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We study a proof-of-concept workflow that reformulates planar inverse kinematics (IK) for robotic 
manipulators as a Quadratic Unconstrained Binary Optimization (QUBO) using a linear binary 
discretization of joint angles and one-hot (big-M) constraints, and then solves the QUBO with 
quantum annealing on D-Wave hardware. We (i) define and report time-to-solution (TTS) rigorously, (ii) 
evaluate solution accuracy back in the original IK space via end-effector error and feasibility of one-hot 
constraints, and (iii) analyze embedding choices on Pegasus/Zephyr. On the tested two-link planar IK 
instances, Global Embedding on Zephyr uses fewer physical qubits and yields shorter access times than 
alternatives (see Tables 1,2), and a hybrid quantum-classical solver achieves lower TTS than classical 
QUBO baselines at larger Q sizes (see Figure 6). These results do not claim superiority over state-of-
the-art continuous IK solvers; rather, they demonstrate that an IK-to-QUBO mapping can be executed 
on current quantum annealing systems with quantified accuracy and runtime, clarifying where such an 
approach may be useful as hardware improves.

Inverse Kinematics (IK) maps task–space targets to joint–space configurations for robotic manipulators. While 
closed–form solutions exist for some geometries, general IK is typically non–convex and solved numerically. 
With good initial guesses, local methods–e.g., gradient–based solvers, SQP, or related techniques–perform 
well1–3; without such guesses, global search can be desirable. Mixed–integer convex programming (MICP) offers 
a principled way to address local minima and to integrate IK with other constraints4, but worst–case runtimes can 
be prohibitive as the number of integer variables grows, limiting practicality for larger, time–sensitive problems.

Many robotics problems exhibit NP–hard characteristics, motivating approximation and heuristic approaches 
when exact solutions are computationally prohibitive5–8. In parallel, quantum computing has emerged as an 
alternative computational paradigm with potential advantages for certain classes of optimization problems9–11. 
Quantum annealing (QA), implemented in devices such as D-Wave’s quantum annealers17, provides hardware–
assisted sampling of low–energy configurations in QUBO/Ising models.

This paper studies a proof-of-concept workflow that reformulates planar IK as a binary Quadratic 
Unconstrained Binary Optimization (QUBO): we discretize joint angles via a linear binary approximation and 
enforce one–hot selections with quadratic penalties. The resulting QUBO is solved using QA, and decoded joint 
angles are evaluated back in the original IK space. Our goals are to (i) characterize runtime with a formal time–
to–solution (TTS) metric, (ii) quantify solution quality in IK space (end–effector error and one–hot feasibility), 
and (iii) study embeddings on Pegasus/Zephyr hardware. The pipeline follows the stages illustrated in Fig. 1.

Scope and claims. We position this work as a hardware-validated, reproducible baseline for IK → QUBO 
on current annealers. Throughout this paper, all time-to-solution (TTS) comparisons are performed within 
the QUBO-solver family (QA, SA, PROTES, hybrid). We intentionally do not compare against continuous IK 
solvers (e.g., TRAC-IK, SQP-based methods), and we therefore do not claim any runtime advantage over state-
of-the-art continuous IK algorithms. Our goal is instead to quantify the behavior of different QUBO solvers on 
the same IK→QUBO formulation.

Motivation
Casting IK into a binary optimization model provides access to mature algorithms and hardware ecosystems 
tailored to QUBO/Ising forms, including QA. Theoretically, QA can exhibit advantages over classical simulated 
annealing (SA) for certain energy landscapes13, and empirical reports show instance-dependent benefits 
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on practical problems14,20. Devices like D-Wave’s annealers17 additionally enable hybrid quantum–classical 
workflows that interleave QPU sampling with classical improvement steps.

However, binary reformulation introduces design choices that directly affect fidelity to the original IK 
objective: (i) discretization (choice of angle grids) and (ii) penalty design (enforcing one–hot feasibility). Our 
study makes these trade-offs explicit and measurable: we give a safe penalty-setting recipe (Section 3.5), evaluate 
decoded solutions in IK space (Section "IK-Space solution quality"), and use a consistent TTS definition for all 
solvers (Section "Time-to-Solution (TTS) Metric").

Novelty
The novelty is an end-to-end, accuracy-aware, hardware-validated IK → QUBO pipeline. Concretely, we:

•	 implement a linear binary discretization with one–hot penalties for planar IK and run it on real QA hard-
ware17;

•	 adopt a penalty design that preserves one–hot feasibility while limiting objective distortion (Section 3.5);
•	 evaluate with formal TTS and IK–space accuracy rather than energy alone (Sections "IK-Space solution qual-

ity"–"Time-to-Solution (TTS) Metric");
•	 study embeddings/topologies (Pegasus, Zephyr) and discuss solver behavior, including non-monotonic SA 

TTS on these instances (Section 4.6).

Fig. 1.  Workflow for solving inverse kinematics using quantum annealing: Translating joint angle equations 
into QUBO/Ising models, embedding them on a D-Wave quantum processor17, and decoding the quantum 
solution into actionable results.

 

Logical Qubits tGP  (ms) tCP  (ms) tGZ  (ms) tCZ (ms)

10 584.4 648.76 413.3 534.5

12 602.2 878.16 415.2 542.1

14 611.4 878.16 490.1 552.5

16 635.76 889.56 566.5 552.5

18 618.3 1013.31 492.9 560.1

20 540.0 1016.7 413.8 567.7

Table 2.  Average QPU access time for different embedding techniques in Pegasus and Zephyr (ms).

 

Logical Qubits NGP NCP NGZ NCZ

10 15 20 12 30

12 20 36 20 36

14 27 42 24 42

16 35 48 31 48

18 41 54 35 54

20 50 60 42 60

Table 1.  Average physical qubits for different embedding techniques in Pegasus and Zephyr.
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This reframing responds to reviewer requests for rigor and scope, positioning the work as a reproducible baseline 
rather than a claim of end-to-end dominance over continuous IK.

Contributions

	1.	 IK → QUBO with rigorous metrics. A complete pipeline for planar IK with formal TTS and IK–space accu-
racy (end-effector error, one-hot feasibility), executed on D-Wave hardware17.

	2.	 Penalty-design guideline. A practical, norm-based recipe for setting the one-hot penalty to ensure feasibil-
ity without excessive objective warping (Section 3.5).

	3.	 Embedding study. An empirical comparison of embeddings/topologies (Global vs. Clique; Pegasus vs. 
Zephyr) showing when Global/Zephyr is most qubit-efficient for our dense (but non-clique) IK QUBOs.

	4.	 Runtime behavior analysis. A discussion of when hybrid solvers reduce QUBO-level TTS and why SA can 
show non-monotonic (“zig-zag”) TTS with problem size on these instances (Section 4.6), while noting ICE 
effects when relevant.

Paper structure
The paper is organized as follows: Section “Quantum Annealing” provides an overview of Quantum Annealing 
in D-Wave quantum processing unit (QPU), discussing the principles and mechanisms underlying the quantum 
annealing process. Section "Inverse kinematics as a QUBO" introduces QUBO, formulating the IK problem 
within the framework of Quantum Unconstrained Binary Optimization. Section "Empirical results and analysis 
for solving IK using quantum annealing" presents Empirical Results and Analysis for Solving IK Using Quantum 
Annealing. Section "Limitations and shortcomings" discusses Limitations and Shortcomings. Finally, Section 
“Conclusions” concludes the paper with a summary of key contributions and future research directions.

Quantum annealing
Let us consider a quadratic unconstrained binary optimization (QUBO) problem:

	
minimize

x

∑
i

aixi +
∑
i>j

bijxixj , � (1)

where xi ∈ {0, 1} are binary optimization variables, ai are biases and bij  are coupling weights of the 
optimization problem. This type of problem can be efficiently solved by quantum annealing (QA).

Quantum annealing is a heuristic method for solving combinatorial optimization problems, particularly 
binary optimization, by controlling a quantum system. It evolved from classical simulated annealing (SA)16 but 
replaces thermal fluctuations with quantum fluctuations to drive state transitions as shown in Fig. 2. Kadowaki 
and Nishimori pioneered this approach13, implementing it using a transverse Ising model where a time-varying 
transverse field acts analogously to temperature changes in SA, aiming for faster convergence to optimal states. 
This requires special hardware that can support quantum annealing, such as D-Wave’s Advantage quantum 
processing unit (QPU). It also limits the optimization problems to the form that can be embedded in the given 
QPU; for example, D-Wave’s QPU are limited to the problems that can be cast as a QUBO18.

One can see quantum annealing as a process with two stages. The first stage involves embedding the problem 
and initializing the QPU by mapping logical binary variables to physical qubits (potentially requiring multiple 
linked qubits to represent one variable) and configuring couplings to match the QUBO structure. The system is 
initialized in a superposition state with all possible configurations equally likely through a transverse magnetic 
field. The values of the qubits of the QPU are linked with the values of the binary variables in the original problem; 
the coupling between qubits is linked with the coupling weights of the original problem, and the external flux 
bias is linked with the weights of the original problem. On the second stage, the system undergoes controlled 
quantum evolution: the transverse field is gradually reduced while the problem Hamiltonian (encoding the 
QUBO) is increased, allowing the system to explore low-energy states quantum-mechanically and settle into 
an optimal or near-optimal configuration. Lastly, we read the state of the QPU and recover the solution to the 

Fig. 2.  Schematic representation of the adiabatic quantum annealing process, illustrating how a system 
transitions from an initial, relatively simple potential landscape to a more complex one while quantum 
fluctuations are gradually reduced. The red arrows denote quantum tunneling events, through which the 
system can escape local minima and ultimately converge on the global minimum energy configuration.
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original problem. The rest of the section describes these stages in more detail. Fig. 3 gives an illustration of the 
described process.

Embedding QUBO
The QUBO problem must be mapped to the physical hardware graph of the quantum processor. Since D-Wave’s 
Pegasus architecture has limited connectivity (each qubit connects to 15 others at most), complex QUBO 
interactions require minor embedding. This involves: (1) Identifying the problem’s logical graph structure, (2) 
Finding subgraphs (chains) in the hardware graph that can represent single logical variables, and (3) Setting 
strong ferromagnetic couplings (Jchain < 0) between chained qubits to ensure they remain correlated.

Annealing
Ising Hamiltonian that represents the embedded optimization problem during quantum annealing can be 
written as19:

	
H(s) = −A(s)

2
∑

i

σ(i)
x + B(s)

2

(∑
i

hiσ
(i)
z +

∑
i>j

Jijσ(i)
z σ(j)

z

)

where:

•	 Jij  is the coupling strength between qubits i and j (related to bij  in the QUBO formulation);
•	 hi is the external flux bias for qubit i (related to ai in the QUBO formulation);
•	 σ

(i)
x , σ

(i)
z  are Pauli matrices operating on the qubit i in the x and z directions, respectively;

•	 s ∈ [0, 1] is the annealing parameter representing the evolution of the system from the initial state s = 0 to 
the final state at s = 1.

At s = 0, the system is in the quantum ground state dominated by Hinitial (A(0) ≫ B(0)). As s progresses, A(s) 
decreases while B(s) increases, transitioning the system into a classical regime. At s = 1, the final Hamiltonian 
describes a classical Ising spin model.

Fig. 3.  Overview of the quantum annealing workflow for solving Quadratic Unconstrained Binary 
Optimization (QUBO) problems: (1) QUBO formulation argmin xT Qx with binary variables xi ∈ {0, 1} 
and conversion QUBO into graph (Ising model) (2) Hardware components (qubits, couplers) and minor 
graph embedding, (3) Programming and initialization of annealing parameters (A(t): transverse field, B(t): 
longitudinal field, J(t): coupling strength), (4) Quantum annealing dynamics evolving spins from quantum 
superposition to classical states, (5) Readout and mapping of optimal spin configurations to binary solution x. 
This overview illustrates how QUBO problems are solved via quantum annealing in Fig. 1, demonstrating the 
inverse Ising mapping process from combinatorial optimization to physical quantum implementation. Figure 
adapted from15 and edited by us.
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For Solving the IK, it must first be converted into a QUBO formulation. This is then transformed into 
an Ising model. Afterward, by applying minor embedding, we embed the IK problem onto the Pegasus and 
Zephyr topologies. The Quantum Annealing process in the D-Wave QPU aims to find the ground state of Hp, 
corresponding to the optimal solution of the optimization problem. By starting with a known ground state of 
Hinitial and evolving the system adiabatically through H(s), the process converges to the ground state of Hp, 
thereby solving the problem efficiently. The entire pipeline, as depicted in the Fig. 1, is followed to decode the 
results into the required joint angles.

Inverse kinematics as a QUBO
Linear binary approximation
We introduce a binary selector vector q ∈ Bm, for which one and only one of its elements qi ∈ {0, 1} is equal 
to 1:

	

m∑
i=1

qi = 1. � (2)

Given a sequence of angles 0 ≤ φ1 < φ2 < ... < φm ≤ 2π we can find associated values of the trigonometric 
functions cos(φ) and sin(φ) and arrange them as elements of a vector:

	 t1 = [c1 ... cm]T , ci = cos(φi), � (3)

	 t2 = [s1 ... sm]T , si = sin(φi); � (4)

we call t1, t2 value vectors. With that, we can introduce a linear binary approximation (LBA) of the cosine and 
sine functions:

	 cos(φ) ≈ tT
1 q, & sin(φ) ≈ tT

2 q. � (5)

LBA is exact for the angles φi that were used to compute elements of the value vectors t1, t2. For any selector 
vector q the fundamental identity holds:

	 (tT
1 q)2 + (tT

2 q)2 = 1. � (6)

For the two-link case, the full selector vector consists of two disjoint one-hot blocks of size m, each enforcing 
selection of a single candidate angle per joint.

Inverse kinematics of a planar serial linkage
Consider a planar kinematic chain with n links connected via rotary joints. Let the length of the j-th link be lj  
and its orientation in the global frame be defined by the angle φj . Then the Cartesian coordinates (r1, r2) of the 
end effector placed at the end of the n-th link are given by the following expression:

	
r1 =

n∑
j=1

lj cos(φj), r2 =
n∑

j=1

lj sin(φj). � (7)

To find angles φ∗
j  corresponding to the desired position r∗

1 , r∗
2  of the end-effector we solve the following 

optimization problem:

	
φj = argmin

φj

(r∗
1 −

n∑
j=1

lj cos(φj))2 + (r∗
2 −

n∑
j=1

lj sin(φj))2 � (8)

This represents an inverse kinematics (IK) problem cast as a nonconvex optimization with continuous variables. 
In the next subsection, we approximate it as a quadratic binary optimization problem.

Inverse kinematics as a QUBO
To approximate the IK problem described in the last subsection, we use n linear binary approximations 
cos(φj) ≈ tT

1 qj  and sin(φj) ≈ tT
2 qj , each associated with its selector vector qj ∈ Bm. Concatenation of all 

selector vectors is denoted as q̄ = [qT
1 , . . . qT

n ]T .
For convenience, we define vector d = [l1, . . . ln]T . The resulting optimization problem takes the form:

	
minimize

q̄

2∑
k=1

(
q̄T

(
(ddT ) ⊗ (tktT

k )
)
q̄ − 2rk (d ⊗ tk)T q̄

)
� (9)

where ⊗ is a Kronecker product.
To ensure that every vector qj  abides by the selector constraints (2) we introduce a big-M penalty function 

p(qj):
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	 p(qj) = M(1T
mqj − 1)2 � (10)

where 1m ∈ Rm is a vector of ones and M >> 0 is a sufficiently big number. With big-M penalty, the 
optimization takes the form:

	

minimize
q̄

2∑
k=1

(
q̄T

(
(ddT ) ⊗ (tktT

k )
)
q̄ − 2rk (d ⊗ tk)T q̄

)

+ M
(
q̄T

(
I ⊗ (1m1T

m)
)
q̄ − 2(1m ⊗ 1m)T q̄

) � (11)

Note that the constant components of the cost function are omitted, as they do not influence the optimal choice 
of the decision variable, denoted as q̄. The resulting problem is formulated as a Quadratic Unconstrained Binary 
Optimization (QUBO), which is compatible with quantum annealer hardware, such as the D-Wave Advantage. 
This problem will be embedded into a specific topology for an Ising model, where the variables in the QUBO are 
mapped (i.e. minor embedded31) to physical qubits, as illustrated in Fig. 4.

In our IK formulation, the big-M penalty is used exclusively to enforce two independent one-hot constraints: 
selecting exactly one angle from the first n candidate angles (joint 1) and exactly one angle from the second n 
candidate angles (joint 2). Since all angle candidates lie within fixed joint limits, the maximum possible difference 
between any candidates is bounded by 2π. Therefore, the required M is a small constant that does not grow with 
problem size. This ensures that the penalty does not distort the objective landscape and preserves the fidelity of 
the IK→QUBO mapping, unlike general big-M constructions that may require exponentially large constants.

Highter-order inverse kinematics problems
Only a subset of inverse kinematics problems resolves to a QUBO form under the proposed linear binary 
approximation. Instead, the resulting problem will take a form of a higher-order unconstrained optimization 
(HUBO), unless a different approximation is used. HUBO problems cannot be solved by the quantum annealer 
hardware directly, but they can be approximated by a larger (in terms of the number of variables) QUBO 
problems sharing the same global minimum25–28,42.

Empirical results and analysis for solving IK using quantum annealing
All experiments are based on the same family of planar Two-Linked IK instances and the same linear binary 
encoding of joint angles. Each link has unit length (L1 = L2 = 1), and the desired end-effector position (gx, gy) 
is chosen inside the reachable annulus of the manipulator.

For a given problem size m ∈ {5, . . . , 10}, each joint angle is discretized into m equidistant samples 
φi = 2π(i − 1)/m, i = 1, . . . , m, and represented by a one-hot binary vector x(k) ∈ {0, 1}m for joint 

Fig. 4.  Mapping a Two-Linked IK problem graph onto a quantum annealer’s hardware architecture–
highlighting the embedding of a densely connected problem graph (left) onto the physical qubit connectivity 
of a D-Wave quantum processing unit (right). The yellow arrows illustrate the correspondence between 
logical nodes and their mapped qubits, while the red and green edges represent couplings between qubits 
in the hardware graph. The white nodes on the left figure and the right figure represent zeroes in the QUBO 
and Ising formulations, respectively, while the yellow and blue nodes represent ones in the QUBO and Ising 
formulations, respectively.

 

Scientific Reports |         (2026) 16:4244 6| https://doi.org/10.1038/s41598-025-34346-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


k ∈ {1, 2}. The corresponding unit direction vectors are precomputed as hx = (sin φi)i and hy = (cos φi)i, 
and used to construct the quadratic cost in the workspace coordinates.

The continuous objective ∥p(θ1, θ2) − g∥2
2 is then approximated by a quadratic form in the binary variables, 

E(x) = x⊤Qx + const, where the block-structured matrix Q ∈ R2m×2m is obtained from H = hxh⊤
x + hyh⊤

y  
together with additional diagonal and off-diagonal penalties that (i) enforce the one-hot constraint for each joint 
and (ii) encode the linear terms induced by the target coordinates (gx, gy). This construction yields a dense, 
but not fully connected, QUBO of logical size 2m, matching the implementation used to generate the matrices 
submitted to the D-Wave solvers.

To evaluate the performance of solving IK problem reformulated into a QUBO model using quantum 
annealing, two embedding strategies–Global Embedding and Clique Embedding32–were systematically 
analyzed. These methods were evaluated for their effectiveness in mapping the problem onto quantum annealing 
hardware. Specifically, the analysis focused on physical qubit utilization and quantum processing unit access 
times, leveraging two state-of-the-art hardware topologies: “Pegasus29 and “Zephyr30”. The IK problem addressed 
was a Two-Linked Inverse Kinematics problem. Problem sizes ranged from m = 5 to m = 10, corresponding to 
10 to 20 logical qubits. Each instance of the QUBO problem required a matrix size of 2m × 2m, necessitating 
2m logical qubits to accurately represent the problem.

•	 Global Embedding: A general-purpose embedding tool which models all constraints collectively and maps 
the aggregate onto the QPU graph. This approach typically uses fewer qubits and shorter chains, making it 
more efficient for smaller problems.

•	 Clique Embedding: A specialized embedding technique optimized for fully connected QUBOs.

The IK problem is not fully connected but exhibits dense connectivity, with the number of connections 
approximated as 3

2 m.
Two quantum annealing hardware topologies were considered:

•	 Pegasus Topology (Advantage System 4.1): Capable of embedding fully connected QUBOs with up to 177 
logical qubits.

•	 Zephyr Topology (Advantage Prototype 2.6): Supports embedding fully connected QUBOs with up to 80 
logical qubits, featuring higher local connectivity compared to Pegasus.

Qubit usage analysis
The analysis began with the number of physical qubits required to represent logical variables under different 
embedding techniques and topologies. Table 1 presents the average physical qubit usage for various problem 
sizes and embedding strategies. The columns represent:

•	 NGP : Global Embedding on Pegasus
•	 NCP : Clique Embedding on Pegasus
•	 NGZ : Global Embedding on Zephyr
•	 NCZ : Clique Embedding on Zephyr

We observe that NGZ  is the most efficient in terms of physical qubit usage. The results are the average of multiple 
tests conducted for each embedding technique and topology.

QPU access time analysis
In Table 2, we present the average QPU access times for each embedding strategy. The columns represent:

•	 tGP : Global Embedding on Pegasus
•	 tCP : Clique Embedding on Pegasus
•	 tGZ : Global Embedding on Zephyr
•	 tCZ : Clique Embedding on Zephyr

The results show that tGZ  was the best-performing configuration, aligning with the findings from the qubit usage 
analysis. Global Embedding is better suited for this problem because the QUBO is not fully connected. Global 
Embedding required fewer physical qubits compared to Clique Embedding, particularly for larger problem sizes. 
For smaller problem sizes, the dense local connectivity of the Zephyr topology provided a slight advantage in 
embedding efficiency. Clique Embedding exhibited longer QPU access times due to its general-purpose nature, 
whereas Global Embedding achieved faster programming but required manual optimization.

Large-scale QUBOs
For large-scale problem instances that exceed the limitations of purely quantum solvers, we utilize the D-Wave 
Hybrid Solver Service (HSS). This hybrid solver integrates quantum annealing with classical optimization 
techniques to efficiently process QUBO problems that are too large to be embedded directly on the QPU. The 
overall workflow is illustrated in Fig. 5.

Mathematical Structure. Let Q ∈ Rn×n denote the QUBO matrix. The hybrid solver extends the principles 
of the open-source qbsolv algorithm by decomposing Q into smaller subproblems that fit on the QPU37. For a 
subset of variable indices S ⊆ {1, . . . , n}, let QS  denote the restriction of Q to rows and columns in S, and let 
xS  be the corresponding partial assignment.

Given a current full assignment x ∈ {0, 1}n, the subproblem optimized at iteration t is the conditional sub-
QUBO
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	 ESt (xSt ; xS̄t
) = x⊤

St
QSt xSt + 2x⊤

St
QSt,S̄t

xS̄t
, � (12)

where S̄t is the complement of St. This formulation fixes variables outside St, enabling the subproblem to 
remain small enough to be embedded onto the QPU.

Hybrid Optimization Loop. The hybrid solver iteratively refines the global solution using a combination of 
classical neighborhood selection, quantum subproblem optimization, and classical postprocessing: 

	1.	 Neighborhood selection. A subset St is chosen using heuristics such as energy-based gradients, constraint 
violations, or tabu memories. This selects a promising region of variables to optimize jointly.

	2.	 Quantum refinement. The restricted QUBO QSt  is embedded onto the QPU, where quantum annealing 
generates K low-energy samples {x

(k)
St

}K
k=1.

	3.	 Classical postprocessing. Each quantum sample is merged with the fixed variables: 

	 x(k) = (x(k)
St

, xS̄t
).

	 Classical local search (hill climbing, steepest descent, and tabu search) is then applied to refine x(k) and reduce 
the global energy E(x(k)).

	4.	 Update step. The next iterate is chosen as 

	
xt+1 = arg min

k
E(x(k)),

	 and neighborhood-selection heuristics are updated accordingly.

This scheme can be seen as a large-neighborhood search where quantum annealing acts as a specialized optimizer 
for selected subregions, while classical heuristics manage global coordination, decomposition, and refinement.

Fig. 5.  Structure of a hybrid solver in D-Wave’s hybrid solver service. Adapted from38.
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Algorithm 1.  Hybrid QA–classical optimization loop

This hybrid strategy enables the solver to handle QUBO instances with thousands of variables–well beyond 
the direct embedding capacity of the QPU–while still leveraging the quantum annealer’s ability to efficiently 
explore low-energy regions of complex energy landscapes.

In Fig. 6, the difference in time-to-solution (TTS) among Quantum Annealing (QA), Simulated Annealing 
(SA)39,40, and the Probabilistic Tensor Train Sampler (PROTES), which employs probabilistic sampling from 
a probability density function represented in a low-parametric tensor train format41, is illustrated (In these 
experiments, number of executed samples in SA and QA were 5000, while the PROTES number of allowed 
requests to the objective function–was set to 2000). For a QUBO instance of size 900 × 900 (corresponding 
to 2900 possible solutions), QA demonstrates a speedup of more than 30 times compared to classical methods. 
SA attains the exact optimal QUBO energy for all tested sizes and always produces IK-correct solutions. QA 
applied to the 500 × 500 QUBO typically achieves the second-lowest energy, yet still returns IK-correct joint 
configurations. In contrast, PROTES/TT applied to the 300 × 300 QUBO does not produce any IK-correct 
solution: its lowest-energy configurations violate one-hot consistency or result in significantly larger workspace 
errors. Therefore, all TTS values in Fig. 6 reflect the time required to obtain an IK-correct solution.

The results in Fig. 6 emphasize the significant advantage of the Hybrid D-Wave Solver in reducing time-to-
solution for practical, large-scale optimization problems. The hybrid approach effectively combines the strengths 
of quantum and classical techniques, making it a robust solution for tackling computationally intensive QUBO 
instances. However, its performance is limited by the overhead and variability introduced by integrating these 
two components, which means that for certain problems it may not achieve the optimal solution. Reliance on 
classical processing can restrict the overall speedup and may prevent consistently achieving the global optimum.

IK-space solution quality
While Fig. 6 compares solver performance in terms of time-to-solution (TTS), it is crucial to verify that the 
returned binary vectors correspond to valid joint configurations in the original IK space. For each solver, we 
therefore evaluate the following: 

	1.	 One-hot feasibility. Each joint angle is represented by a one-hot block. We validate that each block contains 
exactly one active element. Any violation indicates that the big-M penalty failed to enforce angle selection.

	2.	 End-effector accuracy. After decoding the joint angles (φ1, φ2), we evaluate the forward-kinematics posi-
tion p(φ1, φ2) and compute the workspace error 

	 ∥p(φ1, φ2) − g∥2.

	 A solution is classified as IK-correct if both one-hot constraints are satisfied and the error is within the discreti-
zation tolerance implied by the angular grid.

Fig. 6.  Mean time-to-solution (TTS) for Quantum Annealing (QA), Simulated Annealing (SA), and PROTES/
TT on large-scale two-link IK QUBO instances. A result is counted as successful only if it is IK-correct 
(satisfies both one-hot constraints and yields end-effector accuracy within the discretization tolerance). SA 
always finds the exact optimal QUBO energy. QA, when applied to the 500 × 500 QUBO, typically finds the 
second-best energy but still yields IK-correct angles. PROTES/TT fails to produce an IK-correct solution for 
the 300 × 300 QUBO.
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Across all QUBO sizes tested in Fig. 6 (from 100 × 100 up to 900 × 900), SA consistently attains the optimal 
QUBO energy (as verified using an exact classical solver), and its decoded joint angles are always IK-correct.

QA produces IK-correct solutions across the entire range of QUBO sizes; however, beginning at QUBO sizes 
of approximately 500 × 500 and above, QA typically returns the second-best QUBO energy due to the Integrated 
Control Errors (ICE) effect. Specifically, the dynamic range of h and J  values may be limited by integrated 
control errors (ICE). Instead of finding low-energy states for an optimization problem defined by h and J  as in 
equation 13, the quantum processing unit solves a slightly altered problem that can be modeled as:

	
Eδising(s) =

N∑
i=1

(hi + δhi)si +
N∑

i=1

N∑
j=i+1

(Ji,j + δJi,j)sisj , � (13)

where δhi and δJi,j  characterize the errors in the parameters hi and Ji,j , respectively33. Because δh and δJ  are 
summed over N , fidelity limitations tend to have a greater effect on performance for full-QPU-sized problems, 
for a given dynamic range and distribution of h and J . This can result in slightly different solutions compared to 
the ideal case. Despite this slight energy deviation, the decoded angles remain fully IK-correct and yield the same 
end-effector position as SA within discretization accuracy. In contrast, PROTES begins to lose IK correctness 
once the QUBO size exceeds approximately 300 × 300. For QUBO dimensions larger than this threshold, TT’s 
lowest-energy configurations either violate one-hot feasibility or produce noticeably larger workspace errors. 
Consequently, TT does not yield IK-correct solutions for the larger QUBO sizes reported in Fig. 6.

Time-to-Solution (TTS) metric
To compare stochastic solvers on a common runtime scale, we use the standard time-to-solution (TTS) 
metric. For each solver, a single run has a measured wall-clock time trun (including all overheads such as 
QPU programming, annealing, and readout for QA, and CPU overhead for classical solvers). A run is deemed 
successful if it returns an IK-correct solution (Sec. 4.4) whose QUBO energy is at most a reference value Eref, 
chosen as the SA optimum, verified where possible using an exact classical solver. Let psucc denote the empirical 
success probability.

Assuming independence between runs, the expected number of repetitions needed to achieve at least one 
success with confidence 1 − δ is

	
NTTS(δ) = log δ

log(1 − psucc) . � (14)

We fix δ = 0.01 (99% confidence), and define

	 TTS = NTTS(0.01) trun. � (15)

The curves in Fig. 6 report the mean TTS across all two-link IK instances of a given QUBO size. This metric 
accounts for both the wall-clock cost and the probability of obtaining an IK-correct solution.The TTS curve for 
simulated annealing (SA) is not strictly increasing; in particular, the TTS at QUBO size 400 × 400 is slightly 
lower than at 300 × 300. From our definition for TTS in eq 15 with trun essentially constant across these sizes, 
this simply means that the empirical success probability psucc of SA is slightly higher at 400 than at 300. In other 
words, for our IK-derived instances SA finds the ground state more frequently at size 400, so the expected time 
to solution is lower, even though the problem is nominally larger. This is not contradictory: the difficulty of SA 
is governed by the detailed energy landscape (barrier structure, number and width of attraction basins), which 
changes non-monotonically with the discretization parameter that defines each QUBO, and small local reversals 
of TTS between neighboring sizes are therefore expected and not interpreted as a fundamental complexity 
effect44–46.

Limitations and shortcomings
Unlike general mixed-integer IK reformulations, our use of big-M for one-hot angle selection does not require 
large constants and does not contribute to objective warping. Additionally, while quantum annealing offers 
compelling advantages for IK optimization, this work faces several constraints inherent to current quantum 
hardware and methodological choices: 

	1.	 Hardware Limitations:

•	 Qubit scarcity: The D-Wave QPU’s limited qubit count (∼5,000 qubits in Advantage systems) and sparse 
connectivity restrict problem size. For m = 20 (requiring 60 physical qubits), scaling to m > 150 be-
comes infeasible due to embedding overhead.

•	 Noise and errors: Integrated Control Errors (ICE) alter the effective Ising Hamiltonian (Eq. 12), causing 
deviations from optimal solutions.

	2.	 Approximation Trade-offs: The linear binary approximation (LBA) introduces discretization errors for 
non-sampled angles φ /∈ {φi}. High-resolution approximations increase QUBO size quadratically.

	3.	 Scalability of Embedding: Global Embedding exhibits quadratic growth in physical qubits (NGZ ∝ N2). 
For N = 60, NGZ  exceeds 150 qubits—straining current QPUs.
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	4.	 Problem Applicability: The QUBO reformulation applies only to planar serial linkages. Complex kinemat-
ics yield higher-order optimizations (HUBO) requiring non-trivial reductions.

	5.	 Hybrid Solver Overhead: The 30× speedup relies on classical heuristics, introducing latency without global 
optimality guarantees.

Conclusions
The application of quantum annealing to IK problem, reformulated as a QUBO, demonstrates the potential of 
quantum computing for complex optimization in robotics. Among embedding strategies, Global Embedding on 
Zephyr proved most efficient, offering lower physical qubit usage and faster QPU access times. Hybrid quantum-
classical approaches achieved over 30-fold speedups. As discussed in Section "Limitations and shortcomings", 
future work will address hardware-aware embedding optimizations, error mitigation for ICE, and efficient 
HUBO-to-QUBO conversions.

Data availability
Researchers may request access to the data from the corresponding author, Hadi Salloum (H.S.), and such re-
quests will be reviewed individually to ensure appropriate and secure data usage.
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