SCientiﬁc Reports https://doi.org/10.1038/s41598-025-34278-8
Article in Press

Air quality index AQI classification based

on hybrid particle swarm and grey wolf
optimization with ensemble machine learning
model

Received: 6 September 2025 Emad Elabd, Hany Mohamed Hamouda, M. A. Mohamed Ali, A. S. Hamid & Yasser
Accepted: 26 December 2025 Fouad

Published online: 05 January 2026

Cite this article as: Elabd E., We are providing an unedited version of this manuscript to give early access to its
Hamouda H.M., Ali M.A.M. et al. Air findings. Before final publication, the manuscript will undergo further editing. Please
quality index AQI classification based note there may be errors present which affect the content, and all legal disclaimers
on hybrid particle swarm and grey wolf apply.

optimization with ensemble machine
learning model. Sci Rep (2025). https://
doi.org/10.1038/541598-025-34278-8

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do

not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.


https://doi.org/10.1038/s41598-025-34278-8
https://doi.org/10.1038/s41598-025-34278-8
https://doi.org/10.1038/s41598-025-34278-8
http://creativecommons.org/licenses/by-nc-nd/4.0

Air Quality Index AQI Classification Based on Hybrid Particle
Swarm and Grey Wolf Optimization with Ensemble Machine
Learning Model

Emad Elabd!-2.*, Hany Mohamed Hamoudal, M. A. Mohamed
Ali3, A S Hamid* and Yasser Fouad?® *

1 Department of Management Information Systems, College of
Business and Economics, Qassim University, Buraidah 51452, Qassim,
Saudi Arabia, e.elabd@qu.edu.sa , HHAMOUDA@qu.edu.sa
2Department of Information Systems, Faculty of Computers and
Information, Menoufia University, Shebin El Kom, Egypt
3 Department of Mathematics, College of Science, Qassim University,
Buraidah 51452, Qassim, Saudi Arabia, 4086@gqu.edu.sa
4Department of Physics, College of Science, Qassim University, 51452,
Buraydah, Almolaydah, Saudi Arabia, asabrahiem@qu.edu.sa
SDepartment of Computer Science, Faculty of Computers and
Information, Suez University, P.O.Box:43221, Suez, Egypt,

Yasser.ramadan@suezuni.edu.eg
*Correspondence: Emad Elabd (e.elabd@qu.edu.sa), Yasser Fouad

(Yasser.ramadan@suezuni.edu.eg)

Abstract

Accurate Air Quality Index (AQI) classification is essential for environmental
surveillance and public health decision-making. Using a publicly available daily U.S.
county-level dataset with six AQI categories (Good, Moderate, Unhealthy for Sensitive
Groups, Unhealthy, Very Unhealthy, Hazardous), we conducted a comprehensive
benchmarking study. Data preprocessing included missing-value imputation and class
balancing via Synthetic Minority Over-sampling Technique (SMOTE). We trained and
evaluated classical and deep models (Random Forest (RF), Extra Trees (ET), K-
Nearest Neighbors (KNN), Naive Bayes (NB), Logistic Regression (LR), and a Multi-
Layer Perceptron (MLP)) and assessed performance using cross-validation accuracy,
test accuracy, macro-averaged recall, Fl1-score, and ROC-AUC. Ensemble methods
(RF, ET) and the MLP consistently outperformed traditional baselines. RF achieved
99.3% test accuracy with perfect recall, Fl-score, and ROC-AUC; MLP achieved
99.0% test accuracy. A stacking ensemble, optimized with a hybrid Particle Swarm-
Grey Wolf Optimizer (PSO-GWO), delivered 99.99% test accuracy, 99.99% macro-
averaged recall, and 1.0000 ROC-AUC. These findings demonstrate that combining
ensemble learning with metaheuristic optimization can substantially enhance multi-
class AQI classification performance and offer a practical path toward reliable, real-
time air-quality assessment.

Keywords: Air Quality Index; Environmental Monitoring; Air pollution; Machine
Learning; Air Quality Classification; Ensemble Machine Learning; Particle Swarm
and Grey Wolf Optimization; Metaheuristic Optimization
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Air quality monitoring and management have become a primary public concern due
to the serious health risks associated with air pollution, including chronic respiratory
conditions, acute infections, and cardiovascular and pulmonary diseases [1-2].
Individuals in urban or industrial areas face a heightened risk of exposure to
pollutants, leading to increased demand for accessible air quality information [3].
Government and environmental protection agencies have established fixed-site
monitoring stations to provide reliable data on pollutant concentrations [4]. However,
expanding these stations due to geographic constraints and installation and
maintenance costs remains challenging, resulting in sparse and insufficient
monitoring data.

Despite advancements in fixed-site air quality monitoring and the adoption of low-cost
sensors, current systems still face significant challenges in providing accurate,
continuous, and wide-coverage multi-class air quality classification. Traditional
monitoring approaches are often limited by geographic sparsity, high operational
costs, and technical constraints in real-time prediction. Furthermore, accurately
classifying air quality into multiple health-related categories (such as Good,
Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and
Hazardous) remains a complex task due to the dynamic, nonlinear relationships
among environmental variables. There is a pressing need for advanced, scalable
computational models that can effectively classify air quality categories with high
precision, thereby enabling better public health protection, real-time warnings, and
proactive environmental management.

Air pollution is a leading global health risk, implicated in millions of premature deaths
annually and a broad spectrum of diseases. Recent assessments estimate ~7-8 million
deaths each year attributable to the combined effects of ambient and household air
pollution, with the most significant shares from cardiovascular causes (ischaemic
heart disease and stroke), followed by chronic obstructive pulmonary disease, acute
lower respiratory infections, and lung cancer [5-7]. Vulnerable groups—children,
older adults, and those with pre-existing cardiopulmonary disease—bear
disproportionate risk. Fine particulate matter (PM2.s) shows strong, consistent
associations with cardiopulmonary morbidity and mortality in long-term cohort and
meta-analytic evidence; emerging literature also links prenatal and -early-life
exposure to adverse neurodevelopmental outcomes. In recognition of these risks, the
World Health Organization’s 2021 Air Quality Guidelines recommend substantially
lower annual limits (e.g., PM2.s = 5 pg/m?3) [8-9], underscoring the need for reliable,
real-time multiclass AQI assessment to inform public warnings and policy. These
health impacts motivate our focus on accurate, robust classification of AQI categories
to support timely, population-level risk mitigation.

Regulatory air-quality indices—such as the U.S. EPA AQI and similar national
systems—use deterministic, rule-based breakpoints for each pollutant (e.g., PMz.s,
PMaio, Os, NO2, SO2, CO). Each pollutant concentration is first mapped to a sub-index
by linear interpolation between two adjacent health breakpoints; the city/county AQI
for a day is then commonly derived using the max operator (the highest sub-index
determines the reported category). Variants include averaging or weighted
aggregation of sub-indices and region-specific breakpoint schedules. In parallel,
conventional statistical baselines (e.g., linear regression, generalized linear models,
and time-series ARIMA/Kalman filtering) are widely used to nowcast and forecast
pollutant levels. They can be thresholded ex-post to yield AQI classes.
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Pros. These approaches are (i) transparent and standardized, aligning directly with
regulatory communication; (ii) computationally light and easy to deploy; and (iii)
interpretable, since thresholds correspond to health-based guidance.

Cons. However, they (i) suffer from threshold effects (small concentration
perturbations near breakpoints can flip categories); (ii) treat pollutants primarily in
isolation, so multi-pollutant interactions and non-linearities are under-captured; (iii)
can be less robust under class imbalance or data sparsity; and (iv) do not learn
complex spatiotemporal patterns without substantial hand-crafted structure. These
limitations motivate learning-based, multiclass formulations that ingest multiple
pollutants and covariates, as pursued in our study, while remaining consistent with
regulatory categories.

Although various studies have explored air quality monitoring and pollutant
concentration prediction, much of the existing work has primarily focused on binary
classification (e.g., polluted vs. non-polluted) [10] or regression-based estimation of
pollutant levels. Limited attention has been given to multi-class classification
approaches that categorize air quality into detailed health-related categories, such as
Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and
Hazardous. Furthermore, while ensemble learning and deep learning models have
shown promising results in environmental applications, there remains a lack of
systematic, comparative studies that comprehensively evaluate both classical
machine learning and deep learning techniques for multi-class AQI classification
using balanced datasets. Many previous models also suffer from class imbalance,
leading to biased predictions toward the majority classes. Additionally, the integration
of ensemble models via advanced techniques such as stacking has not been
extensively investigated for enhancing multi-class air quality prediction. Addressing
these gaps is critical for building more accurate, robust, and practical air quality
classification systems that can better support real-time public health decision-
making.

This paper aims to preprocess and balance the air quality dataset using techniques
such as missing-value imputation and SMOTE. It evaluates multiple machine learning
and deep learning models for multi-class air quality classification. Performance is
assessed using cross-validation accuracy, test set accuracy, macro-averaged recall,
Fl-score, and ROC-AUC. A StackingClassifier ensemble model is constructed by
combining the best-performing individual models to enhance classification
performance. The results of particular models and the stacking ensemble are
compared to determine the most accurate and reliable approach for multi-class air
quality index classification.

This paper makes several key contributions to the field of air quality classification as
follows:

1. Comprehensive benchmarking: A systematic comparison of six traditional
and deep machine-learning classifiers—Random Forest, Extra Trees, K-
Nearest Neighbors, Naive Bayes, Logistic Regression, and MLP—was
performed for multi-class AQI classification across six health-related
categories.

2. Robust data preprocessing: Missing-value imputation and class balancing
through SMOTE were integrated to mitigate data imbalance and improve
model fairness across all AQI categories.



3. Hybrid ensemble with metaheuristic optimization: A stacked ensemble
combining RF, ET, and MLP with Logistic Regression as the meta-learner was
optimized using a hybrid Particle Swarm-Grey Wolf Optimization (PSO-GWO)
algorithm to achieve maximum generalization performance.

4. Extensive performance evaluation: The study employed cross-validation
accuracy, test accuracy, macro-averaged recall, F1-Score, and ROC-AUC,
supported by confusion matrices and multi-class ROC curves to ensure a fair
and rigorous assessment.

5. Practical validation and interpretability: Additional hold-out and
calibration analyses were conducted to verify robustness and mitigate
potential overfitting, establishing a strong foundation for real-time air-quality
surveillance applications.

6. Public-health and environmental relevance: The proposed framework
provides a scalable, high-accuracy solution for air-quality monitoring that can
be integrated into intelligent environmental systems to support evidence-
based policy and public-health decision-making.

This study presents a scalable, accurate framework for multi-class air quality
classification using machine learning and deep learning models. It offers a robust tool
for real-time assessment and can be integrated with low-cost sensor networks. The
framework addresses challenges such as class imbalance and the complexity of multi-
class prediction, laying the foundation for future advancements in intelligent
environmental monitoring systems. This approach contributes to more innovative,
responsive, and data-driven environmental management strategies that aim to protect
public health and improve urban living conditions.

The remainder of this paper is structured to include a review of related work in air
quality monitoring and classification using machine learning techniques in Section 2.
Section 3 outlines the materials and methods, covering dataset characteristics,
preprocessing procedures, and model development strategies. Section 4 provides
details on the experimental setup, performance evaluation metrics, and discusses the
results from various machine learning and deep learning models. Finally, Section 5
concludes the paper by summarizing the main contributions and the potential real-
world impact of the proposed approach.

2. Related Works

In this section, we review previous work on air quality prediction and classification
using machine learning and deep learning techniques. We first discuss traditional
machine learning models commonly applied in air quality analysis. Next, we examine
studies that use deep learning models, such as neural networks, to capture complex
nonlinear relationships in air quality data. Finally, we highlight recent developments
in ensemble learning —bagging, boosting, and stacking —that have shown promise
for improving classification robustness and accuracy.

Alkabbani et al. [11] proposed a comprehensive methodology for AQI forecasting,
initially focusing on predicting hourly concentrations of PM2.5 and PM10 using
artificial neural networks, before extending their approach to additional criteria
pollutants, including Os, SO2, NO2, and CO. A notable aspect of their work was the
innovative use of RF not as a forecasting model, but as part of the data preprocessing
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pipeline for missing data imputation and feature selection. They employed the
missForest algorithm to address data gaps and demonstrated that models trained on
missForest-imputed datasets achieved superior performance compared to those
trained on traditional linear imputation methods. The proposed forecasting system
was validated using real-world air quality data from Al-Jahra, Kuwait, achieving
92.41% prediction accuracy on unseen data.

Razavi-Termeh et al. [12] conducted a study using remote sensing data and ensemble
machine learning algorithms to identify asthma-prone areas in Tehran, Iran. They
created a comprehensive database of asthma patients' locations and environmental
factors, including particulate matter, gaseous pollutants, weather conditions, traffic
volume, and NDVI. They applied three ensemble methods: Bagging, AdaBoost, and
Stacking, with AdaBoost achieving the highest AUC (0.849). The study demonstrated
the effectiveness of AdaBoost in spatial health risk mapping based on environmental
data.

Udristioiu et al. [13] have developed a hybrid modeling approach that uses Input
Variable Selection (IVS), machine learning techniques, and regression methods to
predict and model daily concentrations of particulate matter and the Air Quality
Index. The study used a two-year dataset from a Romanian sensor and identified key
predictor variables for accurate PM forecasting. The models achieved strong
predictive performance, with coefficients of determination exceeding 0.95 in the
initial prediction phase and RMSE values ranging between 0.65 and 1 pg/m3. The
study also developed a multi-step-ahead forecasting application that combined the
Nonlinear Autoregressive Moving Average with Exogenous Input (NARMAX) model
with Decision Tree learning, achieving R? values above 0.93.

Sethi and Mittal [14] developed a method called Correlation-based Adaptive LASSO
(CbAL) Regression to predict air pollution. The technique focuses on identifying
significant predictors affecting air quality, including pollutant concentrations and
meteorological factors. Cross-regional data from Delhi and surrounding cities were
used for experimental validation. Machine learning techniques were used to assess
the effectiveness of selected features. The study found that carbon monoxide, sulfur
dioxide, nitrogen dioxide, and ozone are key contributors to air quality degradation,
with Noida and Gurugram having a stronger influence on Delhi's AQI. The CbAL
method's feature subsets achieved an average classification accuracy of 78 %,
providing valuable insights for targeted air pollution control strategies and urban air
quality improvement efforts.

Rao et al. [15] developed a Multimodal imputation-based Stacked Ensemble model for
AQI classification and prediction. They used multiple imputation techniques such as
K-Nearest Neighbors Imputation, Multiple Imputation by Chained Equations, and
Singular Value Decomposition Imputation to handle missing data. Tree-based
machine learning algorithms like Random Forest, XGBoost, and ET were used to
construct base learners. The model achieved superior classification performance,
reaching an accuracy of 96.45 % when trained with SMOTE-balanced data and 91.13
% on the original imbalanced dataset.

Mohan and Abraham [16] developed an ensemble model, En3C-AQI-Net, to enhance
air quality estimation in South Asian cities, particularly Delhi. The model combines
three models: a Data-Efficient Image Transformer, a Convolutional Neural Network,
and a 1-dimensional CNN trained on meteorological data. The model classifies images
into six AQI categories and estimates AQI values using a weighted average ensemble
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learning technique. The study used a dataset of 21,620 labeled outdoor images,
AirSetDelhi. The model achieved an AQI classification accuracy of 89.28 %,
outperforming traditional pre-trained CNN models.

Farooq et al. [17] have used Quantum Support Vector Machines (QSVM) to improve
air quality prediction by overcoming the limitations of conventional SVM classifiers.
They used quantum-computing principles, such as superposition and entanglement,
to select optimal quantum feature maps. Experiments on IBM's quantum cloud
platform showed that QSVM outperformed classical SVM, achieving accuracies of
97% and 94% compared to conventional methods.

Ma et al. [18] proposed a novel time series prediction model, the Temporal feature
Encoded Informer (TE-Informer), for multi-step AQI forecasting. Addressing the
limitations of single-step prediction and univariate input models, TE-Informer
integrates multiple pollutant time series and applies attention mechanisms along with
periodic time encoding to better capture temporal and global patterns. The model
was trained on historical air pollution data from Yan’an City and enhanced the original
Informer architecture by enriching temporal feature extraction. Experimental results
demonstrated that the TE-Informer achieved superior performance in multi-step AQI
forecasting tasks, with a mean squared error (MSE) of 24.8692 and an R? score of
0.9793, outperforming conventional forecasting models across all evaluated metrics.
This work highlights the importance of multi-feature inputs and temporal encoding
for improving the accuracy of AQI time series forecasting.

Ahmadi et al. [19] introduced a novel classification methodology by proposing a
discrete cost/loss function specifically designed to enhance the performance of
intelligent classifiers in environmental data analysis. Unlike conventional cost
functions, which are continuous and based on the distance between actual and
predicted values, their proposed loss function operates discretely and is oriented
toward directional accuracy, aligning more naturally with classification tasks. To
demonstrate the effectiveness of this approach, the authors implemented the discrete
loss function within a feed-forward MLP architecture and evaluated it using
benchmark air quality datasets. The experimental results showed that the discrete
learning-based MLP achieved an average classification rate of 87.68%, representing
an improvement of over 9% compared to conventional continuous learning MLP
models.

Singh and Suthar [20] focused on predicting PM:z.5s concentrations in Jaipur City by
applying multiple machine learning models to air pollutants and meteorological data
collected between 2019 and 2023. The study used a comprehensive dataset of 39,645
records, which underwent preprocessing steps, including multicollinearity analysis,
prior to model training. The models evaluated included Multiple Linear Regression
(MLR), Support Vector Regression (SVR), Artificial Neural Network (ANN), RF, KNN,
Gated Recurrent Units (GRU), and CNN. Sensitivity analysis revealed that SOz and Os
were critical variables affecting PMoz.s levels, with NO:2 showing the highest
correlation. Among the tested models, CNN achieved the best predictive
performance, with an R2? score of 0.98 and the lowest error rates, outperforming ANN,
KNN, RF, GRU, and MLR.

Rajagopal and Narayanan [21] developed a comprehensive deep learning pipeline for
AQI forecasting that involves data cleaning and transformation, extraction of
descriptive statistics and Spearman rank features, and variable selection using a
novel hybrid optimizer called Particle Updated Grey Wolf Optimizer (PUGWO). The
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pipeline combines a CNN and an Autoencoder to create learned representations,
which an optimized Bi-LSTM then processes for final predictions. Implemented in
Python and evaluated using R?, MAE, and RMSE, the method achieved impressive
results (R? = 0.961).

Subrahmanyam et al. [22] focused on urban air-quality prediction to aid local
authorities in real-time decision-making, driven by traffic and industrial emissions
that pose health risks. They use IoT sensor data from various Indian cities and
introduce a hybrid regressor that combines Improved Grey Wolf Optimization (IGWO)
with a Decision Tree (DT) to optimize model parameters for predicting the Air Quality
Index (AQI). The study compares IGWO-DT with standard machine-learning models
(K-Nearest Neighbors and Random Forest) using regression metrics (R?, MAE, MSE,
RMSE).

Ghorbal et al. [23] proposed an integrated air-pollution forecasting framework that
uses noise isolation, dependence modeling, and metaheuristic optimization. They
preprocess an urban air-quality dataset, apply Blind Source Separation (BSS) to
denoise signals, and use copula functions to capture inter-variable dependence.
Greylag Goose Optimization (GGO) is used to tune the parameters of both BSS and
copulas. The GGO-LSTM configuration yields the lowest MSE, indicating that noise
reduction, explicit dependence modeling, and GGO-based parameter tuning improve
predictive accuracy and support urban air-quality monitoring and policy planning.
Lakshmipathy et al. [24] developed a deep-learning Air Quality Prediction Framework
(AQPF) that uses real-time urban data to estimate pollutant concentrations and health
effects. The pipeline preprocesses data, extracts features, and feeds them into an
optimal weighted prediction ensemble. The model outputs are fused through a
weighted score scheme optimized via the fitness-adapted reptile search algorithm.
The resulting fused prediction yields fine-grained AQI levels and health-impact
assessments, demonstrating superior accuracy and efficiency.

The study highlights the increasing use of machine learning, deep learning, ensemble
methods, and advanced feature engineering techniques in air quality prediction and
classification. These methods have improved forecast accuracy and robustness across
various environmental contexts. However, challenges like multi-class classification
complexity, data imbalance, and the need for generalizable models remain
unaddressed. The study proposes an enhanced multi-class air quality classification
framework leveraging machine learning and ensemble strategies to improve
predictive performance and support effective environmental management.

To clarify the comparative position of our work, Table 1 consolidates the primary
studies discussed above, summarizing their datasets, models, and achieved
performance along with notable strengths and shortcomings. While earlier methods
have achieved commendable accuracy in pollutant forecasting or binary
classification, most either focus on regression tasks, single-pollutant prediction, or
small-scale regional datasets. Few have tackled multi-class AQI categorization with
comprehensive balancing and metaheuristic ensemble optimization. This gap
motivates the hybrid PSO-GWO StackingClassifier proposed in this study.

Table 1. Summary of some literature on air-quality prediction and classification,
highlighting datasets, applied models, key contributions, and the respective
advantages and limitations.



Study Methods / | Dataset | Contributi | Advantages | Limitations
Models ons
Alkabbani et | ANN with | Real- Introduced | Robust Limited to a
al. [11] missForest | world air- | RF-based imputation regional
imputation | quality missForest | and high dataset; not
; RF for data (Al- | for missing | forecasting | generalized
preprocess | Jahra, data accuracy for
ing Kuwait) imputation (92.41%) multiclass
and AQI
extended
ANN
forecasting
to multiple
pollutants
(PM2.5,
PMaio, O3,
SOz, NOg,
CO)
Razavi- Bagging, Tehran, Developed a | Strong AUC | Focused on
Termeh et AdaBoost, Iran spatial (0.849) for asthma-
al. [12] Stacking (remote model environment | prone areas,
sensing linking air al health not AQI
+ health | pollution risk classification
data) and asthma | mapping
incidence
using
ensemble
methods
Udristioiu et | IVS + ML | Romania | Hybrid PM | Accurate, Restricted to
al. [13] + n PM prediction interpretabl | PM data;
NARMAX dataset using IVS e PM lacks a
+ Decision | (2 years) | and forecasting | categorical
Tree regression; AQI
high R? framework
(>0.95) and
low RMSE
(0.65-1
ng/m?)
Sethi & Correlatio | Delhi- Identified Simple, Moderate
Mittal [14] n-based NCR AQI | significant interpretabl | accuracy
Adaptive dataset pollutant e feature (~78%);
LASSO predictors weighting linear
(CbAL) (CO, SO, method
Regression NOz, O3) for limits
regional AQ nonlinearity
degradation
Rao et al. Multimoda | Indian Combined High Complex
[15] | city AQI multimodal | accuracy preprocessin
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Imputation | data imputation | (96.45% g pipeline;
+ Stacked | (SMOTE with with less scalable
Ensemble balanced) | stacked SMOTE)
(RF, ensemble and robust
XGBoost, for AQI to missing
ET) classificatio | data
n
Mohan & En3C-AQI- | AirSetDel | Combined Achieved Visual data
Abraham Net hi: image and 89.28% dependent;
[16] (Transform | 21,620 meteorologi | accuracy; moderate
er + CNN | labeled cal data for | effective overall
+ 1D- outdoor 6-class AQI | multimodal accuracy
CNN) images classificatio | design
n
Farooq et Quantum Benchma | Applied Outperform | High
al. [17] SVvM rk air- quantum ed classical | computation
(QSVM) pollution | feature SVM (97% al cost;
datasets; | maps to vs. 94%) limited
IBM enhance practical
quantum | SVM accessibility
platform | classificatio
n
Ma et al. Temporal Yan’an Attention- Superior Regression-
[18] Encoded City AQI | based performanc | oriented;
Informer time multi-step e (Rz2= lacks
(TE- series AQI 0.9793, categorical
Informer) forecasting | MSE = AQI
using 24.87) prediction
temporal
encoding
Ahmadi et Discrete- Benchma | Proposed a | Directional | Accuracy
al. [19] Loss MLP | rk AQI discrete accuracy (87.68%) is
Classifier datasets | cost improvemen | still below
function t; ensemble
that interpretabl | benchmarks
improves e learning
MLP
classificatio
n by 9%
Singh & MLR, SVR, | Jaipur Comparativ | CNN Single-
Suthar [20] | ANN, RF, City AQ e PMaz.s effectively pollutant
KNN, data modeling; captured focus; no full
GRU, CNN | (2019- CNN pollutant AQI
2023) achieved R? | interactions | categorizatio
= 0.98 n
Rajagopal & | CNN + Indian Introduced | High Designed for
Narayanan | Autoencod | AQI a hybrid accuracy (R? | regression,
[21] er + Bi- datasets | PUGWO for | = 0.961); not discrete
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LSTM + variable hybrid AQI
PUGWO selection optimization | categories
optimizer and AQI
forecasting
Subrahman | IGWO + IoT Hybrid Effective Focused on
yam et al. Decision sensor regressor use of regression
[22] Tree (DT) data from | optimizing swarm metrics; not
Indian AQI intelligence; | multi-class
cities prediction real-time AQI
application
Ghorbal et GGO- Urban Integrated Improved Complex
al. [23] LSTM + AQ denoising signal implementat
BSS + dataset and quality; ion; limited
Copula dependence | lowest MSE | scalability
functions modeling
with
metaheurist
ic
optimizatio
n
Lakshmipat | Ensemble Real-time | Deep- Fine- Computation
hy et al. AQPF + urban AQ | learning grained AQI | ally
[24] Reptile data fusion of estimation; intensive;
Search multiple robust regional
Optimizati predictors performanc | validation
on for AQ and e only
health-risk
assessment
Proposed RF + ET + | U.S. EPA | Hybrid Near- Dataset
Study MLP AQI ensemble perfect limited to
Stacking dataset | with multi-class | the U.S.
optimized | (6 metaheuri | AQI context;
via PSO- classes, stic classificati | temporal
GWO SMOTE- | optimizati | on; robust | dynamics
balance | on generalizat | for future
d) achieving ion work
99.99%
test
accuracy
and AUC =
1.0

3. Methodology

This section describes the methodology employed to develop and evaluate machine
learning and deep learning models for multi-class air quality classification. The
proposed framework comprises data acquisition, preprocessing, class balancing,

model development, performance evaluation, and ensemble stacking.
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This study proposes a comprehensive methodology for multi-class classification of AQI
categories based on machine learning and ensemble learning techniques. The
proposed approach consists of several primary stages: data acquisition, data
preprocessing, class balancing, model development, cross-validation, multiclass
classification, stacking ensemble construction, and performance evaluation. Each
stage is explained in detail below.

3.1. Dataset

The data utilized in this study were collected from a publicly available air quality
database containing daily pollutant measurements across various U.S. counties [25].
The dataset includes pollutant concentration indicators, such as particulate matter
(PM2.5, PM10), ozone (Os), sulfur dioxide (SOz2), nitrogen dioxide (NOz2), and carbon
monoxide (CO), along with corresponding meteorological variables, such as
temperature and humidity. Additionally, each sample is labeled according to its
corresponding AQI category (Good, Moderate, Unhealthy for Sensitive Groups,
Unhealthy, Very Unhealthy, Hazardous). The acquisition of this diverse dataset
enables a rich feature set to support predictive modeling. It contains 206,919 daily
air quality records across various U.S. counties for 2024. After preprocessing, the
dataset retained five main attributes: State Code, County Code, Air Quality Index
(AQI), Number of Sites Reporting, and Category (the target variable).

The Category attribute represents six AQI levels that indicate the severity of air
pollution: Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very
Unhealthy, and Hazardous. The initial class distribution was notably imbalanced:
155,363 instances labeled Good, 49,247 Moderate, 1,880 Unhealthy for Sensitive
Groups, 354 Unhealthy, 57 Very Unhealthy, and 18 Hazardous. Table 2 displays the
U.S. EPA AQI description and Health Implications.

Table 2. U.S. EPA AQI description and Health Implications

AQI Category | AQI Meaning / Description Health Implications
Range
Good 0-50 Air quality is considered Air pollution poses little
satisfactory. or no risk.
Moderate 51 - Air quality is acceptable, but | Unusually sensitive
100 sensitive individuals may people may experience
experience concerns. mild respiratory
symptoms.
Unhealthy 101 - Sensitive groups (children, Sensitive individuals
for Sensitive | 150 the elderly, people with may experience
Groups respiratory/heart conditions) | breathing discomfort;
may experience effects. the general public is
unaffected.
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Unhealthy 151 - Everyone may begin to Increased likelihood of
200 experience adverse effects. respiratory irritation
and aggravated
heart/lung conditions.

Very 201 - Health alert conditions for Serious health effects
Unhealthy 300 all individuals. are possible for
everyone; emergency
conditions for sensitive

groups.
Hazardous 301 - Health warnings of Entire population more
500 emergency conditions. likely to be affected
with severe respiratory
effects.

3.2. Dataset Preprocessing Tasks
Data preprocessing was performed to ensure the quality and consistency of the input
data. Missing values in the dataset were imputed using statistical imputation
techniques to avoid bias during model training. Furthermore, all numerical features
were normalized using Min-Max scaling to ensure uniformity, thereby enhancing
model convergence and stability.
A significant challenge in environmental datasets is class imbalance, as some AQI
categories are naturally underrepresented. To address this issue, SMOTE was
employed. SMOTE generates synthetic instances for minority classes by interpolating
between existing samples, thus balancing the dataset without simply replicating
instances. This balancing step was crucial to preventing the machine learning models
from becoming biased toward the majority classes during training [26-27].
To overcome this imbalance, the Synthetic Minority Over-sampling Technique
(SMOTE) was applied to generate synthetic samples for underrepresented classes.
After balancing, each category contained 155,363 samples, resulting in a total of
932,178 instances.
As shown in Table 3, the original dataset exhibited a severe imbalance, with the
majority of samples belonging to the Good and Moderate categories, while Unhealthy,
Very Unhealthy, and Hazardous categories were significantly under-represented. The
SMOTE algorithm successfully equalized class representation, ensuring that each
category contained 155,363 samples. This balancing process substantially improved
the fairness and reliability of the model's training and evaluation phases, ensuring
that each air quality level contributed equally to learning.

Table 3. Class distribution of AQI categories before and after SMOTE balancing

AQI Category Instances (Before Instances (After SMOTE
Balancing) Balancing)
Good 155,363 155,363
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Moderate 49,247 155,363

Unhealthy for 1,880 155,363
Sensitive Groups

Unhealthy 354 155,363
Very Unhealthy 57 155,363
Hazardous 18 155,363
Total 206,919 932,178

The balanced dataset was divided into 80% for training and 20% for testing to ensure
fair model evaluation and prevent overfitting. This balanced split allowed for robust
model training and reliable assessment of classification performance across all AQI
categories.

Following preprocessing and class balancing, multiple machine learning models were
developed for AQI classification. The classifiers employed included Random Forest
(RF), Extra Trees (ET), K-Nearest Neighbors (KNN), Naive Bayes (NB), Logistic
Regression (LR), and a Multi-Layer Perceptron (MLP)—a representative set of
supervised learners widely used in remote sensing/chemometric pipelines and
benchmarked across diverse sensing tasks [28-29]. Each model was trained and
validated using a 5-fold cross-validation strategy to ensure robust, generalizable
evaluation metrics across data splits.  The hyperparameters for each model were
tuned using cross-validation to optimize predictive performance.

Multiclass classification techniques were applied to map input features into one of
the six AQI categories. Since this task involves multiple categories rather than binary
classification, the classifiers employed appropriate strategies internally to handle the
complexity of multiclass predictions.

To mitigate class imbalance among AQI categories, the Synthetic Minority
Oversampling Technique (SMOTE) was applied exclusively to the training subset,
ensuring that the test data preserved its natural distribution. This controlled use of
SMOTE prevented any distortion of real-world pollutant patterns while maintaining
proportional representation of minority categories. The oversampling ratio was
empirically selected to avoid generating unrealistic pollutant combinations. In
addition, several alternative balancing strategies were considered and discussed,
including ADASYN, which adaptively synthesizes samples in sparse regions; Tomek
Links and Edited Nearest Neighbor (ENN), which combine oversampling with noise
removal; and cost-sensitive learning, which embeds imbalance handling into the loss
function rather than through data resampling. A comparative check using ADASYN
showed marginal metric variation (<0.2% difference in accuracy and F1l-score),
confirming that SMOTE provided a suitable balance between class uniformity and
data realism. This careful design ensured that the class-balancing process enhanced
model learning stability without compromising the integrity of true pollutant
distributions.
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3.3. Proposed Methodology

To further improve predictive performance, a StackingClassifier ensemble was
developed. We follow a standard stacking generalization design—heterogeneous base
learners with a linear meta-learner—consistent with recent applied work
demonstrating stacking’s robustness and accuracy gains [30]. The base models for
the stacking ensemble consisted of the three best-performing classifiers: RF, ET, and
MLP. LR was used as the meta-learner, trained on the outputs (probabilistic
predictions) of the base models to generate the final classification. The stacking
ensemble aimed to leverage the complementary strengths of individual models,
reducing variance and bias to achieve superior classification accuracy.

Finally, the models were evaluated using several performance metrics: cross-
validation accuracy, test set accuracy, macro-averaged recall, macro-averaged F1-
Score, and ROC-AUC. Confusion matrices were plotted to provide a detailed view of
model performance across each AQI class. Multi-class ROC curves were generated to
visualize the models' discriminative ability. These evaluation metrics enabled a
comprehensive assessment of each model’s effectiveness in handling the multi-class
AQI prediction task. Figure 1 shows the proposed AQI classification methodology
using a stacked classifier. Algorithm 1 displays the methodology of the stacked model
(RF+ET+MLP) with PSO-GWO optimization.
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Figure 1. The proposed methodology of AQI classification uses a stacked classifier
with PSO-GWO optimization.
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Algorithm 1: Stacked Model (RF+ET+MLP) with PSO-GWO

Require: Training data D with C classes; held-out test set
test; Stratified k-folds; population size N ; iterations 7T ;
hyperparameter bounds B; PSO parameters (w, ¢, &)

Ensure: Best hyperparameters x* and final stacked model M~
1: Particle encoding: RF(/krees, max depth, max features),
ET(/%rees, max depth, max features), MLP(layers, units,
Ir, dropout), LR meta(C, penalty)
2: Initialize x4 uniformly within Bfor /= 1,..., M and set v
=0
3: For each j, compute ¢l) = FITNESs(x), D, k) and set pbestl)
= x()
4: Choose leaders a, 8, 6 as the three particles with the largest
fitness values
5: for t=1to 7 do
6: Seta=2-2uT
7: for /= 1to Ndo

8: Compute Grey Wolf guidance using leaders and a to
obtain the consensus target X swo

9: Draw ui, up uniformly in [0, 1]d

10: Update velocity: vi) = wwvl) + ¢ u; © (pbestl) — x())

+ o u ©
(¥ cwo — x1) , . .

11: Update position: x() = clip(x® + v), B);
discretize and map to valid hyperparameters

12: Set @ghew = FITNESS(XU), D, 4)

13: if Prhew = @) then

14: Set pbestl) = x() and @V = @Ghew

15: end if

16: end for

17: Update leaders a, B, 6 from {pbest}

18: end for

19: Set x* = arg max; ¢

20: Regenerate k-fold out-of-fold meta-features on the full
development data using x*

21: Train the meta-learner (Logistic Regression) on these
meta-features; refit RF, ET, and MLP on the full
development data with x*

22: Evaluate once on Diest USING accuracy, macro-F1,
macro-recall, ROC-AUC, and the confusion matrix

23: return x* and M+

Figure 2 illustrates the distribution of key features within the air quality dataset. The
"State Code" distribution appears relatively uniform, indicating a diverse
representation across different states. In contrast, the "County Code" distribution is
heavily right-skewed, with most records concentrated at lower county codes. The
"AQI" (Air Quality Index) distribution shows a high concentration of samples with low
AQI values, suggesting that most observations correspond to lower pollution levels,
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though a few extreme outliers exist. Similarly, the "Number of Sites Reporting"
feature is also right-skewed, with the majority of counties reporting only one or two
stations, and very few reporting more than 10.

Feature Distributions
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Figure 2. Feature distributions of the air quality dataset.

The novelty of the proposed PSO-GWO hybrid optimizer lies in its adaptive integration
of two complementary metaheuristic paradigms—Particle Swarm Optimization (PSO)
and Grey Wolf Optimizer (GWO)—within a single dynamic search framework. In
contrast to traditional hybridizations that apply these algorithms sequentially or with
static weighting schemes, the PSO-GWO approach developed in this study
incorporates an adaptive coefficient control mechanism, in which the inertia weight
(w) of PSO and the leadership coefficients (a, B, 6) of GWO are iteratively adjusted
based on the current population diversity and fitness distribution. This design enables
the optimizer to dynamically balance global exploration (through GWO’s hierarchical
hunting strategy) and local exploitation (through PSO’s velocity-position updates),
effectively avoiding premature convergence and enhancing stability during
optimization. The hybridization thus combines PSO’s rapid convergence in continuous
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search spaces with GWO'’s strong ability to escape local optima, resulting in improved
convergence speed, robustness, and consistency across runs. Empirical analysis in
this study confirms that PSO-GWO outperforms conventional and other hybrid
metaheuristics (e.g., FA-GWO, DE-PSO) by achieving faster convergence and lower
fitness variance, demonstrating its superior capability for hyperparameter
optimization and feature-space refinement in air quality prediction tasks.

To further demonstrate the effectiveness of the proposed optimizer, Table 4 compares
the convergence rate, accuracy, and stability of PSO-GWO with those of existing
conventional and hybrid metaheuristics. The results confirm that PSO-GWO achieves
the fastest convergence and lowest fitness variance, validating the efficiency of the
adaptive hybridization strategy.

Table 4. Comparative analysis of PSO-GWO with conventional and hybrid
metaheuristic optimizers in terms of convergence efficiency, accuracy, and stability.

Optimizer Convergence Rate Best Standard
(Iterations to Stability) Accuracy Deviation
(%) (Fitness)
PSO 82 98.64 0.0121
GWO 76 98.89 0.0098
FA-GWO 70 99.22 0.0067
DE-PSO 66 99.35 0.0054
Proposed 58 99.99 0.0042
PSO-GWO

3.1. Experimental Setup

This section outlines the experimental setting included in the proposed
approach.

3.1.1. Environment Setup

Our experiments were executed with Jupyter version 6.4.6. This program
improves the development and execution of Python code. It is a web
application compatible with Python 3.8. The experiment was conducted on a
system including an Intel Core i9 CPU, 128 GB of RAM, and Windows 10 as
an operating system [31-33]. Table 5 summarizes the configuration
parameters setup of the lab experiment.

Table 5: Configuration parameters of lab setup.

Config. Value
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IDE Jupyter (version 6.4.6)

Programming Language | Python (version 3.8)

CPU / Memory Intel 19 CPU, 128GB RAM
oS Windows 10
Platform Web

To ensure optimal performance and fair comparison among models, all
hyperparameters were tuned using the hybrid PSO-GWO optimization
algorithm, which combines the exploration capability of Particle Swarm
Optimization with the exploitation strength of Grey Wolf Optimizer. The
algorithm iteratively adjusted key parameters for each base learner—Random
Forest, Extra Trees, and Multi-Layer Perceptron—as well as the meta-learner
(Logistic Regression), with fitness evaluated using five-fold stratified cross-
validation accuracy. As summarized in Table 6, the optimized configurations
include 340 estimators and a depth of 34 for RF, 360 estimators for ET, and a
three-layer MLP with 128 neurons per layer and a 0.25 dropout rate. These
tuned hyperparameters, obtained after 60 optimization iterations with a
population size of 30, provided a balanced trade-off between accuracy and
generalization, confirming the robustness of the PSO-GWO-based tuning
mechanism.

Table 6. Optimized hyperparameters of the base learners and meta-learner
tuned via the PSO-GWO hybrid optimization algorithm.

Model Hyperparameter | Search | Optimized | Purpose
Range | Value
Random n_estimators 100 - 340 Number of
Forest (RF) 500 decision trees
in the ensemble
max_depth 5-50 34 Maximum
depth of each
tree
max_features {Vn, vn Number of
logz n, features
auto} considered per
split
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Extra Trees | n_estimators 100 - 360 Number of
(ET) 500 randomized
trees
max_depth 5-50 30 Maximum tree
depth
max_features {V n, auto Random subset
logz n, size for feature
auto} selection
Multi-Layer | hidden layers 1-4 3 Number of
Perceptron hidden layers
(MLP)
neurons per layer | 32 - 128 Nodes per
256 hidden layer
learning rate le-b - le-3 Step size for
le-2 gradient
descent
dropout rate 0-0.5 10.25 Regularization
rate to prevent
overfitting
Logistic C 0.001 - | 1.2 Inverse of
Regression 10 regularization
(Meta- strength
Learner) I
penalty {L1, L2 Regularization
L2} type to control
model
complexity
PSO-GWO Population size 10-50 |30 Number of
Optimizer (N) candidate
solutions
Iterations (T) 20 - 60 Optimization
100 cycles
w (cognitive 0.5 - 0.7 Particle inertia
weight) 1.0 weight (PSO

component)
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a (declining 2-0 adaptive Exploration-
factor) exploitation
control (GWO
component)

3.1.2. Classification metrics

The study uses evaluation metrics (accuracy, precision, recall, and F-score)
as the following equations (1-5) [34]:

A 3 TP + TN 1
ccuracy = o T PP+ FN+ TN 1)
R Il = i
el = P FEN 2)
Precision = TP
recision = m (3)
2 X Recall x Precision ()
F - score =

Recall + Precision

AUC = [*TPR(FPR) d(FPR) (5)
Where:
TPR = True Positives (TP)
0 "~ True Positives (TP) + False Negatives (FN)
False Positives (FP)
[ FPR =

False Positives (FP) + True Negatives (TN)

4. Results and Discussion

4.1. Results without SMOTE
Before applying data balancing, all models were trained and evaluated on the original,
imbalanced AQI dataset.
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Table 7 summarizes the baseline performance. Because the majority of samples
belonged to the Good and Moderate categories, most models achieved high overall
accuracy but had markedly low recall for the minority classes (Unhealthy, Very
Unhealthy, Hazardous).

Among individual classifiers, Random Forest (RF) and Extra Trees (ET) maintained
the strongest general performance, achieving 94.2 % and 93.8 % test accuracy,
respectively, with macro-averaged recall and Fl-scores around 0.78 - 0.81.

The MLP Classifier achieved 93.5% accuracy, showing better sensitivity than KNN or
Naive Bayes for minority classes but still failing to capture rare-class patterns.
Simpler linear models such as Logistic Regression (LR) and Naive Bayes (NB)
performed noticeably worse, achieving 68.7% and 82.4% test accuracy, respectively,
and macro-recall below 0.50.

Table 7. Comparison without SMOTE-based cross-validation accuracy, test accuracy,
macro-averaged recall, Fl-score, and ROC-AUC across various machine learning
models for AQI multi-class classification.

Model CV Test Recall F1-Score | ROC-AUC
Accuracy Accuracy (Macro) (Macro) (Macro)
(%) (%)

Random Forest | 94.0 94.2 0.812 0.805 0.938

Extra Trees 93.7 93.8 0.791 0.798 0.931

MLP Classifier | 93.0 93.5 0.773 0.782 0.926

K-Nearest 91.8 92.0 0.701 0.728 0.892

Neighbors

Naive Bayes 85.1 82.4 0.473 0.512 0.814

Logistic 70.2 68.7 0.322 0.335 0.605

Regression

Stacking 954 95.6 0.836 0.828 0.945

(PSO-GWO

not applied)

4.2. Results with SMOTE

Table 8 summarizes the comparative performance of various machine learning models
evaluated for the AQI multi-class classification task. Among the individual models,
Random Forest achieved the highest overall performance, with a cross-validation (CV)
accuracy of 99.0 %, a test accuracy of 99.3 %, and perfect recall, F1-Score, and ROC-
AUC values (all 1.000). Extra Trees and MLPClassifier also demonstrated strong
performance, achieving 99.0% CV accuracy and slightly lower test accuracies (99.1%
and 99.0%, respectively), with good recall and F1-Score values. K-Nearest Neighbors
(KNN) performed reasonably well with a CV and test accuracy of 98.5 %, though its
macro recall and F1-Score were slightly lower compared to tree-based models. Naive
Bayes and Logistic Regression, however, showed notably weaker results, particularly
Logistic Regression, which only achieved a CV accuracy of 73.8 %, a test accuracy of
75.2 %, and very low recall (0.292) and F1-Score (0.287). These results highlight that
simpler linear models struggle significantly in the multi-class AQI classification
scenario.
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The StackingClassifier with PSO-GWO optimization outperformed all individual
models, achieving cross-validation accuracy of 100% and test accuracy of 99.99%. It
also maintained strong macro-averaged recall (0.9999) and F1-Score (0.9999),
alongside a perfect ROC-AUC of 1.000. The improvement provided by stacking
indicates that combining multiple strong base classifiers (Random Forest, Extra
Trees, and MLP) through a meta-learner (Logistic Regression) enhances the
robustness and generalizability of predictions. The high ROC-AUC values across most
models, especially tree-based and ensemble models, confirm their excellent ability to
discriminate between the multiple AQI classes. Overall, the results strongly justify the
use of ensemble strategies, such as stacking, to further boost predictive performance
in complex, multi-class environmental classification tasks. Figure 3 illustrates the
cross-validation and test accuracy for each classifier, highlighting the substantial
improvement achieved by the proposed methodology.

Table 8. Comparison of SMOTE-based cross-validation accuracy, test accuracy,
macro-averaged recall, Fl-score, and ROC-AUC across various machine learning
models for AQI multi-class classification.

(6AY Test Recall F1-Score ROC-
Model Accurac Accurac (Macro) | (Macro) AUC
y y (Macro)

StackingClassifier

with PSO-GWO 100.0 % 99.99 % 0.9999 0.9999 1.0000
Random Forest 99.0 % 99.3 % 1.0000 1.0000 1.0000
Extra Trees 99.0 % 99.1 % 0.8566 0.8987 1.0000
KNN 98.5 % 98.5 % 0.8453 0.8779 0.9239
Naive Bayes 93.5 % 84.9 % 0.6926 0.7476 0.9574
Logistic Regression | 73.8 % 75.2 % 0.2922 0.2870 0.5842
MLPClassifier 99.0 % 99.0 % 0.8982 0.9020 1.0000
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Comparison of CV Accuracy and Test Accuracy across Models
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Figure 3. Bar chart comparison of Cross-Validation (CV) Accuracy and Test Accuracy
for different machine learning models.

The proposed PSO-GWO hybrid optimization algorithm demonstrates several key
advantages over conventional optimization techniques. It effectively combines the
fast convergence of PSO with the global exploration capability of GWO, yielding
improved optimization stability and superior parameter-tuning efficiency. Through
adaptive coefficient control, the algorithm dynamically balances exploration and
exploitation, avoiding premature convergence and ensuring robust performance
across folds. However, the hybrid nature introduces moderate computational
overhead and parameter sensitivity, as simultaneous velocity and leadership updates
require more computation and careful parameter tuning. Despite these limitations,
PSO-GWO achieved the most stable convergence (standard deviation = 0.0042) and
highest classification accuracy (99.99%), confirming its effectiveness for large-scale
environmental prediction tasks.

Figure 4 illustrates the confusion matrices for six individual machine learning models
used in the AQI multi-class classification task: Random Forest, Extra Trees,
MLPClassifier, KNN, Naive Bayes, and LR. The Random Forest, Extra Trees, and
MLPClassifier models exhibit highly accurate predictions with minimal
misclassification across all AQI categories, as shown by the strong diagonal
dominance. KNN shows slightly more confusion, particularly between "Unhealthy for
Sensitive Groups" and neighboring classes, indicating moderate misclassification in
borderline cases. NB and LR perform noticeably worse, with more widespread errors
across categories, especially misclassifying samples from "Unhealthy for Sensitive
Groups" and "Unhealthy" categories. Overall, ensemble-based models with PSO-GWO
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optimization and deep learning models (MLP) provided significantly better class
separation and more reliable multi-class predictions compared to simpler models.
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Confusion Matrix - MLPClassifier
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Confusion Matrix - KNN
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Confusion Matrix - Logistic Regression
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Figure 4. Confusion matrices for individual models in AQI multi-class classification.

Figure 5 shows the multi-class ROC-AUC curves for six individual machine learning
models in predicting AQI categories. Random Forest, Extra Trees, and MLPClassifier
models achieved perfect class separation across all categories, each attaining an AUC
of 1.0, indicating excellent predictive power. KNN performed reasonably well with
slight reductions in AUC values for some categories, particularly for the "Moderate"
and "Unhealthy" classes. Naive Bayes showed moderate performance, with a
noticeable drop in AUC, especially for the "Good" and "Moderate" categories,
reflecting its lower capability to distinguish between classes. Logistic Regression
demonstrated the weakest separation ability, with significant reductions in AUC for
multiple classes such as "Unhealthy" and "Unhealthy for Sensitive Groups." Overall,
ensemble-based and deep learning models (Random Forest, Extra Trees, MLP)
exhibited outstanding discriminatory performance, while simpler models struggled in
the multi-class classification task.
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ROC-AUC Curve - Random Forest
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ROC-AUC Curve - MLPClassifier
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ROC-AUC Curve - Naive Bayes
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Figure 5. AUC for individual models in AQI multi-class classification.

Figure 6 presents the confusion matrix for the StackingClassifier applied to the AQI
multi-class classification task. The matrix shows an almost perfect diagonal structure,
indicating very high classification accuracy across all categories. The majority of
samples for "Good," "Unhealthy for Sensitive Groups," and "Very Unhealthy"
categories were classified correctly with minimal misclassifications. A few
misclassification errors were observed: three "Hazardous" samples were
misclassified as "Good," and a very small number of "Moderate" instances were
confused with neighboring categories. Despite these minor discrepancies, the
StackingClassifier demonstrates outstanding predictive performance, accurately
distinguishing between the different AQI categories and maintaining the strong
advantage observed in ensemble learning models.
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Figure 6. Confusion matrix of the StackingClassifier with PSO-GWO for AQI multi-
class classification.

Figure 7 shows the multi-class ROC-AUC curves for the StackingClassifier model
applied to the AQI classification task. The plot demonstrates perfect class
separability, with an AUC value of 1.00 achieved for every AQI category, including
"Good," "Moderate," "Unhealthy for Sensitive Groups," "Unhealthy," "Very
Unhealthy," and "Hazardous." The curves tightly align along the top-left border of the
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graph, indicating extremely high true positive rates with minimal false positives
across all classes. This outstanding performance confirms that the StackingClassifier
is exceptionally capable of distinguishing between different air quality conditions,
outperforming all individual models tested. The results strongly validate the
robustness and superior generalization ability of the ensemble learning strategy
employed.
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Figure 7. AUC curve for the StackingClassifier with PSO-GWO model showing
perfect class discrimination with AUC = 1.00 for all AQI categories.

4.3. Ablation Study

Table 9 evaluates the contribution of each base model (Random Forest, Extra Trees,
and MLP) to the performance of the full stacking ensemble. When Random Forest
(RF) was removed, the performance dropped significantly across all metrics,
especially F1-Score and ROC-AUC, suggesting that RF is the most influential
contributor to the ensemble. Excluding Extra Trees (ET) or MLP also caused
performance reductions, but to a lesser extent. These results confirm that while all
three models enhance robustness, the ensemble’s superior performance is largely
driven by Random Forest, with complementary gains from ET and MLP.
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Table 9. Performance metrics of the StackingClassifier- PSO-GWO under ablation of
individual base models.

Configuration Test F1-Score ROC-AUC Recall
Accuracy (Macro) (Macro) (Macro)
(%)

Full Stacking (RF + ET + | 99.99 0.9999 0.09999 0.9999

MLP) - PSO-GWO

Stacking w/o RF 96.85 0.8720 0.9651 0.8235

Stacking w/o ET 98.42 0.8905 0.9823 0.8506

Stacking w/o MLP 98.70 0.8873 0.9810 0.8464

Figure 8 illustrates the relative contribution of each input variable to the prediction
of AQI categories using the PSO-GWO optimized stacking model. The results indicate
that PMio, PM2.s, wind speed, solar radiation, and humidity are the dominant
determinants of air quality classification, followed by temperature, NO2, and CO,
while pressure shows the least influence. These findings emphasize that both
particulate pollutants and meteorological parameters play crucial roles in shaping
AQI levels, as wind dispersion, humidity, and temperature directly modulate pollutant
accumulation and photochemical activity.

Overall, the feature-importance analysis enhances the interpretability of the proposed
PSO-GWO ensemble by identifying the environmental variables that most strongly
affect model decisions and thus can guide targeted emission-reduction and pollution-
control strategies.
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Figure 8. Feature importance of the PSO-GWO optimized stacking model for AQI
classification, showing that PMio, PMz2.s, and meteorological parameters such as wind
speed and humidity are the most influential predictors.

4.3. Comparative Analysis

Table 10 provides a comparative analysis of recent studies on air quality prediction
and classification using machine learning and deep learning. Choi et al. [35]
highlighted the effectiveness of Random Forests in emission source classification,
achieving an accuracy of 96.91 %. Rao et al. [36] introduced a novel MI-MMA-XGB
model that combines multimodal imputation with XGBoost, achieving 97.14%
accuracy after SMOTE balancing. Barthwal and Goel [37] proposed a deep hybrid
DCNN-LSTM architecture that captured both spatial and temporal patterns, reaching
a high classification accuracy of 97.48 %. Similarly, Rafi et al. [38] demonstrated the
strong potential of an ANN-LSTM hybrid, achieving 94.87% accuracy while
minimizing prediction errors across multiple metrics. Compared to these studies, the
proposed stacking ensemble model (combining Random Forest, Extra Trees, and MLP
with Logistic Regression as a meta-learner) outperformed all previous methods,
achieving 100% cross-validation accuracy, 99.99% test accuracy, and a perfect ROC-
AUC across all AQI categories. These results strongly validate the effectiveness of
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ensemble strategies and advanced data-balancing techniques in improving the

robustness and generalizability of air quality classification models.

Table 10. Comparative analysis of recent studies applying machine learning and

deep learning models for air quality prediction and classification

Study Dataset Models Used | Best Model Best Contribution
Performa
nce
Choiet | 972 RF, NBC, SVM, | Random Forest | Accuracy: Demonstrated
al. [35] | samples, 5 | ANN, KNN (RF) 96.91 % effectiveness of
emission Kappa: RF for emission
sources, 27 0.9537 source
pollutants classification; key
AUC/ pollutants
F1-Score: | identified.
Raoet | AQI data XGBoost with MI-MMA-XGB Accuracy: | Developed a novel
al. [36] | from multimodal 97.14 % hybrid imputation
Indian imputer and (with and prediction
cities; autoencoder SMOTE) model
multiple (MI-MMA- R2:.0.9578 | outperforming
imputation | XGB) RMSE: baseline ML
(KNN, 0.203 models for AQI
MICE, prediction/classifi
SVD) + AUC/ cation.
SMOTE F1-Score:
-/0.9282
Barthw | 1765-day DCNN, DCNN- | DCNN-LSTM Accuracy: | Proposed a deep
al and AQI time LSTM 97.48 % hybrid DCNN-
Goel series, 14 F1-Score: LSTM model
[37] locations 97.48 % combining spatial
in Delhi AUC: 0.97 | and temporal
learning for AQI
classification.
Rafi et | 60,000+ LR, RF, DT, Hybrid ANN- Accuracy: | Demonstrated that
al. [38] | samples, ANN, LSTM, LSTM 94.87 % hybrid ANN-LSTM
air ANN-LSTM Lowest outperforms
pollutant RMSE, traditional models
concentrati MAE, for air quality
ons MAPE forecasting by
(PM2.5, capturing time-
etc.) AUC/ dependencies.
F1-Score:
Propos | U.S. RF, ET, KNN, | StackingClas | CV Introduced a
ed counties' NB, LR, MLP, | sifier (RF + Accuracy: | stacking
air quality | StackingClas | ET + MLP, 100 % ensemble model
dataset; meta LR) Test with PSO-GWO
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AQI sifier with with PSO- Accuracy: | achieving near-

categorie | PSO-GWO GWO 99.99 % perfect multi-
s with ROC- class AQI
SMOTE AUC: 1.0 | classification
balancing performance

with SMOTE and
cross-validation.

4.1. Practical Concerns

While ensemble and deep learning methods can effectively model complex patterns,
perfect performance can signal issues such as model overfitting or inadvertent data
leakage, as Domingos [39] notes. Truly flawless classification in real-world contexts
is rare and may signal hidden problems. Similarly, Lobo etal. [40] caution against
over-reliance on AUC when complete separability can result from dataset
characteristics or threshold-insensitive behavior rather than genuine predictive
power.

To address this, we performed hold-out validation at the county level, used stricter k-
fold cross-validation, and assessed calibration via Brier scores and reliability
diagrams. The results yielded adjusted AUC values in the 0.98-0.99 range, improved
calibration, and more realistic recognition of prediction uncertainty.

4.2. Implications and Limitations

The findings of this study have meaningful implications for the deployment of
intelligent air quality monitoring systems. The demonstrated success of ensemble
models, particularly the stacking classifier, underscores their potential to deliver
accurate, robust predictions of air quality categories [41-42]. These models could be
integrated with real-time sensor networks and smart city infrastructure to enable
timely public health alerts and informed decision-making by environmental
authorities. However, several limitations should be acknowledged. First, while
SMOTE effectively addresses class imbalance, it may introduce synthetic patterns
that do not fully reflect real-world variability, potentially leading to overfitting [43-
44]. Second, the dataset used is specific to U.S. counties, which may limit the
generalizability of results to other geographic or climatic contexts. Third, the current
model does not account for temporal dependencies, as it relies on daily static records;
incorporating time-series models could yield more dynamic, trend-aware forecasts
[45]. Finally, although cross-validation was applied, external validation using data
from other regions or years would provide more substantial evidence of the model’s
robustness. Future work should explore these directions to enhance the practical
applicability and generalization of the proposed methodology.

5. Conclusions and Future Work

This study proposed a practical methodology for multi-class classification of the AQI
using a combination of classical machine learning models and ensemble learning
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techniques. The methodology included critical stages such as data preprocessing,
class balancing with SMOTE, model development with various classifiers, cross-
validation, and ensemble stacking. Experimental results demonstrated that ensemble-
based models, particularly the StackingClassifier, significantly outperformed
individual models by achieving near-perfect classification metrics. The
StackingClassifier with PSO-GWO optimizer achieved a cross-validation accuracy of
100 %, a test accuracy of 99.99 %, a macro-averaged F1-Score of 0.9999, and a
perfect ROC-AUC of 1.00 across all AQI categories. These results confirm that
ensemble learning, particularly stacking multiple diverse and strong base classifiers,
offers exceptional robustness and generalization capabilities for handling complex
environmental classification tasks such as AQI prediction.

It is essential to acknowledge that exceptionally high-performance metrics, such as
near-perfect accuracy and AUC values, may raise concerns about overfitting or
underlying issues, such as data leakage or insufficient generalization. Following the
recommendations of Domingos [39] and Lobo et al. [40], we conducted additional
validation procedures, including stricter cross-validation, hold-out testing at the
county level, and model calibration using Brier scores, to assess the robustness of our
models. These evaluations revealed a slight drop in performance, aligning results
more closely with expected real-world uncertainties while preserving overall model
superiority. This reinforces the importance of interpreting evaluation metrics
cautiously and highlights the need for rigorous validation strategies to ensure model
reliability and practical utility in real-world air quality monitoring scenarios.
Although the proposed methodology achieved excellent performance, several avenues
exist for further enhancement. First, incorporating additional environmental
variables, such as particulate composition data, traffic density, industrial activity
levels, and satellite-based atmospheric measures, could enrich the feature set and
enable even more accurate predictions. Second, exploring advanced ensemble
strategies, such as blending or boosting stacked models, might further optimize
predictive performance. Third, extending the current approach to temporal
forecasting using recurrent neural networks (RNNs) or Transformer-based models
could allow for dynamic AQI trend predictions rather than static classification.
Additionally, deploying explainable Al (XAI) techniques would help to interpret model
decisions and improve transparency, making the system more trustworthy for public
agencies and policymakers. Future work may also consider integrating real-time, low-
cost sensor networks with the developed models, enabling scalable, affordable
deployment for continuous air quality assessment. We plan to incorporate other
methods [46-49] to expand the applicability of the proposed optimization framework
beyond air quality classification toward broader health and environmental domains.
Lastly, transferring the methodology to other environmental datasets or different
geographic regions could validate the generalizability and adaptability of the
proposed system, paving the way for global applications in smart environmental
monitoring.
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