced lexical diversity*¢, and
impaired phonological output!, but at the same time they offer a broader understanding, given the extensive
coverage our measures provide of the language domain and the systematic integration of features spanning
the entire linguistic hierarchy—from phonological structures to discourse-level semantics. Unlike traditional
clinical assessments that typically focus on isolated linguistic domains (e.g., naming tests for semantics, sentence
repetition for syntax), whereas this approach captures the complex interplay between linguistic levels that
characterizes real-world communication.
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shorter words

dependent clauses)

Lexicon & Phonology & Syntax & Readability & Notable patterns /
Group vocabulary morphology structure complexity compensations
LD 1Fewer totAal words, Reduced syllable complexity; Shorter, simpler Language is Impoverished semantic, lexical,
ower lexical fewer nouns, verbs, . markedly easier honological .
diversity and modifiers sentences to read phonological, syntactic output
Fewer total and content Simpler phonology; Varied vocabulary despite
TBI words but relatively higher | mixed morphological use Shorter, less Language objectively | reduced output; simpler language
diversity within reduced with some compensatory complex sentences simplified in terms of readability; simpler
output strategies syntax
Dementia xSA}:)“grgtg:Sstc Ssgs " Phonology largely intact; Mild reduction in Moderately simplified ?(I)ir%k:: ?]SL‘?S:: lsZ::qbtilcity;
. R mild reductions in some complex structures (e.g., Y simp . ) . >
(amnestic) diversity; preference for word classes language lexical, morphological, and

syntactic simplification

amnestic)

MCI (mostly

Fewer total and content
words but relatively higher
diversity within reduced
output

Mild phonological impairments:

morphology largely
preserved

Shorter sentences;
reduced use of complex
syntax (e.g., prepositional
phrases)

Language simpler
and more accessible
than controls

Varied vocabulary despite
reduced output; simpler language
in terms of readability;

simpler syntax

RHD

Similar to healthy controls
overall, small decrease

in comparative adjectives,
second-person pronouns
and cardinal

numbers

Phonology and morphology
largely intact

Syntax comparable
to controls

No significant
changes

Subtle decreases in specific
vocabulary (e.g., comparative
adjectives)

Table 7. Linguistic profiles informing potential, personalized therapeutic targets per group. LHD = Left
hemisphere damage; TBI = Traumatic Brain Injury; MCI=Mild cognitive impairment; RHD = Right
hemisphere disorder.

Importantly, the results highlight previously underappreciated compensatory strategies, such as increased
reliance on proper nouns, socially salient references (e.g., persons, organizations), and syntactic simplification
through appositional and compound modifiers. This suggests that individuals with LHD are not merely
producing less language but may be restructuring their output (whether consciously or unconsciously) to
maximize communicative success within their impaired linguistic system. Furthermore, the readability metrics
provide novel, ecologically relevant evidence that the language produced by individuals with LHD is objectively
simpler and more accessible, supporting the interpretation that both deficits and adaptations co-occur in
spontaneous language use.

Individuals with TBI also exhibited a broad range of significant differences from HCs, which lies upon with
prior evidence that has also found reductions in linguistic output (e.g., total words, content words, unique words),
complexity (e.g., Corrected TTR), and various syntactic counts'®-!!!, In several measures, the magnitude of
these differences was comparable to or, in some specific instances, even exceeded those seen in dementia. At
the same time, the TBI group displayed increased lexical diversity and preserved, or even compensatory, use
of certain morphological and syntactic features, indicating strategic adaptations rather than uniform linguistic
degradation. The semantic profile of TBI also revealed selective vulnerabilities, particularly in numerical and
personal references, suggesting domain-specific disruptions in meaning construction rather than global semantic
impairment. Importantly, the readability metrics demonstrate that language produced by individuals with TBI is
objectively simplified, mirroring patterns seen in aphasia and underscoring the functional consequences of these
linguistic changes for everyday communication. Together, these results contribute novel, objective evidence that
TBI disrupts language in ways that are both overlapping with and distinct from classical aphasia profiles.

The global cognitive impairment is a hallmark of dementia, this study emphasizes this by demonstrating
that spontaneous language production in this group is relatively preserved across many core linguistic domains,
particularly in phonology, syntax, and overall lexical productivity (this is the case in amnestic dementia, but
not necessarily in primary progressive aphasia, which is not a syndrome studied here). However, subtle but
meaningful disruptions emerged in specific areas which echo prior findings, notably reduced lexical diversity'!2,
simplified word choice (e.g., shorter average word length), and decreased use of complex syntactic and semantic
structures'3-115, The readability findings further underscore this pattern, showing a moderate shift toward
simpler, more accessible language that likely reflects both cognitive decline and simplification strategies. While
the pattern was generally one of decreased scores compared to HCs, the effects were often less pronounced
and less uniformly distributed across measures compared to the LHD group, reflecting high variation in this
group!13-115,

Unlike LHD aphasia or TBI, MCI was characterized by a subtler but systematic pattern of linguistic
simplification, which has been shown previously, particularly evident in reduced lexical productivity, decreased
syntactic complexity, and phonological impairments'!®-118. The findings reveal that even at this early disease
stage, individuals with MCI produced fewer total words, content words, and unique word types, accompanied
by reductions in sentence length and the use of complex syntactic structures such as dependent clauses and
prepositional phrases. Interestingly, lexical diversity (standard TTR) was increased compared to HCs, reflecting
a compensatory pattern where speakers produce fewer words overall but rely on a more varied vocabulary within
their reduced output. Readability metrics further indicated that MCI speakers produce objectively simpler, more
accessible language than HCs, likely reflecting both cognitive constraints and emerging compensatory strategies.

These results provide new, quantitative evidence reinforcing and extending long-standing but often
inconsistently documented observations that language production following RHD is relatively preserved in
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terms of core linguistic structure, but may still exhibit subtle disruptions, particularly in semantic, pragmatic, and
higher-order discourse features. The present analyses reveal that individuals with RHD performed comparably
to healthy controls across most lexical, phonological, morphological, syntactic, and readability measures,
supporting prior research showing that RHD does not typically produce the overt language breakdown observed
in left hemisphere stroke or TBI. However, the detection of reduced use of specific structures, such as comparative
adjectives, complex syllable patterns, and second-person pronouns, along with a selective reduction in certain
semantic categories (e.g., cardinal numbers), highlights that RHD may subtly affect aspects of language tied to
complexity, perspective-taking, or relational meaning. These findings align with previous evidence that while
RHD does not result in classical aphasia, it can impact elements of discourse organization, inferencing, and
pragmatic language, often in ways that evade detection by standard language batteries.

A key insight from these findings is that while language simplification emerges as a common consequence of
neurological damage, the specific linguistic signature varies systematically across disorders, reflecting both the
nature of the underlying neural disruption and the ways in which language production shifts in response to these
deficits. Across conditions such as LHD, TBI, MCI, and dementia, individuals consistently produced simpler
language characterized by reduced lexical output, diminished syntactic complexity, and lower readability. Yet, the
precise linguistic domains affected, and the nature of these changes differed. For example, individuals with MCI
and TBI showed increased lexical diversity within reduced output, while LHD and dementia speakers exhibited
greater reliance on proper nouns and socially salient references. These patterns suggest that language production
does not decline uniformly but instead reflects a combination of impairment and adaptive linguistic shifts,
whether conscious or automatic. Even in the context of cognitive or neural decline, measurable alterations in
language use indicate preserved linguistic capacity and potential compensatory processes. Capturing both these
deficits and adaptations provides a more complete and clinically informative picture of how language reflects the
complex interaction between neural damage, cognitive constraints, and preserved linguistic mechanisms across
neurological conditions.

Limitations and future research

Although this study marks a critical starting point for comparing more than one and especially often conditions
that are dissimilar in their underlying pathology making this comparison possible there are several that are
inherent to this approach. First, for many neurological conditions, especially rare disorders or the initial stages
of more common ones like MCI, large-scale speech datasets are lacking, especially for languages other than
English, so shared corpora like DementiaBank and TalkBank are crucial.

A second issue is the need for more fine-grained distinctions between the populations. Although the categories
we have presented here like LHD, or dementia correspond to a broader diagnosis, there is an important variation
within the population because of their condition, the potential influence of medication and other comorbidities
on the linguistic profiles. So, there is a need for a greater understanding through subtyping the populations
into subgroups, like individuals with anomic aphasia and conduction aphasia and individuals with different
severity levels as severity is a critical factor both for interpreting the results and for understanding the limits
of generalizability. In the present study, harmonizing severity indicators across groups was not feasible because
the source datasets used different clinical scales (e.g., MMSE for dementia, NIHSS for stroke, and no directly
comparable metric for TBI or MCI). Given this heterogeneity, and our goal of evaluating whether language
features alone can distinguish diagnostic categories, we chose not to include severity as an explicit covariate.
Instead, we partially accounted for patient-specific variability by including subject-level random intercepts in
the statistical models and by grouping observations by individual in the ML analyses. This approach allowed the
models to adjust for within-subject dependencies without relying on non-uniform severity scores. As feature sets
grow richer (e.g., incorporating acoustic or pragmatic Al-derived measures), we anticipate even finer-grained
resolution of behaviorally meaningful subgroups exceeding traditional diagnostic categories.

Understanding disease progression and the evolution of linguistic signatures over time necessitates
longitudinal data collection, where individuals are assessed repeatedly. Such data, as used in the MCI-to-AD
progression study, is invaluable but expensive and time-consuming to acquire. The noted lack of longitudinal
AD speech data, particularly at the MCI stage, and DementiaBank’s aim for longitudinal tracking highlight this
ongoing need.

A key limitation of the current study is that we collapsed language data across multiple discourse tasks,
despite well-established evidence that different tasks elicit distinct linguistic profiles!'*!2. This approach
maximizes statistical power and facilitates broad comparisons across diagnostic groups, but it an obscure task-
specific linguistic patterns that are clinically and theoretically meaningful. We have planned for future work that
will systematically examine how task type interacts with diagnosis to influence linguistic profiles.

Future work must advance on two fronts. First, we need to develop composite metrics that integrate multiple
linguistic features into coherent, interpretable scores and validate these scores as meaningful indicators of
underlying cognitive and communicative processes. Such aggregate measures could improve the signal-to-noise
ratio, enhance generalizability across tasks, and align more directly with clinical constructs such as agrammatism
or anomia. Second, linguistic analyses should be enriched with acoustic data. Even subtle acoustic cues can
convey a surprising amount of information. For example, previous research has shown that the extension of
information provided be even a single sound is incredible. As we have learnt from our research, the way speakers
pronounce their vowels'?!, consonants®®, voice quality and prosody®? reveal aspects of speakers’ identity, like
their dialects, sociolects and pathology. Our future research will intergrade these different concepts together and
provide multimodal systems for understanding language and cognition. Future research should also prioritize
the continued expansion of this dataset, enhancing its diversity and generalizability. Integrating multimodal
signatures, such as neuroimaging data, alongside these linguistic measures will be the next frontier, promising
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even greater precision and clinical utility. Ultimately, this open library provides the essential groundwork for a
future where language analysis is a core component of neurological care.

Conclusion

This study represents a critical step toward transforming language analysis from a research tool into a scalable,
clinically actionable digital biomarker for neurological disorders. By applying automated, computational
linguistic analysis to one of the largest and most diverse databases of spoken language, we demonstrate that
distinct, quantifiable linguistic profiles can differentiate between individuals with left hemisphere damage, right
hemisphere damage, dementia, MCI, TBI, and healthy controls. These findings not only advance scientific
understanding of language impairments but also establish a practical foundation for integrating language-based
digital biomarkers into routine neurological assessment.

Importantly, the architecture of Open Brain Al provides a clear pathway for translation beyond the research
setting. With further development, this platform could be scaled into an accessible, secure application deployable
by researchers, speech-language pathologists, and clinicians worldwide. Such a tool could enable real-time,
automated language analysis in clinical environments, telemedicine, or even remote monitoring contexts—
delivering objective, reproducible language metrics that augment clinical decision-making. The naturalistic, low-
burden nature of speech samples makes this approach uniquely suited to scalable, patient-friendly assessment.

Looking ahead, the integration of Open Brain AI into clinical workflows, combined with regulatory-
compliant development and continued dataset expansion, holds the potential to redefine how language is used to
detect, monitor, and personalize care for individuals with neurological conditions. Thus, future validation of this
work will include direct comparisons with traditional metrics (e.g., naming accuracy, fluency scores) to establish
convergent validity, as well as future directions noted in section “Limitations and future research”

By moving beyond proof-of-concept and toward scalable, validated tools, this work contributes to the broader
goal of leveraging AI and language as accessible, ecologically valid biomarkers in digital medicine.

Data availability

The study used openly available human data that were originally located at TalkBank (https://talkbank.org). The
analysis included individual-level raw behavioral data in the form of transcripts from patients with acquired
neurological conditions. All individual-level data were fully de-identified prior to analysis and prior to inclusion
in the TalkBank library. The raw behavioral data are available through membership to the TalkBank consortium.
Additional data used in this study are available from the authors upon request with a proper Data Use Agree-
ment in place. The analysis code is openly available at https://github.com/themistocleous/neuroscreen.
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