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For many individuals, communication through sign language (SL) is the primary means of interacting 
with the world, and the potential applications of effective SL Recognition (SLR) systems are vast 
and far-reaching. SLR is a research area dedicated to the automatic analysis of hand gestures and 
other visual signs used in communication among individuals with speech or hearing impairments. 
Despite significant advancements, the automated detection and interpretation of human signs 
remain a complex and multidisciplinary challenge that is yet to be fully addressed. Recently, various 
approaches have been explored, including the application of machine learning (ML) models in SLR. 
With advancements in deep learning (DL), sign recognition systems have become more accurate 
and adaptable, helping to bridge the communication gap for individuals with hearing impairments. 
Building upon these developments, the present study introduces a novel approach by integrating 
an advanced optimization strategy with a representation learning model, aiming to improve the 
robustness, accuracy, and real-world effectiveness of SLR systems. This paper proposes a Pathfinder 
Algorithm-based Sign Language Recognition System for Assisting Deaf and Dumb People Using a 
Feature Extraction Model (PASLR-DDFEM) approach. The aim is to enhance SLR techniques to help 
individuals with hearing challenges communicate effectively with others. Initially, the image pre-
processing phase is performed by using the Gaussian filtering (GF) model to improve image quality 
by removing the noise. Furthermore, the PASLR-DDPFEM approach utilizes the SE-DenseNet model 
for feature extraction. Moreover, the Elman neural network (ENN) model is implemented for the SLR 
classification process. Finally, the parameter tuning process is performed by using the Pathfinder 
Algorithm (PFA) model to enhance the classification performance of the ENN classifier. An extensive 
set of simulations of the PASLR-DDPFEM method is accomplished under the American SL (ASL) 
dataset. The comparison study of the PASLR-DDPFEM method revealed a superior accuracy value of 
98.80% compared to existing models.
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According to the World Health Organisation (WHO), approximately 70 million people worldwide have hearing 
loss. A high number of people with hearing and speech impairments may struggle to write or read in everyday 
language1. SL is one of the non-verbal languages used by deaf people for day-to-day communication among 
themselves. SL primarily relies on gestures more than voice to convey messages, incorporating the use of facial 
expressions, finger shapes, and hand movements2. The following are the essential defects in this language: a 
limited vocabulary, difficulties in learning, and frequent hand movements. In addition to this, people who are 
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not deaf and mute are unaware of SL, while disabled people face significant problems in communicating with 
individuals3. These individuals with disabilities need to utilize a device translator for communicating with able-
bodied individuals, which is achieved through the development of glove equipment with electronic circuits and 
sensors4. Many efforts were made to create an SLR method last year. In SLR, there are two major classifications, 
namely continuous sign classification and isolated SL. The hidden Markov model (HMM) functions on 
continuous SLR, which allows the segmentation of an information stream5. The SLR design is characterized 
into two essential types depending on its input, namely vision-based and data glove-based6. Vision-based SLR 
methods use cameras to detect hand gestures. Glove-based SLR technique utilizes smart gloves to measure 
locations, velocity, orientation, and other parameters, which employ sensors and microcontrollers.

Computer vision (CV)-based SLR methods commonly depend on removing characteristics such as gesture 
detection, edge detection, shape detection, and skin colour segmentation, among others7. In recent years, the 
use of a vision-based approach has become increasingly common, utilizing input from a camera. Many of the 
studies in SLR depend on DL methods that were achieved on SLs, unlike any Indian SL8. Currently, these fields 
are gaining more popularity among scholarly experts. The past reporting work on SLR primarily depends on ML 
models. These techniques result in lower accuracy because they do not automatically remove characteristics9. 
Automatic feature engineering is the primary objective of DL methods. The idea behind this is to spontaneously 
study a group of attributes from raw information used to recognize SL by individuals with hearing loss10. A 
communication gap exists between hearing-impaired individuals and those who are speech-impaired, as well 
as the general populace. Conventional tools for bridging this gap, such as sensor-based gloves, can be costly, 
inconvenient, or limited in scope; hence, it becomes crucial for intelligent, real-time solutions to interpret SL 
naturally and accurately. DL is considered effective in this area, enabling systems to automatically learn intrinsic 
patterns in gestures and facial cues without manual feature extraction. Its success in image and sequence 
recognition makes it ideal for advancing disability detection and improving communication accessibility.

This paper proposes a Pathfinder Algorithm-based Sign Language Recognition System for Assisting Deaf 
and Dumb People Using a Feature Extraction Model (PASLR-DDFEM) approach. The aim is to enhance SLR 
techniques to help individuals with hearing challenges communicate effectively with others. Initially, the image 
pre-processing phase is performed by using the Gaussian filtering (GF) model to improve image quality by 
removing the noise. Furthermore, the PASLR-DDPFEM approach utilizes the SE-DenseNet model for feature 
extraction. Moreover, the Elman neural network (ENN) model is implemented for the SLR classification process. 
Finally, the parameter tuning process is performed by using the Pathfinder Algorithm (PFA) model to enhance 
the classification performance of the ENN classifier. An extensive set of simulations of the PASLR-DDPFEM 
method is accomplished under the American SL (ASL) dataset. The key contribution of the PASLR-DDPFEM 
method is listed below.

•	 The PASLR-DDPFEM model incorporates GF to enhance image quality and reduce noise in SL input images, 
thereby ensuring cleaner visual data. This process enhances the visibility of significant features, facilitating 
more precise feature extraction and ultimately improving the overall performance and reliability of the rec-
ognition system.

•	 The PASLR-DDPFEM method employs the SE-DenseNet-based DL approach for efficient and discriminative 
feature extraction, capturing both spatial and channel-wise data. This enhances the model’s ability to focus 
on the most relevant features, resulting in improved recognition accuracy and robustness across varying SL 
image conditions.

•	 The PASLR-DDPFEM approach utilizes the ENN technique for effective SLR classification, employing its 
feedback connections to capture temporal patterns. This enables the model to better comprehend sequential 
dependencies in sign gestures, improving classification accuracy and adaptability to dynamic inputs.

•	 The PASLR-DDPFEM methodology utilizes the PFA model to tune ENN parameters, thereby enhancing 
overall classification accuracy by efficiently exploring the solution space. This optimization improves the con-
vergence speed and stability of the ENN model, producing more reliable and precise SLR results.

•	 Thus, a novel hybrid framework is introduced which is required for ASL as it effectively handles image noise, 
captures discriminative spatial-temporal features, adapts to gesture discrepancies, and optimizes model pa-
rameters for accurate and robust recognition. This unique integration leverages the strengths of each compo-
nent to address threats in SLR. The model enhances accuracy, robustness, and adaptability, and the novelty is 
in the synergistic use of DL, recurrent networks, and metaheuristic optimization.

Literature of works
Rethick et al.11 presented an innovative model of online hand gesture detection and classification methods. CNN 
is utilized to present effective and intuitive methods of communication for individuals. The primary goal is to 
provide deaf individuals with access to real-world gesture recognition technology. This method utilizes a robust 
CNN framework, specifically designed for precise hand gesture detection, and trained on a meticulously curated 
dataset. Assiri and Selim12 developed a model by utilizing an Adaptive Bilateral Filtering (ABF) model for noise 
reduction, the Swin Transformer (ST) technique for effective feature extraction, a hybrid CNN and Bi-directional 
Long Short-Term Memory (CNN-BiLSTM) model for accurate classification, and the Secretary Bird Optimiser 
Algorithm (SBOA) for optimal hyperparameter tuning. Kumar, Reddy, and Swetha13 presented a reliable and 
real-time Hindi SL (HSL) recognition system by utilizing CNNs for spatial feature extraction and recurrent 
neural networks (RNNs) for temporal sequence modelling of hand movements and facial expressions. Harshini 
et al.14 proposed an accurate SLR system by using ML models. Specifically, the Random Forest Classifier (RFC) 
is incorporated with a conversational AI (CAI) bot powered by the Google Gemini Model (GGM). Allehaibi15 
presented a Robust Gesture SLR Utilizing Chicken Earthworm Optimiser with DL (RSLR-CEWODL) technique. 
The proposed approach utilizes the ResNet-101 method for feature extraction. For the optimum hyperparameter 
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tuning process, the projected model leverages the CEWO model. Moreover, the presented model employs a 
whale optimizer algorithm (WOA) with a deep belief network (DBN) for SLR. Kumar et al.16 introduced a new 
technique for enhancing the detection of Indian SL (ISL) by integrating Deep CNN with physically intended 
aspects. It employs the capability of DL with CNN to autonomously attain distinctive features from unprocessed 
data. This model involves a multi-stage process, in which the deep CNN gathers progressive features from 
unprocessed ISL images. In contrast, the manually intended aspects provide additional data to improve the 
recognition process. Hariharan et al.17 developed a highly accurate American SL (ASL) recognition system by 
utilizing advanced image pre-processing techniques, a modified Canny edge detection for segmentation, and a 
Modified CNN (MCNN) based on the deep Residual Network 101 (ResNet-101) architecture for classification. 
Almjally and Almukadi18 proposed an advanced SLR system that utilizes bilateral filtering (BF) for noise 
reduction, ResNet-152 for feature extraction, and a Bi-directional Long Short-Term Memory (Bi-LSTM) 
method for sequence modelling. The Harris Hawk Optimisation (HHO) technique is employed to tune the 
hyperparameters of the Bi-LSTM optimally.

Kaur et al.19 developed a real-time SL to speech conversion system by utilizing a pre-trained InceptionResNetV2 
DL technique integrated with hand keypoint extraction techniques. The model is examined by using the ASL 
dataset. Almjally et al.20 introduced a model utilizing advanced image pre-processing techniques, including 
Contrast-Limited Adaptive Histogram Equalisation (CLAHE) and Canny Edge Detection (CED). The model also 
incorporates multiple feature extractors, including ST, ConvNeXt-Large, and ResNet50, combined with a hybrid 
CNN and Bi-LSTM with Attention (CNN-BiLSTM-A) for precise classification. Jagdish and Raju21 proposed a 
technique by utilizing image processing and DL models, specifically CNN. Maashi, Iskandar, and Rizwanullah22 
presented a Smart Assistive Communication System for the Hearing-Impaired (SACHI) methodology, utilizing 
BF for noise reduction, an improved MobileNetV3 for effective feature extraction, and a hybrid CNN with a 
Bi-directional Gated Recurrent Unit and Attention (CNN-BiGRU-A) method for accurate SLR. The Attraction-
Repulsion Optimisation Algorithm (AROA) approach is used to tune the classifier’s hyperparameters optimally. 
Ilakkia et al.23 proposed a real-time ISL recognition system by utilizing DL techniques, specifically the Residual 
Network-50 (ResNet-50) architecture. Mosleh et al.24 introduced a bidirectional real-time Arabic SL (ArSL) 
translation system by utilizing transfer learning (TL) with CNNs and fuzzy string-matching techniques. Thakkar, 
Kittur, and Munshi25 presented a robust multilingual SL Translation (SLT) system by integrating advanced CV 
techniques like YOLOv5 for gesture detection, combined with Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) models for machine translation across English, Hindi, and French. The model also used 
RF classifiers with frameworks such as OpenCV and MediaPipe. Dhaarini, Sanjai, and Sandosh26 developed a 
real-time SL Detection and Assistive System (SLDAS) by utilizing advanced CV techniques and the You Only 
Look Once version 10 (YOLOv10) object detection model. Choudhari et al.27 developed a platform-independent 
web application for real-time ISL recognition by utilizing a CNN with Leaky Rectified Linear Unit (Leaky ReLU) 
activation and Adam optimizer. Table 1 summarises the existing studies on SLR systems for assisting the deaf 
and dumb.

Though the existing studies are effectual in the SLR recognition process, several approaches depend on 
limited or domain-specific datasets, mitigating generalizability across diverse SLs. Various techniques lack robust 
handling of dynamic sequences and non-manual features such as facial expressions and real-time responsiveness 
is often compromised due to intrinsic architectures or high computational overhead. Most systems lack end-to-
end bidirectional communication capabilities though the integration of DL techniques namely CNN, BiLSTM, 
and ST has illustrated promising results. A notable research gap exists in forming lightweight, scalable models 
optimized for edge deployment and cross-lingual adaptability. Furthermore, insufficient multimodal integration 
and limited interpretability in decision-making highlight further research gap in building inclusive and user-
friendly SLR platforms.

Materials and methods
This paper designs and develops a PASLR-DDFEM technique. The primary objective is to enhance SLR 
techniques to help individuals with hearing challenges communicate effectively with others. To accomplish 
this, the PASLR-DDPFEM model involves several stages, including image pre-processing, feature extraction, 
classification, and parameter tuning. Figure 1 depicts the overall working flow of the PASLR-DDPFEM model.

Dataset description
Table 2 consists of 78,000 samples with 26 classes, representing the letters A–Z31. Each image is sized at 200 × 
200 pixels, making it appropriate for training DL techniques in gesture recognition. The dataset al.so includes a 
small test set with real-world examples to promote robust model evaluation.

GF-based image pre-processing
Initially, the image pre-processing phase is performed using the GF model to enhance image quality by removing 
noise2. This model is chosen for its simplicity, efficiency, and efficiency in mitigating high-frequency noise while 
preserving crucial edge details in SL images. Unlike more complex filtering methods, the GF model presents a 
good balance between noise suppression and computational cost, making it appropriate for real-time applications. 
The technique helps improve the quality of input data without introducing distortions and also smoothens the 
image uniformly. This ensures that crucial gesture features remain intact for accurate downstream processing. 
Compared to median or bilateral filters, GF provides faster execution and consistent results. Its integration 
improves the reliability of feature extraction and overall recognition accuracy.

GF is a vital pre-processing stage in SLR for reducing noise and improving image quality while conserving 
essential features. It uses a Gaussian function to blur an image, minimizing high-frequency deviations that 
may occur due to illumination variations or sensor noise. This aids in improving feature extraction and edge 
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detection by decreasing unwanted artefacts. The filter functions by conveying advanced weights to vital pixels 
and gradually declining weights to surrounding pixels, which ensures a natural smoothing effect. In SLR, GF 
enhances hand and gesture segmentation, which makes it simpler for ML methods to identify key patterns. 
Properly adjusting the Gaussian kernel size is crucial to strike a balance between reducing noise and preserving 
detail.

SE-DenseNet-based feature extraction model
Furthermore, the PASLR-DDPFEM method involves a feature extraction process, which is executed by the SE-
DenseNet model28. This supervised DL method is chosen for its superior capability in capturing both spatial 
and channel-wise feature representations, improving the discriminative power of extracted features. The dense 
connectivity of the model promotes feature reuse. It reduces vanishing gradient issues, while the SE blocks 
adaptively recalibrate channel-wise responses, allowing the model to concentrate on the most informative 
features. Compared to conventional CNNs, SE-DenseNet presents enhanced efficiency and accuracy with 
fewer parameters. This integration yields richer feature hierarchies and improved generalization. Its integration 
ensures more robust and precise recognition of complex SL gestures under varying conditions.

DenseNet is an enhanced CNN-based model that calculates dense multiscale attributes from the object 
classifier’s convolution layer. This dense calculation of characteristics from the entire image may speed up 
training. This structure utilizes dense links, connecting the output of all layers to the input of all succeeding 
layers, thus decreasing the parameter counts and computing costs without influencing performance. The densely 

Ref. No. Objective Method Dataset Measures

Rethick et al11. To develop a real-time hand gesture recognition system to 
empower the deaf and mute community.

CNN, Real-time gesture detection, 
Custom CNN architecture, Fine-
tuning for accuracy

Diverse ASL gesture 
images (29 classes, 
87,000 images)

Accuracy of 99.11%, Real-Time 
Performance

Assiri and 
Selim12

To develop a robust hand gesture recognition system for 
helping hearing-impaired individuals. ABF, ST, CNN-BiLSTM, SBOA Traffic Police Gesture 

Dataset
Accuracy of 99.25%, 
Performance Validation

Kumar, Reddy, 
and Swetha13

To develop a real-time system for converting gestures into text 
and speech to enhance communication for the Deaf and Hard 
of Hearing community.

CNN, RNN Hindi SL Gesture 
Dataset

Accuracy, Real-Time 
Performance

Harshini et al14. To develop an SLR system for SL users in digital environments.
RF, Comparison with CNN 
and KNN, Integration with 
Conversational AI

Diverse SL Gesture 
Dataset

Accuracy of 0.9961, User 
Responsiveness

Allehaibi15 To develop a robust SLR system using optimized DL models for 
accurate gesture classification.

RSLR-CEWODL, ResNet-101, 
WOA, DBN SL Gesture Datasets Accuracy, Performance 

Evaluation

Kumar et al16. To enhance ISL recognition by integrating DL with manually 
designed features for improved accuracy and robustness. Deep CNN, DL Extensive ISL Dataset Recognition Accuracy, 

Robustness

Hariharan et 
al17. To develop an accurate ASL recognition system. MCNN, ResNet-101 ASL Hand Gesture 

Images (36 Signs)
Accuracy (97%), False Positive 
Rate (0.05%)

Almjally and 
Almukadi18

To develop an optimized DL technique for accurate and 
automatic SLR. BF, ResNet-152, Bi-LSTM, HHO SL Dataset

Precision, Recall, Accuracy, and 
F1-Score of 94.72%, 94.74%, 
98.95, and 94.72%

Kaur et al19. To develop a real-time SL-to-speech conversion system.
InceptionResNetV2 DL, Hand 
keypoint extraction, Python image 
processing, Model training with 
epochs

7200 Images, 24 
Alphabet Classes 
(Excluding ‘J’ and ‘Z’)

Training And Validation 
Accuracy

Almjally et al20. To enhance accurate and real-time SLR using an attention-
driven hybrid DL technique with feature fusion.

CLAHE, CED, ST, ConvNeXt-
Large, ResNet50, CNN-BiLSTM-A SL Dataset

Accuracy of 98.10%, Precision 
of 95.28%, Recall of 95.28%, and 
F1-Score of 95.28%

Jagdish and 
Raju21

To develop a DL-based system for accurate detection and 
recognition of SL gestures.

CNN Model Training, Sign-to-
Text Conversion, Voice Output 
Integration

SL Gesture Images Accuracy, Accessibility

Maashi, 
Iskandar, and 
Rizwanullah22

To develop an intelligent SLR system using a hybrid DL method 
to assist hearing-impaired individuals.

SACHI, MobileNetV3, CNN-
BiGRU-A, AROA ISL Dataset

Precision of 91.54%, Recall of 
93.21%, Accuracy of 99.19%, and 
F-Score of 91.87%, respectively.

Ilakkia et al23. To develop a real-time ISL recognition system to translate ISL 
gestures into text for the deaf community. DL, ResNet-50 Unique ISL Dataset Accuracy, Real-Time 

Performance

Mosleh et al24. To develop a robust, real-time, bidirectional ArSL translation 
system to enhance communication for deaf individuals. ArSL, CNN

ArSL Dataset 
and Arabic Data 
Dictionary

Accuracy, Processing Efficiency

Thakkar, Kittur, 
and Munshi25

To develop a multilingual SL translation system to facilitate 
communication between hearing, visually impaired, and 
auditory-impaired individuals.

YOLOv5, LSTM-GRU, RF, 
OpenCV & MediaPipe integration, 
Auto-tokenizer and Adam 
optimizer

Multilingual SL 
Images

Translation Accuracy, Processing 
Speed

Dhaarini, 
Sanjai, and 
Sandosh26

To develop a real-time SL Detection and Assistive System for 
deaf and mute individuals. SLDAS, CV, YOLOv10 ASL Gesture Dataset Accuracy, Real-Time 

Performance

Choudhari et 
al27.

To develop a platform-independent web-based system for real-
time ISL translation into text.

CNN, Leaky ReLU, Adam 
Optimiser

1200 Images, 
35 Classes (26 
Alphabets + 9 
Numbers)

Accuracy of 97%, Real-time 
Performance

Table 1.  Summary of existing studies on SLR systems for assisting hearing and speech-impaired individuals.
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linked architecture improves the gradients and information flow; alleviating difficulties associated with vanishing 
gradients. The DenseNet’s basic notion is to achieve powerful feature representation and gradient propagation 
by minimizing information loss, thereby increasing the system’s performance. Equation (1) is applied to signify 
the initial layer input of DenseNet.

	 xl = Hl ([x0, x1, x2, . . . , xl−1])� (1)

Hl denote a non-linear transformation function that consists of ReLU, convolutional, and batch normalization 
(BN) layers. [x0, x1, x2, . . . , xl−1] signifies coordinated output from layers 0 to layer l − 1. This structure 
typically comprises Dense-Block and Transition modules that utilize dense links and smaller parameters to 
mitigate computational complexity. The transition unit includes Pooling, BN, Convolution, and ReLU layers. 
This Transition component connects adjacent dense blocks and reduces the feature mapping size over the 
pooling layer, underscoring the significance of higher-level feature representation in improving compression 
efficacy. The DenseNet model contains 4 DenseBlock units and 3 Transition components.

Attention mechanism (AM) is a data processing model in ML, which is extensively utilized in different areas 
of DL recently. AMs are separated into mixed-domain, spatial, and channel attentions. During this work of 
channel attention, a novel framework was developed, concentrating on channel relations in CNNs and presented 

Signs Labels No. of Count Signs Labels No. of Count

A L-1 3000 N L-14 3000

B L-2 3000 O L-15 3000

C L-3 3000 P L-16 3000

D L-4 3000 Q L-17 3000

E L-5 3000 R L-18 3000

F L-6 3000 S L-19 3000

G L-7 3000 T L-20 3000

H L-8 3000 U L-21 3000

I L-9 3000 V L-22 3000

J L-10 3000 W L-23 3000

K L-11 3000 X L-24 3000

L L-12 3000 Y L-25 3000

M L-13 3000 Z L-26 3000

Total Count 78,000

Table 2.  Details of the dataset.

 

Fig. 1.  Overall working process of the PASLR-DDFEM model.
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a novel structural component named “Squeeze and Excitation” (SE) blocks, which dynamically adjusts the 
feature remarks about channels by mimicking their interdependence. They considered the nondimensionality-
decreasing local cross-channel interaction tactic and an adaptive model to select the dimensions of 1D 
convolutional kernels, thereby achieving performance growth. This study utilizes SENet for learning global 
feature information and remarkably improves the main characteristics. Initially, input X  is converted into 
feature U  using the transformation function F tr , where X ∈ Rh× w× c1  and U ∈ Rh× w× c2 ..

Then, the squeezing module Fsq  utilizes the global average pooling to condense the feature U  into 
R1× 1× c2 , demonstrating the global supply of replies on the feature networks. Formerly, Fex(• , w) creates 
weights for every feature channel utilizing parameter w. By re-weighting, the excitation output weight was 
determined as the significance of all feature channels. At last, the weights are utilized for the preceding feature 
channels to recalibrate the new features.

This study proposes an original network method, named SE-DenseNet for SLR, which primarily consists 
of four DenseBlocks, three Transitions, and three SENets. The input model is H ∈ RT × E× C . To speed up 
convergence and prevent gradient vanishing issues, this work carried out either the activation function BN or the 
process after every 2D convolution. The component in the DenseNet model presents a hyperparameter named 
growth rate, which is assigned a value of 12. This parameter controls the channel counts added in all convolutional 
layers, allowing the system to get the balance between model performance and complexity. All DenseBlocks are 
made from numerous Bottleneck layers. Every Bottleneck is created from a ReLU, a 1 × 1convolutional layer, a 
BN layer, a 3x 3 convolutional layer, a ReLU, and a BN  layer sequentially. The DenseNet network, containing 4 
DenseBlock units and 3 Transition modules, is rejected by seven successive processes: ReLU, BN layer, BN layer, 
ReLU, 1x 1 convolutional layer, Dropout layer, and 3x3 convolutional layer. The Dropout layer aims to prevent 
overfitting. Inserting SENet among Transition and DenseBlock for learning the significance of every channel and 
improving valuable performance.

ENN-based classification model
Moreover, the ENN model is employed for the SLR classification process29. This model is chosen for its 
dynamic memory capability, which effectively captures temporal dependencies in sequential data, such as SL 
gestures. This technique comprises context units that retain data from prior time steps, making it appropriate 
for recognizing patterns over time, unlike feedforward networks. This is specifically beneficial in SLR, where 
gestures follow a temporal sequence. Compared to conventional classifiers such as SVM or basic CNNs, ENN 
presents an enhanced performance on time-series data without requiring intrinsic architectures. Its ability to 
model contextual information results in more accurate and consistent classification results. Figure 2 portrays the 
structure of the ENN technique.

ENNs are an ML approach that is designed for processing time-independent data. Unlike conventional 
feedforward NNs, ENNs have relations that make managed cycles, permitting them to maintain a model of 
sequential data efficiently.

The advanced ENN consists of four layers: the input layer, denoted as i, j, representing the hidden layer 
(HL), the context layer, specified as c, and the output layer, embodied as 0. Every layer is linked utilizing weight. 
The ith layer is provided with the hydrologic inputs. The ith layer includes ten hidden neurons. The advanced 

Fig. 2.  Structure of the ENN model.
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ENN method contains a c layer that is otherwise recognized as a layer of feedback. The objective of the c layer 
is to maintain the data from the previous stage, which assists in examining the patterns from the preceding data. 
The training and functional procedure are provided as shown.

The node in this layer and the input layer are specified as:

	
x

(1)
i (n) = f

(1)
i

(
net

(1)
i (n)

)
� (2)

Whereas x
(1)
i (n) denotes the output data of the ith layer. The node in the ith layer is provided as:

	
x

(2)
j (n) = S

(
net

(2)
j (n)

)
� (3)

	
net

(2)
j (n) =

∑
i
wij × x

(1)
i (n) +

∑
k
wkj × x

(3)
k (n) j = 0,1, 2, . . . , 9, k = 0,1, 2, . . . , 9� (4)

The function of the sigmoid, S (x) = 1/1 + e − x, was utilized in NNs for mapping input values to the range 
between (0,1) that might characterize possibilities. It was distinguishable and had a basic derivative,

	 S′ (x) = S (x) (1 − S (x))� (5)

The ith layer is linked utilizing the neuron with weightings wlj, and wkj represents neuron weights. The nodes 
in these contextual layers are provided as:

	 x
(3)
k (n) = α x

(3)
k (n − 1) + x

(2)
j (n − 1)� (6)

From Eq. (6), α  refers to the gain of feedback that is located between 0 ≤ α ≤ 1. The node in the output 
layer was signified as:

	
γ

(4)
l (n) = f

(4)
l

(
net

(4)
l (n)

)
� (7)

γ
(4)
l (n) Provides the forecast output of the presented method. The weighting update of the advanced ENN-

based forecasting method occurs layer‐to‐layer; the weighted upgrade of linking neuron weight wjl is provided 
as:

	 wjl (n + 1) = wjl (n) + ξ 1∆ wjl� (8)

In a weighted update, ξ 1 characterizes the rate of training of the zero layer. The novel weight of wkj is provided 
as:

	 wkj (n + 1) = wkj (n) + ξ 2∆ wkj � (9)

In the weight update, ξ 2 embodies the rate of training of the ith layer. The novel weight of wij  is specified as:

	 wij (n + 1) = wij (n) + ξ i3∆ wij � (10)

In the weight update, ξ 3 refers to the rate of training of an input layer. The advanced ENN method was trained 
utilizing the backpropagation (BP) model, an expansion of the normal BP model applied in feedforward NNs. 
The BP methods consider the temporal dependences by describing the network over time and fine-tuning 
weights as a result.

PFA-based parameter tuning model
Ultimately, the parameter tuning process is conducted using the PFA model to enhance the classification 
performance of the ENN classifier30. This model is chosen for its robust global search capability, fast convergence, 
and ability to avoid local optima during optimization. This technique is inspired by the collective movement 
of agents in a search space. Additionally, it demonstrates efficiency in balancing exploration and exploitation, 
making it ideal for fine-tuning intrinsic models, such as ENN. Compared to conventional methods such as 
grid search or other metaheuristics, namely PSO or GA, PFA illustrates better stability and solution quality in 
high-dimensional spaces. Its adaptability and computational efficiency improve the overall performance of the 
classification model. This results in a more accurate and reliable SLR.

PFA simulates the random behaviour and drive of the animal, which emulates its head to a neighbouring 
site in search of sustenance or prey. Modifications in a leader are probable while the goal of searching is not 
accomplished. The head of a group and its competitors collaborate to determine the most effective path to 
the destination. Depending on the direction and force in the multidimensional region, the path’s direction is 
improved. At some point, the contestant in the optimum position is considered the swarm’s head. This candidate 
is specified as the Pathfinder. During these existing iterations, Pathfinder and its location are viewed as the finest 
solution, and another competitor acquires it. A vector representing the movement position of competitors in 
multiple sizes is employed to manage the recommended solutions. To control how the rival performs in the 
exploration phase, four parameters are adjusted. Every cycle concurrently creates the vibration of competitor 
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ν  and oscillating frequency τ . The attraction factor α  fine-tunes the random area of separation, and the 
communication factor σ  upholds the movement regarding the neighbouring competitor.

	 C (i + ∆i) = C0 (i) · d + Ef + KJ + ν� (11)

The term C  indicates the vector for a position, d signifies the identity vector, KJ  specifies the force that is reliant 
on the position of the Pathfinder, i specifies the period, and Ef  is the communication that arises between dual 
rivals Ck  and cf .

	 CJ (i + ∆i) = CJ (i) + ∆C + τ � (12)

The term ∆c represents the value assessed by deliberating the region among the dual diverse locations of the 
Pathfinder, and CJ  is the vector position of the Pathfinder.
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The terms 
−→
Q1 and 

−→
Q2 are dual vectors of the trajectory in arbitrary coordinates. The value of 

−→
Q1 = α · q1 

and 
−→
Q2 = σ · q2, where q1 and q2 indicate the arbitrary movement created homogeneously. The values of q1 

and q2 range from (− 1, 1). The term 
→ o

C
f

 and 
→ o

C
k

 the vector position of dual rival f  and k at the existing 

iteration 0. The value of ν  is described.

	 ν =
[
1 −

(o/
O

)]
p1 · Nos; Nos =∥ Cf − Ck ∥� (14)

The term O is the suggested maximum number of iterations, 0 specifies the existing iteration, and Nos is the 
separation distance between the dual rivals. The factor of attraction α  and the factor of communication σ  
values are altered. Every rival moves randomly and independently within the region, whereas σ  and α  equal 
0. Every rival stop moving and loses the path of the swarm’s head while σ  and α  are equal to ∞ . If α  and σ  

are both lower than 1 and higher than 2, then an affiliate rival cannot generate an optimum solution. Thus, it is 
significant that the value of α  and σ  must be (1, 2).
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The term q3 represents an arbitrary vector of rivals. Whether the terms 
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)
 become zero, 

subsequently τ  and ν  can randomly move each rival with proper values through various paths. The oscillating 
frequency τ  is calculated.

	
τ = p2 · exp

(−20
O

)
� (16)

The term p2 signifies an arbitrary value within (−1, 1). The convergence and divergence of PFA are derived 
from the values τ  and ν . It can accelerate or slow down the technique. To accomplish this without diverging 
among them in every iteration, values ν  and τ  must be (1, 2). The contestant can quickly leave their locations 
without discovering a solution if either p1 or p2 is beyond the range [− 1, 1].

The PFA model generates a fitness function (FF) for achieving improved classification performance. It 
describes a positive number to describe the better efficiency of the candidate solution. Here, the classification 
rate of error reduction is designated as FF, as defined in Eq. (16).

	 fitness (xi) = ClassifierErrorRate (xi)

	
= no. of misclassified samples

T otal no. of samples
× 100� (17)

Proposed methodology
The performance evaluation of the PASLR-DDPFEM technique is examined under the ASL dataset31. The 
method runs on Python 3.6.5 with an Intel Core i5-8600 K CPU, 4GB GPU, 16GB RAM, 250GB SSD, and 
1 TB HDD, using a 0.01 learning rate, ReLU activation, 50 epochs, 0.5 dropout, and a batch size of 5. The 
chosen dataset includes signs performed under varied conditions such as diverse hand positions, lighting, and 
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Class Labels Accuy P recn
Sensy Specy F 1Score Kappa

TRAPA (70%)

L-1 98.64 82.34 82.34 99.29 82.34 82.40

L-2 98.85 84.69 85.74 99.38 85.21 85.27

L-3 98.79 83.41 85.40 99.32 84.39 84.44

L-4 98.82 84.58 84.54 99.38 84.56 84.63

L-5 98.91 85.34 86.00 99.42 85.67 85.75

L-6 98.87 85.80 85.72 99.41 85.76 85.83

L-7 98.90 86.09 85.73 99.44 85.91 85.96

L-8 98.90 84.81 86.72 99.38 85.75 85.80

L-9 98.71 82.77 82.40 99.34 82.59 82.65

L-10 98.76 83.21 84.76 99.32 83.98 84.05

L-11 98.70 85.01 80.62 99.43 82.75 82.80

L-12 98.86 85.78 83.85 99.45 84.80 84.87

L-13 98.78 83.60 85.41 99.32 84.50 84.58

L-14 98.65 83.64 80.98 99.36 82.28 82.36

L-15 98.71 83.83 81.63 99.38 82.72 82.78

L-16 98.85 84.53 86.05 99.37 85.28 85.35

L-17 98.84 83.48 87.61 99.30 85.49 85.55

L-18 98.88 86.23 84.64 99.46 85.43 85.51

L-19 98.89 87.00 83.52 99.50 85.23 85.29

L-20 98.60 82.10 80.96 99.30 81.52 81.58

L-21 98.80 84.32 85.15 99.36 84.74 84.80

L-22 98.81 84.12 85.24 99.36 84.67 84.73

L-23 98.96 86.27 86.61 99.45 86.44 86.51

L-24 98.87 86.84 83.02 99.50 84.89 84.94

L-25 98.84 84.66 85.11 99.38 84.88 84.96

L-26 98.65 81.00 85.11 99.20 83.01 83.07

Average 98.80 84.44 84.42 99.38 84.42 84.48

TESPA (30%)

L-1 98.81 84.51 84.23 99.39 84.37 84.43

L-2 98.81 83.37 86.16 99.32 84.74 84.82

L-3 98.79 85.16 83.19 99.42 84.16 84.22

L-4 98.70 82.05 84.96 99.25 83.48 83.54

L-5 98.96 86.71 87.18 99.45 86.94 87.00

L-6 98.97 84.23 87.56 99.39 85.87 85.94

L-7 98.95 86.46 85.17 99.49 85.81 85.88

L-8 98.82 83.89 86.11 99.33 84.98 85.04

L-9 98.66 85.15 82.19 99.38 83.65 83.71

L-10 98.63 80.39 85.45 99.16 82.84 82.90

L-11 98.66 83.82 80.34 99.39 82.04 82.11

L-12 98.82 85.45 84.24 99.41 84.84 84.90

L-13 98.70 81.83 83.89 99.28 82.84 82.90

L-14 98.88 86.19 83.97 99.47 85.07 85.12

L-15 98.67 84.09 82.48 99.35 83.28 83.34

L-16 98.78 83.44 84.75 99.33 84.09 84.16

L-17 98.74 83.18 83.37 99.34 83.28 83.34

L-18 99.00 87.02 86.53 99.49 86.78 86.84

L-19 98.88 85.99 84.56 99.45 85.27 85.33

L-20 98.48 80.07 81.21 99.18 80.63 80.71

L-21 98.75 83.28 82.89 99.36 83.08 83.15

L-22 98.76 84.12 83.56 99.37 83.84 83.90

Continued
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backgrounds, assisting the dataset capture some real‑world variation in gesture appearance for robust model 
training and evaluation.

In Table 3; Fig. 3, a brief overview of the overall SLR outcome for the PASLR-DDPFEM approach is presented, 
covering 70% of the training phase (TRAPA) and 30% of the testing phase (TESPA). The tabulated values indicate 
that the PASLR-DDPFEM methodology accurately identifies the 26 samples. The results suggest that the PASLR-
DDPFEM approach can effectively recognize the samples. For under 70% of TRAPA, the PASLR-DDPFEM 
method obtains an average accuy , precn, sensy , specy , F 1score, and Kappa of 98.80%, 84.44%, 84.42%, 
99.38%, 84.42%, and 84.48%, respectively. Likewise, under 30% of TESPA, the PASLR-DDPFEM method obtains 
an average accuy , precn, sensy , specy , F 1score, and Kappa of 98.79%, 84.29%, 84.27%, 99.37%, 84.26%, and 
84.33%, respectively.

In Fig.  4, the TRA accuy  (TRAAY) and validation accuy  (VLAAY) analysis of the PASLR-DDPFEM 
technique is illustrated. The figure highlights that the TRAAY and VLAAY values exhibit a rising trend, 
indicating the model’s ability to achieve higher performance over various iterations. Additionally, the TRAAY 
and VLAAY remain closer throughout an epoch, which results in minimal overfitting and optimal performance 
of the PASLR-DDPFEM technique.

In Fig.  5, the TRA loss (TRALO) and VLA loss (VLALO) curve of the PASLR-DDPFEM approach is 
displayed. The TRALO and VLALO analyses exemplify a decreasing trend, indicating the capacity of the PASLR-
DDPFEM approach in balancing trade-offs. The constant decrease also guarantees the enhanced performance 
of the PASLR-DDPFEM model.

Fig. 3.  Average outcome of PASLR-DDPFEM model at 30%TESPA.

 

Class Labels Accuy P recn
Sensy Specy F 1Score Kappa

L-23 99.03 88.76 86.15 99.56 87.44 87.51

L-24 98.94 88.12 84.05 99.54 86.04 86.10

L-25 98.83 84.88 84.97 99.39 84.93 85.00

L-26 98.50 79.33 81.82 99.16 80.55 80.62

Average 98.79 84.29 84.27 99.37 84.26 84.33

Table 3.  Overall SLR outcome of PASLR-DDPFEM model at 70%TRAPA and 30%TESPA.
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In Fig. 6, the PR graph analysis of the PASLR-DDPFEM methodology provides clarification into its results 
by plotting Precision beside Recall for every class label. The steady rise in PR values across all class labels depicts 
the efficacy of the PASLR-DDPFEM approach in the classification process.

Fig. 5.  Loss curve of the PASLR-DDPFEM method.

 

Fig. 4.  Accuy  curve of the PASLR-DDPFEM method.
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In Fig. 7, the ROC analysis of the PASLR-DDPFEM approach is examined. The results suggest that the PASLR-
DDPFEM technique achieves optimal ROC results across all classes, effectively representing the vital capacity 
to distinguish between class labels. This dependable tendency of better values of ROC across several class labels 
signifies the proficient efficiency of the PASLR-DDPFEM technique on predicting class labels, highlighting the 
classification procedure.

To demonstrate the proficiency of the PASLR-DDPFEM technique, a comprehensive comparison study is 
presented in Table 432,33.

Fig. 7.  ROC curve of the PASLR-DDPFEM model.

 

Fig. 6.  PR curve of the PASLR-DDPFEM model.
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In Fig. 8, a comparative accuy , precn, and F 1score results of the PASLR-DDPFEM technique are provided. 
The results indicate that the SignLan-Net, EfficientNet V2, and MobileNetV2 methodologies have shown worse 
values of accuy , precn, and F 1score. At the same time, the VGG16 and Inception V3 methods have achieved 
slightly maximal accuy , precn, and F 1score. Meanwhile, the Faster R-CNN and CNN methodologies have 
established closer values of accuy , precn, and F 1score. However, the PASLR-DDPFEM approach results in 
optimal performance with accuy , precn, and F 1score of 98.80%, 84.44%, and 84.42%, respectively.

In Fig. 9, a comparative sensy  and specy  results of the PASLR-DDPFEM approach are provided. The results 
indicate that the CNN, Faster R-CNN, and VGG16 techniques have shown lower values of sensy  and specy . 
At the same time, the EfficientNet V2 and SignLan-Net approaches have achieved slightly maximum sensy  and 
specy . Meanwhile, the Inception V3 and MobileNetV2 techniques have established closer values of sensy  and 
specy . On the other hand, the PASLR-DDPFEM model results in superior performance, with sensy  and specy  
of 84.42% and 99.38%, respectively.

Table 5; Fig. 10 present the computational time (CT) analysis of the PASLR-DDPFEM approach compared to 
existing methods. The CT clearly demonstrates the efficiency of the PASLR-DDPFEM approach, which records 
the lowest CT of 6.34 s among all evaluated models. In contrast, conventional models like the CNN and VGG16 
require 22.35 and 21.78 s, respectively, reflecting significantly higher CTs. EfficientNet V2 and Faster R-CNN 
exhibit enhanced performance with CT values of 11.19 and 12.62  s, while MobileNetV2 and Inception V3 
require 20.81 and 19.78 s. SignLan-Net performs well with 9.95 s, yet the PASLR-DDPFEM method outperforms 
all others, presenting a reduction of over 70% in CT compared to the highest value, making it highly appropriate 
for real-time applications.

Table 6; Fig. 11 present the error analysis of the PASLR-DDPFEM methodology in comparison to existing 
models. The evaluation results indicate that the PASLR-DDPFEM methodology, with an accuy  of 1.20%, precn 
of 15.56%, sensy  of 15.58%, specy  of 0.62%, and F 1score of 15.58%, illustrates relatively lower performance 

Fig. 8.  Accuy , precn, and F 1score outcome of PASLR-DDPFEM technique with existing models.

 

Methodology Accuy P recn
Sensy Specy F 1Score

CNN Classifier 95.54 81.69 76.33 93.95 75.21

VGG16 Method 89.00 81.59 77.28 90.94 81.33

EfficientNet V2 86.92 75.28 81.09 95.38 76.67

MobileNetV2 88.55 82.73 84.00 99.12 77.20

SignLan-Net 84.72 77.94 81.80 96.63 75.86

Faster R-CNN 95.87 78.55 76.58 97.60 77.49

Inception V3 91.66 81.84 83.95 92.09 78.24

PASLR-DDPFEM 98.80 84.44 84.42 99.38 84.42

Table 4.  Comparative study of the PASLR-DDPFEM technique with existing models.
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compared to other approaches. For instance, SignLan-Net demonstrates the highest accuy  of 15.28% and a 
robust F 1score of 24.14%, while EfficientNet V2 achieves an accuy  of 13.08% and a precn of 24.72%. Although 
the PASLR-DDPFEM model maintains a consistent balance between precn and sensy , its overall accuy  and 
specy  remain limited. This suggests that the model may struggle to distinguish between certain sign classes 
effectively, and further optimization may be necessary. The error analysis highlights the importance of deeper 
feature learning and better class representation to improve recognition results.

Table 7 depicts the ablation study of the PASLR-DDPFEM technique. Without PFA tuning, the ENN with 
GF preprocessing and SE-DenseNet feature extraction attained an accuy  of 98.18%, precn of 83.79%, sensy  
of 83.65%, specy  of 98.77%, and F 1score of 83.71%. By combining the PFA tuning resulted with an accuy  
of 98.80%, precn of 84.44%, sensy  of 84.42%, specy  of 99.38%, and F 1score of 84.42%, highlighting the 
efficiency of the tuning process in improving the overall performance.

Table 8 illustrates the computational efficiency of diverse object detection models34. The PASLR-DDPFEM 
methodology exhibits the lowest Floating-Point Operations (FLOPs) at 4.09 G, minimal Graphics Processing 
Unit (GPU) memory usage of 589 MB, and the fastest inference time of 1.07 s, significantly outperforming 
YOLOv3-tiny-T, ShuffleNetv2-YOLOv3, YOLOv5I, and YOLOv7 in terms of both speed and resource efficiency.

Conclusion
This paper designs and develops a PASLR-DDFEM model. The aim is to enhance SLR techniques to help 
individuals with hearing challenges communicate with others. Initially, the image pre-processing phase is 
performed using the GF model to improve image quality by removing noise. Furthermore, the PASLR-DDPFEM 
method is employed by the SE-DenseNet model for the feature extraction process. Moreover, the ENN method 
is used for the SLR classification process. Finally, the parameter tuning process is performed through PFA to 
improve the classification performance of the ENN classifier. An extensive set of simulations of the PASLR-
DDPFEM method is accomplished under the American SL (ASL) dataset. The comparison study of the PASLR-
DDPFEM method revealed a superior accuracy value of 98.80% compared to existing models. This method can 

Methodology CT (sec)

CNN Classifier 22.35

VGG16 Method 21.78

EfficientNet V2 11.19

MobileNetV2 20.81

SignLan-Net 9.95

Faster R-CNN 12.62

Inception V3 19.78

PASLR-DDPFEM 6.34

Table 5.  CT analysis of the PASLR-DDPFEM approach with existing methods.

 

Fig. 9.  Sensy  and specy  outcome of the PASLR-DDPFEM technique with existing models.
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be deployed in real-time applications due to optimized feature extraction and tuning, enabling fast and accurate 
gesture recognition suitable for mobile and embedded devices. The limitations of the PASLR-DDPFEM method 
comprise the dependence on a single dataset, which may restrict the generalizability of the findings across 
diverse SL discrepancies and real-world conditions. Furthermore, the model’s performance could be affected by 
varying lighting conditions and complex backgrounds that were not extensively addressed. The existing approach 
also fails to integrate multimodal inputs, such as depth or motion data, which could enhance recognition 
accuracy. Computational needs, although optimized, may still pose threats for deployment on low-resource 
devices. Furthermore, user-specific adaptability and personalized learning were not explored. Addressing these 
limitations could open new avenues to improve robustness, inclusivity, and practical applicability in future 
research. Also, integrating multimodal cues such as facial expressions and lip movements could additionally 
improve the accuracy of recognition by providing further contextual data to discrimintate similar gestures.

Methodology Accuy P recn Sensy Specy F 1Score

CNN Classifier 4.46 18.31 23.67 6.05 24.79

VGG16 Method 11.00 18.41 22.72 9.06 18.67

EfficientNet V2 13.08 24.72 18.91 4.62 23.33

MobileNetV2 11.45 17.27 16.00 0.88 22.80

SignLan-Net 15.28 22.06 18.20 3.37 24.14

Faster R-CNN 4.13 21.45 23.42 2.40 22.51

Inception V3 8.34 18.16 16.05 7.91 21.76

PASLR-DDPFEM 1.20 15.56 15.58 0.62 15.58

Table 6.  Error analysis of the PASLR-DDPFEM methodology with existing models.

 

Fig. 10.  CT analysis of the PASLR-DDPFEM approach with existing methods.
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Data availability
The data that support the findings of this study are openly available at ​[​h​t​t​p​s​​:​/​/​w​w​w​​.​k​a​g​g​l​​e​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​g​r​a​s​s​k​n​
o​t​e​d​/​a​s​l​-​a​l​p​h​a​b​e​t​]​(​h​t​t​p​s​:​/​w​w​w​.​k​a​g​g​l​e​.​c​o​m​/​d​a​t​a​s​e​t​s​/​g​r​a​s​s​k​n​o​t​e​d​/​a​s​l​-​a​l​p​h​a​b​e​t​t​)​, reference number [32].
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Methods FLOPs (G) GPU (M) Inference Time (sec)

YOLOv3-tiny-T 7.20 2849 6.21

ShuffleNetv2-YOLOv3 42.50 2837 2.74

YOLOv5I 108.20 3489 6.55

YOLOv7 105.00 2917 4.62

PASLR-DDPFEM 4.09 589 1.07

Table 8.  Computational efficiency comparison of the PASLR-DDPFEM technique in terms of FLOPs, GPU, 
and inference time.

 

Methodology Accuy P recn
Sensy Specy F 1Score

ENN + GF + SE-Densenet (Without PFA Hyperparameter tuning process) 98.18 83.79 83.65 98.77 83.71

PASLR-DDPFEM (ENN with GF preprocessing and SE-DenseNet feature extraction and 
PFA hyperparameter tuning process) 98.80 84.44 84.42 99.38 84.42

Table 7.  Comparative performance evaluation of the PASLR-DDPFEM technique through ablation study 
against existing models.

 

Fig. 11.  Error analysis of the PASLR-DDPFEM methodology with existing models.
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