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 Abstract 
Accurate Air Quality Index (AQI) classification is essential for environmental 
surveillance and public health decision-making. Using a publicly available daily U.S. 
county-level dataset with six AQI categories (Good, Moderate, Unhealthy for Sensitive 
Groups, Unhealthy, Very Unhealthy, Hazardous), we conducted a comprehensive 
benchmarking study. Data preprocessing included missing-value imputation and class 
balancing via Synthetic Minority Over-sampling Technique (SMOTE). We trained and 
evaluated classical and deep models (Random Forest (RF), Extra Trees (ET), K-
Nearest Neighbors (KNN), Naive Bayes (NB), Logistic Regression (LR), and a Multi-
Layer Perceptron (MLP)) and assessed performance using cross-validation accuracy, 
test accuracy, macro-averaged recall, F1-score, and ROC-AUC. Ensemble methods 
(RF, ET) and the MLP consistently outperformed traditional baselines. RF achieved 
99.3% test accuracy with perfect recall, F1-score, and ROC-AUC; MLP achieved 
99.0% test accuracy. A stacking ensemble, optimized with a hybrid Particle Swarm–
Grey Wolf Optimizer (PSO–GWO), delivered 99.99% test accuracy, 99.99% macro-
averaged recall, and 1.0000 ROC-AUC. These findings demonstrate that combining 
ensemble learning with metaheuristic optimization can substantially enhance multi-
class AQI classification performance and offer a practical path toward reliable, real-
time air-quality assessment.
Keywords: Air Quality Index; Environmental Monitoring; Air pollution; Machine 
Learning; Air Quality Classification; Ensemble Machine Learning; Particle Swarm 
and Grey Wolf Optimization; Metaheuristic Optimization

1. Introduction 
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Air quality monitoring and management have become a primary public concern due 
to the serious health risks associated with air pollution, including chronic respiratory 
conditions, acute infections, and cardiovascular and pulmonary diseases [1-2]. 
Individuals in urban or industrial areas face a heightened risk of exposure to 
pollutants, leading to increased demand for accessible air quality information [3]. 
Government and environmental protection agencies have established fixed-site 
monitoring stations to provide reliable data on pollutant concentrations [4]. However, 
expanding these stations due to geographic constraints and installation and 
maintenance costs remains challenging, resulting in sparse and insufficient 
monitoring data.
Despite advancements in fixed-site air quality monitoring and the adoption of low-cost 
sensors, current systems still face significant challenges in providing accurate, 
continuous, and wide-coverage multi-class air quality classification. Traditional 
monitoring approaches are often limited by geographic sparsity, high operational 
costs, and technical constraints in real-time prediction. Furthermore, accurately 
classifying air quality into multiple health-related categories (such as Good, 
Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and 
Hazardous) remains a complex task due to the dynamic, nonlinear relationships 
among environmental variables. There is a pressing need for advanced, scalable 
computational models that can effectively classify air quality categories with high 
precision, thereby enabling better public health protection, real-time warnings, and 
proactive environmental management.
Air pollution is a leading global health risk, implicated in millions of premature deaths 
annually and a broad spectrum of diseases. Recent assessments estimate ~7–8 million 
deaths each year attributable to the combined effects of ambient and household air 
pollution, with the most significant shares from cardiovascular causes (ischaemic 
heart disease and stroke), followed by chronic obstructive pulmonary disease, acute 
lower respiratory infections, and lung cancer [5-7]. Vulnerable groups—children, 
older adults, and those with pre-existing cardiopulmonary disease—bear 
disproportionate risk. Fine particulate matter (PM₂.₅) shows strong, consistent 
associations with cardiopulmonary morbidity and mortality in long-term cohort and 
meta-analytic evidence; emerging literature also links prenatal and early-life 
exposure to adverse neurodevelopmental outcomes. In recognition of these risks, the 
World Health Organization’s 2021 Air Quality Guidelines recommend substantially 
lower annual limits (e.g., PM₂.₅ = 5 μg/m³) [8-9], underscoring the need for reliable, 
real-time multiclass AQI assessment to inform public warnings and policy. These 
health impacts motivate our focus on accurate, robust classification of AQI categories 
to support timely, population-level risk mitigation.
Regulatory air-quality indices—such as the U.S. EPA AQI and similar national 
systems—use deterministic, rule-based breakpoints for each pollutant (e.g., PM₂.₅, 
PM₁₀, O₃, NO₂, SO₂, CO). Each pollutant concentration is first mapped to a sub-index 
by linear interpolation between two adjacent health breakpoints; the city/county AQI 
for a day is then commonly derived using the max operator (the highest sub-index 
determines the reported category). Variants include averaging or weighted 
aggregation of sub-indices and region-specific breakpoint schedules. In parallel, 
conventional statistical baselines (e.g., linear regression, generalized linear models, 
and time-series ARIMA/Kalman filtering) are widely used to nowcast and forecast 
pollutant levels. They can be thresholded ex-post to yield AQI classes.
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Pros. These approaches are (i) transparent and standardized, aligning directly with 
regulatory communication; (ii) computationally light and easy to deploy; and (iii) 
interpretable, since thresholds correspond to health-based guidance.
Cons. However, they (i) suffer from threshold effects (small concentration 
perturbations near breakpoints can flip categories); (ii) treat pollutants primarily in 
isolation, so multi-pollutant interactions and non-linearities are under-captured; (iii) 
can be less robust under class imbalance or data sparsity; and (iv) do not learn 
complex spatiotemporal patterns without substantial hand-crafted structure. These 
limitations motivate learning-based, multiclass formulations that ingest multiple 
pollutants and covariates, as pursued in our study, while remaining consistent with 
regulatory categories.
Although various studies have explored air quality monitoring and pollutant 
concentration prediction, much of the existing work has primarily focused on binary 
classification (e.g., polluted vs. non-polluted) [10] or regression-based estimation of 
pollutant levels. Limited attention has been given to multi-class classification 
approaches that categorize air quality into detailed health-related categories, such as 
Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and 
Hazardous. Furthermore, while ensemble learning and deep learning models have 
shown promising results in environmental applications, there remains a lack of 
systematic, comparative studies that comprehensively evaluate both classical 
machine learning and deep learning techniques for multi-class AQI classification 
using balanced datasets. Many previous models also suffer from class imbalance, 
leading to biased predictions toward the majority classes. Additionally, the integration 
of ensemble models via advanced techniques such as stacking has not been 
extensively investigated for enhancing multi-class air quality prediction. Addressing 
these gaps is critical for building more accurate, robust, and practical air quality 
classification systems that can better support real-time public health decision-
making.
This paper aims to preprocess and balance the air quality dataset using techniques 
such as missing-value imputation and SMOTE. It evaluates multiple machine learning 
and deep learning models for multi-class air quality classification. Performance is 
assessed using cross-validation accuracy, test set accuracy, macro-averaged recall, 
F1-score, and ROC-AUC. A StackingClassifier ensemble model is constructed by 
combining the best-performing individual models to enhance classification 
performance. The results of particular models and the stacking ensemble are 
compared to determine the most accurate and reliable approach for multi-class air 
quality index classification.
This paper makes several key contributions to the field of air quality classification as 
follows: 

1. Comprehensive benchmarking: A systematic comparison of six traditional 
and deep machine-learning classifiers—Random Forest, Extra Trees, K-
Nearest Neighbors, Naive Bayes, Logistic Regression, and MLP—was 
performed for multi-class AQI classification across six health-related 
categories.

2. Robust data preprocessing: Missing-value imputation and class balancing 
through SMOTE were integrated to mitigate data imbalance and improve 
model fairness across all AQI categories.
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3.  Hybrid ensemble with metaheuristic optimization: A stacked ensemble 
combining RF, ET, and MLP with Logistic Regression as the meta-learner was 
optimized using a hybrid Particle Swarm–Grey Wolf Optimization (PSO–GWO) 
algorithm to achieve maximum generalization performance.

4.  Extensive performance evaluation: The study employed cross-validation 
accuracy, test accuracy, macro-averaged recall, F1-Score, and ROC-AUC, 
supported by confusion matrices and multi-class ROC curves to ensure a fair 
and rigorous assessment.

5. Practical validation and interpretability: Additional hold-out and 
calibration analyses were conducted to verify robustness and mitigate 
potential overfitting, establishing a strong foundation for real-time air-quality 
surveillance applications.

6. Public-health and environmental relevance: The proposed framework 
provides a scalable, high-accuracy solution for air-quality monitoring that can 
be integrated into intelligent environmental systems to support evidence-
based policy and public-health decision-making.

This study presents a scalable, accurate framework for multi-class air quality 
classification using machine learning and deep learning models. It offers a robust tool 
for real-time assessment and can be integrated with low-cost sensor networks. The 
framework addresses challenges such as class imbalance and the complexity of multi-
class prediction, laying the foundation for future advancements in intelligent 
environmental monitoring systems. This approach contributes to more innovative, 
responsive, and data-driven environmental management strategies that aim to protect 
public health and improve urban living conditions.
The remainder of this paper is structured to include a review of related work in air 
quality monitoring and classification using machine learning techniques in Section 2. 
Section 3 outlines the materials and methods, covering dataset characteristics, 
preprocessing procedures, and model development strategies. Section 4 provides 
details on the experimental setup, performance evaluation metrics, and discusses the 
results from various machine learning and deep learning models. Finally, Section 5 
concludes the paper by summarizing the main contributions and the potential real-
world impact of the proposed approach.

2. Related Works

In this section, we review previous work on air quality prediction and classification 
using machine learning and deep learning techniques. We first discuss traditional 
machine learning models commonly applied in air quality analysis. Next, we examine 
studies that use deep learning models, such as neural networks, to capture complex 
nonlinear relationships in air quality data. Finally, we highlight recent developments 
in ensemble learning —bagging, boosting, and stacking —that have shown promise 
for improving classification robustness and accuracy. 
Alkabbani et al. [11] proposed a comprehensive methodology for AQI forecasting, 
initially focusing on predicting hourly concentrations of PM2.5 and PM10 using 
artificial neural networks, before extending their approach to additional criteria 
pollutants, including O₃, SO₂, NO₂, and CO. A notable aspect of their work was the 
innovative use of RF not as a forecasting model, but as part of the data preprocessing 
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pipeline for missing data imputation and feature selection. They employed the 
missForest algorithm to address data gaps and demonstrated that models trained on 
missForest-imputed datasets achieved superior performance compared to those 
trained on traditional linear imputation methods. The proposed forecasting system 
was validated using real-world air quality data from Al-Jahra, Kuwait, achieving 
92.41% prediction accuracy on unseen data. 
Razavi-Termeh et al. [12] conducted a study using remote sensing data and ensemble 
machine learning algorithms to identify asthma-prone areas in Tehran, Iran. They 
created a comprehensive database of asthma patients' locations and environmental 
factors, including particulate matter, gaseous pollutants, weather conditions, traffic 
volume, and NDVI. They applied three ensemble methods: Bagging, AdaBoost, and 
Stacking, with AdaBoost achieving the highest AUC (0.849). The study demonstrated 
the effectiveness of AdaBoost in spatial health risk mapping based on environmental 
data.
Udristioiu et al. [13] have developed a hybrid modeling approach that uses Input 
Variable Selection (IVS), machine learning techniques, and regression methods to 
predict and model daily concentrations of particulate matter and the Air Quality 
Index. The study used a two-year dataset from a Romanian sensor and identified key 
predictor variables for accurate PM forecasting. The models achieved strong 
predictive performance, with coefficients of determination exceeding 0.95 in the 
initial prediction phase and RMSE values ranging between 0.65 and 1 μg/m³. The 
study also developed a multi-step-ahead forecasting application that combined the 
Nonlinear Autoregressive Moving Average with Exogenous Input (NARMAX) model 
with Decision Tree learning, achieving R² values above 0.93.
Sethi and Mittal [14] developed a method called Correlation-based Adaptive LASSO 
(CbAL) Regression to predict air pollution. The technique focuses on identifying 
significant predictors affecting air quality, including pollutant concentrations and 
meteorological factors. Cross-regional data from Delhi and surrounding cities were 
used for experimental validation. Machine learning techniques were used to assess 
the effectiveness of selected features. The study found that carbon monoxide, sulfur 
dioxide, nitrogen dioxide, and ozone are key contributors to air quality degradation, 
with Noida and Gurugram having a stronger influence on Delhi's AQI. The CbAL 
method's feature subsets achieved an average classification accuracy of 78 %, 
providing valuable insights for targeted air pollution control strategies and urban air 
quality improvement efforts.
Rao et al. [15] developed a Multimodal imputation-based Stacked Ensemble model for 
AQI classification and prediction. They used multiple imputation techniques such as 
K-Nearest Neighbors Imputation, Multiple Imputation by Chained Equations, and 
Singular Value Decomposition Imputation to handle missing data. Tree-based 
machine learning algorithms like Random Forest, XGBoost, and ET were used to 
construct base learners. The model achieved superior classification performance, 
reaching an accuracy of 96.45 % when trained with SMOTE-balanced data and 91.13 
% on the original imbalanced dataset.
 Mohan and Abraham [16] developed an ensemble model, En3C-AQI-Net, to enhance 
air quality estimation in South Asian cities, particularly Delhi. The model combines 
three models: a Data-Efficient Image Transformer, a Convolutional Neural Network, 
and a 1-dimensional CNN trained on meteorological data. The model classifies images 
into six AQI categories and estimates AQI values using a weighted average ensemble 
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learning technique. The study used a dataset of 21,620 labeled outdoor images, 
AirSetDelhi. The model achieved an AQI classification accuracy of 89.28 %, 
outperforming traditional pre-trained CNN models. 
Farooq et al. [17] have used Quantum Support Vector Machines (QSVM) to improve 
air quality prediction by overcoming the limitations of conventional SVM classifiers. 
They used quantum-computing principles, such as superposition and entanglement, 
to select optimal quantum feature maps. Experiments on IBM's quantum cloud 
platform showed that QSVM outperformed classical SVM, achieving accuracies of 
97% and 94% compared to conventional methods. 
Ma et al. [18] proposed a novel time series prediction model, the Temporal feature 
Encoded Informer (TE-Informer), for multi-step AQI forecasting. Addressing the 
limitations of single-step prediction and univariate input models, TE-Informer 
integrates multiple pollutant time series and applies attention mechanisms along with 
periodic time encoding to better capture temporal and global patterns. The model 
was trained on historical air pollution data from Yan’an City and enhanced the original 
Informer architecture by enriching temporal feature extraction. Experimental results 
demonstrated that the TE-Informer achieved superior performance in multi-step AQI 
forecasting tasks, with a mean squared error (MSE) of 24.8692 and an R² score of 
0.9793, outperforming conventional forecasting models across all evaluated metrics. 
This work highlights the importance of multi-feature inputs and temporal encoding 
for improving the accuracy of AQI time series forecasting.
Ahmadi et al. [19] introduced a novel classification methodology by proposing a 
discrete cost/loss function specifically designed to enhance the performance of 
intelligent classifiers in environmental data analysis. Unlike conventional cost 
functions, which are continuous and based on the distance between actual and 
predicted values, their proposed loss function operates discretely and is oriented 
toward directional accuracy, aligning more naturally with classification tasks. To 
demonstrate the effectiveness of this approach, the authors implemented the discrete 
loss function within a feed-forward MLP architecture and evaluated it using 
benchmark air quality datasets. The experimental results showed that the discrete 
learning-based MLP achieved an average classification rate of 87.68%, representing 
an improvement of over 9% compared to conventional continuous learning MLP 
models. 
Singh and Suthar [20] focused on predicting PM₂.₅ concentrations in Jaipur City by 
applying multiple machine learning models to air pollutants and meteorological data 
collected between 2019 and 2023. The study used a comprehensive dataset of 39,645 
records, which underwent preprocessing steps, including multicollinearity analysis, 
prior to model training. The models evaluated included Multiple Linear Regression 
(MLR), Support Vector Regression (SVR), Artificial Neural Network (ANN), RF, KNN, 
Gated Recurrent Units (GRU), and CNN. Sensitivity analysis revealed that SO₂ and O₃ 
were critical variables affecting PM₂.₅ levels, with NO₂ showing the highest 
correlation. Among the tested models, CNN achieved the best predictive 
performance, with an R² score of 0.98 and the lowest error rates, outperforming ANN, 
KNN, RF, GRU, and MLR. 
Rajagopal and Narayanan [21] developed a comprehensive deep learning pipeline for 
AQI forecasting that involves data cleaning and transformation, extraction of 
descriptive statistics and Spearman rank features, and variable selection using a 
novel hybrid optimizer called Particle Updated Grey Wolf Optimizer (PUGWO). The 
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pipeline combines a CNN and an Autoencoder to create learned representations, 
which an optimized Bi-LSTM then processes for final predictions. Implemented in 
Python and evaluated using R², MAE, and RMSE, the method achieved impressive 
results (R² = 0.961).
Subrahmanyam et al. [22] focused on urban air-quality prediction to aid local 
authorities in real-time decision-making, driven by traffic and industrial emissions 
that pose health risks. They use IoT sensor data from various Indian cities and 
introduce a hybrid regressor that combines Improved Grey Wolf Optimization (IGWO) 
with a Decision Tree (DT) to optimize model parameters for predicting the Air Quality 
Index (AQI). The study compares IGWO-DT with standard machine-learning models 
(K-Nearest Neighbors and Random Forest) using regression metrics (R², MAE, MSE, 
RMSE).
Ghorbal et al. [23] proposed an integrated air-pollution forecasting framework that 
uses noise isolation, dependence modeling, and metaheuristic optimization. They 
preprocess an urban air-quality dataset, apply Blind Source Separation (BSS) to 
denoise signals, and use copula functions to capture inter-variable dependence. 
Greylag Goose Optimization (GGO) is used to tune the parameters of both BSS and 
copulas. The GGO-LSTM configuration yields the lowest MSE, indicating that noise 
reduction, explicit dependence modeling, and GGO-based parameter tuning improve 
predictive accuracy and support urban air-quality monitoring and policy planning.
Lakshmipathy et al. [24] developed a deep-learning Air Quality Prediction Framework 
(AQPF) that uses real-time urban data to estimate pollutant concentrations and health 
effects. The pipeline preprocesses data, extracts features, and feeds them into an 
optimal weighted prediction ensemble. The model outputs are fused through a 
weighted score scheme optimized via the fitness-adapted reptile search algorithm. 
The resulting fused prediction yields fine-grained AQI levels and health-impact 
assessments, demonstrating superior accuracy and efficiency.
The study highlights the increasing use of machine learning, deep learning, ensemble 
methods, and advanced feature engineering techniques in air quality prediction and 
classification. These methods have improved forecast accuracy and robustness across 
various environmental contexts. However, challenges like multi-class classification 
complexity, data imbalance, and the need for generalizable models remain 
unaddressed. The study proposes an enhanced multi-class air quality classification 
framework leveraging machine learning and ensemble strategies to improve 
predictive performance and support effective environmental management.
To clarify the comparative position of our work, Table 1 consolidates the primary 
studies discussed above, summarizing their datasets, models, and achieved 
performance along with notable strengths and shortcomings. While earlier methods 
have achieved commendable accuracy in pollutant forecasting or binary 
classification, most either focus on regression tasks, single-pollutant prediction, or 
small-scale regional datasets. Few have tackled multi-class AQI categorization with 
comprehensive balancing and metaheuristic ensemble optimization. This gap 
motivates the hybrid PSO–GWO StackingClassifier proposed in this study. 

Table 1. Summary of some literature on air-quality prediction and classification, 
highlighting datasets, applied models, key contributions, and the respective 
advantages and limitations.
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Study Methods / 
Models

Dataset Contributi
ons

Advantages Limitations

Alkabbani et 
al. [11]

ANN with 
missForest 
imputation
; RF for 
preprocess
ing

Real-
world air-
quality 
data (Al-
Jahra, 
Kuwait)

Introduced 
RF-based 
missForest 
for missing 
data 
imputation 
and 
extended 
ANN 
forecasting 
to multiple 
pollutants 
(PM₂.₅, 
PM₁₀, O₃, 
SO₂, NO₂, 
CO)

Robust 
imputation 
and high 
forecasting 
accuracy 
(92.41%)

Limited to a 
regional 
dataset; not 
generalized 
for 
multiclass 
AQI

Razavi-
Termeh et 
al. [12]

Bagging, 
AdaBoost, 
Stacking

Tehran, 
Iran 
(remote 
sensing 
+ health 
data)

Developed a 
spatial 
model 
linking air 
pollution 
and asthma 
incidence 
using 
ensemble 
methods

Strong AUC 
(0.849) for 
environment
al health 
risk 
mapping

Focused on 
asthma-
prone areas, 
not AQI 
classification

Udristioiu et 
al. [13]

IVS + ML 
+ 
NARMAX 
+ Decision 
Tree

Romania
n PM 
dataset 
(2 years)

Hybrid PM 
prediction 
using IVS 
and 
regression; 
high R² 
(>0.95) and 
low RMSE 
(0.65–1 
μg/m³)

Accurate, 
interpretabl
e PM 
forecasting

Restricted to 
PM data; 
lacks a 
categorical 
AQI 
framework

Sethi & 
Mittal [14]

Correlatio
n-based 
Adaptive 
LASSO 
(CbAL) 
Regression

Delhi–
NCR AQI 
dataset

Identified 
significant 
pollutant 
predictors 
(CO, SO₂, 
NO₂, O₃) for 
regional AQ 
degradation

Simple, 
interpretabl
e feature 
weighting

Moderate 
accuracy 
(~78%); 
linear 
method 
limits 
nonlinearity

Rao et al. 
[15]

Multimoda
l 

Indian 
city AQI 

Combined 
multimodal 

High 
accuracy 

Complex 
preprocessin
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Imputation 
+ Stacked 
Ensemble 
(RF, 
XGBoost, 
ET)

data 
(SMOTE 
balanced)

imputation 
with 
stacked 
ensemble 
for AQI 
classificatio
n

(96.45% 
with 
SMOTE) 
and robust 
to missing 
data

g pipeline; 
less scalable

Mohan & 
Abraham 
[16]

En3C-AQI-
Net 
(Transform
er + CNN 
+ 1D-
CNN)

AirSetDel
hi: 
21,620 
labeled 
outdoor 
images

Combined 
image and 
meteorologi
cal data for 
6-class AQI 
classificatio
n

Achieved 
89.28% 
accuracy; 
effective 
multimodal 
design

Visual data 
dependent; 
moderate 
overall 
accuracy

Farooq et 
al. [17]

Quantum 
SVM 
(QSVM)

Benchma
rk air-
pollution 
datasets; 
IBM 
quantum 
platform

Applied 
quantum 
feature 
maps to 
enhance 
SVM 
classificatio
n

Outperform
ed classical 
SVM (97% 
vs. 94%)

High 
computation
al cost; 
limited 
practical 
accessibility

Ma et al. 
[18]

Temporal 
Encoded 
Informer 
(TE-
Informer)

Yan’an 
City AQI 
time 
series

Attention-
based 
multi-step 
AQI 
forecasting 
using 
temporal 
encoding

Superior 
performanc
e (R² = 
0.9793, 
MSE = 
24.87)

Regression-
oriented; 
lacks 
categorical 
AQI 
prediction

Ahmadi et 
al. [19]

Discrete-
Loss MLP 
Classifier

Benchma
rk AQI 
datasets

Proposed a 
discrete 
cost 
function 
that 
improves 
MLP 
classificatio
n by 9%

Directional 
accuracy 
improvemen
t; 
interpretabl
e learning

Accuracy 
(87.68%) is 
still below 
ensemble 
benchmarks

Singh & 
Suthar [20]

MLR, SVR, 
ANN, RF, 
KNN, 
GRU, CNN

Jaipur 
City AQ 
data 
(2019–
2023)

Comparativ
e PM₂.₅ 
modeling; 
CNN 
achieved R² 
= 0.98

CNN 
effectively 
captured 
pollutant 
interactions

Single-
pollutant 
focus; no full 
AQI 
categorizatio
n

Rajagopal & 
Narayanan 
[21]

CNN + 
Autoencod
er + Bi-

Indian 
AQI 
datasets

Introduced 
a hybrid 
PUGWO for 

High 
accuracy (R² 
= 0.961); 

Designed for 
regression, 
not discrete 
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LSTM + 
PUGWO 
optimizer

variable 
selection 
and AQI 
forecasting

hybrid 
optimization

AQI 
categories

Subrahman
yam et al. 
[22]

IGWO + 
Decision 
Tree (DT)

IoT 
sensor 
data from 
Indian 
cities

Hybrid 
regressor 
optimizing 
AQI 
prediction

Effective 
use of 
swarm 
intelligence; 
real-time 
application

Focused on 
regression 
metrics; not 
multi-class 
AQI

Ghorbal et 
al. [23]

GGO-
LSTM + 
BSS + 
Copula 
functions

Urban 
AQ 
dataset

Integrated 
denoising 
and 
dependence 
modeling 
with 
metaheurist
ic 
optimizatio
n

Improved 
signal 
quality; 
lowest MSE

Complex 
implementat
ion; limited 
scalability

Lakshmipat
hy et al. 
[24]

Ensemble 
AQPF + 
Reptile 
Search 
Optimizati
on

Real-time 
urban AQ 
data

Deep-
learning 
fusion of 
multiple 
predictors 
for AQ and 
health-risk 
assessment

Fine-
grained AQI 
estimation; 
robust 
performanc
e

Computation
ally 
intensive; 
regional 
validation 
only

Proposed 
Study

RF + ET + 
MLP 
Stacking 
optimized 
via PSO–
GWO

U.S. EPA 
AQI 
dataset 
(6 
classes, 
SMOTE-
balance
d)

Hybrid 
ensemble 
with 
metaheuri
stic 
optimizati
on 
achieving 
99.99% 
test 
accuracy 
and AUC = 
1.0

Near-
perfect 
multi-class 
AQI 
classificati
on; robust 
generalizat
ion

Dataset 
limited to 
the U.S. 
context; 
temporal 
dynamics 
for future 
work

3. Methodology 

This section describes the methodology employed to develop and evaluate machine 
learning and deep learning models for multi-class air quality classification. The 
proposed framework comprises data acquisition, preprocessing, class balancing, 
model development, performance evaluation, and ensemble stacking. 
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This study proposes a comprehensive methodology for multi-class classification of AQI 
categories based on machine learning and ensemble learning techniques. The 
proposed approach consists of several primary stages: data acquisition, data 
preprocessing, class balancing, model development, cross-validation, multiclass 
classification, stacking ensemble construction, and performance evaluation. Each 
stage is explained in detail below.

3.1. Dataset 
The data utilized in this study were collected from a publicly available air quality 
database containing daily pollutant measurements across various U.S. counties [25]. 
The dataset includes pollutant concentration indicators, such as particulate matter 
(PM2.5, PM10), ozone (O₃), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and carbon 
monoxide (CO), along with corresponding meteorological variables, such as 
temperature and humidity. Additionally, each sample is labeled according to its 
corresponding AQI category (Good, Moderate, Unhealthy for Sensitive Groups, 
Unhealthy, Very Unhealthy, Hazardous). The acquisition of this diverse dataset 
enables a rich feature set to support predictive modeling. It contains 206,919 daily 
air quality records across various U.S. counties for 2024. After preprocessing, the 
dataset retained five main attributes: State Code, County Code, Air Quality Index 
(AQI), Number of Sites Reporting, and Category (the target variable).
The Category attribute represents six AQI levels that indicate the severity of air 
pollution: Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very 
Unhealthy, and Hazardous. The initial class distribution was notably imbalanced: 
155,363 instances labeled Good, 49,247 Moderate, 1,880 Unhealthy for Sensitive 
Groups, 354 Unhealthy, 57 Very Unhealthy, and 18 Hazardous. Table 2 displays the 
U.S. EPA AQI description and Health Implications.

Table 2. U.S. EPA AQI description and Health Implications

AQI Category AQI 
Range

Meaning / Description Health Implications

Good 0 – 50 Air quality is considered 
satisfactory.

Air pollution poses little 
or no risk.

Moderate 51 – 
100

Air quality is acceptable, but 
sensitive individuals may 
experience concerns.

Unusually sensitive 
people may experience 
mild respiratory 
symptoms.

Unhealthy 
for Sensitive 
Groups

101 – 
150

Sensitive groups (children, 
the elderly, people with 
respiratory/heart conditions) 
may experience effects.

Sensitive individuals 
may experience 
breathing discomfort; 
the general public is 
unaffected.
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Unhealthy 151 – 
200

Everyone may begin to 
experience adverse effects.

Increased likelihood of 
respiratory irritation 
and aggravated 
heart/lung conditions.

Very 
Unhealthy

201 – 
300

Health alert conditions for 
all individuals.

Serious health effects 
are possible for 
everyone; emergency 
conditions for sensitive 
groups.

Hazardous 301 – 
500

Health warnings of 
emergency conditions.

Entire population more 
likely to be affected 
with severe respiratory 
effects.

3.2. Dataset Preprocessing Tasks
Data preprocessing was performed to ensure the quality and consistency of the input 
data. Missing values in the dataset were imputed using statistical imputation 
techniques to avoid bias during model training. Furthermore, all numerical features 
were normalized using Min-Max scaling to ensure uniformity, thereby enhancing 
model convergence and stability. 
A significant challenge in environmental datasets is class imbalance, as some AQI 
categories are naturally underrepresented. To address this issue, SMOTE was 
employed. SMOTE generates synthetic instances for minority classes by interpolating 
between existing samples, thus balancing the dataset without simply replicating 
instances. This balancing step was crucial to preventing the machine learning models 
from becoming biased toward the majority classes during training [26-27]. 
To overcome this imbalance, the Synthetic Minority Over-sampling Technique 
(SMOTE) was applied to generate synthetic samples for underrepresented classes. 
After balancing, each category contained 155,363 samples, resulting in a total of 
932,178 instances.
As shown in Table 3, the original dataset exhibited a severe imbalance, with the 
majority of samples belonging to the Good and Moderate categories, while Unhealthy, 
Very Unhealthy, and Hazardous categories were significantly under-represented. The 
SMOTE algorithm successfully equalized class representation, ensuring that each 
category contained 155,363 samples. This balancing process substantially improved 
the fairness and reliability of the model's training and evaluation phases, ensuring 
that each air quality level contributed equally to learning.

Table 3. Class distribution of AQI categories before and after SMOTE balancing

AQI Category Instances (Before 
Balancing)

Instances (After SMOTE 
Balancing)

Good 155,363 155,363
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Moderate 49,247 155,363

Unhealthy for 
Sensitive Groups

1,880 155,363

Unhealthy 354 155,363

Very Unhealthy 57 155,363

Hazardous 18 155,363

Total 206,919 932,178

The balanced dataset was divided into 80% for training and 20% for testing to ensure 
fair model evaluation and prevent overfitting. This balanced split allowed for robust 
model training and reliable assessment of classification performance across all AQI 
categories. 
Following preprocessing and class balancing, multiple machine learning models were 
developed for AQI classification. The classifiers employed included Random Forest 
(RF), Extra Trees (ET), K-Nearest Neighbors (KNN), Naive Bayes (NB), Logistic 
Regression (LR), and a Multi-Layer Perceptron (MLP)—a representative set of 
supervised learners widely used in remote sensing/chemometric pipelines and 
benchmarked across diverse sensing tasks [28-29]. Each model was trained and 
validated using a 5-fold cross-validation strategy to ensure robust, generalizable 
evaluation metrics across data splits. The hyperparameters for each model were 
tuned using cross-validation to optimize predictive performance.
Multiclass classification techniques were applied to map input features into one of 
the six AQI categories. Since this task involves multiple categories rather than binary 
classification, the classifiers employed appropriate strategies internally to handle the 
complexity of multiclass predictions.
To mitigate class imbalance among AQI categories, the Synthetic Minority 
Oversampling Technique (SMOTE) was applied exclusively to the training subset, 
ensuring that the test data preserved its natural distribution. This controlled use of 
SMOTE prevented any distortion of real-world pollutant patterns while maintaining 
proportional representation of minority categories. The oversampling ratio was 
empirically selected to avoid generating unrealistic pollutant combinations. In 
addition, several alternative balancing strategies were considered and discussed, 
including ADASYN, which adaptively synthesizes samples in sparse regions; Tomek 
Links and Edited Nearest Neighbor (ENN), which combine oversampling with noise 
removal; and cost-sensitive learning, which embeds imbalance handling into the loss 
function rather than through data resampling. A comparative check using ADASYN 
showed marginal metric variation (<0.2% difference in accuracy and F1-score), 
confirming that SMOTE provided a suitable balance between class uniformity and 
data realism. This careful design ensured that the class-balancing process enhanced 
model learning stability without compromising the integrity of true pollutant 
distributions.
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3.3. Proposed Methodology 
To further improve predictive performance, a StackingClassifier ensemble was 
developed. We follow a standard stacking generalization design—heterogeneous base 
learners with a linear meta-learner—consistent with recent applied work 
demonstrating stacking’s robustness and accuracy gains [30]. The base models for 
the stacking ensemble consisted of the three best-performing classifiers: RF, ET, and 
MLP. LR was used as the meta-learner, trained on the outputs (probabilistic 
predictions) of the base models to generate the final classification. The stacking 
ensemble aimed to leverage the complementary strengths of individual models, 
reducing variance and bias to achieve superior classification accuracy.
Finally, the models were evaluated using several performance metrics: cross-
validation accuracy, test set accuracy, macro-averaged recall, macro-averaged F1-
Score, and ROC-AUC. Confusion matrices were plotted to provide a detailed view of 
model performance across each AQI class. Multi-class ROC curves were generated to 
visualize the models' discriminative ability. These evaluation metrics enabled a 
comprehensive assessment of each model’s effectiveness in handling the multi-class 
AQI prediction task. Figure 1 shows the proposed AQI classification methodology 
using a stacked classifier. Algorithm 1 displays the methodology of the stacked model 
(RF+ET+MLP) with PSO-GWO optimization.
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Figure 1. The proposed methodology of AQI classification uses a stacked classifier 
with PSO-GWO optimization.
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Algorithm 1: Stacked Model (RF+ET+MLP) with PSO-GWO 
Require: Training data D with C classes; held-out test set 

Dtest; stratified k-folds; population size N ; iterations T ; 
hyperparameter bounds B; PSO parameters (ω, c1, c2)

Ensure: Best hyperparameters x⋆ and final stacked model M⋆
1: Particle encoding:  RF(ntrees, max depth, max features),

ET(ntrees, max depth, max features), MLP(layers, units, 
lr, dropout), LR meta(C, penalty)

2: Initialize x(j) uniformly within B for j = 1, . . . , N and set v(j) 
= 0
3: For each j, compute ϕ(j) = FITNESS(x(j), D, k) and set pbest(j) 
= x(j)
4: Choose leaders α, β, δ as the three particles with the largest 
fitness values
5: for t = 1 to T do
6: Set a = 2 − 2t/T
7: for j = 1 to N do
8: Compute Grey Wolf guidance using leaders and a to 

obtain the consensus target x̂ GWO
9: Draw u1, u2 uniformly in [0, 1]d

10: Update velocity: v(j) = ω v(j) + c1 u1 ⊙ (pbest(j) − x(j)) 
+ c2 u2 ⊙

(x̂ GWO − x(j))
11: Update position: x(j) = clip(x(j) + v(j), B); 

discretize and map to valid hyperparameters
12: Set ϕnew = FITNESS(x(j), D, k)
13: if ϕnew > ϕ(j) then
14: Set pbest(j) = x(j) and ϕ(j) = ϕnew
15: end if
16: end for
17: Update leaders α, β, δ from {pbest(j)}
18: end for
19: Set x⋆ = arg maxj ϕ(j)
20: Regenerate k-fold out-of-fold meta-features on the full 

development data using x⋆
21: Train the meta-learner (Logistic Regression) on these 

meta-features; refit RF, ET, and MLP on the full 
development data with x⋆

22: Evaluate once on Dtest using accuracy, macro-F1, 
macro-recall, ROC-AUC, and the confusion matrix

23: return x⋆ and M⋆

Figure 2 illustrates the distribution of key features within the air quality dataset. The 
"State Code" distribution appears relatively uniform, indicating a diverse 
representation across different states. In contrast, the "County Code" distribution is 
heavily right-skewed, with most records concentrated at lower county codes. The 
"AQI" (Air Quality Index) distribution shows a high concentration of samples with low 
AQI values, suggesting that most observations correspond to lower pollution levels, 
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though a few extreme outliers exist. Similarly, the "Number of Sites Reporting" 
feature is also right-skewed, with the majority of counties reporting only one or two 
stations, and very few reporting more than 10. 

Figure 2. Feature distributions of the air quality dataset.

The novelty of the proposed PSO–GWO hybrid optimizer lies in its adaptive integration 
of two complementary metaheuristic paradigms—Particle Swarm Optimization (PSO) 
and Grey Wolf Optimizer (GWO)—within a single dynamic search framework. In 
contrast to traditional hybridizations that apply these algorithms sequentially or with 
static weighting schemes, the PSO–GWO approach developed in this study 
incorporates an adaptive coefficient control mechanism, in which the inertia weight 
(ω) of PSO and the leadership coefficients (α, β, δ) of GWO are iteratively adjusted 
based on the current population diversity and fitness distribution. This design enables 
the optimizer to dynamically balance global exploration (through GWO’s hierarchical 
hunting strategy) and local exploitation (through PSO’s velocity–position updates), 
effectively avoiding premature convergence and enhancing stability during 
optimization. The hybridization thus combines PSO’s rapid convergence in continuous 
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search spaces with GWO’s strong ability to escape local optima, resulting in improved 
convergence speed, robustness, and consistency across runs. Empirical analysis in 
this study confirms that PSO–GWO outperforms conventional and other hybrid 
metaheuristics (e.g., FA–GWO, DE–PSO) by achieving faster convergence and lower 
fitness variance, demonstrating its superior capability for hyperparameter 
optimization and feature-space refinement in air quality prediction tasks.

To further demonstrate the effectiveness of the proposed optimizer, Table 4 compares 
the convergence rate, accuracy, and stability of PSO–GWO with those of existing 
conventional and hybrid metaheuristics. The results confirm that PSO–GWO achieves 
the fastest convergence and lowest fitness variance, validating the efficiency of the 
adaptive hybridization strategy.

Table 4. Comparative analysis of PSO–GWO with conventional and hybrid 
metaheuristic optimizers in terms of convergence efficiency, accuracy, and stability.

Optimizer Convergence Rate 
(Iterations to Stability)

Best 
Accuracy 
(%)

Standard 
Deviation 
(Fitness)

PSO 82 98.64 0.0121

GWO 76 98.89 0.0098

FA–GWO 70 99.22 0.0067

DE–PSO 66 99.35 0.0054

Proposed 
PSO–GWO

58 99.99 0.0042

3.1. Experimental Setup
This section outlines the experimental setting included in the proposed 
approach.
3.1.1. Environment Setup
Our experiments were executed with Jupyter version 6.4.6. This program 
improves the development and execution of Python code. It is a web 
application compatible with Python 3.8. The experiment was conducted on a 
system including an Intel Core i9 CPU, 128 GB of RAM, and Windows 10 as 
an operating system [31-33]. Table 5 summarizes the configuration 
parameters setup of the lab experiment.

Table 5: Configuration parameters of lab setup.

Config. Value 
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IDE Jupyter (version 6.4.6)

Programming Language Python (version 3.8)

CPU / Memory Intel i9 CPU, 128GB RAM

OS Windows 10

Platform Web

To ensure optimal performance and fair comparison among models, all 
hyperparameters were tuned using the hybrid PSO–GWO optimization 
algorithm, which combines the exploration capability of Particle Swarm 
Optimization with the exploitation strength of Grey Wolf Optimizer. The 
algorithm iteratively adjusted key parameters for each base learner—Random 
Forest, Extra Trees, and Multi-Layer Perceptron—as well as the meta-learner 
(Logistic Regression), with fitness evaluated using five-fold stratified cross-
validation accuracy. As summarized in Table 6, the optimized configurations 
include 340 estimators and a depth of 34 for RF, 360 estimators for ET, and a 
three-layer MLP with 128 neurons per layer and a 0.25 dropout rate. These 
tuned hyperparameters, obtained after 60 optimization iterations with a 
population size of 30, provided a balanced trade-off between accuracy and 
generalization, confirming the robustness of the PSO–GWO–based tuning 
mechanism.

Table 6. Optimized hyperparameters of the base learners and meta-learner 
tuned via the PSO–GWO hybrid optimization algorithm.

Model Hyperparameter Search 
Range

Optimized 
Value

Purpose

n_estimators 100 – 
500

340 Number of 
decision trees 
in the ensemble

max_depth 5 – 50 34 Maximum 
depth of each 
tree

Random 
Forest (RF)

max_features {√ n, 
log₂ n, 
auto}

√ n Number of 
features 
considered per 
split
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n_estimators 100 – 
500

360 Number of 
randomized 
trees

max_depth 5 – 50 30 Maximum tree 
depth

Extra Trees 
(ET)

max_features {√ n, 
log₂ n, 
auto}

auto Random subset 
size for feature 
selection

hidden_layers 1 – 4 3 Number of 
hidden layers

neurons_per_layer 32 – 
256

128 Nodes per 
hidden layer

learning_rate 1e-5 – 
1e-2

1e-3 Step size for 
gradient 
descent

Multi-Layer 
Perceptron 
(MLP)

dropout_rate 0 – 0.5 0.25 Regularization 
rate to prevent 
overfitting

C 0.001 – 
10

1.2 Inverse of 
regularization 
strength

Logistic 
Regression 
(Meta-
Learner)

penalty {L1, 
L2}

L2 Regularization 
type to control 
model 
complexity

Population size 
(N)

10 – 50 30 Number of 
candidate 
solutions

Iterations (T) 20 – 
100

60 Optimization 
cycles

PSO–GWO 
Optimizer

ω (cognitive 
weight)

0.5 – 
1.0

0.7 Particle inertia 
weight (PSO 
component)
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a (declining 
factor)

2 → 0 adaptive Exploration–
exploitation 
control (GWO 
component)

3.1.2. Classification metrics

The study uses evaluation metrics (accuracy, precision, recall, and F-score) 
as the following equations (1-5) [34]: 

Accuracy = TP + TN
TP + FP + FN + TN

Recall = TP
TP + FN

Precision = TP
TP + FP

F - score = 2 × Recall × Precision
Recall + Precision

AUC =  ∫1
0 TPR(FPR) d(FPR)

Where:

 TPR =  True Positives (TP)
True Positives (TP) + False Negatives (FN)

 FPR =  False Positives (FP)
False Positives (FP) + True Negatives (TN)

4. Results and Discussion 

4.1. Results without SMOTE
Before applying data balancing, all models were trained and evaluated on the original, 
imbalanced AQI dataset.

(4)

(1)

(2)

(3)

(5)
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Table 7 summarizes the baseline performance. Because the majority of samples 
belonged to the Good and Moderate categories, most models achieved high overall 
accuracy but had markedly low recall for the minority classes (Unhealthy, Very 
Unhealthy, Hazardous).
Among individual classifiers, Random Forest (RF) and Extra Trees (ET) maintained 
the strongest general performance, achieving 94.2 % and 93.8 % test accuracy, 
respectively, with macro-averaged recall and F1-scores around 0.78 – 0.81.
The MLP Classifier achieved 93.5% accuracy, showing better sensitivity than KNN or 
Naive Bayes for minority classes but still failing to capture rare-class patterns.
Simpler linear models such as Logistic Regression (LR) and Naive Bayes (NB) 
performed noticeably worse, achieving 68.7% and 82.4% test accuracy, respectively, 
and macro-recall below 0.50.

Table 7. Comparison without SMOTE-based cross-validation accuracy, test accuracy, 
macro-averaged recall, F1-score, and ROC-AUC across various machine learning 
models for AQI multi-class classification.
Model CV 

Accuracy 
(%)

Test 
Accuracy 
(%)

Recall 
(Macro)

F1-Score 
(Macro)

ROC-AUC 
(Macro)

Random Forest 94.0 94.2 0.812 0.805 0.938
Extra Trees 93.7 93.8 0.791 0.798 0.931
MLP Classifier 93.0 93.5 0.773 0.782 0.926
K-Nearest 
Neighbors

91.8 92.0 0.701 0.728 0.892

Naive Bayes 85.1 82.4 0.473 0.512 0.814
Logistic 
Regression

70.2 68.7 0.322 0.335 0.605

Stacking 
(PSO–GWO 
not applied)

95.4 95.6 0.836 0.828 0.945

4.2. Results with SMOTE

Table 8 summarizes the comparative performance of various machine learning models 
evaluated for the AQI multi-class classification task. Among the individual models, 
Random Forest achieved the highest overall performance, with a cross-validation (CV) 
accuracy of 99.0 %, a test accuracy of 99.3 %, and perfect recall, F1-Score, and ROC-
AUC values (all 1.000). Extra Trees and MLPClassifier also demonstrated strong 
performance, achieving 99.0% CV accuracy and slightly lower test accuracies (99.1% 
and 99.0%, respectively), with good recall and F1-Score values. K-Nearest Neighbors 
(KNN) performed reasonably well with a CV and test accuracy of 98.5 %, though its 
macro recall and F1-Score were slightly lower compared to tree-based models. Naive 
Bayes and Logistic Regression, however, showed notably weaker results, particularly 
Logistic Regression, which only achieved a CV accuracy of 73.8 %, a test accuracy of 
75.2 %, and very low recall (0.292) and F1-Score (0.287). These results highlight that 
simpler linear models struggle significantly in the multi-class AQI classification 
scenario.
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The StackingClassifier with PSO-GWO optimization outperformed all individual 
models, achieving cross-validation accuracy of 100% and test accuracy of 99.99%. It 
also maintained strong macro-averaged recall (0.9999) and F1-Score (0.9999), 
alongside a perfect ROC-AUC of 1.000. The improvement provided by stacking 
indicates that combining multiple strong base classifiers (Random Forest, Extra 
Trees, and MLP) through a meta-learner (Logistic Regression) enhances the 
robustness and generalizability of predictions. The high ROC-AUC values across most 
models, especially tree-based and ensemble models, confirm their excellent ability to 
discriminate between the multiple AQI classes. Overall, the results strongly justify the 
use of ensemble strategies, such as stacking, to further boost predictive performance 
in complex, multi-class environmental classification tasks. Figure 3 illustrates the 
cross-validation and test accuracy for each classifier, highlighting the substantial 
improvement achieved by the proposed methodology.

Table 8. Comparison of SMOTE-based cross-validation accuracy, test accuracy, 
macro-averaged recall, F1-score, and ROC-AUC across various machine learning 
models for AQI multi-class classification.

Model CV 
Accuracy

Test 
Accuracy

Recall 
(Macro)

F1-Score 
(Macro)

ROC-
AUC 
(Macro)

StackingClassifier 
with PSO-GWO 100.0 % 99.99 % 0.9999 0.9999 1.0000
Random Forest 99.0 % 99.3 % 1.0000 1.0000 1.0000

Extra Trees 99.0 % 99.1 % 0.8566 0.8987 1.0000

KNN 98.5 % 98.5 % 0.8453 0.8779 0.9239

Naive Bayes 93.5 % 84.9 % 0.6926 0.7476 0.9574

Logistic Regression 73.8 % 75.2 % 0.2922 0.2870 0.5842

MLPClassifier 99.0 % 99.0 % 0.8982 0.9020 1.0000
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Figure 3. Bar chart comparison of Cross-Validation (CV) Accuracy and Test Accuracy 
for different machine learning models.

The proposed PSO–GWO hybrid optimization algorithm demonstrates several key 
advantages over conventional optimization techniques. It effectively combines the 
fast convergence of PSO with the global exploration capability of GWO, yielding 
improved optimization stability and superior parameter-tuning efficiency. Through 
adaptive coefficient control, the algorithm dynamically balances exploration and 
exploitation, avoiding premature convergence and ensuring robust performance 
across folds. However, the hybrid nature introduces moderate computational 
overhead and parameter sensitivity, as simultaneous velocity and leadership updates 
require more computation and careful parameter tuning. Despite these limitations, 
PSO–GWO achieved the most stable convergence (standard deviation = 0.0042) and 
highest classification accuracy (99.99%), confirming its effectiveness for large-scale 
environmental prediction tasks.

Figure 4 illustrates the confusion matrices for six individual machine learning models 
used in the AQI multi-class classification task: Random Forest, Extra Trees, 
MLPClassifier, KNN, Naive Bayes, and LR. The Random Forest, Extra Trees, and 
MLPClassifier models exhibit highly accurate predictions with minimal 
misclassification across all AQI categories, as shown by the strong diagonal 
dominance. KNN shows slightly more confusion, particularly between "Unhealthy for 
Sensitive Groups" and neighboring classes, indicating moderate misclassification in 
borderline cases. NB and LR perform noticeably worse, with more widespread errors 
across categories, especially misclassifying samples from "Unhealthy for Sensitive 
Groups" and "Unhealthy" categories. Overall, ensemble-based models with PSO-GWO 
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optimization and deep learning models (MLP) provided significantly better class 
separation and more reliable multi-class predictions compared to simpler models.

(a) Random Forest
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(B) Extra Tress 
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(C) MLP
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(D) KNN
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(E) Naïve Bayes
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(F) Logistic Regreession 

Figure 4. Confusion matrices for individual models in AQI multi-class classification.

Figure 5 shows the multi-class ROC-AUC curves for six individual machine learning 
models in predicting AQI categories. Random Forest, Extra Trees, and MLPClassifier 
models achieved perfect class separation across all categories, each attaining an AUC 
of 1.0, indicating excellent predictive power. KNN performed reasonably well with 
slight reductions in AUC values for some categories, particularly for the "Moderate" 
and "Unhealthy" classes. Naive Bayes showed moderate performance, with a 
noticeable drop in AUC, especially for the "Good" and "Moderate" categories, 
reflecting its lower capability to distinguish between classes. Logistic Regression 
demonstrated the weakest separation ability, with significant reductions in AUC for 
multiple classes such as "Unhealthy" and "Unhealthy for Sensitive Groups." Overall, 
ensemble-based and deep learning models (Random Forest, Extra Trees, MLP) 
exhibited outstanding discriminatory performance, while simpler models struggled in 
the multi-class classification task.
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(a) Random Forest

(b) Extra Trees
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(c) MLP

(D) KNN
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(E) Naïve Bayes 

(F) Logistic Regression 
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Figure 5. AUC for individual models in AQI multi-class classification.

Figure 6 presents the confusion matrix for the StackingClassifier applied to the AQI 
multi-class classification task. The matrix shows an almost perfect diagonal structure, 
indicating very high classification accuracy across all categories. The majority of 
samples for "Good," "Unhealthy for Sensitive Groups," and "Very Unhealthy" 
categories were classified correctly with minimal misclassifications. A few 
misclassification errors were observed: three "Hazardous" samples were 
misclassified as "Good," and a very small number of "Moderate" instances were 
confused with neighboring categories. Despite these minor discrepancies, the 
StackingClassifier demonstrates outstanding predictive performance, accurately 
distinguishing between the different AQI categories and maintaining the strong 
advantage observed in ensemble learning models.

Figure 6. Confusion matrix of the StackingClassifier with PSO-GWO for AQI multi-
class classification.

Figure 7 shows the multi-class ROC-AUC curves for the StackingClassifier model 
applied to the AQI classification task. The plot demonstrates perfect class 
separability, with an AUC value of 1.00 achieved for every AQI category, including 
"Good," "Moderate," "Unhealthy for Sensitive Groups," "Unhealthy," "Very 
Unhealthy," and "Hazardous." The curves tightly align along the top-left border of the 
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graph, indicating extremely high true positive rates with minimal false positives 
across all classes. This outstanding performance confirms that the StackingClassifier 
is exceptionally capable of distinguishing between different air quality conditions, 
outperforming all individual models tested. The results strongly validate the 
robustness and superior generalization ability of the ensemble learning strategy 
employed.

Figure 7. AUC curve for the StackingClassifier with PSO-GWO model showing 
perfect class discrimination with AUC = 1.00 for all AQI categories.

4.3. Ablation Study 

Table 9 evaluates the contribution of each base model (Random Forest, Extra Trees, 
and MLP) to the performance of the full stacking ensemble. When Random Forest 
(RF) was removed, the performance dropped significantly across all metrics, 
especially F1-Score and ROC-AUC, suggesting that RF is the most influential 
contributor to the ensemble. Excluding Extra Trees (ET) or MLP also caused 
performance reductions, but to a lesser extent. These results confirm that while all 
three models enhance robustness, the ensemble’s superior performance is largely 
driven by Random Forest, with complementary gains from ET and MLP.
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Table 9. Performance metrics of the StackingClassifier- PSO-GWO under ablation of 
individual base models.

Configuration Test 
Accuracy 
(%)

F1-Score 
(Macro)

ROC-AUC 
(Macro)

Recall 
(Macro)

Full Stacking (RF + ET + 
MLP) – PSO-GWO

99.99 0.9999 0.09999 0.9999

Stacking w/o RF 96.85 0.8720 0.9651 0.8235

Stacking w/o ET 98.42 0.8905 0.9823 0.8506

Stacking w/o MLP 98.70 0.8873 0.9810 0.8464

Figure 8 illustrates the relative contribution of each input variable to the prediction 
of AQI categories using the PSO–GWO optimized stacking model. The results indicate 
that PM₁₀, PM₂.₅, wind speed, solar radiation, and humidity are the dominant 
determinants of air quality classification, followed by temperature, NO₂, and CO, 
while pressure shows the least influence. These findings emphasize that both 
particulate pollutants and meteorological parameters play crucial roles in shaping 
AQI levels, as wind dispersion, humidity, and temperature directly modulate pollutant 
accumulation and photochemical activity. 
Overall, the feature-importance analysis enhances the interpretability of the proposed 
PSO–GWO ensemble by identifying the environmental variables that most strongly 
affect model decisions and thus can guide targeted emission-reduction and pollution-
control strategies.
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Figure 8. Feature importance of the PSO–GWO optimized stacking model for AQI 
classification, showing that PM₁₀, PM₂.₅, and meteorological parameters such as wind 
speed and humidity are the most influential predictors.

4.3. Comparative Analysis  

Table 10 provides a comparative analysis of recent studies on air quality prediction 
and classification using machine learning and deep learning. Choi et al. [35] 
highlighted the effectiveness of Random Forests in emission source classification, 
achieving an accuracy of 96.91 %. Rao et al. [36] introduced a novel MI-MMA-XGB 
model that combines multimodal imputation with XGBoost, achieving 97.14% 
accuracy after SMOTE balancing. Barthwal and Goel [37] proposed a deep hybrid 
DCNN-LSTM architecture that captured both spatial and temporal patterns, reaching 
a high classification accuracy of 97.48 %. Similarly, Rafi et al. [38] demonstrated the 
strong potential of an ANN-LSTM hybrid, achieving 94.87% accuracy while 
minimizing prediction errors across multiple metrics. Compared to these studies, the 
proposed stacking ensemble model (combining Random Forest, Extra Trees, and MLP 
with Logistic Regression as a meta-learner) outperformed all previous methods, 
achieving 100% cross-validation accuracy, 99.99% test accuracy, and a perfect ROC-
AUC across all AQI categories. These results strongly validate the effectiveness of 
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ensemble strategies and advanced data-balancing techniques in improving the 
robustness and generalizability of air quality classification models.

Table 10. Comparative analysis of recent studies applying machine learning and 
deep learning models for air quality prediction and classification

Study Dataset Models Used Best Model Best 
Performa
nce

Contribution

Choi et 
al. [35]

972 
samples, 5 
emission 
sources, 27 
pollutants

RF, NBC, SVM, 
ANN, KNN

Random Forest 
(RF)

Accuracy: 
96.91 %
Kappa: 
0.9537

AUC / 
F1-Score: 
-

Demonstrated 
effectiveness of 
RF for emission 
source 
classification; key 
pollutants 
identified.

Rao et 
al. [36]

AQI data 
from 
Indian 
cities; 
multiple 
imputation 
(KNN, 
MICE, 
SVD) + 
SMOTE

XGBoost with 
multimodal 
imputer and 
autoencoder 
(MI-MMA-
XGB)

MI-MMA-XGB Accuracy: 
97.14 % 
(with 
SMOTE)
R²: 0.9578
RMSE: 
0.203

AUC / 
F1-Score: 
- / 0.9282

Developed a novel 
hybrid imputation 
and prediction 
model 
outperforming 
baseline ML 
models for AQI 
prediction/classifi
cation.

Barthw
al and 
Goel 
[37]

1765-day 
AQI time 
series, 14 
locations 
in Delhi

DCNN, DCNN-
LSTM

DCNN-LSTM Accuracy: 
97.48 %
F1-Score: 
97.48 %
AUC: 0.97

Proposed a deep 
hybrid DCNN-
LSTM model 
combining spatial 
and temporal 
learning for AQI 
classification.

Rafi et 
al. [38]

60,000+ 
samples, 
air 
pollutant 
concentrati
ons 
(PM2.5, 
etc.)

LR, RF, DT, 
ANN, LSTM, 
ANN-LSTM

Hybrid ANN-
LSTM

Accuracy: 
94.87 %
Lowest 
RMSE, 
MAE, 
MAPE

AUC / 
F1-Score: 
-

Demonstrated that 
hybrid ANN-LSTM 
outperforms 
traditional models 
for air quality 
forecasting by 
capturing time-
dependencies.

Propos
ed 

U.S. 
counties' 
air quality 
dataset; 

RF, ET, KNN, 
NB, LR, MLP, 
StackingClas

StackingClas
sifier (RF + 
ET + MLP, 
meta LR) 

CV 
Accuracy: 
100 %
Test 

Introduced a 
stacking 
ensemble model 
with PSO-GWO 
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AQI 
categorie
s with 
SMOTE 
balancing

sifier with 
PSO-GWO

with PSO-
GWO

Accuracy: 
99.99 %
ROC-
AUC: 1.0

achieving near-
perfect multi-
class AQI 
classification 
performance 
with SMOTE and 
cross-validation.

4.1. Practical Concerns 

While ensemble and deep learning methods can effectively model complex patterns, 
perfect performance can signal issues such as model overfitting or inadvertent data 
leakage, as Domingos [39] notes. Truly flawless classification in real-world contexts 
is rare and may signal hidden problems. Similarly, Lobo et al. [40] caution against 
over-reliance on AUC when complete separability can result from dataset 
characteristics or threshold-insensitive behavior rather than genuine predictive 
power.
To address this, we performed hold-out validation at the county level, used stricter k-
fold cross-validation, and assessed calibration via Brier scores and reliability 
diagrams. The results yielded adjusted AUC values in the 0.98–0.99 range, improved 
calibration, and more realistic recognition of prediction uncertainty.

4.2. Implications and Limitations

The findings of this study have meaningful implications for the deployment of 
intelligent air quality monitoring systems. The demonstrated success of ensemble 
models, particularly the stacking classifier, underscores their potential to deliver 
accurate, robust predictions of air quality categories [41-42]. These models could be 
integrated with real-time sensor networks and smart city infrastructure to enable 
timely public health alerts and informed decision-making by environmental 
authorities. However, several limitations should be acknowledged. First, while 
SMOTE effectively addresses class imbalance, it may introduce synthetic patterns 
that do not fully reflect real-world variability, potentially leading to overfitting [43-
44]. Second, the dataset used is specific to U.S. counties, which may limit the 
generalizability of results to other geographic or climatic contexts. Third, the current 
model does not account for temporal dependencies, as it relies on daily static records; 
incorporating time-series models could yield more dynamic, trend-aware forecasts 
[45]. Finally, although cross-validation was applied, external validation using data 
from other regions or years would provide more substantial evidence of the model’s 
robustness. Future work should explore these directions to enhance the practical 
applicability and generalization of the proposed methodology.

 

5. Conclusions and Future Work 

This study proposed a practical methodology for multi-class classification of the AQI 
using a combination of classical machine learning models and ensemble learning 
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techniques. The methodology included critical stages such as data preprocessing, 
class balancing with SMOTE, model development with various classifiers, cross-
validation, and ensemble stacking. Experimental results demonstrated that ensemble-
based models, particularly the StackingClassifier, significantly outperformed 
individual models by achieving near-perfect classification metrics. The 
StackingClassifier with PSO-GWO optimizer achieved a cross-validation accuracy of 
100 %, a test accuracy of 99.99 %, a macro-averaged F1-Score of 0.9999, and a 
perfect ROC-AUC of 1.00 across all AQI categories. These results confirm that 
ensemble learning, particularly stacking multiple diverse and strong base classifiers, 
offers exceptional robustness and generalization capabilities for handling complex 
environmental classification tasks such as AQI prediction.
It is essential to acknowledge that exceptionally high-performance metrics, such as 
near-perfect accuracy and AUC values, may raise concerns about overfitting or 
underlying issues, such as data leakage or insufficient generalization. Following the 
recommendations of Domingos [39] and Lobo et al. [40], we conducted additional 
validation procedures, including stricter cross-validation, hold-out testing at the 
county level, and model calibration using Brier scores, to assess the robustness of our 
models. These evaluations revealed a slight drop in performance, aligning results 
more closely with expected real-world uncertainties while preserving overall model 
superiority. This reinforces the importance of interpreting evaluation metrics 
cautiously and highlights the need for rigorous validation strategies to ensure model 
reliability and practical utility in real-world air quality monitoring scenarios.
Although the proposed methodology achieved excellent performance, several avenues 
exist for further enhancement. First, incorporating additional environmental 
variables, such as particulate composition data, traffic density, industrial activity 
levels, and satellite-based atmospheric measures, could enrich the feature set and 
enable even more accurate predictions. Second, exploring advanced ensemble 
strategies, such as blending or boosting stacked models, might further optimize 
predictive performance. Third, extending the current approach to temporal 
forecasting using recurrent neural networks (RNNs) or Transformer-based models 
could allow for dynamic AQI trend predictions rather than static classification.
Additionally, deploying explainable AI (XAI) techniques would help to interpret model 
decisions and improve transparency, making the system more trustworthy for public 
agencies and policymakers. Future work may also consider integrating real-time, low-
cost sensor networks with the developed models, enabling scalable, affordable 
deployment for continuous air quality assessment. We plan to incorporate other 
methods [46-49] to expand the applicability of the proposed optimization framework 
beyond air quality classification toward broader health and environmental domains. 
Lastly, transferring the methodology to other environmental datasets or different 
geographic regions could validate the generalizability and adaptability of the 
proposed system, paving the way for global applications in smart environmental 
monitoring.
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