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Abstract

We propose a fault-tolerant artificial pancreas architecture for type 1 diabetes
management that leverages advanced artificial intelligence (AI) methods. The
system combines a step-forward predictive controller with a type-3 fuzzy logic
system (FLS) in a dual-loop structure, augmented by a real-time sensor fault
detection and compensation unit. The fault detection unit uses fuzzy prediction
to estimate and correct sensor fault coefficients, thereby mitigating the impact
of corrupted glucose measurements. Closed-loop stability is established through
Lyapunov-based analysis, which informs the design of the adaptive compensator.
Performance was evaluated using simulation studies on a modified Bergman
model that incorporates patient variability and external disturbances. Results
show that the proposed Al-based controller achieves greater robustness, adapt-
ability, and fault tolerance compared with conventional control approaches. These
findings demonstrate the promise of integrating predictive control with fuzzy logic
for reliable intelligent healthcare systems, offering new opportunities for safe and
effective Al-driven solutions in biomedical engineering.

Keywords: Artificial intelligent pancreasType 3 fuzzy systemSensor faultType 1
diabetesLyapunov analysis



1 Introduction

1.1 General overview

According to the International Diabetes Federation (IDF), an estimated 537 million
people worldwide were living with diabetes as of 2021. The number of people affected
is expected to grow to 745 million by 2045. People with type 1 diabetes must take in-
sulin regularly. This is because their bodies don’t make insulin, and without it, their
blood glucose can become dangerously high or low, leading to health problems. An
artificial pancreas (AP), a crucial tool for managing type 1 diabetes, is comprised of
three key elements: a sensor for real-time blood glucose monitoring, a controller that
dictates insulin dosage, and a pump that administers the insulin. So far, several meth-
ods have been proposed for designing an artificial pancreas. Most existing approaches
design controllers based on a specific model of the insulin-glucose dynamics in pa-
tients with type 1 diabetes, without accounting for potential sensor failures or faults.
Fewer designs have been made in the field based on input-output information that is
important in practice. The following will examine the common control methods for
regulating blood glucose in type 1 diabetic patients [1, 2].

1.2 Literature review

Although numerous control methodologies are proposed in the literature, the robust-
ness of these systems against sensor faults remains largely unexplored. The design
of AP typically involves the use of two primary categories of control algorithms:
those considered classical and those considered intelligent. For example, the PID pre-
sented in [3] details a specific implementation of the classic approach. To regulate
blood glucose levels based on the Bergman model; both sliding mode control and its
fractional-order variant have been implemented, coupled with a nonlinear observer
[4]. A model predictive control methodology, as demonstrated in [5], was applied to
manage blood glucose levels, specifically addressing hyperglycemic and hypoglycemic
events, utilizing real data. A predictive control strategy, incorporating an estimator for
the complete state vector, is developed in [6]. In the domain of intelligent controller de-
sign, the ability to adapt to system uncertainties is crucial. One approach, detailed in
[7], involves dynamically identifying these uncertainties and subsequently adapting the
controller’s parameters based on the identified model. In [8], a significant advancement
in insulin-glucose control was achieved through online FLS-based identification, oper-
ating without reliance on a predefined model. This identification process enabled the
creation of a type-2 FLS-based predictive controller, which outperformed conventional
control techniques. In [9], T3-FLS was employed for online identification, which was
then integrated with a predictive controller designed around the steady-state behavior
of the control signal. The study assessed the system’s effectiveness when subjected to
disturbances, noise, and uncertainties. Hardware redundancy, as demonstrated in [10],
provides a method for identifying sensor faults within AP system design. A key ben-
efit in hypoglycemia prevention was demonstrated in [11], where researchers utilized
a specialized dynamic time warping technique for signal synchronization, alongside a



Savitzky-Golay filter to enable real-time derivative estimation during principal compo-
nent analysis. In order to function reliably in noisy environments, the algorithm of [12]
includes methods for both fault identification and performance upkeep. To preserve
the optimal operational state of control systems, contemporary studies have exten-
sively explored methods for detecting sensor failures in fault-tolerant designs [13]. In
[14], a method based on T3-FLSs and predictive control has been designed to sen-
sor fault detection, which focuses on online sensor fault identification. However, this
method is highly sensitive to disturbances entering the system. Furthermore, in [15],
an active sensor fault compensation strategy based on Type-3 fuzzy predictive control
is proposed. This approach utilizes a control term to actively compensate for sensor
errors. However, the method exhibits sensitivity to external disturbances, and both
the predictive controller and the adaptive compensator are prone to divergence, which
can potentially lead to system instability.

Model Predictive Control (MPC) has evolved into a widely recognized advanced con-
trol technique applicable to diverse control challenges [16]. As a result, the design of
fault-tolerant control (FTC) systems based on predictive strategies has emerged as a
significant and rapidly evolving research focus [17]. MPC-based fault-tolerant control
strategies are generally categorized into passive and active approaches. Passive tech-
niques integrate anticipated faults as static constraints during the MPC design phase,
neglecting online fault information [18]. Consequently, the necessity to accommodate
a wide range of hypothetical faults renders these methods less effective for real-
scenarios. In contrast to passive methods, active fault-tolerant predictive controllers
explicitly utilize real-time fault data to modify the optimization problem inherent in
model predictive control. In [19], a multiple-model strategy is employed to develop
active fault-tolerant nonlinear model predictive control. This method’s strength lies
in its ability to decrease the online computational, however, its practical application
is hindered by implementation difficulties. Addressing the constraints of practical im-
plementation, researchers have proposed leveraging FLSs, as detailed in [20], [21].
These techniques employ real-time control signal computation, with fault information
supplied by an integrated fault detection and isolation system. In [22], a predictive
controller is utilized for the real-time detection and correction of sensor faults. This
technique relies on the plant’s model. In[23], a dynamic approach is proposed to micro-
grid reconfiguration that operates in real-time. This method employs a dual-controller
strategy: an initial predictive controller guides the system’s outputs towards set-point
targets, followed by a second controller dedicated to performing the reconfiguration.
Researchers have increasingly focused on intelligent fault detection methodologies to
the safety and reliability of systems [24].

The integration of intelligent techniques based on fuzzy system concepts has gained
significant traction in the design of acceleration control systems, as researchers increas-
ingly seek flexible and model-independent approaches. For example, in [25], optimized
type 2 fuzzy models have been used through metaheuristic methods such as cuckoo
search and flower pollination. This approach has shown significant performance im-
provement compared to conventional type 1 fuzzy methods in surface process control.
In [26], the actuator fault problem in a class of nonlinear systems was investigated us-
ing type 2 fuzzy logic controllers. The parameters of the fuzzy system were optimized



through genetic metaheuristic techniques combined with a pollination algorithm. In
[27], for the development of fault detection structures in control systems, fuzzy type
1 and type 2 systems have been investigated. In this approach, the performance eval-
uation of fuzzy type 1 and type 2 controllers with the harmony search algorithm has
been used for optimization. In [28], the control problem of a two-level reservoir system
under actuator error is studied using the harmonic search algorithm in combination
with type 2 fuzzy logic. The results show that the performance of the control system
with type 2 fuzzy systems is better than that of type 1 fuzzy systems. In [29], fuzzy
logic-based control has been used to manage multivariable nonlinear systems in the
presence of actuator and sensor errors. The proposed approach has been validated
on a four-tank control system. In [30], the superior effectiveness of intelligent control
methods compared to classical controllers is investigated. Also, in [31], the design of
fuzzy logic-based control systems using different metaheuristic algorithms was com-
pared in terms of their performance.

This paper investigates the application of intelligent techniques for both control system
design and sensor fault detection. A concise summary of prevalent control strategies
employed in type-1 diabetes management is presented in Table 1 for clarity.

1.3 Research gap

Our Literature Review shows that many methods investigated for controlling type-1
diabetes utilize linear models, which may not accurately represent the complex, non-
linear dynamics of the insulin-glucose dynamics. Many existing techniques rely on
comprehensive model data and access to all internal states. However, in real-world sce-
narios, we often only have access to the system’s output. Consequently, a methodology
that functions solely on output measurements offers a significant practical benefit. Tra-
ditional control strategies often rely on pre-defined models for sensor fault detection, a
process typically conducted offline. In the design of control systems in general and the
insulin-glucose control system in type 1 diabetes, the use of low-order fuzzy systems
has been shown to have less accuracy than T3-FLSs in the presence of uncertainty,
noise, and disturbance. Therefore, the use of T3-FLSs can have greater improvements
in design. This approach is vulnerable to inaccuracies stemming from real-world uncer-
tainties. Implementing an online sensor fault identification method offers a significant
advantage by adapting to these dynamic conditions. In this paper, a generalized ap-
proach to control structure design and sensor fault identification is developed, where
implementation is-not constrained by the particular system model or sensor dynam-
ics. The increasing application of intelligent techniques in the modeling and control
of nonlinear systems is a prominent trend in contemporary research. Building upon
the preceding analysis, this study presents a control framework that utilizes a T3-FLS
model for dynamic blood glucose level assessment, a steady-state control algorithm,
a step-forward predictive strategy, an adaptive stabilizer to maintain closed-loop sta-
bility, and an auxiliary structure similar to the main structure. A concise summary of
prevalent control strategies employed in type-1 diabetes management is presented in
Table 1 for clarity.



Table 1: A review of control schemes and research gaps for controlling glucose in
subjects with type 1 diabetes.

Number of Reference

Control schemes

Gaps in the research

3]

32], [4]

[10]

[11]

[12]

Classic scheme (PID)

Classic scheme (Sliding
Mode Control)

Classic scheme (MPC)

Intelligent scheme (Type 2
fuzzy scheme)

Intelligent scheme (Type 3
fuzzy scheme)

Classic scheme (Adaptive
scheme)

Classic scheme
(Data-Driven)

Classic scheme (MPC)

e offline scheme

e Predefined model-based
design

e Not considering sensor
failure

o offline scheme

e Not considering sensor
failure

e Predefined model-based
design

o offline scheme

e Predefined model-based
design

e Not considering sensor
failure

e Weakly uncertain
modeling

e Non-transparent
asymptotic stability

e Non-obvious stability
proof

e Not considering sensor
failure

e Non-transparent
asymptotic stability

e Non-obvious stability
proof

e Not considering sensor
failure

e Hardware redundancy

e Model-based design

e Passive scheme

e Offline scheme

e Offline scheme

Continued on next page



Table 1: A review of control schemes and research gaps for controlling glucose in

subjects with type 1 diabetes. (Continued)

e Passive scheme

[14] Intelligent scheme (Type 3 e Non-transparent
fuzzy scheme) asymptotic stability
e Non-obvious stability
proof
e Sensitivity to
disturbance
[15] Intelligent scheme (Type 3 e Non-transparent
fuzzy scheme) asymptotic stability

e Sensitivity to
disturbance

e Controller divergence
probability

1.4 Main contributions

The superior capabilities and accuracy of T3-FLSs compared to lower-level FLSs are
well documented. In this article, we consider a control structure that takes advantage
of these advantages. The proposed control system is based on an online approximation
of the nonlinear dynamic output of the insulin-glucose metabolism, which includes
a steady-state controller, a proportional controller, a step-forward predictive con-
troller to arrive at optimal performance, and an adaptive stabilizer for the closed-loop
structure. Finally, a summary of the key contributions is:

This study proposes a novel artificial pancreas system that integrates a fuzzy identi-
fier, a step-forward predictive controller, an adaptive compensator, and a dedicated
sensor fault detection module within a unified control framework.

A new T3-FLS is introduced for the real-time estimation of blood glucose levels,
enabling the system to handle higher levels of uncertainty and imprecision compared
to conventional FLSs.

An auxiliary loop, mirrering the primary control structure, is designed for real-
time detection and compensation of sensor faults using a T3-FLS based predictor,
enhancing system robustness under faulty measurements.

Lyapunov-based stability analysis is conducted for the entire closed-loop system, in-
cluding both the primary and auxiliary compensators, ensuring reliable and provably
stable glucose regulation.

The proposed methodology is extensively tested against practical disturbances, in-
cluding sensor faults, unknown and time-varying patient parameters, meal-induced
glucose excursions, and other external perturbations.

The proposed control framework demonstrates potential for broader application to
other systems with similar uncertainty characteristics, extending its utility beyond
artificial pancreas design.



This paper proceeds with the following structure. Nonlinear and fuzzy modeling of
insulin-glucose dynamics is presented in Section 2. This part encompasses the pro-
posed model, the closed-loop control with structures, and the implementation of a
T3-FLSs to represent the identification of the system. Following this, Section 3 puts
forth a step-forward predictive controller derived from the model detailed in Section
2. Sensor fault diagnosis process, built upon a T3-FLS based predictor, is developed
in Section 4. Section 5 presents the stability analysis of the integrated control frame-
work. The corresponding simulation results are discussed in Section 6. Finally, the
main conclusions are outlined in Section 7.

2 Nonlinear and fuzzy modeling of insulin-glucose
dynamics in type 1 diabetes

This section presents nonlinear dynamics and fuzzy modelling of the insulin and glu-
cose metabolism. Subsequently, it provides an overview of T3-FLS with applications.
Finally, the problem formulation utilizing T3-FLSs and control structures is presented
in general terms and with details of signals.

2.1 Glucose-Insulin Mathematical Model in Type-1 Diabetes

Bergman’s model is a well-accepted representation of insulin-glucose dynamics. To
illustrate the effectiveness of the procedure presented in this article, we will use
Bergman’s model, which is provided below [33]:

d?T(tt) = —(p1 + (1)) g(t) + pags + kgrra(t)

d%f) = —pax(t) + ps(L(t) — Iv)

%Ef) = kf[b + bel(t) (1>
d(gt(t) = —kUr(t) + ul(t)

i%t.) = —c1 (r1(t) — d)

dT‘Q(t) o

— = e (ra(t) = ra(t))

This model includes patient-specific positive constants pi, p2, 3, g, kgr, Ip, Ey,
bs, ks, c1, and co. The dynamic variables are: glucose level (g, mg/dl), insulin level
(I,mU/L), remote insulin level (x,mU/L), injected insulin (u, mU/min), glucose ab-
sorption and metabolism (r1l,72), meal glucose content (d,mg), and subcutaneous
insulin (U1, mU). Notably, ¢g(t) is the output.



2.2 Problem formulation

Recognizing the limitations of lower-order FLSs, the development of T3-FLSs has
emerged as a strategy for performance enhancement in recent literature [34]. The
literature offers various examples, such as the modeling and control systems [35],
modelling of Hot Strip Mill system[36], Modeling of nonlinear systems of the Takagi-
Sugeno form [37], modelling and control of nonlinear time delay systems[38], modelling
of mathematical functions[39, 40]. Also in Robot control system, T3-FLSs play a
significant role [41]. Due to the characteristics of T3-FLSs in dealing with uncertainty,
this specific type of FLS is used in this paper for modeling, identifying, and diagnosing
sensor faults. Figure 1 and Figure 2 show the control structure in general and in
detail. For fuzzy modeling of the uncertain and nonlinear of the insulin and glucose
metabolism, the following model is considered:

O1(t) = Gr (2 ()1%:(1) + i (1) @

O1(t) = Gr (21(DIB1(8)) +wa(t) + Mi(t) = Gr* (21 ()| (8) + wa (1)
- O =010+F@)O0 ()
Oa(t) = Ga (=2(1) 92(t) ) + ua(t)

Og(t) =Gy (Zg(t)|(i)2(t)> + Ug(t) + Mg(t) =Gy (Zg(t)lq)g(t)) + ’U,g(t)

where O1(t) and Os(t) are the estimated value of the modified output and sensor
output, O;(t) and Oy(t) are the modified output and sensor output, F'(¢) is the coeffi-

3)
4)

(
) (
(t ()
(

6)

cient proportional to sensor fault, Gy (zl (t)@l(t)) and G (2'2 (t)@g(t)) are the main

and auxiliary IT3-FLS, G1" (21(¢)|®](?)) and G2" (22(t)|®5(?)) are the FLSs with real
parameters ®3(¢) and ®5(t), M1(t) and Mo (t) are approximation error, ®1(¢) and

d,y(t) are the adjustable vectors of the Gy (zl( )| @y (¢t )) and Gs ( o(t )\@2( )), z1(t)

and z3(t) are the inputs of Gy (zl (t)|<i>1(t)> and Gy (zz(t)|<i>2(t)) which are defined
as below:

2t) = [z (), z12(8), s 21a(8)]" (7)
2 (t) = [221(8), 222(0), 0y 220(1)]" (8)
where, z1; = [O1(t — (i — 1)7), ui(t — zT)]T, z9; = [Oa2(t — (i — 1)7), ua(t — iT)]Ta T
and n are the sampling time and sample numbers, u(t) and us(t) are the control

signals. The main and auxiliary controllers are assumed as follows:

u(t) = uss1(t) + upr (t) + uer (t) + ticoma (t) 9)
U9 (t) = Ugs2 (t) + Up2 (t) + Ue2 (t) + Ucom?2 (t) (10)
The overall control inputs, denoted as u1(t) and uq(t), are formed by the summation
of several distinct components. These include the steady-state control signals (uss1 ()



and wus1(t)), the outputs of the proportional controllers (u.(t) and wea(t), the con-
tributions from the step-forward predictive controllers (up1(t) and up2(t)), and the
signals generated by the adaptive compensators (Ucom1(t) and ucom2(t)). As depicted
in Figure 1 and Figure 2, the presented structure integrates a suite of control and
identification elements. This includes two steady-state controllers, a two-step forward
predictive controller, two proportional controllers, two adaptive compensators, two
T3-FLS based identifiers, and a sensor fault detection unit. A main identifier plays a
crucial role in providing online estimates of the system’s true output. Following the
fuzzification of input variables, a set of fuzzy rules is applied to classify them. Ul-
timately, this process yields a numerical output from the FLS, achieved through a
three-step fuzzification procedure. Figure 3 illustrates the components of the main
fuzzy identifier. Also, Figure 4 shows the general structure of the T3-FLS. It’s im-
portant to recognize that the auxiliary control setup within the inner loop operates
under similar conditions to the primary control structure. Controllers operating in
steady-state and step-forward predictive controllers are developed utilizing the out-
puts of these FLSs. Furthermore, a T3-FLS is employed in the sensor fault detection
unit, where its output serves as a step forward prediction for sensor fault estimation.
Finally, two main and auxiliary adaptive compensators will be extracted by Lyapunov
stability analysis to ensure the asymptotic stability of the inner and main loops. Fol-
lowing the definition of the inputs in (7) and (8), the domain of input variable is
modeled using two Interval Type-3 Fuzzy Sets fl{ (i=1,..,n,5 =1,2). Memberships
for each input are determined to be [14, 15]:

B —(21i — C/:iqj)Q
Kii = €xp — (11)

Uu
—(215 — ¢ 9)°
i o
In which fiz; and p i are upper and lower membership functions, o, and o; are upper

width and lower width of A7 . by defining:

(ﬂfi{ tho )
2

m =

(13)

and

”_(ﬁiij) .

The upper and lower membership functions at each level wy are calculated as follows:
Aitiee =M+ oyl (o) (15)

M55 =m-o ln(l/@k) (16)

=Al oy
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In which @y = (wk)l/A, wy = (wk)A, and A > 1. Also, wy, corresponds to membership
functions at different levels, and € is a small positive value. It is worth mentioning
again that for the FLS of (5), the relations are similar to those of FLS (2). The fuzzy
rules are considered as follows: if 211 is AL and 215 is A and... 21, is AL, then

Gre by, dul, 1=1,2, ..., L (19)
where, flﬁ is the membership function of z1; and il and &)l are the parameter of rules.

Figure 5 shows the type 3 membership function. The rule triggers in the w; and w;
levels are:

Tow = By, X By, X - X Pitja, (20)
Ié’k = HRie, CPae, < X e, (21)
Tik = BAw, XA, X X AL (22)
Ilﬂk:&iélgkXﬁfiélgkx"'xﬁ/ﬂlgk (23)
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Fig. 2: Proposed structure diagram with signal details

Finally, the fuzzy output is calculated as:
Gl = (i),{El(Zl)

A~ A A A = o o T
where @1 = [®;, Py, Pyp, P11, Do, ..oy, P1z] and

—_
—
—

—_ —_ =t —_ = = T —_ =
1=1[81, Eq, vy Ep, E1, Eo, ..., EL] . Also E; and E; are calculated as:

(24)

(25)




Rule firing

Membeships y Type Reduction
A = G &, (1) Control Signal
7—1_1 L\ 4 u (l)
. @k / : / N
0 ' . Tt X N / Estimation of
Nog <l i, G, / O,a:zzm
? Tai ) \\,/\Fuzzy Ouput , X0 Output
N -G : L ) -0
: 1 L R
a Z‘"k | V4 \ _ ~ el(f)
44 = |, el | AN - —— —
: =N,
z,(?) STt AN
Lo P GlK'
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So far, structural analysis and structural modeling have been discussed. The follow-
ing sections will cover the design of the SF-MPC, a sensor fault detection component,
and a stability assessment.
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3 Design of the Main and Auxiliary Step-Forward
Model Predictive Controller (SF-MPC)

This section illustrates the proposed main and auxiliary SF-MPC scheme, focusing on
the design of the predictive controller using the error between the fuzzy model output
and the reference signal. Finally, Lyapunov methods will be considered to extract
the compensatory control signals. According to 2 and 5, the discretization will be as



follows: R R
Ot +1) = O1(t) + i (8) + e (1 (31)
Og(t + 1) = Og(t) + upg(t) + ueg(t) (32)
To design the SF-MPC, the cost objective is assumed to be as follows:

1 . 2 1 . 2
J = 5(0a(®) = Ot + D) +5 (045 (Oax(t) = Os(t +1)) 45 () (33)
where Og;(t) is the main reference input and Ogo(t) is the auxiliary reference. Ac-
cording to (31) and (32) by minimizing the objective function (33), the step-forward
predictive control signals are obtained as follows:

upn (1) = 3 (Oar(t) — O1(1) ~ wea (1)) (34)

ura(t) = 5 (Oia(t) = O(t) — weal?)) (3)

4 Sensor Fault Detection Unit Design

The proposed sensor fault detection unit, detailed in this section, integrates an iden-
tification system for sensor output estimation, a T3-FLS for sensor fault coefficient
estimation, and a predictor for obtaining the sensor fault value. The desired form of
F(t) is:

01(t) — Oa2(1)
Oa(t)
where O (t) and O3(t) are mentioned in section 2.2. Since the value of F'(¢) is not
accessible directly, we address the sensor fault estimation problem. For this pur-
pose, a T3-FLS (G3(t)) with input vectors (37) is considered. where each element is

characterized by a pair of interval type-3 fuzzy sets.

FH(t) = (36)

26, (t) = [Ol(t—r), Or(t —7), . Ov(t —mr), Ot —mr)] (37)

The sampling interval is represented by 7, while the total number of collected samples
is denoted by m. The FLS design procedure presented in this section follows a similar
structure to the one described in Section 2.2. So, to calculate the sensor fault coefficient
and to train the FLS G3(t), the desired output is defined as:

O1(t—1) — Oyt — 1)

Fe-1)= Os(t—1)

(38)

To adjust the parameters of the FLS G3(t), the Kalman filter algorithm developed in
[42] is used. Finally, F'(t) is estimated as follows:

F(t) = G (t + 1|®4(1)) (39)



where @ (t) is the FLS parameters. It should be noted that the reference input of the
sensor fault detection subsystem will vary as follows:

_Om(t)
Our = F(t)+1 (40)

5 Stability Analysis

The subsequent sections introduce global and asymptotic stability, detailed in Theo-
rems 1 and 2, respectively. Initially, Lyapunov stability theory is employed to establish
global stability. Following this, asymptotic stability is demonstrated through the
incorporation of adaptive compensators.

5.1 Global Stability

Theorem 1. According to section 2, the closed-loop system (dynamic model (1),
estimator model (2), estimator model (5), controller (9), and controller (10)) is globally
stable, if the adaptation laws ®1(t) and ®3(t) chosen as follows:

1 (1) (t) (41)
t

1(t 1
by (t) = 7282(1)Z2(t) (42
Where Z;(t) introduced in section 2.2, Ea(t) calculated similarly to Z:(t), é1(t) =
O1(t) — O1(t), éa(t) = O1(t) — O1(t), 0 <7, < 1,and 0 < 75 < 1.
Proof. According to (2), (3), (5), and (6) we have:

=mé1(t)=
= ’y é =

é1(t) = O1(t) — él(t) =Gy <21(t>|‘i’1(t)> —G1” (z1(1)|@5(1) = @] ()Z1(t)  (43)

b2(t) = 0a(t) — 0a(t) = G (22(1)|B2(t) ) = Go" (22(1)|@5() = BT ()Za(t)  (44)

Where ®;(t) = ®;(t) — ®,(t) and ®5(t) = P5(t) — Bo(t). The controllers are defined
as follows:
ur (t) = uss1 () + up () + uer (t) (45)
up(t) = uss2(t) + up2(t) + ue2(t) (46)
In fact, global stability is analyzed independently of the compensators. The steady-
state control signals are calculated according to equation (2) and (5) as follows:

O1(t) =0 (47)

Oa(t) = 0 (48)
Based on the (2), (5), (47), and (48) the steady-state control signals can be expressed
as:

Ugs1 () = —Gy (zl(t)|<i>1(t)) (49)
tena(t) = ~Ga (22(0)| B(1) (50)



Also, proportional controllers are considered as follows:
ue1 (t) = prex(t) (51)

ueg(t) = pg@g(t) (52)
where e1(t) = Og1(t) — O1(t) and ea(t) = Og2(t) — O2(t) are the tracking error. Also
p1 and po are positive gains. Based on (3) and (6) for tracking error we can write:

é1(t) = O (t) — Ox(t)
= Oun(t) = G (21(D)1(8)) = o1 (£) = wpa (£) = wer (£) = Ma (1)
= Oa1(t) — up1 () — uer (t) — My (2) (53)
and
éa(t) = Ouaz(t) — Oa(t)
— Ous(t) — Go (zz(t)@g(t)) — gz () — upa(t) — uea(t) — Ma(t)
= Oun(t) — upa(t) — uea(t) — My(t) (54)

Then the following Lyapunov function is selected as follows:

V(t) = % (él(t)2 +ei(t)? + %éTl(t)él(t) + é2(t)* +ea(t)? + Wé 2 () Do (1)
(55)
So, we will have
V(t) = é1(t)ér(t) +éq(t)er(t) — %éf(t)(fl(t) + é5(t)éa(t) + é2(t)es(t) — %ég (t)cig(t)
(56)

Substituting (43), (44), (53) and (54) yields to:

V(1) = eu(t) (Gua (O11(0) - Gr* (21 (D] (1))

=0, (@1 (1) + ex (1) (Oar (0) — (1) — prea(t) — (1))

+ é(t) (Galza(t)|B2(1) - G (221 @5(1))
— 8" (OBa(0) + ea(t) (Ounlt) — upal®) — pealt) - 20(0)  (5)
Y2

According to (43) and (44) we have:



Now, according to (41) and (42) we have:

V(t) = e1(t) (Oar(t) = upn (t) = Mi(1)) = prea(t)?
+ea(t) (Oaat) = upa(t) = Ma(t)) = paca(t)” (59)

Assuming §; << 1 and 3 << 1, the equation (59) can be rewritten as follows:

V(t) < |612)(t (‘Odl ‘ + [up1 (2)] + |M1(t)|) _ /)161(t)2
' |e;€i)(t+ 02 (’Od2 ’ + |up, (8)] + [Ma(2 )|> — paea(t)? (60)

Finally, according to (60) we have:

Oar(®)] + lupn (O] + M1 (1)

V(t) < et lex ()] + o1 = A
[Oar(t)] + (1)} ML)
+ ez(t) o2 D)+ 0 — P2 (61)
Assuming we have:
(odl(t)) ¥ Jup (8)] + | M (8)]
1 Z ‘61(t)| + 51 (62)
and
[Oaa(®)] + lusa (0] + |Ma(#) .
P2 = [ea(8)] + 62 o
we have:
V(t)<0 (64)

In the assumptions (62) and (63), in the steady-state, the tracking error is zero, so the
Lyapunov derivative of V(t) = 0. Moreover, with the external disturbance entering the
system, the tracking error increases, which in turn increases the denominators in (62)
and (63). As a result, the overall value of these terms decreases and becomes negative.
Also, parameters §; and Jo are chosen larger in practical applications than in the



theoretical case, because they cause oscillatory behavior in the controller. Moreover,
since the main component of the control laws are uss1 and wusso the contribution of
the multiplicative terms in (62) and (63) remains sufficiently small. Therefore, the
condition of V(t) < 0 is continuously satisfied, ensuring the global stability of the
closed-loop system. Finally, it is demonstrated that the closed-loop system achieves
global stability. Next, by adding the compensatory control signal, the asymptotic
stability will also be proven.

5.2 Asymptotic Stability

Theorem 2. As shown in Section 2, the control system, incorporating the dynamic
model (1), the estimator model (2) , the estimator model (3), the controller (9) and
the controller (10), is asymptotic stable, if the compensators teom1(t) and weoma(t),

law of adaptations ®1(t) and ®4(¢), M and M, are considered as below:

oot = |‘g;)(|t+2 (|0a @]+ lup 0] + 51(1) (65)
voms = g, ((Oa0)] a0+ 1500 (66)
b, (1) = 716 (1) 51 (1) 67

é 68

69

70
Where Z1(t), Za(t), é1(t), é2(t), e1(t), and ez(t) calculated similarly to section 5.1.
Also 0 <1, 72, 73, 74 < 1.

Proof. In this section, é1(t), éx(t), wss1 (t); wss2(t), te1 (t), and ues(t)are calculated
similarly to section 5.1. Also, based on (3) and (6) for tracking error we can write:

(67)
(68)
(69)
(70)

é1(t) = Oaqr(t) — O1 (1)
= Oar(t) = G1(21(1)| 1)) — st (£) — wer () — tpr (£) = Ueoma (£) — M (2)
= Odl (t) — e (t) — Up1 (t) - ucoml(t) — M (t) (71)

and
é2(t) = Oga(t) — Oo(t)

= Oga(t) — Ga(22(t)|@2(t)) — uss2(t) — uea(t) — wpa(t) — Ucoma(t) — Ma(t)
= Oun(t) — uea(t) — upa(t) — Ucoma(t) — Ma(t) (72)

By defining M (t) = M, (t) — ]\?1(15) and My(t) = Mo(t) — ]\?[g(t)7 the Lyapunov
function is candidate as below:

1 = 2
7—<I> 1(t)®1(t) + %Ml(t) >



Then, we have:
V(t) = é1(t)ér(t) + é1(t)er(t) + éa(t)éa(t) + éa(t)ea(t)
— T ()8(0) — 8] ()a(0

1 -~ IS 1 -~
= S WN(E)M () — (1) M (1) (74)

Substituting (43), (43), (71) and (72) yields to:

V(1) = () (Gr(z 0]1(8) — Gr* (a1 (D] (1))
= =8, 080+ e1(t) (O (1) = 1) = prea(t) = teom () = M)
+éa(t) (Gal(0)|@2(1)) — G (22(1)|@5(1)))
- %@T(t)&b(t) + ea(t) (Odg(t) — upa(t) — p2e2(t) — Ucoma(t) — M2 (t>)
1

— %Ml(t)]\?l(t) - iM2(t)]\§l2(t) (75)

According to (43) and (44) we have:

= Yan@an @) - Lan s (76)
Now, according to (67), (68), (76) we have:
V(t) = ex(t) (Oar(t) = upn (0) = Ms(2)) — B2 () M1 1)
— €1 (t)ucoml (t) — pi1€é (t)Z
+e2(t) (Oarlt) = upa(t) = Mal0)) = N> (O)N(1)

— €2 (t)ucomQ (t) — pP2€2 (t)2 (77)



Assuming §; << land Jy << 1, based on (69) and (70) the equation (79) can be
rewritten as follows:

. e1(t)? i -
V) < s ([0 ®)] + @] +300)
— e1(t)com1 (t) — pres(t)?
ea(t)? . -
aorrs (Oe®]+ w01+ 2120)
— ea(t)ticoma(t) — paea(t)” (78)

Finally, based on (65) and (66) we have:
V() < —prea(t)” — paea(t)” (79)

Then we have:

V(t) <0 (80)
To show asymptotic stability, according to (71), (72), and (82) we have:
V(t) = =2pre1(t)ér(t) — 2paea(t)éa(t)
= 20101 (Our(t) = e (t) = wpn () = teom () = Mi (1))

— 2pae (Odz(t) — Uea(t) — Upa(t) — Ucoma(t) = Mz@)) (81)
From (81), we have:

¥ < 200 fex ()] (|0 | + lwea (O Tt (] + [acoma (8)] + 1318

+ 202 ea(0)] (|Ouz| + luea(®)] + [upa (0] + lueoma ()] + [Ma(0)])  (82)

Based on (82), the bounded nature of the second derivative of V' is revealed with
respect to time. Leveraging Barbalat’s lemma, we can deduce the negative definiteness
of the derivative of V', thus confirming asymptotic stability. The demonstration of
Theorem 2 is now complete.

6 Simulations

The proposed strategy’s efficiency is underscored by its application to the completely
uncertain Bergman model involving six virtual subjects. Table 2 provides the pa-
rameter values for this model. Notably, as established by the Bergman model, the
uncontrolled behavior of all six simulated individuals is unstable [33]. The parameters
for the suggested control structure are outlined in Table 3.



Table 2: Bergman model parameters.

Virtual subject

Parameter 1 2 3 4 5 6

Py 3.2.1073 1.29-10—3 2.81.1073 3.80-10~3 8.67-10—3 7.14-10~3
P 1.5:102 5.20-10—3 2.29.10—2 5.33-1073 8.67-1073 9.30-10—3
P; 1.26-10—6 1.46-10—3 1.59-10—6 5.46-10~7 1.50-10—6 1.50-10—6
c1 9.95.10~2 9.26:1073 9.33-1072 9.33-10—2 9.32.103 9.35.1073
ca2 2.39-10—3 2.39-10—2 7.90-10—3 7.40-10—3 6.60-10—3 8.30-10—3
k¢ 3.85-1072 1.10-102 3.88-1072 6.65-10~2 5.80-1073 5.02-1072
kgr 1.00-1073 4.00-1073 5.00-1074 1.80-1073 3.20-1073 3.70-1073
by 1.77.107%*  4.93.107*  4.50-107*  9.34.107*  4.81.107*  5.11-107*
ks 1.06-10~2 5.64-10—2 1.24-10—2 1.37-10—2 1.06-10~2 1.11-10~2
9 76.60 80.30 89.20 75.60 92.40 91.20

I 25.30 28.60 25.30 30.00 29.50 32.60

d sin(10¢) sin(10¢) sin(10¢t) sin(10¢t) sin(10t) sin(10t)

Table 3: Parameters of the control structure.

Parameter Value Number of Equation
n, L1 2, 16 (7), (8), (19)
Cji1, Cx2 (0, 50), (70, 180) 9)
Wy, Dk 0.25, 0.7 (15), (17)
Y1, Y2 0.01, 0.01 (67), (68)
Y3, Y4 0.001, 0.001 (67), (68)
01,02 1,1 (65), (66)
p1, P2 1,1 (52), (53)
A, g, ou, 01 2, 0.001, 200, 100 (11), (12), (14)

6.1 Scenario 1

In this scenario, the performance of the control system is checked assuming no sensor
faults. The inherent uncertainty in the system’s behavior is acknowledged, leading to
variations in the Bergman model’s parameters. For instance, the parameter P; fluctu-
ates according to the equation P; = Piyom (1 + 0.25sin(10t) 4+ 0.25sin(100¢)). Other
parameters are similarly assumed to be undetermined. Furthermore, the system expe-
riences disturbances over 24 hours, coinciding with meal times at ¢ = 2(break fast),
t = 8(lunch), and t = 14(dinner), with each disturbance possessing a unique magni-
tude. Also, the reference input in this simulation is assumed to be 100(mg/dl). Given
the considerable disparity between the data collection frequency (measured in min-
utes or hours) and the exceedingly swift information processing speed (a fraction of
a microsecond), practical limitations are unlikely to arise. During the simulations, we
considered a set of indices, detailed below:

1< A 2
RMSE = E ; (Ot argeti — Ot arg eti) (83)

where S is the real data number, Otqrger; is the real data and Ot arg eti 15 the estima-
tion of the real data. Additionally, the percentage of time that blood glucose levels
remain within the target range of [70-180] mg/dL over a 24-hour period, as well as the
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Fig. 6: Output response of the closed-loop system based on Theorem 2 and Virtual
Subject 1, considering parametric uncertainty and disturbance.

minimum recorded glucose level (Ming) during the same timeframe, are considered
as supplementary performance metrics. Table 2 details the specific parameter values
selected for virtual subject 1. Figure 6 and Figure 7illiistrate the outcomes for virtual
subject 1, demonstrating that tracking is well done. Furthermore, the estimator ex-
hibits strong estimation accuracy. The initial value is considered as 200(mg/dl). The
outcomes for additional virtual subjects are detailed in Table 4. This table shows the
performance based on various indicators for the proposed scheme. It should be noted
that in the simulations, the outputs are simulated according to Theorem 2, and for
Theorem 1, the results can be seen in Table 4.
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Fig. 7: The main control signal entering the system based on Theorem 2, considering
parametric uncertainty and disturbance for virtual subject 1.

Table 4: Simulation parameters without considering sensor faults.

2 2 2 2
é E Q ; w0 15 1) wn
By g m 5 = = je =
o — ': Q > a > ®
o e =) = N < =
g g | Q - N - N
=3 a — g = = = =
@ = [ 3 %‘ g c:; g
8 < k=) @ < o < IS
® s ® 3 3 3 3
3 = = =
= — [} Do
1 70 99.65 70 1.81 11.17 1.76 11.11
250 99.55 83 1.84 11.30 1.83 11.19
350 99.47 83 1.88 12.15 1.89 12.05
2 70 99.90 70 1.05 8.81 0.97 8.60
250 99.55 94 1.18 8.95 1.15 8.89
350 99.34 94 1.52 9.19 1.44 9.08
3 70 99.90 70 1.27 10.88 1.15 10.84
250 99.57 84 1.48 10.68 1.35 11.00
350 99.24 85 1.84 12.45 1.81 12.22
4 70 99.92 70 1.18 10.25 1.11 9.97
250 99.58 89 1.34 10.66 1.22 10.46
350 99.33 89 1.70 10.88 1.61 10.62
5 70 99.58 70 1.07 8.87 1.04 8.75
250 99.44 92 1.26 8.95 1.12 8.90
350 99.12 92 1.63 9.15 1.58 9.01
6 70 99.55 70 1.08 9.54 1.06 9.23
250 99.40 92 1.32 9.82 1.27 9.35

350 99.01 92 1.64 10.05 1.56 9.99




6.2 Scenario 2

In scenario 2, the performance of the control system is investigated assuming a sensor
failure. To evaluate the performance of the proposed approach, virtual subject 1 is
utilized. It should be noted that other conditions, including initial conditions, distur-
bances entering the system, parameter uncertainties, etc., are assumed to be similar
to scenario 1. Initially, the sensor’s efficiency degrades at a slow pace, losing up to 30
percent of its effectiveness at ¢ = 6. Subsequently, the rate of efficiency loss acceler-
ates, reaching a 60 percent reduction at ¢ = 13. The results of this section in Figure
8 and 9 show that despite the sensor fault, the actual output always tracks the refer-
ence input and remains within the normal range under disturbance conditions. Also,
the fuzzy identification system gives us a good estimate of the real output, and the
sensor fault identification system also estimates the sensor fault value well, which can
be seen in Figure 10. Figure 11 illustrates the convergence of the root mean squared
error (RMSE) for the tracking error as the iterations progress. Additionally, it dis-
plays a histogram and box plot that summarize the distribution of RMSE values.
The predicted output demonstrates a close alignment with the actual output, and the
consistently small RM SFE values suggest effective performance of both the closed-loop
system and the fuzzy model. Notably, this simulation incorporates disturbances such
as meals and random noise at every iteration to simulate physical activity and food
intake. For other virtual subjects and considering similar conditions to virtual sub-
ject 1, it can be seen in Table 5. As observed, despite varying initial conditions and
the presence of disturbances, the system consistently maintains stability concerning
the defined indicators, and the output remains within the acceptable range. It should
be noted that the graphical simulations are based on Theorem 2, and the results of
Theorem 1 along with Theorem 2 are summarized in Table 5.
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Fig. 8: Output response of the closed-loop system based on Theorem 2 and Virtual
Subject 1, considering sensor fault, parametric uncertainty, and disturbance.

6.3 Scenario 3

In this scenario, we will first compare the proposed structure based on different FLSs.
The outcomes of this comparative analysis are summarized in Table 6. The compari-
son criteria are also based on the RMSE of the tracking error based on Theorem 2.
As can be seen, the design of the control structure using T3-FLSs has a more optimal
performance. In addition, the system output responses are shown in Figure 12 for a
clearer comparison of the controllers designed using different types of fuzzy systems.
As shown, the controller designed using the T3-FLSs framework has better tracking
accuracy and disturbance rejection performance. Next, the proposed structure is com-
pared using methods [14] and [15]. The results of this comparison are summarized in
Table 7. As can be seen, the proposed method has a better and more optimal perfor-
mance with respect to the RMSE index of the tracking error. In this scenario, the
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Fig. 9: The main control signal entering the system based on Theorem 2, considering
sensor fault, parametric uncertainty, and disturbance for virtual subject 1.

initial condition is assumed to be 250(mg/dl), and the other parameters are similar
to scenarios 2 and 3.

6.4 Scenario 4

This section will evaluate the controller risk analysis with and without the sensor fault
detection structure. In this context, the concept of ”risk” refers to the possibility that
a process will not achieve its intended results [43]. This notion of risk encompasses two
key elements: the factors that lead to failure and the consequences or expenses resulting
from such failures. Here, the tracking error and the control signal are considered as
factors of the risk function, which is rewritten as follows:

t

Risk(t) = ex(t) x [ wd€)de (34)

0

Where e (t) and uq(t) are introduced in Sections 2 and 5. It should be noted that the
tracking error values and control signal are assumed to be normalized between 0 and 1.
The simulation results in the case without the sensor fault compensation structure and
considering the sensor fault compensation for virtual subject 1 can be seen in Figure
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13. As can be seen, in the presence of disturbance, the risk function tends to zero for
a limited time, and for the case without considering the sensor fault compensation
block, the risk function diverges, and over time, the risk caused by the controller
increases, which in this system will lead to dangerous phenomena of hypoglycemia and
hyperglycemia, which will also cause damage to other organs and the body.
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Table 5: Simulation parameters considering sensor faults.

z z z z
§ E. @ = ) w %) &)
g 5 m = /t_lj\ E E /t—lj\
® = = el > 5 > 5
" 3 S Py o - - =
: : | 2 : « ~ "
< E: . g = =2 = =2
3 22 X 2 @ @ @ 5]
s g s g g g g g

@ @ @ @

= 8 B =

— = DO [

1 70 99.65 70 1.82 11.18 1.77 11.12
250 99.55 83 1.86 11.30 1.85 11.19
350 99.47 83 1.90 12.15 1.89 12.05
2 70 99.90 70 1.07 8.81 0.98 8.60
250 99.55 94 1.19 8.95 1.17 8.89
350 99.34 94 1.53 9.19 1.46 9.08
3 70 99.90 70 1.29 10.88 1.16 10.84
250 99.57 84 1.49 10.68 1.37 11.00
350 99.24 85 1.85 12.45 1.82 12.22
4 70 99.92 70 1.19 10.25 1.11 9.97
250 99.58 89 1.36 10.66 1.22 10.46
350 99.33 89 1.71 10.88 1.62 10.62
5 70 99.58 70 1.08 8.87 1.04 8.75
250 99.44 92 1.28 8.95 1.12 8.90
350 99.12 92 1.64 9.15 1.58 9.01
6 70 99.55 70 1.09 9.54 1.07 9.23
250 99.40 92 1.33 9.82 1.27 9.35
350 99.01 92 1.65 10.05 1.56 9.99

Table 6: Performance comparison of fuzzy control systems under disturbance and
uncertainty for-virtual subject 1.

Type of FLS
1 2 3
G €[70-180] 86.23 92.11 99.55
RMSE of é; 3.15 2.59 1.85
RMSE of e 16.62 12.65 11.19

Table 7: RMSE Comparison of Tracking Error: Proposed Method with Other

Methods.

Number of patients [14] [15] Proposed method
Virtual subject 1 18.02 14.12 11.19
Virtual subject 2 16.75 12.11 8.89
Virtual subject 3 17.12 13.21 11.00
Virtual subject 4 18.05 14.11 10.46
Virtual subject 5 17.89 13.71 8.90

Virtual subject 6 17.50 13.24 9.35




3-5 T T T T T T

considering sensor fault
3 — without sensor fault |
25 ]
s 27 ]
=
[72]
2
151 ]
11 ]
05 ]
0 1 1 i |
0 4 8 12 16 20 24

Time(h)
Fig. 13: Response risk of a closed-loop control system with and without sensor fault
compensation.



7 Conclusion

This paper proposed a novel and robust control architecture for artificial pancreas
systems aimed at managing blood glucose regulation in individuals with type-1 dia-
betes, particularly in the presence of significant uncertainties and sensor faults. The
dual-loop control system—comprising a primary regulation loop and an auxiliary fault-
handling loop—integrates key components such as step-forward predictive controllers,
adaptive compensators, and real-time system identification via T3-FLSs. A dedicated
sensor fault detection module further enhances reliability by dynamically estimating
and correcting sensor degradation in real time. Theoretical guarantees of closed-loop
stability are rigorously established through Lyapunov analysis, ensuring the reliability
of the controller under uncertain, time-varying physiological conditions. Comprehen-
sive simulations were conducted using the uncertain Bergman model across six virtual
subjects with varying metabolic profiles. These included scenarios with no sensor
faults, time-varying parameters, meal disturbances, and progressive sensor degrada-
tion. In Scenario 1, the controller demonstrated high tracking accuracy and effective
glucose regulation under parametric uncertainties and external disturbances. The re-
sults demonstrated that, for all virtual subjects, more than 99% of the time was spent
within the target glucose range of 70-180 mg/dL. Furthermore, the low RM SE values
indicated high control accuracy. Scenario 2 introduced progressive sensor faults, yet
the proposed controller maintained robust tracking behavior. The internal fault detec-
tion loop successfully identified and compensated for sensor degradation, preserving
system performance and safety. In Scenario 3, various fuzzy logic systems were evalu-
ated, demonstrating that the T3-FLS substantially exceeded the performance of both
Type-1 and Type-2 FLS in reducing the root mean square error RM SFE and enhanc-
ing adherence to the desired glucose range. The proposed approach also demonstrated
superior performance when benchmarked against existing methods in the literature.
Scenario 4 analyzed risk using a custom risk function combining tracking error and con-
trol effort. Results confirmed that the system equipped with sensor fault compensation
minimized the risk index, while omitting the fault module led to divergent risk, posing
safety threats such as hypo- and hyperglycemia. The simulation results highlight the
superior performance, reliability, and fault tolerance of the proposed methodology. The
architecture’s robustness under real-world constraints makes it a promising candidate
for next-generation artificial pancreas systems. Future work will explore actuator fault
detection, simultaneous sensor—actuator fault compensation, and the implementation
of event-triggered control strategies to optimize energy usage and responsiveness.
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