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Improving sign Language
recognition system for assisting
deaf and dumb people using
pathfinder algorithm with
representation learning model

Nadhem Nemri**‘, Mohammed Yahya Alzahrani?, Wided Bouchelligua® & Amani A. Alneil*>

For many individuals, communication through sign language (SL) is the primary means of interacting
with the world, and the potential applications of effective SL Recognition (SLR) systems are vast
and far-reaching. SLR is a research area dedicated to the automatic analysis of hand gestures and
other visual signs used in communication among individuals with speech or hearing impairments.
Despite significant advancements, the automated detection and interpretation of human signs
remain a complex and multidisciplinary challenge that is yet to be fully addressed. Recently, various
approaches have been explored, including the application of machine learning (ML) models in SLR.
With advancements in deep learning (DL), sign recognition systems have become more accurate
and adaptable, helping to bridge the communication gap for individuals with hearing impairments.
Building upon these developments, the present study introduces a novel approach by integrating
an advanced optimization strategy with a representation learning model, aiming to improve the
robustness, accuracy, and real-world effectiveness of SLR systems. This paper proposes a Pathfinder
Algorithm-based Sign Language Recognition System for Assisting Deaf and Dumb People Using a
Feature Extraction Model (PASLR-DDFEM) approach. The aim is to enhance SLR techniques to help
individuals with hearing challenges communicate effectively with others. Initially, the image pre-
processing phase is performed by using the Gaussian filtering (GF) model to improve image quality
by removing the noise. Furthermore, the PASLR-DDPFEM approach utilizes the SE-DenseNet model
for feature extraction. Moreover, the ElIman neural network (ENN) model is implemented for the SLR
classification process. Finally, the parameter tuning process is performed by using the Pathfinder
Algorithm (PFA) model to enhance the classification performance of the ENN classifier. An extensive
set of simulations of the PASLR-DDPFEM method is accomplished under the American SL (ASL)
dataset. The comparison study of the PASLR-DDPFEM method revealed a superior accuracy value of
98.80% compared to existing models.

Keywords Pathfinder algorithm, Sign language recognition, Deaf and dumb people, Feature extraction,
Elman neural network

According to the World Health Organisation (WHO), approximately 70 million people worldwide have hearing
loss. A high number of people with hearing and speech impairments may struggle to write or read in everyday
language!. SL is one of the non-verbal languages used by deaf people for day-to-day communication among
themselves. SL primarily relies on gestures more than voice to convey messages, incorporating the use of facial
expressions, finger shapes, and hand movements®. The following are the essential defects in this language: a
limited vocabulary, difficulties in learning, and frequent hand movements. In addition to this, people who are
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not deaf and mute are unaware of SL, while disabled people face significant problems in communicating with
individuals®. These individuals with disabilities need to utilize a device translator for communicating with able-
bodied individuals, which is achieved through the development of glove equipment with electronic circuits and
sensors?. Many efforts were made to create an SLR method last year. In SLR, there are two major classifications,
namely continuous sign classification and isolated SL. The hidden Markov model (HMM) functions on
continuous SLR, which allows the segmentation of an information stream®. The SLR design is characterized
into two essential types depending on its input, namely vision-based and data glove-based®. Vision-based SLR
methods use cameras to detect hand gestures. Glove-based SLR technique utilizes smart gloves to measure
locations, velocity, orientation, and other parameters, which employ sensors and microcontrollers.

Computer vision (CV)-based SLR methods commonly depend on removing characteristics such as gesture
detection, edge detection, shape detection, and skin colour segmentation, among others’. In recent years, the
use of a vision-based approach has become increasingly common, utilizing input from a camera. Many of the
studies in SLR depend on DL methods that were achieved on SLs, unlike any Indian SL®. Currently, these fields
are gaining more popularity among scholarly experts. The past reporting work on SLR primarily depends on ML
models. These techniques result in lower accuracy because they do not automatically remove characteristics®.
Automatic feature engineering is the primary objective of DL methods. The idea behind this is to spontaneously
study a group of attributes from raw information used to recognize SL by individuals with hearing loss'’. A
communication gap exists between hearing-impaired individuals and those who are speech-impaired, as well
as the general populace. Conventional tools for bridging this gap, such as sensor-based gloves, can be costly,
inconvenient, or limited in scope; hence, it becomes crucial for intelligent, real-time solutions to interpret SL
naturally and accurately. DL is considered effective in this area, enabling systems to automatically learn intrinsic
patterns in gestures and facial cues without manual feature extraction. Its success in image and sequence
recognition makes it ideal for advancing disability detection and improving communication accessibility.

This paper proposes a Pathfinder Algorithm-based Sign Language Recognition System for Assisting Deaf
and Dumb People Using a Feature Extraction Model (PASLR-DDFEM) approach. The aim is to enhance SLR
techniques to help individuals with hearing challenges communicate effectively with others. Initially, the image
pre-processing phase is performed by using the Gaussian filtering (GF) model to improve image quality by
removing the noise. Furthermore, the PASLR-DDPFEM approach utilizes the SE-DenseNet model for feature
extraction. Moreover, the Elman neural network (ENN) model is implemented for the SLR classification process.
Finally, the parameter tuning process is performed by using the Pathfinder Algorithm (PFA) model to enhance
the classification performance of the ENN classifier. An extensive set of simulations of the PASLR-DDPFEM
method is accomplished under the American SL (ASL) dataset. The key contribution of the PASLR-DDPFEM
method is listed below.

o The PASLR-DDPFEM model incorporates GF to enhance image quality and reduce noise in SL input images,
thereby ensuring cleaner visual data. This process enhances the visibility of significant features, facilitating
more precise feature extraction and ultimately improving the overall performance and reliability of the rec-
ognition system.

o The PASLR-DDPFEM method employs the SE-DenseNet-based DL approach for efficient and discriminative
feature extraction, capturing both spatial and channel-wise data. This enhances the model’s ability to focus
on the most relevant features, resulting in improved recognition accuracy and robustness across varying SL
image conditions.

o The PASLR-DDPFEM approach utilizes the ENN technique for effective SLR classification, employing its
feedback connections to capture temporal patterns. This enables the model to better comprehend sequential
dependencies in sign gestures, improving classification accuracy and adaptability to dynamic inputs.

o The PASLR-DDPFEM methodology utilizes the PFA model to tune ENN parameters, thereby enhancing
overall classification accuracy by efficiently exploring the solution space. This optimization improves the con-
vergence speed and stability of the ENN model, producing more reliable and precise SLR results.

o Thus, a novel hybrid framework is introduced which is required for ASL as it effectively handles image noise,
captures discriminative spatial-temporal features, adapts to gesture discrepancies, and optimizes model pa-
rameters for accurate and robust recognition. This unique integration leverages the strengths of each compo-
nent to address threats in SLR. The model enhances accuracy, robustness, and adaptability, and the novelty is
in the synergistic use of DL, recurrent networks, and metaheuristic optimization.

Literature of works

Rethick et al.!! presented an innovative model of online hand gesture detection and classification methods. CNN
is utilized to present effective and intuitive methods of communication for individuals. The primary goal is to
provide deaf individuals with access to real-world gesture recognition technology. This method utilizes a robust
CNN framework, specifically designed for precise hand gesture detection, and trained on a meticulously curated
dataset. Assiri and Selim'? developed a model by utilizing an Adaptive Bilateral Filtering (ABF) model for noise
reduction, the Swin Transformer (ST) technique for effective feature extraction, a hybrid CNN and Bi-directional
Long Short-Term Memory (CNN-BiLSTM) model for accurate classification, and the Secretary Bird Optimiser
Algorithm (SBOA) for optimal hyperparameter tuning. Kumar, Reddy, and Swetha!? presented a reliable and
real-time Hindi SL (HSL) recognition system by utilizing CNNs for spatial feature extraction and recurrent
neural networks (RNNs) for temporal sequence modelling of hand movements and facial expressions. Harshini
et al.' proposed an accurate SLR system by using ML models. Specifically, the Random Forest Classifier (RFC)
is incorporated with a conversational Al (CAI) bot powered by the Google Gemini Model (GGM). Allehaibi'®
presented a Robust Gesture SLR Utilizing Chicken Earthworm Optimiser with DL (RSLR-CEWODL) technique.
The proposed approach utilizes the ResNet-101 method for feature extraction. For the optimum hyperparameter

Scientific Reports |

(2026) 16:4182 | https://doi.org/10.1038/s41598-025-34283-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

tuning process, the projected model leverages the CEWO model. Moreover, the presented model employs a
whale optimizer algorithm (WOA) with a deep belief network (DBN) for SLR. Kumar et al.'® introduced a new
technique for enhancing the detection of Indian SL (ISL) by integrating Deep CNN with physically intended
aspects. It employs the capability of DL with CNN to autonomously attain distinctive features from unprocessed
data. This model involves a multi-stage process, in which the deep CNN gathers progressive features from
unprocessed ISL images. In contrast, the manually intended aspects provide additional data to improve the
recognition process. Hariharan et al.'” developed a highly accurate American SL (ASL) recognition system by
utilizing advanced image pre-processing techniques, a modified Canny edge detection for segmentation, and a
Modified CNN (MCNN) based on the deep Residual Network 101 (ResNet-101) architecture for classification.
Almjally and Almukadi'® proposed an advanced SLR system that utilizes bilateral filtering (BF) for noise
reduction, ResNet-152 for feature extraction, and a Bi-directional Long Short-Term Memory (Bi-LSTM)
method for sequence modelling. The Harris Hawk Optimisation (HHO) technique is employed to tune the
hyperparameters of the Bi-LSTM optimally.

Kauretal.!” developed a real-time SL to speech conversion system by utilizing a pre-trained InceptionResNet V2
DL technique integrated with hand keypoint extraction techniques. The model is examined by using the ASL
dataset. Almjally et al.®® introduced a model utilizing advanced image pre-processing techniques, including
Contrast-Limited Adaptive Histogram Equalisation (CLAHE) and Canny Edge Detection (CED). The model also
incorporates multiple feature extractors, including ST, ConvNeXt-Large, and ResNet50, combined with a hybrid
CNN and Bi-LSTM with Attention (CNN-BiLSTM-A) for precise classification. Jagdish and Raju?! proposed a
technique by utilizing image processing and DL models, specifically CNN. Maashi, Iskandar, and Rizwanullah??
presented a Smart Assistive Communication System for the Hearing-Impaired (SACHI) methodology, utilizing
BF for noise reduction, an improved MobileNetV3 for effective feature extraction, and a hybrid CNN with a
Bi-directional Gated Recurrent Unit and Attention (CNN-BiGRU-A) method for accurate SLR. The Attraction-
Repulsion Optimisation Algorithm (AROA) approach is used to tune the classifier’s hyperparameters optimally.
Tlakkia et al.?® proposed a real-time ISL recognition system by utilizing DL techniques, specifically the Residual
Network-50 (ResNet-50) architecture. Mosleh et al.** introduced a bidirectional real-time Arabic SL (ArSL)
translation system by utilizing transfer learning (TL) with CNNs and fuzzy string-matching techniques. Thakkar,
Kittur, and Munshi®® presented a robust multilingual SL Translation (SLT) system by integrating advanced CV
techniques like YOLOV5 for gesture detection, combined with Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) models for machine translation across English, Hindi, and French. The model also used
RF classifiers with frameworks such as OpenCV and MediaPipe. Dhaarini, Sanjai, and Sandosh?® developed a
real-time SL Detection and Assistive System (SLDAS) by utilizing advanced CV techniques and the You Only
Look Once version 10 (YOLOV10) object detection model. Choudhari et al.” developed a platform-independent
web application for real-time ISL recognition by utilizing a CNN with Leaky Rectified Linear Unit (Leaky ReLU)
activation and Adam optimizer. Table 1 summarises the existing studies on SLR systems for assisting the deaf
and dumb.

Though the existing studies are effectual in the SLR recognition process, several approaches depend on
limited or domain-specific datasets, mitigating generalizability across diverse SLs. Various techniques lack robust
handling of dynamic sequences and non-manual features such as facial expressions and real-time responsiveness
is often compromised due to intrinsic architectures or high computational overhead. Most systems lack end-to-
end bidirectional communication capabilities though the integration of DL techniques namely CNN, BiLSTM,
and ST has illustrated promising results. A notable research gap exists in forming lightweight, scalable models
optimized for edge deployment and cross-lingual adaptability. Furthermore, insufficient multimodal integration
and limited interpretability in decision-making highlight further research gap in building inclusive and user-
friendly SLR platforms.

Materials and methods

This paper designs and develops a PASLR-DDFEM technique. The primary objective is to enhance SLR
techniques to help individuals with hearing challenges communicate effectively with others. To accomplish
this, the PASLR-DDPFEM model involves several stages, including image pre-processing, feature extraction,
classification, and parameter tuning. Figure 1 depicts the overall working flow of the PASLR-DDPFEM model.

Dataset description

Table 2 consists of 78,000 samples with 26 classes, representing the letters A-Z3!. Each image is sized at 200 x
200 pixels, making it appropriate for training DL techniques in gesture recognition. The dataset al.so includes a
small test set with real-world examples to promote robust model evaluation.

GF-based image pre-processing
Initially, the image pre-processing phase is performed using the GF model to enhance image quality by removing
noise?. This model is chosen for its simplicity, efficiency, and efficiency in mitigating high-frequency noise while
preserving crucial edge details in SL images. Unlike more complex filtering methods, the GF model presents a
good balance between noise suppression and computational cost, making it appropriate for real-time applications.
The technique helps improve the quality of input data without introducing distortions and also smoothens the
image uniformly. This ensures that crucial gesture features remain intact for accurate downstream processing.
Compared to median or bilateral filters, GF provides faster execution and consistent results. Its integration
improves the reliability of feature extraction and overall recognition accuracy.

GF is a vital pre-processing stage in SLR for reducing noise and improving image quality while conserving
essential features. It uses a Gaussian function to blur an image, minimizing high-frequency deviations that
may occur due to illumination variations or sensor noise. This aids in improving feature extraction and edge
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Ref. No. Objective Method Dataset Measures
. . CNN, Real-time gesture detection, | Diverse ASL gesture o )
Rethick et al'l. To develop a real-time hand gesture recognition system to Custom CNN architecture, Fine- images (29 classes, Accuracy of 99.11%, Real-Time
empower the deaf and mute community. . . Performance
tuning for accuracy 87,000 images)
Assiri and To develop a robust hand gesture recognition system for ABE ST. CNN-BiLSTM. SBOA Traffic Police Gesture | Accuracy of 99.25%,
Selim'2 helping hearing-impaired individuals. > ? Dataset Performance Validation

Kumar, Reddy,
and Swetha!?

To develop a real-time system for converting gestures into text
and speech to enhance communication for the Deaf and Hard
of Hearing community.

CNN, RNN

Hindi SL Gesture
Dataset

Accuracy, Real-Time
Performance

Harshini et al'.

To develop an SLR system for SL users in digital environments.

RE Comparison with CNN
and KNN, Integration with
Conversational Al

Diverse SL Gesture
Dataset

Accuracy of 0.9961, User
Responsiveness

To develop a robust SLR system using optimized DL models for

RSLR-CEWODL, ResNet-101,

Accuracy, Performance

auditory-impaired individuals.

optimizer

ibils
Allehaibi accurate gesture classification. WOA, DBN SL Gesture Datasets | g ation
Kumar et al'6. ("1;0 gnhance ISL recognition by integrating DL with manually Deep CNN, DL Extensive ISL Dataset | Recognition Accuracy,
esigned features for improved accuracy and robustness. Robustness
Hariharan et . ASL Hand Gesture Accuracy (97%), False Positive
all”. To develop an accurate ASL recognition system. MCNN, ResNet-101 Images (36 Signs) Rate (0.05%)
. - . Precision, Recall, Accuracy, and
ﬂ‘rgf&’d?ﬁd thgfg:tli"cpsi‘}("l’“m‘zed DL technique for accurate and BE, ResNet-152, Bi-LSTM, HHO | SL Dataset Fl-Score of 94.72%, 94.74%,
: 98.95, and 94.72%
InceptionResNetV2 DL, Hand
. . i . 7200 Images, 24 L o
Kaur et al'. To develop a real-time SL-to-speech conversion system. keyp oInt extraction, P.YFhOH mage Alphabet Classes Training And Validation
processing, Model training with Excluding T and 77) | Accuracy
epochs (Excluding T an )
. . . Accuracy of 98.10%, Precision
. To enhance accurate and real-time SLR using an attention- CLAHE, CED, ST, ConvNeXt- ’
20 > , ST, 9 o
Almjally et al*. driven hybrid DL technique with feature fusion. Large, ResNet50, CNN-BiLSTM-A SL Dataset of 95.28%, Recall of 95.28%, and
F1-Score of 95.28%
. . CNN Model Training, Sign-to-
Eag.ilzslh and iige:?:&iaolf);ibaessetirse);stem for accurate detection and Text Conversion, Voice Output SL Gesture Images Accuracy, Accessibility
) 8! 8 : Integration
Maashi, L . . . Precision of 91.54%, Recall of
Iskandar, and ;1?a‘iz.vsetlﬁg;?nm}erglg;rrl;;]ff;y.séer:lsusmg a hybrid DL method ;?gggiy?ﬁéﬁetvi CNN- ISL Dataset 93.21%, Accuracy of 99.19%, and
Rizwanullah?? ! g-impaired Individuals. > F-Score of 91.87%, respectively.
Takkia et al2> To develop a real-time ISL recognition system to translate ISL DL. ResNet-50 Unique ISL Dataset Accuracy, Real-Time
" | gestures into text for the deaf community. > q Performance
. S Trs ArSL Dataset
Mosleh et al24, | 10 develop a robust, real-time, bidirectional ArSL translation ArSL, CNN and Arabic Data Accuracy, Processing Efficiency
system to enhance communication for deaf individuals. Dicti
ictionary
s . e YOLOvVS5, LSTM-GRU, RE,
Thakkar, Kittur, To develo_p a'multllmgual SL t}'ansle}tlon sxstem 'to facilitate OpenCV & MediaPipe integration, | Multilingual SL Translation Accuracy, Processing
.5 | communication between hearing, visually impaired, and :
and Munshi Auto-tokenizer and Adam Images Speed

Dhaarini, . . - .
Sanjai, and To develop a re_al-t_lme SL Detection and Assistive System for SLDAS, CV, YOLOV10 ASL Gesture Dataset Accuracy, Real-Time
2% deaf and mute individuals. Performance
Sandosh
1200 Images,
Choudbhari et To develop a platform-independent web-based system for real- | CNN, Leaky ReLU, Adam 35 Classes (26 Accuracy of 97%, Real-time
al?’. time ISL translation into text. Optimiser Alphabets +9 Performance
Numbers)

Table 1. Summary of existing studies on SLR systems for assisting hearing and speech-impaired individuals.

detection by decreasing unwanted artefacts. The filter functions by conveying advanced weights to vital pixels
and gradually declining weights to surrounding pixels, which ensures a natural smoothing effect. In SLR, GF
enhances hand and gesture segmentation, which makes it simpler for ML methods to identify key patterns.
Properly adjusting the Gaussian kernel size is crucial to strike a balance between reducing noise and preserving
detail.

SE-DenseNet-based feature extraction model

Furthermore, the PASLR-DDPFEM method involves a feature extraction process, which is executed by the SE-
DenseNet model?8. This supervised DL method is chosen for its superior capability in capturing both spatial
and channel-wise feature representations, improving the discriminative power of extracted features. The dense
connectivity of the model promotes feature reuse. It reduces vanishing gradient issues, while the SE blocks
adaptively recalibrate channel-wise responses, allowing the model to concentrate on the most informative
features. Compared to conventional CNNs, SE-DenseNet presents enhanced efficiency and accuracy with
fewer parameters. This integration yields richer feature hierarchies and improved generalization. Its integration
ensures more robust and precise recognition of complex SL gestures under varying conditions.

DenseNet is an enhanced CNN-based model that calculates dense multiscale attributes from the object
classifier’s convolution layer. This dense calculation of characteristics from the entire image may speed up
training. This structure utilizes dense links, connecting the output of all layers to the input of all succeeding
layers, thus decreasing the parameter counts and computing costs without influencing performance. The densely
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Fig. 1. Overall working process of the PASLR-DDFEM model.

Signs | Labels | No. of Count | Signs | Labels | No. of Count
A L-1 3000 N L-14 3000
B L-2 3000 (6] L-15 3000
C L-3 3000 P L-16 3000
D L-4 3000 Q L-17 3000
E L-5 3000 R L-18 3000
F L-6 3000 S L-19 3000
G L-7 3000 T L-20 | 3000
H L-8 3000 U L-21 3000
I L-9 3000 \% L-22 3000
] L-10 3000 w L-23 3000
K L-11 3000 X L-24 3000
L L-12 3000 Y L-25 3000
M L-13 3000 Z L-26 3000
Total | Count | 78,000

Table 2. Details of the dataset.

linked architecture improves the gradients and information flow; alleviating difficulties associated with vanishing
gradients. The DenseNet’s basic notion is to achieve powerful feature representation and gradient propagation
by minimizing information loss, thereby increasing the system’s performance. Equation (1) is applied to signify
the initial layer input of DenseNet.

T = H; ([$0,$17.T27 s 7331*1]) (1)

H; denote a non-linear transformation function that consists of ReLU, convolutional, and batch normalization
(BN) layers. [zo, z1, 2,... , x;—1] signifies coordinated output from layers O to layer I — 1. This structure
typically comprises Dense-Block and Transition modules that utilize dense links and smaller parameters to
mitigate computational complexity. The transition unit includes Pooling, BN, Convolution, and ReLU layers.
This Transition component connects adjacent dense blocks and reduces the feature mapping size over the
pooling layer, underscoring the significance of higher-level feature representation in improving compression
efficacy. The DenseNet model contains 4 DenseBlock units and 3 Transition components.

Attention mechanism (AM) is a data processing model in ML, which is extensively utilized in different areas
of DL recently. AMs are separated into mixed-domain, spatial, and channel attentions. During this work of
channel attention, a novel framework was developed, concentrating on channel relations in CNNs and presented
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a novel structural component named “Squeeze and Excitation” (SE) blocks, which dynamically adjusts the
feature remarks about channels by mimicking their interdependence. They considered the nondimensionality-
decreasing local cross-channel interaction tactic and an adaptive model to select the dimensions of 1D
convolutional kernels, thereby achieving performance growth. This study utilizes SENet for learning global
feature information and remarkably improves the main characteristics. Initially, input X is converted into
feature U using the transformation function F,,,where X € R"* “X 1 and U € R "w* <2

Then, the squeezing module Fl, utilizes the global average pooling to condense the feature U into

RYM X2 demonstrating the global supply of replies on the feature networks. Formerly, F..(e ,w) creates
weights for every feature channel utilizing parameter w. By re-weighting, the excitation output weight was
determined as the significance of all feature channels. At last, the weights are utilized for the preceding feature
channels to recalibrate the new features.

This study proposes an original network method, named SE-DenseNet for SLR, which Eprimarily consists
of four DenseBlocks, three Transitions, and three SENets. The input model is H € R™* F* ¢ To speed up
convergence and prevent gradient vanishing issues, this work carried out either the activation function BN or the
process after every 2D convolution. The component in the DenseNet model presents a hyperparameter named
growth rate, which is assigned a value of 12. This parameter controls the channel counts added in all convolutional
layers, allowing the system to get the balance between model performance and complexity. All DenseBlocks are
made from numerous Bottleneck layers. Every Bottleneck is created from a ReLU, a 1 x 1convolutional layer, a
BN layer, a 3x 3 convolutional layer, a ReLU, and a BN layer sequentially. The DenseNet network, containing 4
DenseBlock units and 3 Transition modules, is rejected by seven successive processes: ReLU, BN layer, BN layer,
ReLU, 1x 1 convolutional layer, Dropout layer, and 3x3 convolutional layer. The Dropout layer aims to prevent
overfitting. Inserting SENet among Transition and DenseBlock for learning the significance of every channel and
improving valuable performance.

ENN-based classification model

Moreover, the ENN model is employed for the SLR classification process?. This model is chosen for its
dynamic memory capability, which effectively captures temporal dependencies in sequential data, such as SL
gestures. This technique comprises context units that retain data from prior time steps, making it appropriate
for recognizing patterns over time, unlike feedforward networks. This is specifically beneficial in SLR, where
gestures follow a temporal sequence. Compared to conventional classifiers such as SVM or basic CNNs, ENN
presents an enhanced performance on time-series data without requiring intrinsic architectures. Its ability to
model contextual information results in more accurate and consistent classification results. Figure 2 portrays the
structure of the ENN technique.

ENNs are an ML approach that is designed for processing time-independent data. Unlike conventional
feedforward NNs, ENNs have relations that make managed cycles, permitting them to maintain a model of
sequential data efficiently.

The advanced ENN consists of four layers: the input layer, denoted as 4, j, representing the hidden layer
(HL), the context layer, specified as ¢, and the output layer, embodied as 0. Every layer is linked utilizing weight.
The ith layer is provided with the hydrologic inputs. The ith layer includes ten hidden neurons. The advanced

Input Layer

Hidden Layer

Context Layer Output Layer

Fig. 2. Structure of the ENN model.
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ENN method contains a c layer that is otherwise recognized as a layer of feedback. The objective of the c layer
is to maintain the data from the previous stage, which assists in examining the patterns from the preceding data.
The training and functional procedure are provided as shown.

The node in this layer and the input layer are specified as:

o (n) = 1 (net (m)) @)

Whereas xEl) (n) denotes the output data of the ith layer. The node in the ith layer is provided as:
aci(Q) (n)=2S5 <netj(2) (n)) (3)
net? (n) = wij X SRIOEDY Wk X 2P (n) j=01,2,...,9k=01,2,...,9 (4

The function of the sigmoid, S (z) = 1/1 + e — z, was utilized in NNs for mapping input values to the range
between (0,1) that might characterize possibilities. It was distinguishable and had a basic derivative,

§' () = 8 (x) (1= S (x)) ()

The ith layer is linked utilizing the neuron with weightings w;;, and wy; represents neuron weights. The nodes
in these contextual layers are provided as:

av,(f) (n)=a m,f” (n—1)+ x§.2) (n—1) (6)

From Eq. (6), « refers to the gain of feedback that is located between 0 < « < 1. The node in the output
layer was signified as:

7 () = £ (net® () @)

0 1(4) (n) Provides the forecast output of the presented method. The weighting update of the advanced ENN-

based forecasting method occurs layer-to-layer; the weighted upgrade of linking neuron weight wy; is provided
as:

wit (n+1) = wj (n) +& ;A wy (8)

In a weighted update, & ; characterizes the rate of training of the zero layer. The novel weight of wy:; is provided
as:

wij (n+1) = wij (n) + £, A wi ©)
In the weight update, £ , embodies the rate of training of the ith layer. The novel weight of w;; is specified as:
wij (n+1) = wij (n) +§ 3 A wi; (10)

In the weight update, £ 5 refers to the rate of training of an input layer. The advanced ENN method was trained
utilizing the backpropagation (BP) model, an expansion of the normal BP model applied in feedforward NNs.
The BP methods consider the temporal dependences by describing the network over time and fine-tuning
weights as a result.

PFA-based parameter tuning model

Ultimately, the parameter tuning process is conducted using the PFA model to enhance the classification
performance of the ENN classifier®’. This model is chosen for its robust global search capability, fast convergence,
and ability to avoid local optima during optimization. This technique is inspired by the collective movement
of agents in a search space. Additionally, it demonstrates efficiency in balancing exploration and exploitation,
making it ideal for fine-tuning intrinsic models, such as ENN. Compared to conventional methods such as
grid search or other metaheuristics, namely PSO or GA, PFA illustrates better stability and solution quality in
high-dimensional spaces. Its adaptability and computational efficiency improve the overall performance of the
classification model. This results in a more accurate and reliable SLR.

PFA simulates the random behaviour and drive of the animal, which emulates its head to a neighbouring
site in search of sustenance or prey. Modifications in a leader are probable while the goal of searching is not
accomplished. The head of a group and its competitors collaborate to determine the most effective path to
the destination. Depending on the direction and force in the multidimensional region, the path’s direction is
improved. At some point, the contestant in the optimum position is considered the swarm’s head. This candidate
is specified as the Pathfinder. During these existing iterations, Pathfinder and its location are viewed as the finest
solution, and another competitor acquires it. A vector representing the movement position of competitors in
multiple sizes is employed to manage the recommended solutions. To control how the rival performs in the
exploration phase, four parameters are adjusted. Every cycle concurrently creates the vibration of competitor
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v and oscillating frequency 7. The attraction factor « fine-tunes the random area of separation, and the
communication factor ¢ upholds the movement regarding the neighbouring competitor.

Cli+Ai))=C"()- d+Ef + Ky +v (11)

The term C'indicates the vector for a position, d signifies the identity vector, K ; specifies the force that is reliant
on the position of the Pathfinder, ¢ specifies the period, and E'y is the communication that arises between dual
rivals C, and cy.

Ci(i+Ai)=Cy (i) +AC+ T (12)

The term Ac represents the value assessed by deliberating the region among the dual diverse locations of the
Pathfinder, and C'; is the vector position of the Pathfinder.

— o+1 — 0 — 0 — 0 — 0 — 0
c = ¢ 4G ¢ - ¢ |+3, ¢ - ¢ |+v (13)
f f k f J f

—
The terms 61 and @2 are dual vectors of the trajectory in arbitrary coordinates. The value of 51 =0 - q

and 52 =0 - @2, where ¢, and g2 indicate the arbitrary movement created homogeneously. The values of ¢1

— 0 — 0
and g2 range from (—1,1). Theterm C and C the vector position of dual rival f and k at the existing
k

iteration 0. The value of v is described.
v = [1 - (O/O)] p1- N03§Nos :H Cf - Ck: || (14)

The term O is the suggested maximum number of iterations, 0 specifies the existing iteration, and N, is the
separation distance between the dual rivals. The factor of attraction a and the factor of communication o
values are altered. Every rival moves randomly and independently within the region, whereas ¢ and o equal
0. Every rival stop moving and loses the path of the swarm’s head while o and a areequalto co.If o and o
are both lower than 1 and higher than 2, then an affiliate rival cannot generate an optimum solution. Thus, it is
significant that the value of o and o must be (1, 2).

— o+1 — 0 — 0 — o0o—1
C = C +2g- ¢ - c +7 (15)
J J J J

— 0 — 0
The term g3 represents an arbitrary vector of rivals. Whether the terms 61 * c - C
k f

s — 0 — 0 — 0 — o—1
and Q2 * C - C in Eq. (11) or the term 2gs - C — C become zero,

J
subsequently 7 and v can randomly move each rival with proper values through various paths. The oscillating
frequency T is calculated.

T =p2- exp (%20) (16)

The term ps signifies an arbitrary value within (—1, 1). The convergence and divergence of PFA are derived
from the values 7 and v . It can accelerate or slow down the technique. To accomplish this without diverging
among them in every iteration, values v and 7 must be (1, 2). The contestant can quickly leave their locations
without discovering a solution if either p; or p2 is beyond the range [-1, 1].

The PFA model generates a fitness function (FF) for achieving improved classification performance. It
describes a positive number to describe the better efficiency of the candidate solution. Here, the classification
rate of error reduction is designated as FF, as defined in Eq. (16).

fitness (z;) = Classifier Error Rate (z;)

__mo.of misclassified samples
Total no. of samples

x 100 (17)

Proposed methodology

The performance evaluation of the PASLR-DDPFEM technique is examined under the ASL dataset®'. The
method runs on Python 3.6.5 with an Intel Core i5-8600 K CPU, 4GB GPU, 16GB RAM, 250GB SSD, and
1 TB HDD, using a 0.01 learning rate, ReLU activation, 50 epochs, 0.5 dropout, and a batch size of 5. The
chosen dataset includes signs performed under varied conditions such as diverse hand positions, lighting, and
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Class Labels ‘ Accuy ‘ Prec, ‘ Sensy ‘ Specy ‘ Flscore | Kappa
TRAPA (70%)
L-1 98.64 82.34 82.34 99.29 82.34 82.40
L-2 98.85 84.69 85.74 99.38 85.21 85.27
L-3 98.79 83.41 85.40 99.32 84.39 84.44
L-4 98.82 84.58 84.54 99.38 84.56 84.63
L-5 98.91 85.34 86.00 99.42 85.67 85.75
L-6 98.87 85.80 85.72 99.41 85.76 85.83
L-7 98.90 86.09 85.73 99.44 85.91 85.96
L-8 98.90 84.81 86.72 99.38 85.75 85.80
L-9 98.71 82.77 82.40 99.34 82.59 82.65
L-10 98.76 83.21 84.76 99.32 83.98 84.05
L-11 98.70 85.01 80.62 99.43 82.75 82.80
L-12 98.86 85.78 83.85 99.45 84.80 84.87
L-13 98.78 83.60 85.41 99.32 84.50 84.58
L-14 98.65 83.64 80.98 99.36 82.28 82.36
L-15 98.71 83.83 81.63 99.38 82.72 82.78
L-16 98.85 84.53 86.05 99.37 85.28 85.35
L-17 98.84 83.48 87.61 99.30 85.49 85.55
L-18 98.88 86.23 84.64 99.46 85.43 85.51
L-19 98.89 87.00 83.52 99.50 85.23 85.29
L-20 98.60 82.10 80.96 99.30 81.52 81.58
L-21 98.80 84.32 85.15 99.36 84.74 84.80
L-22 98.81 84.12 85.24 99.36 84.67 84.73
L-23 98.96 86.27 86.61 99.45 86.44 86.51
L-24 98.87 86.84 83.02 99.50 84.89 84.94
L-25 98.84 84.66 85.11 99.38 84.88 84.96
L-26 98.65 81.00 85.11 99.20 83.01 83.07
Average 98.80 84.44 84.42 99.38 84.42 84.48
TESPA (30%)
L-1 98.81 84.51 84.23 99.39 84.37 84.43
L-2 98.81 83.37 86.16 99.32 84.74 84.82
L-3 98.79 85.16 83.19 99.42 84.16 84.22
L-4 98.70 82.05 84.96 99.25 83.48 83.54
L-5 98.96 86.71 87.18 99.45 86.94 87.00
L-6 98.97 84.23 87.56 99.39 85.87 85.94
L-7 98.95 86.46 85.17 99.49 85.81 85.88
L-8 98.82 83.89 86.11 99.33 84.98 85.04
L-9 98.66 85.15 82.19 99.38 83.65 83.71
L-10 98.63 80.39 85.45 99.16 82.84 82.90
L-11 98.66 83.82 80.34 99.39 82.04 82.11
L-12 98.82 85.45 84.24 99.41 84.84 84.90
L-13 98.70 81.83 83.89 99.28 82.84 82.90
L-14 98.88 86.19 83.97 99.47 85.07 85.12
L-15 98.67 84.09 82.48 99.35 83.28 83.34
L-16 98.78 83.44 84.75 99.33 84.09 84.16
L-17 98.74 83.18 83.37 99.34 83.28 83.34
L-18 99.00 87.02 86.53 99.49 86.78 86.84
L-19 98.88 85.99 84.56 99.45 85.27 85.33
L-20 98.48 80.07 81.21 99.18 80.63 80.71
L-21 98.75 83.28 82.89 99.36 83.08 83.15
L-22 98.76 84.12 83.56 99.37 83.84 83.90
Continued
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Class Labels | Accuy Prec, Sensy | Specy | pq Score | Kappa
L-23 99.03 88.76 86.15 99.56 87.44 87.51
L-24 98.94 88.12 84.05 99.54 86.04 86.10
L-25 98.83 84.88 84.97 99.39 84.93 85.00
L-26 98.50 79.33 81.82 99.16 80.55 80.62
Average 98.79 84.29 84.27 99.37 84.26 84.33

Table 3. Overall SLR outcome of PASLR-DDPFEM model at 70% TRAPA and 30%TESPA.

I Training Phase (70%)
B Testing Phase (30%)

99.3800 37
08.8008.79

B4.44gq 29  B4.42g4 37 84.42g4 26 B4 48g, 33

Accuracy Precision Sensitivity Specificity Fl-Score Kappa

Fig. 3. Average outcome of PASLR-DDPFEM model at 30%TESPA.

backgrounds, assisting the dataset capture some real-world variation in gesture appearance for robust model
training and evaluation.

In Table 3; Fig. 3, a brief overview of the overall SLR outcome for the PASLR-DDPFEM approach is presented,
covering 70% of the training phase (TRAPA) and 30% of the testing phase (TESPA). The tabulated values indicate
that the PASLR-DDPFEM methodology accurately identifies the 26 samples. The results suggest that the PASLR-
DDPFEM approach can effectively recognize the samples. For under 70% of TRAPA, the PASLR-DDPFEM
method obtains an average accuy, precn, sensy, specy, F'lscore, and Kappa of 98.80%, 84.44%, 84.42%,
99.38%, 84.42%, and 84.48%, respectively. Likewise, under 30% of TESPA, the PASLR-DDPFEM method obtains
an average acCly, PreCn, SENSy, SPECy, F'lscore, and Kappa of 98.79%, 84.29%, 84.27%, 99.37%, 84.26%, and
84.33%, respectively.

In Fig. 4, the TRA accu, (TRAAY) and validation accu, (VLAAY) analysis of the PASLR-DDPFEM
technique is illustrated. The figure highlights that the TRAAY and VLAAY values exhibit a rising trend,
indicating the model’s ability to achieve higher performance over various iterations. Additionally, the TRAAY
and VLAAY remain closer throughout an epoch, which results in minimal overfitting and optimal performance
of the PASLR-DDPFEM technique.

In Fig. 5, the TRA loss (TRALO) and VLA loss (VLALO) curve of the PASLR-DDPFEM approach is
displayed. The TRALO and VLALO analyses exemplify a decreasing trend, indicating the capacity of the PASLR-
DDPFEM approach in balancing trade-offs. The constant decrease also guarantees the enhanced performance
of the PASLR-DDPFEM model.
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Fig. 4. Accu,y curve of the PASLR-DDPFEM method.

Training and Validation Loss
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Fig. 5. Loss curve of the PASLR-DDPFEM method.

In Fig. 6, the PR graph analysis of the PASLR-DDPFEM methodology provides clarification into its results
by plotting Precision beside Recall for every class label. The steady rise in PR values across all class labels depicts
the efficacy of the PASLR-DDPFEM approach in the classification process.
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Fig. 6. PR curve of the PASLR-DDPFEM model.
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Fig. 7. ROC curve of the PASLR-DDPFEM model.

In Fig. 7, the ROC analysis of the PASLR-DDPFEM approach is examined. The results suggest that the PASLR-
DDPFEM technique achieves optimal ROC results across all classes, effectively representing the vital capacity
to distinguish between class labels. This dependable tendency of better values of ROC across several class labels
signifies the proficient efficiency of the PASLR-DDPFEM technique on predicting class labels, highlighting the

classification procedure.

To demonstrate the proficiency of the PASLR-DDPFEM technique, a comprehensive comparison study is

presented in Table 43233,
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Methodology Accuy Prec, Sensy | Specy | p 1lscore
CNN Classifier 95.54 81.69 76.33 93.95 75.21
VGG16 Method 89.00 81.59 77.28 90.94 81.33
EfficientNet V2 86.92 75.28 81.09 95.38 76.67
MobileNetV2 88.55 82.73 84.00 99.12 77.20
SignLan-Net 84.72 77.94 81.80 96.63 75.86
Faster R-CNN 95.87 78.55 76.58 97.60 77.49
Inception V3 91.66 81.84 83.95 92.09 78.24
PASLR-DDPFEM | 98.80 84.44 84.42 99.38 84.42

Table 4. Comparative study of the PASLR-DDPFEM technique with existing models.

mmm CNN Classifier [ SignLan-Net
B VGG16 Method [ Faster R-CNN
= EfficientNet V2 @ Inception V3
[ MobileNetV2 I PASLR-DDPFEM
100 -
& 95 B
n 1
] ]
= 901
s 1 .
> ] =
85 - =
80 -
75 1
70

Accuracy Precision F1-Score

Fig. 8. Accuy, precyn, and Flgcore outcome of PASLR-DDPFEM technique with existing models.

In Fig. 8, a comparative accuy, precn,and F'lscore results of the PASLR-DDPFEM technique are provided.
The results indicate that the SignLan-Net, EfficientNet V2, and MobileNetV2 methodologies have shown worse
values of accuy, precn, and F'lgcore. At the same time, the VGG16 and Inception V3 methods have achieved
slightly maximal accuy, prec,, and Flscore. Meanwhile, the Faster R-CNN and CNN methodologies have
established closer values of accuy, precn,, and F'1lscore. However, the PASLR-DDPFEM approach results in
optimal performance with accuy, precn, and Flgcore of 98.80%, 84.44%, and 84.42%, respectively.

In Fig. 9, a comparative sens, and specy results of the PASLR-DDPFEM approach are provided. The results
indicate that the CNN, Faster R-CNN, and VGG16 techniques have shown lower values of sens, and spec,.
At the same time, the EfficientNet V2 and SignLan-Net approaches have achieved slightly maximum sens, and
specy. Meanwhile, the Inception V3 and MobileNetV2 techniques have established closer values of sens, and
specy. On the other hand, the PASLR-DDPFEM model results in superior performance, with sens, and spec,
of 84.42% and 99.38%, respectively.

Table 5; Fig. 10 present the computational time (CT) analysis of the PASLR-DDPFEM approach compared to
existing methods. The CT clearly demonstrates the efficiency of the PASLR-DDPFEM approach, which records
the lowest CT of 6.34 s among all evaluated models. In contrast, conventional models like the CNN and VGG16
require 22.35 and 21.78 s, respectively, reflecting significantly higher CTs. EfficientNet V2 and Faster R-CNN
exhibit enhanced performance with CT values of 11.19 and 12.62 s, while MobileNetV2 and Inception V3
require 20.81 and 19.78 s. SignLan-Net performs well with 9.95 s, yet the PASLR-DDPFEM method outperforms
all others, presenting a reduction of over 70% in CT compared to the highest value, making it highly appropriate
for real-time applications.

Table 6; Fig. 11 present the error analysis of the PASLR-DDPFEM methodology in comparison to existing
models. The evaluation results indicate that the PASLR-DDPFEM methodology, with an accuy, of 1.20%, prec,
of 15.56%, sensy of 15.58%, specy of 0.62%, and F'lscore of 15.58%, illustrates relatively lower performance
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Fig.9. Sens, and spec, outcome of the PASLR-DDPFEM technique with existing models.

Methodology CT (sec)
CNN Classifier 22.35
VGG16 Method 21.78
EfficientNet V2 11.19

MobileNetV2 20.81
SignLan-Net 9.95

Faster R-CNN 12.62
Inception V3 19.78

PASLR-DDPFEM | 6.34

Table 5. CT analysis of the PASLR-DDPFEM approach with existing methods.

compared to other approaches. For instance, SignLan-Net demonstrates the highest accu, of 15.28% and a
robust F'lscore 0f 24.14%, while EfficientNet V2 achieves an accuy of 13.08% and a prec,, of 24.72%. Although
the PASLR-DDPFEM model maintains a consistent balance between prec, and sensy, its overall accu, and
specy remain limited. This suggests that the model may struggle to distinguish between certain sign classes
effectively, and further optimization may be necessary. The error analysis highlights the importance of deeper
feature learning and better class representation to improve recognition results.

Table 7 depicts the ablation study of the PASLR-DDPFEM technique. Without PFA tuning, the ENN with
GF preprocessing and SE-DenseNet feature extraction attained an accuy of 98.18%, prec, of 83.79%, sensy
of 83.65%, specy of 98.77%, and F'lscore of 83.71%. By combining the PFA tuning resulted with an accuy
of 98.80%, prec, of 84.44%, sens, of 84.42%, specy of 99.38%, and F'lscore Of 84.42%, highlighting the
efficiency of the tuning process in improving the overall performance.

Table 8 illustrates the computational efficiency of diverse object detection models**. The PASLR-DDPFEM
methodology exhibits the lowest Floating-Point Operations (FLOPs) at 4.09 G, minimal Graphics Processing
Unit (GPU) memory usage of 589 MB, and the fastest inference time of 1.07 s, significantly outperforming
YOLOv3-tiny-T, ShuffleNetv2-YOLOv3, YOLOv5I, and YOLOV7 in terms of both speed and resource efficiency.

Conclusion

This paper designs and develops a PASLR-DDFEM model. The aim is to enhance SLR techniques to help
individuals with hearing challenges communicate with others. Initially, the image pre-processing phase is
performed using the GF model to improve image quality by removing noise. Furthermore, the PASLR-DDPFEM
method is employed by the SE-DenseNet model for the feature extraction process. Moreover, the ENN method
is used for the SLR classification process. Finally, the parameter tuning process is performed through PFA to
improve the classification performance of the ENN classifier. An extensive set of simulations of the PASLR-
DDPFEM method is accomplished under the American SL (ASL) dataset. The comparison study of the PASLR-
DDPFEM method revealed a superior accuracy value of 98.80% compared to existing models. This method can
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Fig. 10. CT analysis of the PASLR-DDPFEM approach with existing methods.

Methodology Accuy Prec, | Sensy | Specy | Flgcore
CNN Classifier 4.46 18.31 23.67 6.05 24.79
VGG16 Method 11.00 18.41 22.72 9.06 18.67
EfficientNet V2 13.08 24.72 18.91 4.62 23.33
MobileNetV2 11.45 17.27 16.00 0.88 22.80
SignLan-Net 15.28 22.06 18.20 3.37 24.14
Faster R-CNN 4.13 21.45 2342 2.40 22.51
Inception V3 8.34 18.16 16.05 7.91 21.76
PASLR-DDPFEM | 1.20 15.56 15.58 0.62 15.58

Table 6. Error analysis of the PASLR-DDPFEM methodology with existing models.

be deployed in real-time applications due to optimized feature extraction and tuning, enabling fast and accurate
gesture recognition suitable for mobile and embedded devices. The limitations of the PASLR-DDPFEM method
comprise the dependence on a single dataset, which may restrict the generalizability of the findings across
diverse SL discrepancies and real-world conditions. Furthermore, the model’s performance could be affected by
varying lighting conditions and complex backgrounds that were not extensively addressed. The existing approach
also fails to integrate multimodal inputs, such as depth or motion data, which could enhance recognition
accuracy. Computational needs, although optimized, may still pose threats for deployment on low-resource
devices. Furthermore, user-specific adaptability and personalized learning were not explored. Addressing these
limitations could open new avenues to improve robustness, inclusivity, and practical applicability in future
research. Also, integrating multimodal cues such as facial expressions and lip movements could additionally
improve the accuracy of recognition by providing further contextual data to discrimintate similar gestures.
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Fig. 11. Error analysis of the PASLR-DDPFEM methodology with existing models.

ENN + GF + SE-Densenet (Without PFA Hyperparameter tuning process) 98.18 83.79 83.65 98.77 83.71
PASLR-DDPFEM (ENN yvith GF preprocessing and SE-DenseNet feature extraction and 98.80 84.44 84.42 99.38 84.42
PFA hyperparameter tuning process)

Table 7. Comparative performance evaluation of the PASLR-DDPFEM technique through ablation study

against existing models.

YOLOV3-tiny-T 7.20 2849 6.21
ShuffleNetv2-YOLOV3 | 42.50 2837 2.74
YOLOvs5I 108.20 3489 6.55
YOLOv7 105.00 2917 4.62
PASLR-DDPFEM 4.09 589 1.07

Table 8. Computational efficiency comparison of the PASLR-DDPFEM technique in terms of FLOPs, GPU,

and inference time.

Data availability

The data that support the findings of this study are openly available at [https://www.kaggle.com/datasets/grasskn
oted/asl-alphabet] (https:/www.kaggle.com/datasets/grassknoted/asl-alphabett), reference number [32].
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