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Individuals with left-hemisphere damage (LHD), right-hemisphere damage (RHD), dementia, mild 
cognitive impairment (MCI), traumatic brain injury (TBI), and healthy controls are characterized by 
overlapping clinical profiles affecting communication and social interaction. Language provides a rich, 
non-invasive window into neurological health, yet objective and scalable methods to automatically 
differentiate between conditions with are lacking. This method aims to develop comprehensive 
neurolinguistic measures of these conditions, develop a machine learning multiclass screening and 
language assessment model (NeuroScreen) and offer a large comparative database of measures for 
other studies to build upon. We combined one of the largest databases, comprising 291 linguistic 
biomarkers calculated from speech samples produced by 1,394 participants: 536 individuals with 
aphasia secondary to LHD, 193 individuals with dementia, 107 individuals with MCI, 38 individuals 
with RHD, 58 individuals with TBI, and 498 Healthy Controls. Employing natural language processing 
(NLP) via the Open Brain AI platform (http://openbrainai.com), we extracted multiple linguistic 
features from the speech samples, including readability, lexical richness, phonology, morphology, 
syntax, and semantics. A Deep Neural Network architecture (DNN) classifies these conditions 
from linguistic features with high accuracy (up to 91%). A linear mixed-effects model approach was 
employed to determine the biomarkers of the neurological conditions, revealing distinct, quantitative 
neurolinguistic properties: LHD and TBI show widespread deficits in syntax and phonology; MCI is 
characterized by fine-grained simplification; patients with dementia present with specific lexico-
semantic impairments; and RHD shows the most preserved profile. Ultimately, the outcomes provide 
an automatic detection and classification model of key neurological conditions affecting language, 
along with a novel set of validated neurological markers for facilitating differential diagnosis, remote 
monitoring, and personalized neurological care.
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Language is a distinctively human cognitive system that enables individuals to communicate, share information, 
and socialize. It includes a complex interplay of spoken, written, and signed modalities, drawing on multiple 
linguistic subsystems, including phonology (the sound structure of words), morphology (the internal structure 
of words), syntax (rules governing sentence structure), semantics (meaning), and pragmatics (the social use of 
language)1,2. Even simple tasks, such as ordering a meal, rely on the integration of these linguistic processes. 
Language is not only central to social participation but is also tightly linked to broader cognitive functions, 
including memory, attention, and executive functioning3,4. Consequently, when language is disrupted due to 
neurological conditions such as left hemisphere damage (LHD), right hemisphere damage (LHD), dementia, 
mild cognitive impairment (MCI), or traumatic brain injury (TBI), the consequences extend beyond isolated 
cognitive deficits to independence, social participation, and overall quality of life. Yet, despite the critical role of 
language in human functioning, assessing and monitoring language functioning in clinical practice and properly 
treating it remains challenging.

The distinct underlying pathologies of LHD, RHD, dementia, MCI, and TBI produce unique behavioral 
profiles by differentially affecting receptive and expressive language5,6 (Table 1). These can serve as early linguistic 
markers that characterize these patients7. Neurological research has shown that LHD primarily impacts language 
and other cognitive functions8–10. RHD can impair spatial awareness, emotions, and nonverbal and pragmatic 
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communication11–15. Both LHD and RHD can language deficits, but the specific nature of these deficits 
differs16–19. MCI, an early cognitive decline, is typically amnestic in nature (affecting memory), but also typically 
impacts language and other critical cognitive domains, such as attention, and executive functions20–25. Dementia 
is a progressive deterioration of the brain health due to neurodegeneration, affecting multiple cognitive domains, 
such as memory, language, attention, and movement26–28. TBI is a heterogeneous disorder, resulting in open or 
closed head trauma by an external force, such as a blow to the head, a fall, a car accident, and a penetrating injury. 
It can range from mild (e.g., concussion) to severe, with varying degrees of physical, cognitive, emotional, and 
behavioral effects29.

Conventional language assessment tools
Conventional language assessment tools, including structured tasks (e.g., Philadelphia Naming Test30, 
Boston Naming Test31, standardized batteries Western aphasia battery (revised) (WAB-R)32, Quick Aphasia 
Battery (QAB)33 and the Boston Diagnostic Aphasia Examination (BDAE)34, and patient- and clinician-rated 
evaluations35–37, are widely used to support diagnosis and guide treatment decisions. These methods often provide 
a narrow window into specific abilities like object naming, overlooking the multidimensional nature of everyday 
communication. Furthermore, their time-intensive and stressful nature makes them ill-suited for widespread 
screening. Clinicians may instead use general neurocognitive screeners like the Montreal Cognitive Assessment 
(MoCA) or Mini-Mental State Examination (MMSE)38–40, but these still require in-person assessment and may 
not be sensitive enough to detect subtle language impairments characteristic of conditions like mild cognitive 
impairment (MCI). This creates a critical challenge for early detection and prognosis. A powerful solution lies 
in combining large-scale language corpora with computational methods such as Natural Language Processing 
(NLP) and Machine Learning (ML). This approach can enable automated screening and provide a deeper, 
comparative understanding of these conditions against each other and normative data from healthy individuals.

We address a critical limitation in neurolinguistics—the tendency to study conditions in isolation—by 
creating a unified analytical framework. Analyzing connected speech and discourse—how individuals use 
language in natural, extended communication—is widely regarded by researchers and clinicians as a best 
practice for assessing language abilities41. This approach captures real-world communicative competence 
and can reveal subtle linguistic deficits that standardized, isolated tasks often overlook. However, despite its 
advantages, discourse analysis remains underused in clinical practice due to its time-intensive nature, lack 
of scalable and standardized tools, and the manual effort required for transcription and coding42. Moreover, 
traditional assessments are typically conducted in controlled clinical environments, which may not reflect an 
individual’s everyday communication patterns, thereby limiting ecological validity. Consequently, subtle or 
early-stage language impairments—especially those associated with heterogeneous conditions such as mild 

LHD RHD TBI Dementia MCI

(Typical) Etiology Stroke (other focal
Tumor/Infection)

Stroke (other focal
Tumor/Infection) External Physical Force Proteinopathy

(Amyloid/Tau)
Prodromal AD,
Vascular, etc

Onset Acute Acute Acute Insidious Insidious

Progression Stable / Improving Stable / Improving Stable / Improving (risk
for later decline) Progressive Decline

Variable (Stable,
Improving, or
Progressive)

Primary Neuropathology Focal Cortical Lesion Focal Cortical Lesion Focal Contusion and/or
Diffuse Axonal Injury

Amyloid Plaques &
Tau Tangles

Early-stage
AD pathology
common

Hallmark Cognitive
Deficit Aphasia, Apraxia Unilateral Neglect,

Anosognosia
Dysexecutive Syndrome,
Post-Traumatic Amnesia

Episodic Memory
Loss

Episodic Memory
Loss (Amnestic
type)

Hallmark Language/
Comm. Deficit

Agrammatism, Anomia,
Paraphasias

Aprosodia, Pragmatic Deficits,
Discourse Incoherence

Disorganized/Tangential
Discourse, Pragmatic
Deficits

Anomic, “Empty”
Speech

Word-finding
difficulty, Reduced
verbal fluency

Awareness of
Deficits

Typically, Present
(often distressed)

Typically, Absent
(Anosognosia)

Often Absent
(Anosognosia)

Variable; Declines
with progression

Typically, Present
(source of concern)

Table 1.  Comparative table of neurocognitive conditions. Comprehensive comparison of five major 
neurocognitive conditions across key clinical and neurological characteristics. This comparative framework 
facilitates differential diagnosis and understanding of the distinct neuropsychological profiles associated 
with each condition. Note: Conditions include Left Hemisphere Damage (LHD), Right Hemisphere Damage 
(RHD), Traumatic Brain Injury (TBI), Dementia of Alzheimer’s Disease type (AD-Type), and Mild 
Cognitive Impairment (MCI). Clinical features compared include: Typical Etiology (underlying cause or 
origin), Onset pattern (acute vs. insidious), Disease Progression trajectory (stable, improving, or declining), 
Primary Neuropathology (underlying brain pathology), Hallmark Cognitive Deficit (characteristic cognitive 
impairments), Hallmark Language/Communication Deficit (distinctive language and communication 
problems), and Awareness of Deficits (patient insight into their condition, including anosognosia—lack of 
awareness of deficits). Technical terms: Aphasia (language impairment), Apraxia (motor planning deficits), 
Aprosodia (prosodic speech deficits), Agrammatism (grammatical impairments), Anomia (word-finding 
difficulties), Paraphasias (word substitution errors), and Dysexecutive Syndrome (executive function 
impairments).
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cognitive impairment (MCI) or early dementia—often go undetected until more pronounced cognitive or 
functional decline is evident.

Recent advances in artificial intelligence (AI), NLP, ML, and automated speech analysis have opened new 
possibilities for addressing these limitations. By leveraging AI-driven approaches to extract and quantify 
linguistic features from spontaneous speech, we and others have demonstrated their potential for objective, 
reproducible, and ecologically valid measures of language production from transcripts or audio files21,43–45. 
These computational methods can quantify automatically domains of language disorder—spanning lexical 
diversity46, phonological structure47,48, morphological patterns9,10,49–52, syntactic complexity53–57, semantic 
content, and readability58–61—represent a promising class of digital biomarkers with the potential to support 
early detection45,62,63, differential diagnosis21,43,64–66, and ongoing monitoring of neurological conditions67–69. 
Despite that these studies demonstrates that automated language analysis holds significant promise as a digital 
health tool, several challenges must be addressed before it can be fully integrated into clinical practice.

Automated language analysis is progressively recognized as a digital health tool70,71, yet its clinical translation 
is constrained by several critical gaps. For these computational tools to improve patient outcomes in a meaningful 
way, they must first move beyond the current landscape of proof-of-concept studies, which often use small, 
homogenous datasets from isolated clinical populations but rely on rigorous validation across large, diverse, 
and multi-condition populations is essential. This validation must also establish robust normative data from 
healthy controls, enabling clinicians to benchmark an individual’s performance to accurately assess pathology 
and severity. Also, the development of sophisticated computational pipelines must be paired with a focus on 
practical application: creating scalable, automated, and openly accessible tools that can integrate seamlessly into 
clinical workflows to reduce clinician burden and enhance diagnostic precision. Addressing these interconnected 
challenges is the essential next step toward realizing language as a clinically actionable digital biomarker.

Study aims
This study has an overarching aim to advance a novel paradigm for neurological assessment to corroborate 
existing neurological assessments and to establish spoken language as a scalable and clinical digital biomarker by 
evaluate a comprehensive set of measures from the key linguistic domains, readability, phonology, morphology, 
syntax, semantics, and lexicon (Supplementary Data 1 offers a detailed description see also the Methods section).

This provides a two-fold aim. The first aim is to develop a multi-class machine learning approach for 
neurological screening (NeuroScreen) that can discriminate patients from Healthy Controls (HCs) and the 
subtype individual patient subgroups from each other. Ultimately, the MLs aim to answer two primary research 
questions (1) How well do the models distinguish patients and healthy controls? And (2) How well does the ML 
model distinguish each sub-group in the data? By answering these two questions, we will be able to determine 
how well the models can be employed in real-life scenarios for detecting patients and in the clinic to subtype 
patients, and which of them with high confidence. To achieve aim we have developed an end-to-end AI-driven 
procedure to analyze a large and diverse database of over 9,900 speech samples based on an end-to-end ML 
model that combines NLP pipelines that employ Open Brain AI61, a platform we have developed to extract the 
linguistic features. Subsequently, we preprocessed and standardized the calculated measures and passed them 
to a set of ML models, namely Random Forrest, Support Vector Machine, Logistic Regression, and Deep Neural 
Networks. These models were tuned through hyperparameter tuning and evaluated.

(2) The second aim is to provide explainable measures, namely the linguistic signatures of five major 
neurological conditions (LHD, RHD, dementia, MCI, and TBI). This is critical to understanding the effects of 
each condition on language and to providing therapeutic targets for novel clinical approaches. In other words, we 
will determine (1) Which linguistic measures differ most due to diagnostic groups? (2) Which are the distinctive 
features for each neurological condition compared to HC? And (3) What do language measures reveal for each 
patient group? To achieve this aim, we developed (generalized) linear mixed effect models while controlling for 
the effects of task and the participant.

This computational approach moves beyond prior research by leveraging ecologically valid data from 
everyday communicative tasks to create a comprehensive, multi-faceted portrait of how language changes in 
response to brain injury and disease, aiding in differential diagnosis, particularly for disorders with overlapping 
symptoms like MCI and early dementia, and offering a non-invasive, low burden means for monitoring disease 
progression and treatment response over time. Ultimately, this research contributes to the digital transformation 
of clinical practice by providing a validated set of open-access linguistic biomarkers, this study creates new 
opportunities for remote, low-burden monitoring of neurological health, supporting a future of more accessible, 
data-driven, and personalized care.

Methodology
Participants
The individuals for this study were drawn from Neural Databank collected and developed by the second author72, 
now part of the Aphasia Bank, and data from the TalkBank consortium (https://talkbank.org), which following 
a similar protocol. Each clinical bank (e.g., AphasiaBank, RHDBank) has an established discourse protocol that 
elicits a variety of discourse genres73.

	 (i)	 Aphasia Bank: The database contains spoken discourse samples from individuals with LHD and control 
participants, designed to study language production and its neural foundations. The research emphasizes 
connected speech (discourse) rather than single words or isolated sentences. Participants completed a 
full discourse protocol twice within a short timeframe to assess the test–retest reliability and stability of 
discourse measures. The participants contain both people with LHD (536 individuals) and HCs (359 indi-
viduals)72.
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	(ii)	 Right Hemisphere Damage Bank (RHD Bank): This is a specialized database focused on communication in 
individuals with RHD. The database serves as a resource for understanding and treating communication 
disorders following RHD, particularly focusing on pragmatic language abilities, discourse coherence, and 
real-world communication challenges74. This bank includes 38 individuals with RHD and 40 Healthy Con-
trols.

	(iii)	 Traumatic Brain Injury (TBI Bank): This is a multimedia database focused on studying communication 
disorders in individuals with TBI. TBIBank protocol includes discourse tasks such as the Cinderella story 
retell, following similar methodology to other TalkBank databases. The protocol consists of discourse gen-
res including personal narratives, picture descriptions, story retelling, and procedural discourse. TBIBank 
is a longitudinal study in which brain injured people are videoed at 6 different time points post injury per-
forming a uniform set of tasks, with the goal of identifying recovery patterns. The database enables auto-
mated language analysis, diagnostic profiling, comparative evaluation of treatment effects, and profiling of 
recovery patterns in TBI populations, supporting both research and clinical applications in understanding 
cognitive-communication disorders following brain injury. This bank includes 58 individuals with TBI.

	(iv)	 Dementia Bank—Delaware MCI dataset: This corpus is part of DementiaBank and includes language pro-
ductions by 71 adults with MCI, from the Delaware Corpus and Baycrest Centre Corpus. This data con-
tributes to early detection of subtle changes in language and cognition and provide insight into MCI sub-
types based on discourse profiles75. The MCI Delaware corpus contains mostly individuals with amnestic 
MCI, were the language-variant should not be predominant. However, they have language differences from 
HCs66.

	 (v)	 Dementia Bank—Pitt Study (Pitt Study): A comprehensive description of this dataset is provided in Becker, 
Boiler76.Briefly, the study includes a picture description task from the Boston Diagnostic Aphasia Exami-
nation77, a widely used diagnostic tool for detecting language abnormalities. In this task, participants were 
shown the “Cookie Theft” picture stimulus and instructed to describe everything they observed. Their 
responses were audio-recorded and later transcribed verbatim. This study includes 193 individuals with 
Dementia and 99 Healthy Controls.

This study presents a comprehensive analysis of linguistic measures across various diagnostic groups by 
combining data from multiple discourse tasks (see Supplementary Data 1). Our primary analysis provides a 
consolidated overview of these linguistic features (Table 2; Supplementary Data 2, provides a more comprehensive 
data breakdown of Data Count by Group, Project, and Task). Recognizing that different tasks may elicit distinct 
communication patterns, we have preemptively accounted for potential task-specific effects within our statistical 
models by adding the task in the random effects. To ensure full transparency and to allow for a more granular 
examination of these variations, we provide a detailed breakdown of the linguistic signatures for each task in the 
Supplementary Tables.

Participants participated in different tasks providing often more than one samples, the analysis is based on 
9955 language samples drawn from multiple clinical databases produced by the individuals reported in Table 
3 (see also, Table 2 and Supplementary Data 2). These databases exhibit significant clinical heterogeneity. For 
instance, the LHD database contains participant groups classified by subtype, including anomic, Wernicke’s, and 
Broca’s aphasia. The Pitt study’s dementia subgroup (N = 193) further illustrates this diversity; it is composed 
primarily of patients with dementia (91%), who present with lower average Mini-Mental State Examination 

Diagnosis Task List

LHD Cat, Cinderella, Flood, Important Event, Sandwich,
Speech, Stroke, Umbrella, Window

MCI Cookie Theft

HC Cat, Cinderella, Cookie Theft, Flood, Illness, Important Event,
Sandwich, Speech, Umbrella, Window

MCI Cat, Cinderella, Cookie Theft, Rockwell, Sandwich,
Umbrella, Window

Dementia Cooke Theft

HC Cookie Theft

RHS Cat, Cinderella, Cookie Theft, Sandwich, Speech, Stroke

TBI Brain Injury, Cat, Cinderella, Important Event, Recovery,
Sandwich, Speech, Umbrella, Window

Table 2.  Cognitive assessment tasks administered across diagnostic groups and research studies. Note: 
Cat = A description of a single picture, in which a cat is being rescued from a tree; Cinderella = retelling of the 
fictional narrative Cinderella, which is done after looking at a wordless picture book; Flood = A description of 
a single picture of a rescue during a flood; Important Event = a personal narrative about an important event; 
Sandwich = a procedural narrative describing how to make a peanut butter and jelly sandwich; Stroke or 
Recovery = A personal narrative about one’s brain injury and recovery; Umbrella = A multiple scene picture 
sequence, in which a boy and mother interact about taking an umbrella into the rain; Window = A multiple 
scene picture sequence, in which a boy kicks a soccer ball through a man’s window, shattering it; Cookie 
Theft = A description of a single picture, in which two kids steal a cookie; Rockwell = A description of a single 
picture, which is Norman Rockwell’s “Coming and Going”.
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(MMSE) scores of 17–18, alongside individuals with MCI. We chose to incorporate these databases in their 
entirety for several reasons. This approach maintains the ecological validity of the data, ensuring our findings 
reflect the natural heterogeneity of clinical populations. Furthermore, it preserves the integrity of these standard 
corpora, which is crucial for the reproducibility and comparability of our results within the wider research 
community.

Measures
Texts were automatically preprocessed using a python algorithm to remove TalkBank’s Computerized Language 
Analysis CHAT/CLAN coding, labels, and tags (e.g., prosodic markers, time-aligned tiers with annotations, 
CHAT metadata) and prepare clean texts for further analysis. Subsequently, the text samples were analyzed 
using Open Brain AI (http://openbrainai.com; Fig. 1), a custom clinical linguistics platform developed by the 
first author61 to facilitate automatic audio and linguistic analysis of texts. Unlike generic computational models, 
Open Brain AI was designed specifically for phenotyping of language features through a clinical lens, enabling 
hypothesis-driven research into speech pathology and neurogenic communication disorders. The platform 
calculates linguistic metrics in real-time as participants type or as clinicians transcribe speech samples, enabling 
immediate quantitative analysis of discourse features relevant to neurological conditions. Additional analysis 
modules accessible via the toolbar include syntactic complexity measures, semantic density calculations, and 
comparative normative data. This example demonstrates the platform’s capability to automatically extract 
objective linguistic measures from naturalistic discourse samples, facilitating evidence-based assessment of 
communication disorders across various neurological populations. Open Brain AI executed a cascade of NLP 
techniques. Core NLP steps included tokenization (segmenting text into individual words or tokens), part-of-
speech tagging (assigning a grammatical category to each token), and dependency parsing (identifying the 
grammatical relationships between words and the syntactic structure of sentences). For each extracted feature, 
both raw counts and ratios (to normalize for variations in text length) are computed. These quantitative linguistic 
data were automatically exported by our computational platform as spreadsheet files, ready for statistical analysis 
(Fig. 2).

From these foundational analyses, a comprehensive suite of linguistic measures was automatically extracted, 
quantifying aspects of (Supplementary Data 1 offers a detailed list of the measures):

	 (i)	 Readability. Readability of text productions in patients with neurological conditions is a measure that has 
been evaluated for the first time concerning all these conditions in this study. Metrics assessing text com-
plexity and perceived ease of understanding for a reader. Readability metrics include the Flesch-Kincaid 
Readability Tests, Gunning Fog Index, and SMOG Index58–61 quantify how easy a text can be to be read 
and understood by a reader. It is typically influenced by factors such as sentence length, word complexity, 
and the overall structure of the text. Overall, we expect that patient speech should be simpler and more 
readable than that of healthy individuals.

	(ii)	 Lexicon and Lexical Information. We have designed features related to the vocabulary richness, diversity, 
and usage within the text. This includes measures like Type-Token Ratio, counts of content versus function 
words, and average word length. These measures explain the distribution of words and relationships be-
tween types and tokens that can quantify how words are used in different contexts and how they contribute 
to the overall meaning of a text such as lexical diversity measures46.

	(iii)	 Phonology. Characteristics of sound structure, such as counts of words by syllable Number: (e.g., one-syl-
lable, two-syllable words) and the distribution of various Consonant (C) and Vowel (V) syllable structures 
(e.g., CV, CVC, CCVC). We designed these measures to quantify how users employ speech sounds, the 

Diagnosis Project Speakers Age at testing Education

HC

Aphasia Bank 359 56.89 (15.91) 15.91(2.64)

RHD Bank 40 47.95(13.54) 17.09 (2.93)

Pitt Study 99 63.7 (7.9) 13.9 (2.5)

LHD Aphasia Bank 536 61.04(12.4) 15.7 (2.91)

Dementia Pitt Corpus 193 71.0 (8.6) 12.2 (2.9)

MCI Dementia Bank 71 73.5 (8.03)
PhD: 10.81%,
Bachelor/MA: 67.57%
Vocational Training: 21.62%

RHD RHD Bank 38 57.4 (12.33) 17.10 (3.99)

TBI TBI Bank 58 36.25 (13.47) 13.91 (3.05)

Table 3.  Participant demographics across diagnostic groups and research databases. The table presents 
sample sizes, mean ages, and educational attainment for participants in each diagnostic group across different 
research corpora. Age is reported as mean years (standard deviation). Education is reported as mean years of 
formal education (standard deviation) except for the MCI group where educational categories are presented 
as percentages. Note: LHD: left hemisphere damage, RHD: right hemisphere damage, MCI: Mild Cognitive 
Impairment, and TBI: Traumatic Brain Injury. The Dementia group is composed primarily of patients with 
Alzheimer’s-type dementia (91%), with MMSE scores of 17–18 (out of 30), alongside individuals with MCI 
(whose MOCA scores are typically < 23 out of 30).
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sound combinations, and the complexity of syllables. Comparing these measures across patients with dif-
ferent language impairments can reveal characteristics that pertain to the effects of impairment on the 
cognitive representation of sounds and speech production47,48.

	 (i)	 Morphology. Analysis of word structure, encompassing both the distribution of parts of speech (e.g., counts 
and ratios of nouns, verbs, adjectives, and adverbs) and inflectional categories (e.g., tense, Number: Gen-
der: case). Morphological measures quantify the structure and form of words, the distribution of parts of 
speech, and inflectional categories, such as tense, Number, Gender, and Case. Comparing patients with 
morphology impairments can reveal pathologies, like agrammatism and anomia9,10,49–52.

	(ii)	 Syntax. Measures of sentence structure and grammatical complexity. This included quantification of var-
ious phrase types (e.g., Noun Phrases, Verb Phrases, Prepositional Phrases), analysis of core syntactic de-
pendencies and relations (e.g., nominal subjects, direct objects, adverbial clause modifiers), and overall 
sentence complexity metrics (e.g., Average Sentence Length, T-units, and syntactic tree depth/Yngve load). 
These measures quantify impairments of sentence structure (e.g., subject-verb-object order), grammatical 
rules (e.g., agreement between subject and verb), and phrase structure (e.g., noun phrases, verb phras-
es)53–57.

	(iii)	 Semantics. Primarily focused on Named Entity Recognition (NER), which involves identifying and cate-
gorizing named entities in text into predefined classes such as persons, organizations, locations, dates, and 
quantities.

These grammatical analyses utilized the Universal Dependencies framework for standardized annotation78 and 
custom made metrics, which were systematically selected using both established measures based on established 
theoretical frameworks in clinical linguistics and their demonstrated sensitivity to pathological language 
changes in neurogenic communication disorders (like counts of nouns and verbs) and novel measures that 

Fig. 1.  User interface of the Open Brain AI text analysis platform61 for neuropsychological assessment. The 
web-based platform provides real-time linguistic analysis of narrative discourse samples. The interface displays 
a text editor (top panel) containing a participant’s narrative description of the “Cat Rescue” picture stimulus, 
commonly used in aphasia and cognitive assessment batteries. The lower panel shows automated lexical 
measures including character count (643), word count (161), sentence count (17), and function word analysis 
(93 total function words, ratio 0.578).
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aim to encompass microstructural elements (phonology, morphology), macrostructural components (syntax, 
semantics), and pragmatic dimensions.

Thus, these measures aim to provide a comprehensive characterization of language impairments that aligns 
with current models of linguistic breakdown in clinical populations. By capturing this full spectrum of linguistic 
variation, the analysis framework enables detection of subtle but clinically significant changes that might be 
overlooked by assessments targeting only isolated linguistic domains. A complete list of all measures and their 
detailed operational definitions is provided in Supplementary Data 1. Given this large feature set, the analyses 
presented in this paper prioritize a subset of measures selected for their demonstrated high sensitivity and 
specificity in distinguishing between the diagnostic groups (LHD, Dementia, MCI, RHS, TBI) and Healthy 
Controls, as well as differentiating the clinical groups from one another. An exhaustive output of all statistical 
results for every measure is available in the Supplementary Materials.

Visualizing linguistic performance across diagnostic groups
To explore patterns in linguistic performance across diagnostic groups, we conducted an unsupervised 
dimensionality reduction analysis. We standardized all linguistic variables (mean = 0, SD = 1) to ensure equal 
weighting. We applied Principal Component Analysis (PCA)79 to identify the main axes of variation in the data 
and Uniform Manifold Approximation and Projection (UMAP)80,81 to generate a nonlinear, two-dimensional 
embedding that preserves local similarities. UMAP was configured with n neighbors = 15 and min dist = 0.1, 
and both methods used a random seed for reproducibility. To enhance interpretability, extreme outliers (beyond 
1.5 × IQR in the reduced dimensions) were excluded from visualizations (retaining 8,927 and 9,791 participants 
for PCA and UMAP, respectively). The resulting embeddings were colored by clinical diagnosis to assess the 
degree of separation or overlap among groups.

Fig. 2.  NeuroScreen machine learning pipeline architecture for automated neurological assessment. The 
comprehensive workflow shows the development and validation of a diagnostic system that analyzes language 
production to distinguish between neurological conditions. Input data comprises speech and text samples from 
participants across six diagnostic groups: Left Hemisphere Damage (LHD), Right Hemisphere Damage (RHD), 
Dementia, Mild Cognitive Impairment (MCI), Traumatic Brain Injury (TBI), and Healthy Controls. Language 
production tasks undergo automated linguistic feature extraction across six domains: Lexicon (vocabulary 
richness), Phonology (speech sound patterns), Morphology (word formation), Syntax (grammatical structure), 
Semantics (meaning content), and Readability (text complexity). The preprocessing pipeline includes quality 
control checks, speaker leakage detection, correlated feature removal, mean imputation for missing values, 
z-score standardization, and principal component analysis for dimensionality reduction (retaining 95% 
variance). Five machine learning algorithms are systematically evaluated: Logistic Regression (LR), Random 
Forest (RF), Support Vector Machine (SVM), Gradient Boosting (GB), and Deep Neural Network (DNN). 
Model optimization employs hyperparameter tuning with GroupKFold cross-validation and randomized/
halving grid search. Synthetic Minority Oversampling Technique (SMOTE) addresses class imbalance. The 
validated models comprise the NeuroScreen diagnostic tool for objective, automated neurological assessment 
based on quantitative linguistic analysis.
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Machine learning pipelines
We designed a machine learning pipeline to classify a speaker’s diagnosis into one of six categories based on 
statistical features derived from language productions on tasks, namely patient with LHD, RHD, dementia, 
MCI, TBI, and HCs. The pipeline is designed to manage speaker-dependent data, address class imbalance, and 
a provide comprehensive, comparative evaluation of multiple machine learning (ML) models, namely include 
Random Forest, Support Vector Machine (SVM), Logistic Regression, Gradient Boosting, and a Deep Neural 
Network (DNN). The entire process, from data preparation to model evaluation, was conducted in a Python 
environment utilizing pandas for data manipulation82, scikit-learn83 and imbalanced-learn84 for machine 
learning algorithms. The deep learning component was build using Tensorflow85.

Data preparation and cohort definition
The core of our methodology is built upon the principle of speaker-independent validation, which is crucial 
for developing models that can generalize to new, unseen individuals rather than memorizing characteristics 
of specific speakers in the training set. To facilitate this, a designated speaker identifier column was used to 
group data points belonging to the same individual. The dataset was then partitioned into features and the target 
variable.

To ensure that the model evaluation provides a realistic estimate of performance on new individuals, a strict 
speaker-independent splitting protocol was enforced. The dataset was divided randomly into a training set (80%) 
and a hold-out test set (20%) using the GroupShuffleSplit strategy. This method guarantees that all data points 
from any given speaker are confined to only one of the sets (either training or testing), completely preventing 
data leakage between them. This approach is critical for assessing the model’s ability to generalize beyond the 
specific speakers it was trained on.

Preprocessing and feature engineering pipeline
A multi-step preprocessing pipeline was applied sequentially to the data. Crucially, all preprocessing steps were 
fitted only on the training data to prevent information from the test set from influencing the training process. 
The same fitted transformers were then used to transform both the training and test sets.

	 (i)	 Missing values in the feature set were managed by imputing them with the mean of their respective col-
umns, calculated from the training data.

	(ii)	 To reduce multicollinearity and model complexity, highly correlated features were removed. A Pearson 
correlation matrix was computed on the training set, and for any pair of features with a correlation coeffi-
cient and we evaluated various threshold features, for correlations greater than 0.90, one of the features was 
discarded.

	(iii)	 The features were standardized by removing the mean and scaling to unit variance using the Standard-
Scaler83. This transformation ensures that features with larger scales do not disproportionately influence 
model training, which is particularly important for distance-based algorithms like SVM and regularization 
models like Logistic Regression.

	(iv)	 Principal Component Analysis (PCA) was employed as the final feature engineering step. PCA transforms 
the standardized features into a smaller set of uncorrelated principal components. The number of compo-
nents was chosen to retain 95% of the original variance in the training data, effectively reducing noise and 
the dimensionality of the feature space while preserving most of the relevant information.

Model training, imbalance handling, and hyperparameter optimization
We have evaluated five distinct classification models to explore a range of algorithmic approaches: Logistic 
Regression (LG), Random Forest, Support Vector Machine (SVM) with an RBF kernel, Gradient Boosting, and 
a feedforward Deep Neural Network (DNN). We selected these models to allow for a comprehensive analysis of 
the dataset and selection of a model that explain the data. More specifically, the following models were selected:

	1.	 LG is a fundamental linear classification algorithm. It works by fitting a linear equation to the features and 
then applying a logistic function (or sigmoid function) to the output to return a probability between 0 and 1. 
This probability is then used to predict the class. LG serves as a baseline model86.

	2.	 RFs is an ensemble learning method; it constructs many individual decision trees during training. It can 
capture complex, non-linear relationships in the data without requiring explicit transformations. It is gener-
ally robust to overfitting, especially when compared to a single decision tree as it averages the predictions of 
many trees87.

	3.	 SVM models detect the optimal hyperplane (or decision boundary) that best separates the classes in the 
feature space. SVM can model both linear and non-linear boundary by mapping the data into a higher-di-
mensional space, with good generalization performance on unseen data88.

	4.	 GB is another powerful ensemble technique like the RFs, which builds models sequentially. It starts with a 
simple model and then iteratively adds new decision trees that are specifically trained to correct the errors 
made by the previous ones. RFs, however, build trees independently and in parallel whereas GBs are sequen-
tial with an error-correcting approach leading to more powerful and flexible model86.

	5.	 DNN consists of an input layer, multiple “hidden” layers of interconnected nodes (neurons), and an output 
layer. The network learns to detect complex patterns and features by adjusting the connection weights be-
tween neurons during training. The DNN approach can uncover patterns in the data than the other, more 
traditional machine learning models might miss89.
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The data exhibited an imbalanced class distribution as there are fewer patients with MCI, RHD, and TBI, than 
patients with dementia, LHD, and HC. To mitigate the risk of models becoming biased towards the majority 
class, we integrated the SMOTE directly into our modeling pipeline90. For each model, a pipeline was constructed 
with SMOTE as the initial step. This approach ensures that over-sampling is performed correctly within each 
cross-validation fold: SMOTE is fitted and applied only to the training data partition of a fold, generating 
synthetic samples for the minority classes before the classifier is trained. The validation partition of the fold 
remains in its original, imbalanced state, providing an unbiased evaluation of the model’s performance. This in-
pipeline application of SMOTE is crucial for preventing data leakage and obtaining a reliable estimate of model 
generalizability. We defined a custom DynamicSMOTE class to automatically adjust the k neighbors parameter, 
preventing errors in cross-validation folds where a minority class had very few samples.

To identify the optimal set of hyperparameters for each model, we employed a hybrid search strategy using 
a participant-aware data partitioning with GroupKFold cross-validation (with 5 folds) to maintain speaker 
independence. For the traditional models (Logistic Regression, Random Forest, SVM, Gradient Boosting), we 
used HalvingRandomSearchCV. This efficient method starts by evaluating many hyperparameter combinations 
on a small subset of the data and iteratively prunes fewer promising candidates, allocating more resources to the 
best-performing ones.

For the computationally intensive Deep Neural Network (DNN), we used RandomizedSearchCV to sample 
a fixed number of hyperparameter combinations from the search space. The performance of each combination 
was evaluated based on its default scoring metric. The best hyperparameters for SMOTE’s k neighbors parameter 
were also determined during this search. The DNN architecture was also part of the hyperparameter search. Key 
parameters tuned included the number of hidden layers, the number of neurons, the dropout rate, batch size, 
and the learning rate for the Adam optimizer. An “early stopping callback” was used to prevent overfitting by 
halting training when performance on the loss function stopped improving.

Model evaluation
After hyperparameter tuning, the best-performing version of each model was evaluated on the completely 
unseen hold-out test set. Model performance was assessed using a comprehensive set of metrics to provide a 
holistic view of their classification capabilities:

	1.	 Accuracy is the percentage of predictions that were correct out of all predictions made. If your model cor-
rectly predicts 85 out of 100 cases, your accuracy is 85%.

	2.	 Balanced Accuracy solves this problem by averaging the accuracy within each class. It calculates the recall 
(true positive rate) for each class separately, then takes the average. In other words, the balanced accuracy is 
defined as the average of sensitivity (true-positive rate) and specificity (true-negative rate) for the two classes 
in a binary classification “Patient vs. Healthy Control (HC)”, the Specificity (HC Recall) (1) and the Sensitiv-
ity (Patient Recall) (2) is calculated. Then the Balanced Accuracy is the sum of the Specificity and Sensitivity 
divided by two (2), the number of classes in a binary classification.

	 Specificity = number of true HCs correctly predicted as HC
Total number of HCs � (1)

	 Sensitivity / Recall = number of patient samples (any subtype) predicted as patient
Total number of patient samples � (2)

	3.	 F1-Score (Weighted) addresses the trade-off between recall (2) and precision (3). The F1-score is the har-
monic mean of these two, giving you a single number that balances both concerns. The weighted version cal-
culates F1-scores for each class and then averages them based on how many samples each class has, making 
it appropriate for imbalanced datasets.

	 P recision = T rueP ositives
T rueP ositives+F alseP ositives

= actualpositivesamongallpredictedones
predictedpositives � (3)

	4.	 Cohen’s Kappa measures how much better your model performs compared to random chance. It is particu-
larly valuable because it accounts for the possibility that some correct predictions might just be lucky guesses. 
Kappa values range from − 1 to 1: 1.0: Perfect agreement beyond chance and 0.0: Agreement is no better than 
random chance; Negative values mean worse than random chance.

	5.	 AUC-ROC (Area Under the Receiver Operating Characteristic Curve). The ROC curve plots your model’s 
true positive rate against its false positive rate across all possible classification thresholds. The AUC-ROC 
tells you how well your model can distinguish between classes. AUC = 1.0: Perfect classifier.

	6.	 AUC-PR (Area Under the Precision-Recall Curve). ROC curves can often be optimistic on imbalanced 
datasets, precision-recall curves focus specifically on the positive class performance. This makes AUC-PR 
especially valuable when you care more about correctly identifying the minority class. The PR curve plots 
precision against recall at different thresholds. AUC-PR is particularly informative for imbalanced data.

	7.	 Confusion matrices were generated for each model to visualize the distribution of correct and incorrect 
predictions across the different classes. For tree-based models (Random Forest, Gradient Boosting), feature 
importance scores were calculated and visualized to provide insights into the most influential principal com-
ponents for classification. Finally, the best overall model, along with the fitted preprocessing transformers, 
was saved for potential future deployment.
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Statistics
To assess the influence of clinical diagnosis on each linguistic outcome variable, we utilized an automated mixed-
effects modeling pipeline. This analysis included participants from the five diagnostic groups (LHD, Dementia, 
MCI, RHS, TBI) and the Healthy Control (HC) group. The pipeline, developed in R91 was designed to be flexible, 
data-driven, and robust to violations of statistical assumptions common in linguistic data.

For each linguistic variable, a mixed-effects model was implemented. Diagnosis was specified as a fixed effect 
to determine its influence on the outcome.

As discussed earlier there is variation in the subgroups within the participants and the tasks they perform, to 
appropriately account for the non-independence of data arising from the study design, and given the complexity 
of the databases, two random intercepts were included in the model:

	1.	 The (1 | Speaker) term addresses that multiple observations (i.e., linguistic measures from one or more tasks) 
originate from the same individual. By including a random intercept for each speaker, the model accounts for 
individual-specific baseline differences in linguistic performance, thereby modeling the repeated measures 
dimension of the data.

	2.	 The (1 | Task) term addresses the inherent variability across different elicitation tasks (e.g., “Cinderella,” 
“Flood,” and “Cookie Theft,” as listed in Table 1). Given that the study design involved diverse groups of 
participants undertaking varying subsets of these tasks, this random intercept allows the model to estimate 
an average deviation from the overall mean for each specific task. This effectively controls for baseline differ-
ences in how tasks might elicit certain linguistic features, regardless of the speaker or their diagnosis.

These random effects structure is robust to the unbalanced nature of task administration (i.e., not all participants 
completed all tasks, and tasks were not fully crossed with participants). It allows for the estimation of the fixed 
effect of ‘Diagnosis’ while simultaneously partitioning out variance attributable to individual speakers and 
specific tasks. The general model structure was:

	 Outcome ∼ Diagnosis + (1|T ask) + (1|Speaker) � (4)

The analytical pipeline systematically selected the most appropriate statistical model based on the distribution of 
each dependent variable. This adaptive process involved fitting Gaussian Linear Mixed-Effects Models (LMMs) 
for continuous variables, using robust LMMs if residual diagnostics (via the DHARMa package92) indicated 
violations of model assumptions, and employing Generalized Linear Mixed-Effects Models (GLMMs) with 
appropriate distributions (e.g., binomial, Poisson, or negative binomial) for binary or count data, including 
checks for overdispersion and zero-inflation. If a suitable model could not be fitted through these steps, a rank-
based LMM was applied as a robust fallback. (Further details on the specific model selection criteria and R 
packages, such as lmerTest93 and robustlmm94.

When a significant main effect of ‘Diagnosis’ was found (typically p < 0.05), post-hoc pairwise comparisons 
were conducted between all diagnostic groups using estimated marginal means (via the emmeans package95). 
Tukey’s method was applied to adjust for multiple comparisons. Group means and confidence intervals are 
reported to aid in the interpretation of these differences.

To create a ranked list of linguistic signatures, a key statistic from the post-hoc analysis of your mixed-
effects models. A larger z-ratio indicates a more robust and statistically significant difference. It simultaneously 
accounts for the size of the difference and the precision of the measurement. We use the absolute value of the 
z-ratio for ranking because we are interested in the magnitude of the difference, regardless of whether a feature’s 
value increased or decreased. This allows us to directly compare the most impactful features across all groups. 
The direction of the change (increase or decrease) is then indicated separately in the table with arrows.

Results
We examined the distinct linguistic production of each group on a comprehensive set of linguistic automated 
measures spanning lexical, morphological, phonological, readability, semantic, and syntactic domains. Figure 3 
shows a UMAP plot illustrating the distribution of linguistic profiles across six clinical groups. (It uses all 
data, that is before dimensionality reduction.) Centroids (marked with 'x') separate HCs, patients with LHD, 
Dementia, from the three other conditions (that is, patients with TBI, RHD, and MCI), which show significant 
overlap indicating that individual language abilities vary widely within each diagnosis and often resemble those 
of other three diagnostic categories. To study the linguistic differences of the diagnostic groups in detail, we 
conducted a supervised ML analysis and designed regression mixed effect models.

To investigate the global structure of linguistic variations across diagnostic groups, we performed a 
Uniform Manifold Approximation and Projection (UMAP) analysis80,81. Figure 3 displays the two-dimensional 
embedding of the comprehensive linguistic profiles (derived from the extracted linguistic features) for all 
participants. Interpretation of the UMAP Projection Unlike linear projections (e.g., PCA), the axes in Fig. 3 
(UMAP 1 and UMAP 2) do not correspond to specific, single linguistic variables. Instead, they represent non-
linear, dimensionless coordinates that preserve the local neighborhood structure of the high-dimensional data. 
Consequently, the proximity between data points indicates the similarity of their overall linguistic profiles: 
points clustered closely together represent individuals with highly similar speech patterns across the domains of 
morphology, syntax, lexicon, and phonology. The ‘X’ markers indicate the centroids (geometric centers) of each 
diagnostic group, illustrating the average location of that group’s linguistic profile in the projected space.

The distribution observed in Fig. 3 is a direct result of the feature selection process, where we retained robust, 
non-redundant measures across all linguistic levels. This multidimensional approach reveals three primary 
patterns of distribution. Firstly, the distinct clusters in LHD and Dementia show that the LHD group forms a 
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distinct cluster significantly separated from the HCx. This separation aligns with the severe deficits in syntax and 
phonology (e.g., reduced complex syllable structures and functional words) identified in our statistical analysis. 
Similarly, the Dementia group separates from HCs, driven by their specific lexico-semantic impairments.

In contrast, the TBI, MCI, and RHD groups show substantial overlap with each other and the HC group. This 
visual overlap suggests that while these conditions have unique linguistic markers (as detailed in Table 6), their 
overall linguistic footprint is less distinct than that of LHD. The wide dispersion of the LHD and TBI clouds 
relative to the tighter HC cluster illustrates the high variance in these populations—reflecting that brain injury 
affects language production in heterogeneous ways depending on severity and lesion location. This unsupervised 
visualization serves as a validation of the supervised ML results presented in subsequent sections, confirming 
that while LHD and Dementia present strong, separable signals, conditions like MCI and RHD present subtler 
linguistic deviations that require the high-dimensional discrimination provided by the NeuroScreen models.

How well do the models distinguish patients and healthy controls?
To assess how well the models distinguish patients and HCs, we have collapsed all five patient subtypes into 
one “Patient” group, and we can compute the results shown in Table 4. The plethora of available data for this 
classification enabled the models to perform exceptional well. LR is essentially perfect at flagging “Patient” vs. 
“HC” (balanced accuracy ≈ 99%). The DNN and the SVM both perform close to 95% thresholds; the RF and the 
GB (were close to 90%). Taking the best ML models into account (LR, DNN, and SVM), two main findings are 
important. First, all the ML models distinguish patients and HCs; second, the linguistic measures used by the 
ML models distinguish the groups, so they can function as linguistic markers. Although these are multi-class 
rather than pure HC vs. Patient, their reported AUC-ROC and AUC-PR reflect overall separability.

Fig. 3.  Uniform Manifold Approximation and Projection (UMAP) visualization of linguistic profiles across 
diagnostic groups. This plot represents the non-linear dimensionality reduction of linguistic features extracted 
from speech samples (covering syntax, morphology, phonology, semantics, lexicon, and readability). (A) 
The axes (UMAP1 and UMAP2) are dimensionless coordinates derived to preserve the local neighborhood 
structure of the high-dimensional data; absolute values are arbitrary, but proximity between points indicates 
similarity in the overall linguistic phenotype. (B) Colored points represent individual participants. The 'X' 
markers indicate the centroid (geometric mean) for each diagnostic group, and shaded ellipses illustrate 
the general distribution. (C) The spatial separation of Left Hemisphere Damage (LHD) and Dementia from 
Healthy Controls (HC) reflects their distinct and severe linguistic deficits (e.g., syntactic simplification and 
lexical retrieval issues). Conversely, the significant overlap of Mild Cognitive Impairment (MCI), Right 
Hemisphere Damage (RHD), and Traumatic Brain Injury (TBI) with the HC cluster indicates that these 
conditions manifest with subtler linguistic deviations and higher individual variability, often preserving core 
structural language elements. (Trustworthiness: 0.868).
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How well does the ML model distinguish each sub-group in the data?
Above we collapsed all patients into one group, to determine howe well the model identifies patients from HCs. 
In this section, we discuss the performance of the models as multiclass classifiers, to determine how well the 
model distinguishes each group from each individual subgroup.

When examining the classifier’s performance on all categories, all models demonstrate robust performance 
with scores predominantly above 0.8 across most metrics (Fig. 4 and Supplementary Data 4). For the detection 
of patients with LHD, all models excel here (F1 ≥ 0.92), with SVM slightly edging out the others (0.96) thanks 
to near-perfect precision (0.94) and recall (0.99). For patients with dementia LR is most balanced (F1 = 0.88), 
combining good precision (0.83) with high recall (0.94). The DNN overcalls patients (precision 0.61) despite high 
recall (0.98), yielding a lower F1. The detection of the HC within the LR again leads (F1 = 0.98), misclassifying 
only ~ 2% of controls, while the tree‐based models lag (GB 0.85, RF 0.81). For the MCI, SVM outperformed the 
other models (F1 = 0.60) by balancing 0.63 precision with 0.56 recall. The detection of minority classes was poor, 
namely patients with RHD (DNN, F = 0.56 and low precision 0.17) comes at poor and TBI (SVM, F1 = 0.58, 
combining 0.71 precision with 0.50 recall). These suggests either both the need for more data or that language 
markers are overlapping so that the models are not discriminating these groups well. This will become evident 
from the following statistical analysis of markers associated with each condition in the following sections.

To address the problem of the minority classes, we collapsed the patient categories with MCI, RHD, and TBI 
into a category “Other Neurological Conditions”. In this way, the model has an exceptionally good performance, 

Fig. 4.  Two-stage hierarchical classification system for distinguishing neurological patients from healthy 
controls and subsequent patient subgroup classification. The flowchart illustrates a binary decision tree where 
test samples are first classified as either patient or healthy control (HC), followed by multi-class classification 
of patient samples into specific neurological conditions. The first stage achieves high performance with F1 
scores of 96% for patient detection. Patients are subsequently classified into Left Hemisphere Damage (LHD, 
F1 = 96%), Dementia (F1 = 86%), or Other Neurological Conditions including Mild Cognitive Impairment 
(MCI), Traumatic Brain Injury (TBI), and Right Hemisphere Damage (RHD) (F1 = 82%).

 

Model
HC Recall
(Specificity)

Patient Recall
(Sensitivity)

Balanced
accuracy AUC-ROC AUC-PR

LR 0.98 0.99 0.99 0.920 0.909

SVM 0.93 0.98 0.96 0.970 0.972

DNN 0.91 0.99 0.95 0.966 0.935

GB 0.88 0.93 0.90 0.918 0.925

RF 0.86 0.89 0.88 0.902 0.897

Table 4.  Model performance of the binary classification “Patient Group” vs. Healthy Controls.
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allowing the detection of patients with Dementia, LHD, and HCs and all the minority classes together. In this 
case, the model-specific performance across all categories. SVM demonstrates consistent performance with 
balanced precision and recall across LHD (precision: 0.94, recall: 0.99), Dementia (precision: 0.89, recall: 0.83), 
HC (precision: 0.94, recall: 0.93), and Other neurological conditions (precision: 0.94, recall: 0.72). In contrast, 
DNN exhibits perfect precision for LHD (1.00) but shows high recall sensitivity for Dementia (0.98) and Other 
Neurological conditions (0.93) at the cost of reduced precision (0.61 and 0.59, respectively). Support values 
indicate the sample sizes for each category: LHD (n = 1173), HC (n = 573), Other (n = 211), and Dementia 
(n = 47), with Dementia representing the smallest patient subgroup.

Which linguistic measures differ most due to diagnostic groups?
Healthy Controls (HC) served as the intercept, and the estimates for each diagnostic group (LHD, Dementia, 
MCI, RHD, TBI) represent the difference from this HC baseline. The analysis of various linguistic measures 
reveals that the diagnosis has a statistically significant and often substantial impact across a wide array of speech 
and language characteristics provides the top features with the largest explanatory power related to neurological 
condition. The complete results are shown in Appendix 2.

The strength of this impact, however, varies considerably among measures, as indicated by Partial Eta 
Squared (Partial η2) values for the Diagnosis and the Marginal R-squared (R2 Marginal) for the overall fixed 
effects of the models is shown in Table 5. All p-values for the reported F-statistics are extremely small (e.g., 
p < 0.001), indicating high statistical significance for the effect of Diagnosis on these measures. Note that from the 
presentation below we have removed measures with extremely high Partial η2 values but very low denominator 
degrees of freedom, suggesting their large effect sizes in this sample should be interpreted with caution due to 
potential model instability or low power for the inferential test despite the large point estimate of effect, also 
removed were measures with non-significant effects of diagnosis.

Diagnosis demonstrates a widespread influence on a multitude of linguistic measures. The strongest 
differentiating features (those with large Partial η2 values and robust model fits) are concentrated in areas of 
semantic content (especially numerical and definiteness marking), overall lexical production and diversity, 
counts of various morphological categories (nouns, adjectives, plurals), and basic phonological/syllable 
structure counts. Additionally, measures of syntactic complexity and certain readability characteristics also show 
substantial impact.

These findings highlight that the neurological conditions under study manifest with distinct and quantifiable 
linguistic profiles. The identified measures with the largest effect sizes are prime candidates for inclusion in 
diagnostic models or for tracking linguistic changes associated with these conditions. The high R2 Marginal 
values for many of these top-ranking measures further underscore the explanatory power of Diagnosis in 
accounting for the observed linguistic variations. A substantial number of linguistic measures demonstrated 
large and robust effects of Diagnosis, indicating these are strong candidates for differentiating between the 
groups. These involve all the aspects of grammar like phonology, morphology, syntax and semantics, lexical 
usage, and readability that is text difficulty.

Measures with medium effects (partial η2 ~ 0.06–0.13)
Beyond the large effects, a broad range of other measures showed medium-sized effects of Diagnosis. These span 
across all linguistic domains, which we included like the total Number of Function Words (Partial η2 = 0.14), 
phonology, such as the different syllable types, like VC and CCVCC (Partial η2 = 0.14), morphology including 
the Number of Verbs (Partial η2 = 0.14), syntax like the number of Complex thematic units (T units), the number 
of matrix sentences (Root), dependent clauses, and the object of preposition. As discussed below although the 
readability measures did not make it to the list shown in Table 5, several readability measures remain important 
as they achieve a Partial η2 between 0.14 and 0.13; these include the Estimated Reading Time (sec), Smog Index, 
Total Classical Yngve Load, Difficult Words; the latter is a measure based on a standardized dictionary61.

Which are the distinctive features for each neurological condition compared to HC?
In this section, we summarize the high-level “linguistic signatures” that distinguish each group. Table 6 below 
synthesizes the results for each neurological condition, by highlighting the top ten (10) linguistic features that 
most strongly distinguish it from Healthy Controls by using the magnitude of the z scores from the post-hoc 
analysis (emmeans). The complete list of distinctive linguistic features is provided in the Supplementary Table 5.

Several key patterns emerge from the statistical analysis. Individuals with LHD are characterized by a 
widespread disruption across multiple linguistic domains. While the most discriminating feature is an increased 
ratio of verb-modifying word types, the majority of the top-10 features are decreases (↓), reflecting a reduction 
in phonological complexity (e.g., 5 syllables word, CCVCCC), syntactic structures (Complement of preposition 
), and the use of specific word types (Pronoun Type: Relative Pronouns). Individuals with Dementia show a 
pattern of impairment that is also broad but appears centered on the use of specific content and function words 
(Verb Type: Modal) and a decrease relative to HCs on measures of phonological complexity (5 syllables word, 
CCVCCC). Individuals with TBI present a mixed profile of mostly decreases in its top features, suggesting a 
unique pattern of linguistic disruption with a notable increases in of ratio of Modal Verbs. Individuals with MCI 
is uniquely distinguished by a strong decrease in measures that associated with increased production complexity 
like five (5) syllable-words, syllables with complex articulatory patterns (CCVCCC, CCCV) and complex 
syntactic patterns such as the number of Clausal Modifier of Nouns and Complement of Prepositions. This 
pattern of decreased production in several of the top-ranking features supports the hypothesis that individuals 
with MCI more general disruptions in language and domains like memory that can explain their use of simpler 
patterns. Individuals with RHD shows the most subtle linguistic profile. Its top discriminators are related to 
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the diminished production of the number Comparative Adjectives, Complements of Prepositions and complex 
syllable patterns (CCVCCC) and phonological structures (5 syllable-words).

A comprehensive list of all statistical comparisons for every measure, is showing in Supplementary Data 6 
and the primary linguistic signatures based on measures that resulted in statistical significance are reported in 
Supplementary Table 9.

Discussion
Language is an extraordinarily complex a distributed network, interfacing with human faculties and cognitive 
processes such as memory, attention, executive functions, and emotions96–98. Damage in brain areas responsible 
for language or areas affecting these cognitive systems is intrinsically reflected in an individual’s language99. 
An impaired cognitive function is often the earliest indication of neurological conditions, like mild cognitive 
impairment (MCI) and dementia, or can designate another acquired damage like left (LHD) and right hemisphere 
damage (RHD), and traumatic brain injury (TBI) and can manifest as a subtle or severe change in linguistic 
expression, lexical choice, syntactic structure, acoustic properties, and discourse coherence. This makes speech 
and language a uniquely rich, non-invasive, and continuously available source of medical information, offering 
a veritable window into an individual’s brain health and cognitive status. The potential to harness this data for 

Measure Category F Num DF Den DF p value Partial η2 R2 Marginal

1 Indefinite Count Morphology 87.39 2.00 431.02 1.38E-32 0.29 0.26

2 Cardinal Number Count Morphology 90.88 2.00 526.94 1.24E-34 0.26 0.24

3 Types Lexicon 62.63 2.00 598.34 2.02E-25 0.17 0.19

4 CVCC Phonology 63.29 2.00 630.04 8.96E-26 0.17 0.20

5 Number Plural Count Morphology 56.81 2.00 568.22 3.22E-23 0.17 0.19

6 Content Words Unique Lexicon 57.43 2.00 577.53 1.79E-23 0.17 0.18

7 Attribute Count Syntax 67.64 2.00 683.24 1.57E-27 0.17 0.24

8 2 syllables word Phonology 57.92 2.00 594.29 1.05E-23 0.16 0.19

9 Appositional modifier Count Syntax 41.96 2.00 431.04 2.24E-17 0.16 0.21

10 Degree Positive Count Morphology 48.38 2.00 499.73 6.19E-20 0.16 0.17

11 Adjective Count Morphology 57.71 2.00 600.00 1.19E-23 0.16 0.19

12 Adjective Phrases Syntax 57.47 2.00 597.62 1.48E-23 0.16 0.19

13 Adjectival modifier Count Syntax 56.27 2.00 586.36 4.41E-23 0.16 0.19

14 Numeral Count Morphology 88.21 2.00 941.26 7.68E-36 0.16 0.24

15 Noun Count Morphology 52.31 2.00 570.44 1.39E-21 0.15 0.17

16 Expletive Count Morphology 16.51 2.00 180.42 2.61E-07 0.15 0.11

17 Syllables Phonology 53.61 2.00 591.15 4.03E-22 0.15 0.18

18 CVC Phonology 53.58 2.00 593.36 4.07E-22 0.15 0.17

19 Content Words Total Lexicon 51.06 2.00 576.36 3.82E-21 0.15 0.18

20 Total Characters in Text Letters Only Lexicon 51.64 2.00 585.38 2.22E-21 0.15 0.17

21 Corrected TTR CTTR Lexicon 82.39 2.00 937.05 1.09E-33 0.15 0.20

22 Prepositional modifier Count Syntax 51.04 2.00 581.51 3.78E-21 0.15 0.18

23 Prepositional Phrases Syntax 51.79 2.00 590.31 1.88E-21 0.15 0.18

24 Unclassified dependent Count Syntax 10.19 2.00 117.38 8.29E-05 0.15 0.05

25 Adposition Count Morphology 51.23 2.00 593.33 3.00E-21 0.15 0.18

26 CV Phonology 59.48 2.00 693.62 1.44E-24 0.15 0.18

27 Verb Phrases Syntax 50.38 2.00 590.91 6.28E-21 0.15 0.17

28 Direct object Count Syntax 46.34 2.00 543.58 2.62E-19 0.15 0.17

29 Words Tokens Lexicon 49.53 2.00 582.53 1.36E-20 0.15 0.17

Table 5.  Measures ranked by effect size, highlighting Large and Robust Effect Sizes (Partial η2 > 0.15). The 
table presents the top 29 linguistic features ranked by partial eta-squared values, representing the proportion 
of variance in each measure explained by diagnostic group membership. Features are categorized into five 
linguistic domains: Morphology (word structure and grammatical forms), Lexicon (vocabulary and word 
usage), Phonology (sound patterns and syllable structure), and Syntax (grammatical relationships and phrase 
structure). F-statistics, degrees of freedom (Num DF = numerator, Den DF = denominator), p-values, partial 
η2, and marginal R2 values are reported for each measure. Morphological features dominate the top rankings, 
with Indefinite Count showing the largest effect size (partial η2 = 0.29, F = 87.39, p < 0.001), followed by 
Cardinal Number Count (partial η2 = 0.26, F = 90.88, p < 0.001). Lexical diversity measures (Types, Content 
Words Unique) and phonological complexity features (CVCC, syllable patterns) also demonstrate substantial 
discriminative power. All reported features achieved statistical significance (p < 0.001) with effect sizes meeting 
the threshold for practical significance in neurological assessment.
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diagnostic and prognostic purposes is immense. Traditional approaches are time-consuming, require controlled 
clinical settings, and can be stressful to the patients. These drawbacks of traditional methods can be addressed 
by the recent advancements in Machine Learning (ML) and Natural Language Processing (NLP), demonstrating 
remarkable capabilities in pattern recognition, data analysis, and predictive modeling. In our previous research, 
we have already shown that ML techniques can enhance the diagnostic accuracy for neurodegenerative disorders 
by identifying complex patterns in clinical and neuroimaging data that often elude conventional analytical 
approaches21,43–45. Additionally, this underscores the methodological capacity of AI algorithms to manage and 
interpret intricate medical data, a capability directly transferable to the complexities of speech. In this study, 
we employed NLP, ML, and robust statistical approach to extract relevant linguistic information and detect 
signatures for text productions of patients in a variety of discoursal tasks. That resulted into an analysis of 292 
linguistic measures from distinct language domains.

Language discriminates diverse neurological conditions: neuroscreen
Having a high-performing, end-to-end model is critical for its real-world usefulness in a clinical setting. The 
excellent performance metrics demonstrate that this system is not just a theoretical exercise but a potentially 
powerful diagnostic tool. The model’s ability to distinguish between patients and healthy controls with up to 
99% accuracy is its most crucial feature. This near-perfect performance means the system can function as a 
reliable screening tool for early detection and characterization of neurological conditions. The model excels 
at identifying common and distinct conditions like LHD with a 96% F1 score and Dementia with an 88% F1 
score. This provides a strong basis as a useful tool in the clinic to advice the diagnostic process. Since the model 
had difficulty with less linguistically distinct conditions (like MCI, RHD, and TBI), we had grouped them into 
“Other Neurological Conditions” category. This approach provides a more realistic clinical pipeline, namely first 
an early diagnosis is being performed to distinguish this group from HCs, then we distinguish patients with 
dementia and patients that require further specialized neurological examination. In this way the NeuroScreen 
flags these patients for more specialized expert review at the linguistic level yet, it does not get at propositional, 
macrostructural, or pragmatic levels, required for find grained distinctions especially between TBI, RHD, and 
MCI where these conditions are known to differ more readily from HCs. Therefore, while NeuroScreen excels in 
distinguishing patients from HCs, its diagnostic precision on subtyping between patient groups is not overstated, 
being a complementary to, not a substitute for, gold-standard assessments (e.g., WAB-R, BDAE).

Clinicians can trust the model to accurately flag individuals who need further evaluation, minimizing 
the chances of missing a patient with a neurological condition. It automates the initial assessment, saving 

Rank LHD Dementia TBI MCI RHD

1 ↑ Verb Type:
Modal Ratio ↓ CCVCCC ↓ Pron Type:

Relative Count
↓ Clausal modifier of
noun Count

↓ Degree: Comparative
Count

2 ↓ Complement of preposition
Count ↑ Dative Count ↓ CCVCCC ↓ 5 syllables

word
↓ Complement of preposition
Count

3 ↓ 5 syllables
word

↓ Degree Comparative
Count ↓ 5 syllables word ↓ Case marker

Count ↓ CCVCCC

4 ↓ Case marker
Count

↑ Verb Type:
Mod Ratio

↓ Degree Comparative
Count ↓ CCVCCC ↓ 5 syllables word

5 ↑ CCCV ↓ Complement of preposition
Count ↓ Dative Count ↓ Dative Count ↓ Pron Type:

Relative Count

6 ↓ Pron Type:
Relative Count

↓ 5 syllables
word

↓ Complement of preposition
Count

↓ Complement of preposition
Count

↓ Degree Comparative
Ratio

7 ↓ CCVCCC ↑ Clausal modifier of
noun Count

↓ Clausal modifier of
noun Count

↓ Pron Type:
Relative Count

↓ Case marker
Count

8 ↓ Clausal modifier of
noun Count

↓ Pron Type:
Relative Count

↓ Case marker
Count

↓ Degree Comparative
Count

↓ Clausal modifier of
noun Count

9 ↑ Degree Comparative
Ratio ↑ CCCV ↑ Verb Type:

Modal Ratio
↑ Verb Type:
Mod Ratio ↑ CCCV

10 ↓ Dative Count ↑ Case marker
Count

↓ Degree Comparative
Ratio ↓ CCCV ↑ Dative Count

Table 6.  Top 10 distinctive linguistic features for each neurological condition compared to healthy controls. 
Features are ranked by absolute t-ratio values from post-hoc pairwise comparisons, identifying the most 
diagnostically discriminative linguistic markers for each condition. Upward arrows (↑) indicate significantly 
increased measures in patient groups relative to healthy controls; downward arrows (↓) indicate significantly 
decreased measures. Note: Features are ranked based on the absolute t-ratio from post-hoc pairwise 
comparisons against the Healthy Control group. (↓) indicates a significant decrease and (↑) indicates a 
significant increase in the measure for the patient group compared to controls. LHD = Left Hemisphere 
Damage; TBI = Traumatic Brain Injury; MCI = Mild Cognitive Impairment. Linguistic features span 
multiple domains including morphology (verb types, degree markers, case markers, dative constructions), 
phonology (syllable patterns: CCVCCC = consonant-consonant–vowel-consonant-consonant-consonant, 
CCCV = consonant-consonant-consonant–vowel, 5-syllable words), syntax (clausal modifiers, complement 
structures), and lexicon (pronoun types).
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valuable time for specialists and allowing healthcare systems to screen more people, more quickly. Beyond 
simply identifying a patient, the model’s strength lies in its ability to differentiate between specific neurological 
conditions. Knowing which condition a person has is essential for providing the right treatment. In essence, 
this two-stage, end-to-end performance creates a complete and practical workflow. It reliably filters the general 
population and then provides a highly accurate differential diagnosis for common conditions while intelligently 
triaging more complex cases. This makes the system on of the most powerful and scalable tool for clinical 
decision support21,43,45,62–65,67–69.

The reasons are twofold, we rely on a large dataset and on the large number of computational measures that 
we have develop and provide within Open Brain AI61 covering a wide range of language domains spanning 
from textual readability58–61, Lexicon and Lexical Information46, Phonology47,48, Morphology9,10,49–52, Syntax53–57, 
and Semantics. Finaly, this approach demonstrates the importance of these metrics to function as linguistic 
signatures indicating that symptoms associated with neurological conditions can both facilitate diagnosis and 
function as therapeutic targets. The characteristics of these language signatures and their patterns are discussed 
next.

Overall language characteristics
The findings revealed condition-specific distinct patterns of linguistic impairments. The most significant 
differences were observed in individuals with LH stroke and dementia, TBI, MCI, and finally RHD, which 
showed the most preserved language.

Concerning the lexical markers and the vocabulary usage, we found that individuals with LHD and TBI 
showed significant reductions in the number of words produced and lexical diversity. Patients with dementia 
also exhibited reduced word production and diversity, though to a lesser extent while patients with MCI and 
RHD lexical profile was closer to that of HCs. Concerning the phonological measurements, such as key syllable 
patterns and syllable complexity, patients with LHD, TBI, and dementia groups produced fewer words of varying 
syllable lengths and less complex syllable structures. Patients with RHD produced similar phonological patterns 
to HCs.

In addition to the lexicon and phonology, key morphological measures that involve both the distribution of 
part of speech (POS) production and inflectional morphology presented key differences among group in the 
distribution of these measures100–103. Patients with LHD and TBI demonstrated widespread reductions in the use 
of most word classes, including determiners, adjectives, nouns, and verbs. Patients with dementia also showed 
a decline in the use of several word classes whereas patients with RHD showed relatively minor differences 
compared to HCs.

In line with earlier findings104–106, syntactic complexity was significantly reduced in individuals with LHD 
and TBI, who produced shorter and structurally simpler sentences. Patients with dementia also showed notable 
reductions in syntactic complexity. The MCI group presented mostly reductions of the core syntactic measures 
whereas patients with RHD provided fewer distinct patterns compared to HCs.

The statistical models about the readability of the text, a novel measure that we employed in this study, reveal 
several important insights about the language production in the patient groups. Individuals with LHD, TBI, 
and dementia was generally rated as less complex and easier to read by various readability indices. Patients with 
LHD, TBI, and dementia groups used fewer named entities like cardinal numbers and dates.

Overall patterns across diagnostic groups
In many clinical contexts, gross differential diagnosis (e.g., stroke vs. neurodegenerative dementia) is often 
straightforward based on history, imaging, and basic cognitive screening, yet this study tested whether language 
can serve as a scalable signal to augment established workflows—not only for early screening before individuals 
reach a specialist, but also for tracking disease progression, monitoring treatment response, and stratifying risk 
in already-diagnosed populations. This broader potential is critical because many people with cognitive change 
are never flagged by family, resist specialist visits, face economic or logistical barriers, or live far from tertiary 
care. Language is produced ubiquitously in daily life and can be captured passively and non-invasively, enabling 
remote and longitudinal monitoring. With advances in transcription and automatic speech recognition (ASR) 
embedded in common digital platforms, language-based analytics could help identify individuals with subjective 
cognitive complaints who are at elevated risk for mild cognitive impairment or dementia, but also characterize 
evolving disease trajectories, detect meaningful within-person change, and support clinical decision-making 
over time. This study demonstrates that language can augment detection, monitoring, and management across 
the continuum of disease—extending cognitive assessment into primary care, telehealth, and other settings 
beyond specialized neurology clinics. Therefore, these signatures not only aid differential diagnosis but also 
stratify patients for targeted intervention, aligning with precision medicine approaches in neurorehabilitation. 
Table 7 associates these linguistic signatures to therapeutic targets, showing their clinical pertinence.

Expectedly, individuals with LHD consistently demonstrated the most extensive and pronounced differences 
from HCs across nearly all linguistic categories as detailed in the results section. The majority of these were 
characterized by significantly lower scores (negative estimates), particularly in measures of lexical production 
and diversity, morphological complexity, phonological output, and syntactic complexity. These findings 
corroborate our existing understanding about the grammatical difficulties107, reduced lexical diversity46, and 
impaired phonological output108, but at the same time they offer a broader understanding, given the extensive 
coverage our measures provide of the language domain and the systematic integration of features spanning 
the entire linguistic hierarchy—from phonological structures to discourse-level semantics. Unlike traditional 
clinical assessments that typically focus on isolated linguistic domains (e.g., naming tests for semantics, sentence 
repetition for syntax), whereas this approach captures the complex interplay between linguistic levels that 
characterizes real-world communication.
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Importantly, the results highlight previously underappreciated compensatory strategies, such as increased 
reliance on proper nouns, socially salient references (e.g., persons, organizations), and syntactic simplification 
through appositional and compound modifiers. This suggests that individuals with LHD are not merely 
producing less language but may be restructuring their output (whether consciously or unconsciously) to 
maximize communicative success within their impaired linguistic system. Furthermore, the readability metrics 
provide novel, ecologically relevant evidence that the language produced by individuals with LHD is objectively 
simpler and more accessible, supporting the interpretation that both deficits and adaptations co-occur in 
spontaneous language use.

Individuals with TBI also exhibited a broad range of significant differences from HCs, which lies upon with 
prior evidence that has also found reductions in linguistic output (e.g., total words, content words, unique words), 
complexity (e.g., Corrected TTR), and various syntactic counts109–111. In several measures, the magnitude of 
these differences was comparable to or, in some specific instances, even exceeded those seen in dementia. At 
the same time, the TBI group displayed increased lexical diversity and preserved, or even compensatory, use 
of certain morphological and syntactic features, indicating strategic adaptations rather than uniform linguistic 
degradation. The semantic profile of TBI also revealed selective vulnerabilities, particularly in numerical and 
personal references, suggesting domain-specific disruptions in meaning construction rather than global semantic 
impairment. Importantly, the readability metrics demonstrate that language produced by individuals with TBI is 
objectively simplified, mirroring patterns seen in aphasia and underscoring the functional consequences of these 
linguistic changes for everyday communication. Together, these results contribute novel, objective evidence that 
TBI disrupts language in ways that are both overlapping with and distinct from classical aphasia profiles.

The global cognitive impairment is a hallmark of dementia, this study emphasizes this by demonstrating 
that spontaneous language production in this group is relatively preserved across many core linguistic domains, 
particularly in phonology, syntax, and overall lexical productivity (this is the case in amnestic dementia, but 
not necessarily in primary progressive aphasia, which is not a syndrome studied here). However, subtle but 
meaningful disruptions emerged in specific areas which echo prior findings, notably reduced lexical diversity112, 
simplified word choice (e.g., shorter average word length), and decreased use of complex syntactic and semantic 
structures113–115. The readability findings further underscore this pattern, showing a moderate shift toward 
simpler, more accessible language that likely reflects both cognitive decline and simplification strategies. While 
the pattern was generally one of decreased scores compared to HCs, the effects were often less pronounced 
and less uniformly distributed across measures compared to the LHD group, reflecting high variation in this 
group113–115.

Unlike LHD aphasia or TBI, MCI was characterized by a subtler but systematic pattern of linguistic 
simplification, which has been shown previously, particularly evident in reduced lexical productivity, decreased 
syntactic complexity, and phonological impairments116–118. The findings reveal that even at this early disease 
stage, individuals with MCI produced fewer total words, content words, and unique word types, accompanied 
by reductions in sentence length and the use of complex syntactic structures such as dependent clauses and 
prepositional phrases. Interestingly, lexical diversity (standard TTR) was increased compared to HCs, reflecting 
a compensatory pattern where speakers produce fewer words overall but rely on a more varied vocabulary within 
their reduced output. Readability metrics further indicated that MCI speakers produce objectively simpler, more 
accessible language than HCs, likely reflecting both cognitive constraints and emerging compensatory strategies.

These results provide new, quantitative evidence reinforcing and extending long-standing but often 
inconsistently documented observations that language production following RHD is relatively preserved in 

Group
Lexicon &
vocabulary

Phonology &
morphology

Syntax &
structure

Readability &
complexity

Notable patterns /
compensations

LHD
Fewer total words,
lower lexical
diversity

Reduced syllable complexity;
fewer nouns, verbs,
and modifiers

Shorter, simpler
sentences

Language is
markedly easier
to read

Impoverished semantic, lexical,
phonological, syntactic output

TBI
Fewer total and content
words but relatively higher
diversity within reduced
output

Simpler phonology;
mixed morphological use
with some compensatory
strategies

Shorter, less
complex sentences

Language objectively
simplified

Varied vocabulary despite
reduced output; simpler language
in terms of readability; simpler
syntax

Dementia
(amnestic)

Slight reductions in
word count and
diversity; preference for
shorter words

Phonology largely intact;
mild reductions in some
word classes

Mild reduction in
complex structures (e.g.,
dependent clauses)

Moderately simplified
language

High individual variability;
some objective semantic,
lexical, morphological, and
syntactic simplification

MCI (mostly
amnestic)

Fewer total and content
words but relatively higher
diversity within reduced
output

Mild phonological impairments:
morphology largely
preserved

Shorter sentences;
reduced use of complex
syntax (e.g., prepositional
phrases)

Language simpler
and more accessible
than controls

Varied vocabulary despite
reduced output; simpler language
in terms of readability;
simpler syntax

RHD

Similar to healthy controls
overall, small decrease
in comparative adjectives,
second-person pronouns
and cardinal
numbers

Phonology and morphology
largely intact

Syntax comparable
to controls

No significant
changes

Subtle decreases in specific
vocabulary (e.g., comparative
adjectives)

Table 7.  Linguistic profiles informing potential, personalized therapeutic targets per group. LHD = Left 
hemisphere damage; TBI = Traumatic Brain Injury; MCI = Mild cognitive impairment; RHD = Right 
hemisphere disorder.
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terms of core linguistic structure, but may still exhibit subtle disruptions, particularly in semantic, pragmatic, and 
higher-order discourse features. The present analyses reveal that individuals with RHD performed comparably 
to healthy controls across most lexical, phonological, morphological, syntactic, and readability measures, 
supporting prior research showing that RHD does not typically produce the overt language breakdown observed 
in left hemisphere stroke or TBI. However, the detection of reduced use of specific structures, such as comparative 
adjectives, complex syllable patterns, and second-person pronouns, along with a selective reduction in certain 
semantic categories (e.g., cardinal numbers), highlights that RHD may subtly affect aspects of language tied to 
complexity, perspective-taking, or relational meaning. These findings align with previous evidence that while 
RHD does not result in classical aphasia, it can impact elements of discourse organization, inferencing, and 
pragmatic language, often in ways that evade detection by standard language batteries.

A key insight from these findings is that while language simplification emerges as a common consequence of 
neurological damage, the specific linguistic signature varies systematically across disorders, reflecting both the 
nature of the underlying neural disruption and the ways in which language production shifts in response to these 
deficits. Across conditions such as LHD, TBI, MCI, and dementia, individuals consistently produced simpler 
language characterized by reduced lexical output, diminished syntactic complexity, and lower readability. Yet, the 
precise linguistic domains affected, and the nature of these changes differed. For example, individuals with MCI 
and TBI showed increased lexical diversity within reduced output, while LHD and dementia speakers exhibited 
greater reliance on proper nouns and socially salient references. These patterns suggest that language production 
does not decline uniformly but instead reflects a combination of impairment and adaptive linguistic shifts, 
whether conscious or automatic. Even in the context of cognitive or neural decline, measurable alterations in 
language use indicate preserved linguistic capacity and potential compensatory processes. Capturing both these 
deficits and adaptations provides a more complete and clinically informative picture of how language reflects the 
complex interaction between neural damage, cognitive constraints, and preserved linguistic mechanisms across 
neurological conditions.

Limitations and future research
Although this study marks a critical starting point for comparing more than one and especially often conditions 
that are dissimilar in their underlying pathology making this comparison possible there are several that are 
inherent to this approach. First, for many neurological conditions, especially rare disorders or the initial stages 
of more common ones like MCI, large-scale speech datasets are lacking, especially for languages other than 
English, so shared corpora like DementiaBank and TalkBank are crucial.

A second issue is the need for more fine-grained distinctions between the populations. Although the categories 
we have presented here like LHD, or dementia correspond to a broader diagnosis, there is an important variation 
within the population because of their condition, the potential influence of medication and other comorbidities 
on the linguistic profiles. So, there is a need for a greater understanding through subtyping the populations 
into subgroups, like individuals with anomic aphasia and conduction aphasia and individuals with different 
severity levels as severity is a critical factor both for interpreting the results and for understanding the limits 
of generalizability. In the present study, harmonizing severity indicators across groups was not feasible because 
the source datasets used different clinical scales (e.g., MMSE for dementia, NIHSS for stroke, and no directly 
comparable metric for TBI or MCI). Given this heterogeneity, and our goal of evaluating whether language 
features alone can distinguish diagnostic categories, we chose not to include severity as an explicit covariate. 
Instead, we partially accounted for patient-specific variability by including subject-level random intercepts in 
the statistical models and by grouping observations by individual in the ML analyses. This approach allowed the 
models to adjust for within-subject dependencies without relying on non-uniform severity scores. As feature sets 
grow richer (e.g., incorporating acoustic or pragmatic AI-derived measures), we anticipate even finer-grained 
resolution of behaviorally meaningful subgroups exceeding traditional diagnostic categories.

Understanding disease progression and the evolution of linguistic signatures over time necessitates 
longitudinal data collection, where individuals are assessed repeatedly. Such data, as used in the MCI-to-AD 
progression study, is invaluable but expensive and time-consuming to acquire. The noted lack of longitudinal 
AD speech data, particularly at the MCI stage, and DementiaBank’s aim for longitudinal tracking highlight this 
ongoing need.

A key limitation of the current study is that we collapsed language data across multiple discourse tasks, 
despite well-established evidence that different tasks elicit distinct linguistic profiles119,120. This approach 
maximizes statistical power and facilitates broad comparisons across diagnostic groups, but it an obscure task-
specific linguistic patterns that are clinically and theoretically meaningful. We have planned for future work that 
will systematically examine how task type interacts with diagnosis to influence linguistic profiles.

Future work must advance on two fronts. First, we need to develop composite metrics that integrate multiple 
linguistic features into coherent, interpretable scores and validate these scores as meaningful indicators of 
underlying cognitive and communicative processes. Such aggregate measures could improve the signal-to-noise 
ratio, enhance generalizability across tasks, and align more directly with clinical constructs such as agrammatism 
or anomia. Second, linguistic analyses should be enriched with acoustic data. Even subtle acoustic cues can 
convey a surprising amount of information. For example, previous research has shown that the extension of 
information provided be even a single sound is incredible. As we have learnt from our research, the way speakers 
pronounce their vowels121, consonants89, voice quality and prosody62 reveal aspects of speakers’ identity, like 
their dialects, sociolects and pathology. Our future research will intergrade these different concepts together and 
provide multimodal systems for understanding language and cognition. Future research should also prioritize 
the continued expansion of this dataset, enhancing its diversity and generalizability. Integrating multimodal 
signatures, such as neuroimaging data, alongside these linguistic measures will be the next frontier, promising 
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even greater precision and clinical utility. Ultimately, this open library provides the essential groundwork for a 
future where language analysis is a core component of neurological care.

Conclusion
This study represents a critical step toward transforming language analysis from a research tool into a scalable, 
clinically actionable digital biomarker for neurological disorders. By applying automated, computational 
linguistic analysis to one of the largest and most diverse databases of spoken language, we demonstrate that 
distinct, quantifiable linguistic profiles can differentiate between individuals with left hemisphere damage, right 
hemisphere damage, dementia, MCI, TBI, and healthy controls. These findings not only advance scientific 
understanding of language impairments but also establish a practical foundation for integrating language-based 
digital biomarkers into routine neurological assessment.

Importantly, the architecture of Open Brain AI provides a clear pathway for translation beyond the research 
setting. With further development, this platform could be scaled into an accessible, secure application deployable 
by researchers, speech-language pathologists, and clinicians worldwide. Such a tool could enable real-time, 
automated language analysis in clinical environments, telemedicine, or even remote monitoring contexts—
delivering objective, reproducible language metrics that augment clinical decision-making. The naturalistic, low-
burden nature of speech samples makes this approach uniquely suited to scalable, patient-friendly assessment.

Looking ahead, the integration of Open Brain AI into clinical workflows, combined with regulatory-
compliant development and continued dataset expansion, holds the potential to redefine how language is used to 
detect, monitor, and personalize care for individuals with neurological conditions. Thus, future validation of this 
work will include direct comparisons with traditional metrics (e.g., naming accuracy, fluency scores) to establish 
convergent validity, as well as future directions noted in section “Limitations and future research”.

By moving beyond proof-of-concept and toward scalable, validated tools, this work contributes to the broader 
goal of leveraging AI and language as accessible, ecologically valid biomarkers in digital medicine.

Data availability
The study used openly available human data that were originally located at TalkBank (https://talkbank.org). The 
analysis included individual-level raw behavioral data in the form of transcripts from patients with acquired 
neurological conditions. All individual-level data were fully de-identified prior to analysis and prior to inclusion 
in the TalkBank library. The raw behavioral data are available through membership to the TalkBank consortium. 
Additional data used in this study are available from the authors upon request with a proper Data Use Agree-
ment in place. The analysis code is openly available at https://github.com/themistocleous/neuroscreen.
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