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In this article, we introduce an enhanced version of the log-logistic model, termed the Kumaraswamy 
alpha-power log-logistic (KAPLL) distribution. The KAPLL model expands upon the traditional log-
logistic distribution and several well-established distributions. We investigate the mathematical 
properties of the KAPLL model, highlighting its ability to effectively model various aging and failure 
criteria. The KAPLL distribution exhibits remarkable flexibility in modeling various types of hazard rate 
behaviors. It is capable of accommodating a wide range of shapes, including increasing, decreasing, 
J-shaped, reversed J-shaped, bathtub-shaped, inverted bathtub-shaped, and even more complex 
forms such as decreasing–increasing–decreasing failure rates. The KAPLL distribution is characterized 
by its capacity to exhibit both symmetric and asymmetric shapes in its density function. The proposed 
KAPLL model overcomes key limitations of existing LL-based generalizations by offering enhanced 
flexibility in modeling diverse hazard rate shapes and tail behaviors. We estimate the KAPLL 
parameters using eight classical estimation methods. Comprehensive simulation results are presented 
and ranked to identify the most effective approach for estimating KAPLL parameters, which we believe 
will be of great interest to engineers and applied statisticians. To further demonstrate the versatility of 
the KAPLL distribution, we analyze five real-world datasets from reliability, engineering, biomedical, 
and environmental sciences, highlighting its flexibility relative to other extensions of the log-logistic 
model. Likelihood ratio tests conducted across five real datasets confirm that the KAPLL model 
provides a statistically significant improvement over the baseline log-logistic distribution.

Keywords  Bathtub hazard rate, Kumaraswamy alpha-power class, Log-logistic distribution, Maximum 
likelihood, Order statistics, Real data

The quality of statistical analysis is heavily influenced by the choice of probability distribution. Consequently, 
significant efforts have been devoted to developing generalized classes of probabilistic distributions, along 
with relevant statistical methodologies. In practice, these distributions find applications across various fields, 
including insurance, actuarial science, investment, risk analysis, business and economic research, reliability 
engineering, chemical engineering, medicine, demography, and sociology, among others.

The statistical literature has introduced several newly generated classes of univariate continuous distributions 
by incorporating additional shape parameters into baseline models. These extended distributions have 
garnered the attention of statisticians due to their flexibility and capability to model both monotonic and non-
monotonic real-life data. Notable examples include the Marshall–Olkin-G (MO-G)1, McDonald-G2, beta-G3, 
Kumaraswamy-G4, Kumaraswamy Marshal–Olkin-G (KMO-G)5, Weibull-G6, Weibull Marshall Olkin-G7, 
Marshall–Olkin alpha power-G (MOAP-G)8, and Kumaraswamy alpha-power-G (KAP-G)9, among others.

The classical log-logistic (LL) distribution, often referred to as the Fisk distribution in the context of income 
distribution literature10–12, has also been called the Pareto Type III distribution by Arnold13, who introduced an 
additional location parameter. Furthermore, the LL distribution is a special case of the Burr-XII distribution14 

1Department of Statistics, Mathematics, and Insurance, Benha University, Benha 13511, Egypt. 2Department of 
Statistics and Insurance, Zagazig University, Zagazig 44519, Egypt. 3Higher Institute of Computer Science and 
Information Technology, El Shorouk Academy, Shorouk 11837, Egypt. 4Department of Management, College 
of Business Administration in Yanbu,  Taibah University, Yanbu Governorate, Saudi Arabia. 5Department of 
Mathematics, College of Science & Arts, King Abdulaziz University, P.O. Box 344, 21911 Rabigh, Saudi Arabia. 
6Department of Management Information Systems, College of Business Administration in Yanbu, Taibah University, 
Yanbu Governorate, Saudi Arabia. email: ahmedzafify87@gmail.com

OPEN

Scientific Reports |         (2026) 16:3266 1| https://doi.org/10.1038/s41598-025-34460-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-34460-y&domain=pdf&date_stamp=2026-1-23


and the Kappa distribution15, both of which have been applied to streamflow and precipitation data. Additional 
details about the LL model can be found in16.

The LL model can be understood as the probability model for a random variable whose logarithm follows a 
logistic distribution. It serves as an alternative to the log-normal distribution, as it features a hazard rate (HR) 
function that initially increases before subsequently decreasing.

The LL distribution has been widely applied in survival analysis and reliability engineering due to its 
mathematical simplicity and closed-form expressions for key functions. However, it suffers from limited 
flexibility in capturing diverse failure rate shapes, particularly those observed in real-life data such as bathtub-
shaped or unimodal HR shapes. These limitations restrict its applicability in complex failure-time scenarios.

In recent years, several researchers have introduced different generalized forms of the LL distribution to 
enhance its capability and flexibility in modeling time-to-event data. Some notable improvements to the LL model 
include the alpha-power transformed-LL17, transmuted LL (TLL)18, Marshall–Olkin LL (MOLL)19, McDonald-
LL (McLL)20, Kumaraswamy Marshall–Olkin LL (KMOLL)21, additive Weibull lL (AWLL)22, extended Weibull 
LL23, extended-LL (ExLL)24, Zografos–Balakrishnan LL25, odd Lomax LL26, extended Poisson LL27, extended 
odd Weibull LL28, skew LL29, cubic transmuted LL30, LL Ailamujia31, and generalized Kavya–Manoharan LL32 
distributions.

Although numerous generalizations of the LL distribution have been proposed in recent decades—such as the 
KLL, MOLL, KMOLL, McLL, BLL, AWLL, ExLL, and others—many of these models suffer from limited shape 
control, parameter redundancy, or complex forms that hinder interpretability or estimation. Most notably, while 
prior models aim to accommodate various HR shapes, few offer a unified and analytically tractable framework 
that simultaneously supports a wide spectrum of real-world behaviors, including heavy tails, multimodality, and 
diverse failure rate patterns (e.g., increasing-decreasing-increasing or inverted bathtub). To address these gaps 
and the limitations of the traditional LL model, we propose the Kumaraswamy alpha power log-logistic (KAPLL) 
distribution as a novel and flexible extension of the LL model. The KAPLL distribution introduces a synergistic 
blend of the Kumaraswamy and alpha power transformations into the LL baseline, allowing for superior control 
over skewness, tail behavior, and HR dynamics. Unlike existing counterparts, the KAPLL model can produce 
monotonic (increasing or decreasing), non-monotonic (unimodal, bathtub), and complex hybrid shapes within 
a concise parameter space. Furthermore, it retains analytical tractability for key functions such as the cumulative 
distribution function (CDF), probability density function (PDF), and HR function, enabling easier application 
in real-life survival and reliability analyses. Moreover, in many practical applications, these models show poor 
fitting when the data exhibit heavy tails or multimodality. On the other hand, the five-parameter KAPLL model 
that accommodates a wide spectrum of HR shapes, while retaining tractable mathematical properties, making 
it both theoretically sound and practically applicable. These advantages position the KAPLL distribution as a 
significant advancement over earlier LL-based distributions, filling crucial gaps in flexibility, interpretability, 
and practical applicability.

The proposed KAPLL dstribution is constructed by applying the KAP transformation introduced by9 to the 
LL distribution. The KAP transformation introduces boundedness, enhances control over skewness, and allows 
for more flexible tail behavior and hazard rate shapes. These features collectively enable the KAPLL distribution 
to capture a wider range of failure rate patterns and improve goodness-of-fit in practical applications. The 
development of the KAPLL model is thus motivated by the need for increased adaptability in modeling time-to-
event data across various domains.

Other motivations for introducing the KAPLL distribution include the following: (i) The KAPLL model can 
effectively represent various HR function (HRF) shapes, including increasing, J-shaped, decreasing, reversed 
J-shaped, bathtub, modified bathtub, decreasing–increasing–decreasing, and unimodal forms; (ii) The KAPLL 
distribution encompasses several known lifetime submodels, as outlined in Table 2; (iii) It is particularly suitable 
for modeling skewed real-life data that may not be adequately represented by other established distributions; 
(iv) The KAPLL distribution has applications across various fields, including survival analysis, public health, 
industrial reliability, biomedical studies, and engineering; and (v) Empirical results demonstrate that the KAPLL 
distribution outperforms many well-known LL distributions in the context of five real-life data examples.

In addition to the theoretical development and practical applications of the KAPLL model, this study 
provides a comprehensive comparison of eight classical and modern estimation methods for estimating its 
parameters. Through an extensive Monte Carlo simulation study, the performance of each method is rigorously 
evaluated under varying sample sizes and parameter settings. This analysis not only highlights the robustness 
and limitations of each estimator but also serves as a valuable guideline for engineers and applied statisticians 
when selecting the most appropriate estimation technique for real-world data. By offering practical insights 
into estimator behavior, this work bridges the gap between theoretical modeling and applied implementation, 
reinforcing the KAPLL model’s utility in diverse reliability and survival analysis contexts.

The rest of the paper is organized into seven sections. The KAPLL distribution is investigated in Section 
“The KAPLL distribution”. In Section “Properties of the KAPLL distribution”, some key properties of the KAPLL 
distribution are explored. Inference about the KAPLL parameters is presented in Section “Estimation methods”. 
Section “Applications to real-world data” provides simulation studies. In Section Comparative evaluation and 
discussion, we present five real-world data applications. Section “Conclusions and future perspectives” gives 
some conclusions.

The KAPLL distribution
The KAPLL model and its special cases are presented in this section. The CDF of the two-parameter LL model 
has the form
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G(x) =

(
1 + λ

xβ

)−1
, x > 0, λ, β > 0,� (1)

where λ and β are the scale and shape parameters, respectively.
The LL PDF reduces to

	
g(x) = λβx−β−1

(
1 + λ

xβ

)−2
.� (2)

The KAPLL distribution is constructed based on the KAP-G family, which is specified by the CDF

	
F (x) =

{
1 −

{
1 −

[
αG(x)−1

α−1

]a}b

if α, a, b > 0, α ̸= 1,

G(x), if α = 1,
� (3)

where α, a and b are shape parameters.
The corresponding PDF of the KAP-G class is expressed by

	
f (x) = a b ln α

α − 1 g (x) αG(x)
[

αG(x) − 1
α − 1

]a−1 {
1 −

[
αG(x) − 1

α − 1

]a}b−1

.� (4)

Table 1 provides the special sub-families of the KAP-G family. Further information about the KAP-G family can 
be explored in9.

Inserting (1) in Eq. (3), the CDF of the KAPLL distribution follows as

	

F (x) = 1 −


1 −


α

(
1+ λ

xβ

)−1

− 1
α − 1




a


b

.� (5)

The PDF corresponding to (5) takes the form

	
f(x) =abλβ ln α

α − 1 x−β−1
(

1 + λ

xβ

)−2
α

(
1+ λ

xβ

)−1


α

(
1+ λ

xβ

)−1

− 1
α − 1




a−1 
1 −


α

(
1+ λ

xβ

)−1

− 1
α − 1




a


b−1

. � (6)

The HRF of the KAPLL distribution reduces to

	

h(x) =abλβ ln α

α − 1 x−β−1
(

1 + λ

xβ

)−2
α

(
1+ λ

xβ

)−1


α

(
1+ λ

xβ

)−1

− 1
α − 1




a−1 
1 −


α

(
1+ λ

xβ

)−1

− 1
α − 1




a


−1

.

Table 2 provides five important special sub-models of the new KAPLL distribution. Figures 1 and 2 illustrate the 
flexibility and diverse behavior of the KAPLL distribution through its PDF and HRF, respectively, for various 
combinations of parameter values with λ = 1. Figure 1 displays several shapes of the PDF, highlighting the 
ability of the KAPLL distribution to capture a wide range of distributional forms. These include both symmetric 
and asymmetric density profiles, as well as unimodal structure. This flexibility is essential in modeling real-world 
data sets that deviate from classical symmetric assumptions, enabling better fit and inferential accuracy across 
diverse applications.

Figure 2 presents the corresponding HRF plots under the same parameter settings, showcasing the model’s 
capability to accommodate various failure rate behaviors. The plots include increasing, decreasing, J-shaped, 
bathtub-shaped, revested J-shaped, decreasing-increasing-decreasing and inverted bathtub-shaped hazard 
functions. These are critical features in survival and reliability analysis, where the failure rate of a system or 
component may not follow a monotonic trend. For example, the bathtub-shaped curve, which characterizes 
early failures, a stable period, and wear-out failures, is effectively captured by the KAPLL model in several of the 
plotted scenarios.

α a b Sub-class Authors

α a 1 Exponentianted alpha power- G (EAP-G) Kariuket al.33

α 1 1 Alpha power-G (AP-G) Mahdavi and Kundu34

1 a b Kumaraswamy-G (K-G) Cordeiro and de Castro4

1 a 1 Exponentianted-G (E-G) Gupta et al.35

1 1 1 Baseline model –

Table 1.  Special sub-classes of the KAP-G class.
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Fig. 2.  Some possible failure rate shapes of the KAPLL distribution for various parametric values with λ = 1.

 

Fig. 1.  Some possible density shapes of the KAPLL distribution for various parametric values with λ = 1.

 

λ β α a b Sub-model Authors

λ β α a 1 EAPLL distribution Kariuki et al.36

λ β 1 a b KLL distribution De Santana et al.37

λ β 1 a 1 ELL distribution Rosaiah et al.38

λ β α 1 1 APLL distribution Aldahlan17

λ β 1 1 1 LL distribution Fisk10

Table 2.  Sub-models of the KAPLL distribution.
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These visualizations support our claim that the KAPLL distribution is a highly adaptable model capable of 
fitting data with diverse statistical characteristics. The inclusion of these graphical representations thus reinforces 
the theoretical properties derived and provides intuitive understanding of the model’s practical relevance.

Remark 1  A statistical model is said to be identifiable if distinct parameter values produce distinct probability 
distributions. For the KAPLL distribution, identifiability can be established by examining the form of the PDF, 
which depends on a combination of one-to-one transformations involving the parameters α, β, λ , a, and b. Spe-
cifically, the transformation 

(
1 + λ/xβ

)−1, the exponential component α(1+λ/xβ)−1
, and the power transfor-

mations controlled by a and b are all one-to-one functions over their domains. Consequently, the joint behavior 
of these terms makes the overall PDF injective in its parameter vector, supporting theoretical identifiability.

In addition to the analytical justification, we provide empirical support. Figure 1 displays the plots of the 
KAPLL density for twelve different combinations of parameters. It is clearly observed that each parameter set 
produces a distinct shape for the density function, confirming that the model is identifiable in practice. These 
variations are evident in the location, scale, skewness, and tail behavior of the plotted densities.

Properties of the KAPLL distribution
This section provides some key features of the KAPLL model.

 Linear representation
Mead et al.9 provided a useful mixture representation of the PDF of the KAP-G class. According to9, the KAP-G 
density reduces to

	
f(x) = ab

∞∑
i,j,k=0

(−1)i+j (ln α)k+1

k! [a (1 + i) − j]−k (α − 1)a(1+i) g (x) (G (x))k
(

b − 1
i

) (
a (1 + i) − 1

j

)
.

Using the PDF and CDF of the LL model and after some algebra, the KAPLL density takes the form

	

f(x) =ab

∞∑
i,j,k=0

(−1)i+j (ln α)k+1 [a (1 + i) − j]k

k! (α − 1)a(1+i) λβx−β−1
(

1 + λ

xβ

)−2

×
(

1 + λ

xβ

)−k (
b − 1

i

) (
a (1 + i) − 1

j

)
.

It can also be rewritten simply as follows

	
f(x) =

∞∑
k=0

dk ζk+1(x),� (7)

where ζk+1(x) = (k + 1) g(x) (G(x))k  is the exponentiated-LL density with power parameter and 
(k + 1) > 0, and

	
dk = ab

∞∑
i,j=0

(−1)i+j (ln α)k+1 [a (1 + i) − j]k

(k + 1)! (α − 1)a(1+i)

(
b − 1

i

) (
a (1 + i) − 1

j

)
.

Quantile function, skewness and kurtosis
The quantile function (QF) of the KAPLL distribution follows by inverting Eq. (5) as

	
Q(u) =

[
−1
λ

(
1 − ln α

ln (1 + ξ)

)] −1
β

,� (8)

where ξ =
{

(α − 1)
[
1 − (1 − u)

1
b

] 1
a

}
, U follows the uniform (0,1) distribution. The effects of the shape 

parameters on the skewness (SK) and kurtosis (KU) can be studied by using the QF. The Bowley SK (BSK)39 is 
one of the earliest SK measures, which is defined by BSK= Q(3/4)+Q(1/4)−2∗Q(1/2))

Q(3/4)−Q(1/4) . The Moors KU (MKU)40 

is defined based on octiles as follows MKU= Q(3/8)−Q(1/8)+Q(7/8)−Q(5/8)
Q(6/8)−Q(2/8) . The BSK and MKU plots of the 

KAPLL distribution for some selected choices of α, λ, a and b as functions of the parameter a are displayed in 
Fig. 3. The plots of the BSK and MKU are obtained for λ = 1, β = 2 and b = 1.5 and different values of a and 
β. The plots show that the flexible shapes of the two measures of the KAPLL distribution, which depend on the 
values of a and β. Furthermore, the KAPLL distribution can be used in modeling positive and negative SK as 
well as symmetric real-life data.
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Some moments
The rth moment of X can be obtained from Eq. (7) as

	
µ′

r = E (Xr) =
∞∑

k=0

dk

ˆ ∞

0
xrζk+1 (x) dx =

∞∑
k=0

dk λβ

ˆ ∞

0
xr−β−1

(
1 + λ

xβ

)−k−2
dx.

After calculating the integration, the rth moment of X follows as

	
µ′

r =
∞∑

k=0

dkλ
r
β Γ

(
1 − r

β

)
Γ

(
r
β

+ k + 1
)

Γ (k + 2) ,
r

β
< 1.� (9)

The mean of X , say, µX , follows from (9) with r = 1.
The rth incomplete moment of the KAPLL distribution has the form

	
Ir(t) =

ˆ t

0
xrf(x)dx =

∞∑
k=0

dk

ˆ t

0
xrζk+1(x)dx.

After some algebra, Ir(t) reduces to

	
Ir(t) =

∞∑
k=0

dkλβtr−β

r − β
2F1

(
−r

β
+ 1, k + 2; −r

β
+ 2; −λt−β

)
,

where 2F1
(

−r
β

+ 1, k + 2; −r
β

+ 2; −λt−β
)

 is the hyper geometric function.
The mean residual life of the KAPLL distribution at age t has the form

	
ψ(t) = 1 − I1(t)

S(t) − t
=

∞∑
k=0

(1 − β) − dkλβ t1−β
2F1

(
−1
β

+ 1, k + 2; −1
β

+ 2; −λt−β
)

(1 − β)
[
(1 − ηa)b − t

] ,

where d =
(
1 + λ

tβ

)−1
, η =

(
αd − 1

)
/ (α − 1) and I1 (t) is the first incomplete moment.

The mean inactivity time of the KAPLL distribution takes the form

	
φ(t) = t − I1 (t)

F (t) =
λβ t1−β

2F1
(

−1
β

+ 1, k + 2; −1
β

+ 2; −λt−β
)

(1 − β)
[
(1 − ηa)b − 1

] + t.

The Lorenz (L)41, Bonferroni (B) and Zenga (Z) curves are considered the most important inequality curves and 
have some applications in insurance, medicine, reliability, and economics.

The L curve is defined for the KAPLL distribution as follows

Fig. 3.  The plots of BSK and MKU measures of the KAPLL distribution for some parametric values.
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L(p) = I1(xp)

µ′
1

=
∞∑

k=0

λ
1− 1

β β xr−β
p Γ (k + 2) 2F1

(
−r
β

+ 1, k + 2; −r
β

+ 2; −λx−β
p

)

(r − β) Γ
(
1 − 1

β

)
Γ

(
1
β

+ k + 1
) .

The B and Z inequality curves can be determined, through their relationship with the L curve, by the following 
formulae42

	
B(p) = L (p)

p
and Z(p) = L (p) − p

p [1 − L (p)] .

The moment generating function (MGF) of the KAPLL model is defined by

	

M(t) = E
(
etx

)
=

∞̂

0

etx f (x) dx.

Based on Eq. (7), we can write

	

M(t) =
∞∑

k=0

dk

∞̂

0

etxζk+1 (x) dx.

After some algebra, the MGF of the KAPLL follows as

	
M(t) =

∞∑
k=0

dktrλ
r
β Γ

(
1 − r

β

)
Γ

(
r
β

+ k + 1
)

k!Γ (k + 2) ,
r

β
< 1.

The values of µX  are obtained by two ways, for some values of α, λ, β, a and b, based on the numerical integration 
(NI) and summation(SUM) formula. Table 3 display the values of µX  using the NI and SUM expressions at 
truncated M terms, where M refers to the truncated terms from the SUM (9). Table 3 shows that the SUM in (9) 
converges to the NI of µX  for all values of α, λ, β, a and b when M increases. Furthermore, the µX , variance 
(VA), SK, and KU of the KAPLL distribution are obtained numerically for some choices of α, λ, β, a and b. The 
values of the four measures are reported in Table 4. The numerical values in Tables 3 and 4 are computed by the 
R program43.

Rényi and m-entropies
The entropy of a random variable X is a measure of the uncertain variation.

The Rényi entropy is defined by

	

PX(m) = 1
1 − m

log
∞̂

0

fm(x)dx, m > 0, m ̸= 1.

Using Equation (7), the Rényi entropy of the KAPLL model takes the form

	
PX(m) = 1

1 − m
log

[
∞∑

k=0

−dkβ−1+mλ
1−m

β Γ
( 1+βm[2+k]−m[1+β]

β

)
Γ

( −1+m[1+β]
β

)
Γ (m (2 + k))

]
.� (10)

The m−entropy, say, LX(m), is defined by

	

LX(m) = 1
m − 1 log


1 −

∞̂

0

fm(x)dx


 , m > 0, m ≠ 1.

Hence, using (10), the m−entropy of the KAPLL model follows as

	
LX(m) = 1

q − 1 log

[
1 +

∞∑
k=0

dkβ−1+mλ
1−m

β Γ
( 1+βm[2+k]−m[1+β]

β

)
Γ

( −1+m[1+β]
β

)
Γ (m (2 + k))

]
.

Order statistics
Let X1, X2, ...Xn be a random sample of size n and let X1:n, ..., Xn:n be their associated order statistic. Then, 
the PDF of the ith order statistics, say, Xi:n, which is denoted by fxi:n (x), reduces to
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fxi:n (x) = n!f (x)

(n − i)! (i − 1)! [F (x)]i−1 [1 − F (x)]n−i .� (11)

Substituting (5) and (6) in (11), the ith order statistic of the KAPLL distribution follows as

	
fxi:n (x) =abλβn! ln α (α − 1)

(n − i)! (i − 1)! x−β−1d2αdηa−1 [1 − ηa]b(n−i+1)−1 [
1 − [1 − ηa]b

]i−1
, � (12)

where d =
(
1 + λ x−β

)−1 and η =
(
αd − 1

)
/ (α − 1). After some algebra, we obtain

	

fxi:n (x) =
i−1∑
k=0

∞∑
j,m,s=0

ab (ln α)s+1 (−1)k+j+m [a (j + 1) − m]s

β(i,n−i+1) s! (α − 1)a(j+1) λβx−β−1ds+2

×
(

i − 1
k

) (
b (n + k − i + 1) − 1

j

) (
a (j + 1) − 1

m

)
.

The last equation can be expressed as

α β a b M SUM NI

1.3

1.5 0.25 1

5 0.62757 0.85041

10 0.74042 0.85041

15 0.78243 0.85041

20 0.80173 0.85041

1.6 0.5 1.2

5 0.88404 0.93266

10 0.96722 0.93266

15 0.98776 0.93266

20 0.99172 0.93266

3 0.75 1.5

5 0.69962 0.83819

10 0.77568 0.83819

15 0.79124 0.83819

20 0.74890 0.83819

1.5

1.5 0.25 1

5 0.74384 0.89073

10 0.83357 0.89073

15 0.84326 0.89073

20 0.86982 0.89073

1.6 0.5 1.2

5 1.04145 0.97440

10 1.07580 0.97440

15 1.06180 0.97440

20 1.06330 0.97440

3 0.75 1.5

5 0.79863 0.85839

10 0.83394 0.85839

15 0.84299 0.85839

20 0.84833 0.85839

1.6

1.5 0.25 1

5 0.77493 0.90934

10 0.89087 0.90934

15 0.79373 0.90934

20 1.09557 0.90934

1.6 0.5 1.2

5 1.08703 0.99367

10 1.12801 0.99367

15 1.04761 0.99367

20 1.19677 0.99367

3 0.75 1.5

5 0.83086 0.86763

10 0.85664 0.86763

15 0.85455 0.86763

20 0.87206 0.86763

Table 3.  The values of µx using the SUM and NI formulae for some choices of the parameters at truncated M 
terms with λ = 1.
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fi:n (x) =

∞∑
s=0

Ps hs+1(x),

where hs+1(x) = (s + 1)g(x)[G(x)]s is the exponentiated-LL density with power parameter (s + 1) > 0, and

	
Ps =

i−1∑
k=0

∞∑
j,m=0

ab (ln α)s+1 (−1)k+j+m [a (j + 1) − m]s

β(i,n−i+1) (s + 1)! (α − 1)a(j+1)

(
i − 1

k

) (
b (n + k − i + 1) − 1

j

) (
a (j + 1) − 1

m

)
.

Estimation methods
In this section, we use eight methods to estimate the KAPLL parameters namely: the maximum likelihood 
estimators (MLE), least-squares estimators (LSE), weighted LSE (WLSE), maximum product of spacing 
estimators (MPSE), percentiles-estimators (PCE), Cramér von Mises estimators (CRVME), Anderson–Darling 
estimators (ADE), and right tail ADE (RADE). These estimation methods have been widely used in the literature 
for flexible and complex distributions (see, e.g.,44–47).

Let x1, x2, , xn be a random sample from KAPLL distribution then the logarithm of the likelihood 
function, say, (ℓ), becomes

α β λ a b µX VA SK KU

1.1

4.2

0.5

0.25
1.5 0.384833 0.081047 1.231206 6.418125

1.2 0.453045 0.115131 1.649860 13.154210

0.3
1.5 0.435780 0.084355 1.163740 6.475173

1.2 0.505004 0.119226 1.645997 13.915290

1

0.25
1.5 0.453885 0.112741 1.231206 6.418125

1.2 0.534337 0.160156 1.649860 13.154380

0.3
1.5 0.513974 0.117343 1.163740 6.475172

1.2 0.595619 0.165852 1.645996 13.915490

5

0.5

0.25
1.5 0.431810 0.075244 0.845171 4.377854

1.2 0.495444 0.099715 1.086700 6.676772

0.3
1.5 0.482768 0.075693 0.783174 4.467333

1.2 0.546261 0.099977 1.078139 7.082776

1

0.25
1.5 0.496020 0.099286 0.845167 4.377850

1.2 0.569116 0.131576 1.086697 6.676757

0.3
1.5 0.554555 0.099877 0.783173 4.467333

1.2 0.627489 0.131920 1.078136 7.082787

1.5

4.2

0.5

0.25
1.5 0.399599 0.087170 1.225434 6.389715

1.2 0.470311 0.123715 1.643846 13.113560

0.3
1.5 0.452465 0.090687 1.157994 6.449689

1.2 0.524208 0.128063 1.640385 13.881880

1

0.25
1.5 0.471301 0.121259 1.225433 6.389714

1.2 0.554701 0.172095 1.643845 13.113310

0.3
1.5 0.533653 0.126151 1.157994 6.449688

1.2 0.618269 0.178144 1.640385 13.881940

5

0.5

0.25
1.5 0.445712 0.079996 0.840448 4.361579

1.2 0.511293 0.105926 1.081703 6.657154

0.3
1.5 4.452605 0.778322 0.080437 0.498277

1.2 0.563697 0.106159 1.073299 7.066194

1

0.25
1.5 0.511989 0.105555 0.840448 4.361579

1.2 0.587321 0.139770 1.081701 6.657149

0.3
1.5 0.572369 0.106137 0.778321 4.452604

1.2 0.647517 0.140078 1.073298 7.066195

Table 4.  Findings of some measures of the KAPLL distribution for some values of its parameters.
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ℓ =n [ln a + ln b + ln λ + ln β] + n ln
( ln α

α − 1

)
+ (β − 1)

n∑
i=1

ln xi − λ

n∑
i=1

xβ
i

+ ln (α)
n∑

i=1

di + (a − 1)
n∑

i=1

ln (ηi) + (b − 1)
n∑

i=1

ln (1 − ηa
i ),

where di =
(
1 + λ x−β

i

)−1
 and ηi =

(
αdi − 1

)
/ (α − 1).

To obtain the MLE of a, b, α, λ and β, the first derivatives of ℓ are obtained with respect to the parameters. 
These derivatives are

	

∂ℓ

∂a
=n

a
+

n∑
i=1

ln (ηi) − (b − 1)
n∑

i=1

ηa
i (1 − ηa

i )−1 ln (ηi),

∂ℓ

∂b
=n

b
+

n∑
i=1

ln (1 − ηa
i ),

∂ℓ

∂α
=n [α − 1 − α ln (α)]

α (α − 1) ln (α) + 1
α

n∑
i=1

di + (a − 1)
n∑

i=1

[
(α − 1) diα

di−1 −
(
αdi − 1

)
(α − 1) (αdi − 1)

]

− a(b − 1)
n∑

i=1

ηa−1
i (1 − ηa

i )−1
[

(α − 1)diα
di−1 − (αdi − 1)

(α − 1)2

]
,

∂ℓ

∂λ
=n

λ
−

n∑
i=1

xβ
i − ln(α)

n∑
i=1

di

xβ
i

− (a − 1)
n∑

i=1

di
2αdi ln (α)

ηi xβ
i (α − 1)

+ (b − 1)

×
n∑

i=1

di
2αdi ηa−1

i ln (α)
xβ

i (α − 1)(1 − ηa
i )

and

	

∂ℓ

∂β
=n

β
+

n∑
i=1

ln (xi) − λ

n∑
i=1

xβ
i ln (xi) + ln (α)

n∑
i=1

λdi
2x−β

i ln (xi)

+ (a − 1)
n∑

i=1

λdi
2αdi ln (α) ln xi

xβ
i (αdi − 1)

− a(b − 1)
n∑

i=1

λdi
2αdi ln (α) ln (xi)ηa−1

i

xβ
i (α − 1)(1 − ηa

i )
.

The LSE and WLSE of the KAPLL parameters α, β, λ, a and b can be obtained by minimizing

	
O(α, β, λ, a, b) =

n∑
i=1

νi

[
F (xi:n) − i

n + 1

]2
,

where νi=1 in case of the LSE approach and νi = (n + 1)2(n + 2)/[i(n − i + 1)] in case of the WLSE 
approach. Furthermore, the LSE and WLSE follow by solving the nonlinear equations

	

n∑
i=1

[
1 − [1 − (ηi:n)a]b − i

n + 1

]
δs(xi:n) = 0, s = 1, 2, 3, 4, 5,

where

	
δ1 (xi:n) = ∂F (xi:n)

∂α
=ab (ηi:n)a−1 [1 − (ηi:n)a]b−1 (α − 1) di:nαdi:n−1 − (αdi:n − 1)

(α − 1)2 , � (13)

	

δ2 (xi:n) = ∂F (xi:n)
∂β

=abλdi:n
2αdi:n xi:n

−β ln (xi:n) ln (α) (α − 1)−1

(ηi:n)a−1 [1 − (ηi:n)a]b−1 ,

� (14)

	

δ3 (xi:n) = ∂F (xi:n)
∂λ

= − abdi:n
2αdi:n ln (α)xi:n

−β (α − 1)−1

(ηi:n)a−1 [1 − (ηi:n)a]b−1 ,

� (15)

	
δ4 (xi:n) = ∂F (xi:n)

∂a
= b ln (ηi:n) (ηi:n)a [1 − (ηi:n)a]b−1 � (16)
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and

	
δ5 (xi:n) = ∂F (xi:n)

∂b
= − ln (1 − (ηi:n)a) [1 − (ηi:n)a]b ,� (17)

where di:n =
(
1 + λ x−β

i:n

)−1
 and ηi:n =

(
αdi:n − 1

)
/ (α − 1).

The MPSE is an alternative approach to the MLE48,49. The uniform spacings of a random sample of size n 
from the KAPLL distribution ar defined by

	
H(α, β, λ, a, b) =

n+1∑
i=1

log [Di],

where Di = Di(α, β, λ, a, b) = F (xi:n) − F (xi−1:n) be the uniform spacing for (i = 1, ..., n + 1), and 
F (x0:n) = 0, F (xn+1:n) = 1, and 

∑n+1
i=1 Di = 1.

The MPSE of the KAPLL parameters are determined by solving the non-linear equations

	

n+1∑
i=1

1
Di

δs(xi:n) − δs(xi−1:n) = 0, s = 1, 2, 3, 4, 5,

where δs(xi:n) = 0 are defined in (13–17) for s = 1, 2, 3, 4, 5.
The CRVME can be obtained based on the difference between the estimates of the CDF and the empirical 

CDF . The CRVME of the KAPLL parameters minimize the following function

	
C(α, β, λ, a, b) = −1

12n
+

n∑
i=1

[
F (xi:n) − 2i − 1

2n

]2
,

which also follow by solving

	

n∑
i=1

[
F (xi:n) − 2i − 1

2n

]
δs(xi:n) = 0, s = 1, 2, 3, 4, 5.

The ADE of the KAPLL parameters are obtained by minimizing

	
A(α, β, λ, a, b) = −n − 1

n
+

n∑
i=1

(2i − 1) [log F (xi:n) + log S(xi:n)] ,

which can be found as solutions of the system

	

n∑
i=1

(2i − 1)
[

δs(xi:n)
F (xi)

+ δi(xn+1−i:n)
S(xn+1−i:n)

]
= 0, s = 1, 2, 3, 4, 5.

The RADE of the KAPLL parameters α, β, λ, a and b are obtained by minimizing the following function

	
R (α, β, λ, a, b) = 1

n
− 2

n∑
i=1

F (xi:n) − 1
n

n∑
i=1

(2i − 1) log S (xn+1−i:n).

They can also be obtained from the non-linear equations

	
−2

n∑
i=1

δS (xi:n) + 1
n

n∑
i=1

(2i − 1) δS(xn+1−i:n)/S(xn + 1 − i : n) = 0, s = 1, 2, 3, 4, 5.

The PCE of α, β, λ, a and b can be determined by minimizing the quantity

	

n∑
i=1

(
xi:n −

{
−1
λ

[
1 − ln α

ln (1 + ξi)

]} −1
β

)2

.

Numerical simulations
This sections gives detailed simulation results to explore the behavior and performances of the introduced estimation 
methods in estimating the KAPLL parameters based on the following three measures namely: the mean square 
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errors (MSE), MSE = 1
N

∑N

i=1 (θ̂i − θ)2
, average absolute biases (|BIAS|), |BIAS| = 1

N

∑N

i=1 |θ̂i − θ|, 
and mean relative errors (MRE), MRE = 1

N

∑N

i=1 |θ̂i − θ|/θ, where θ = (α, β, λ, a, b)T .
Several sample sizes and parameters combinations are considered, i.e., n = {50, 100, 250, 500}, θ = (0.5, 1.5, 

0.5, 0.9, 1.2)T, θ = (0.5, 1.5, 0.5, 1.1, 1.2)T, θ = (0.5, 1.5, 0.5, 1.3, 1.2)T, θ = (0.5, 1.5, 0.75, 0.6, 0.3)T, θ = (0.5, 1.5, 
0.75, 0.6, 0.5)T, θ = (0.5, 1.5, 0.75, 1.3, 0.3)T, θ = (0.5, 1.5, 1, 0.6, 0.3)T, θ = (0.5, 1.5, 1, 0.6, 0.5)T. We generated 
N = 5000 random samples based on the QF in (8) using the R software43.

Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13 give the findings of simulations including the |BIAS|, MSE, and MRE 
for the eight estimation approaches. The results show that the values of |BIAS|, MSE and MRE decrease with the 
increase of n, indicating that the estimators demonstrate desirable asymptotic behavior in simulation, although 
no formal proof of consistency is provided. Hence, the introduced estimation methods perform very well in 
estimating the KAPLL parameters. Generally, based on simulation results, the ordering performance of the 
estimators is as follow: WLSE, MPSE, ADE, RADE, LSE, CRVME, ADE, and PCE. This order confirms the 
superiority of the MPS estimation method with overall sore of 38.

Applications to real-world data
This section demonstrates the importance and practical applicability of the proposed KAPLL distribution by 
analyzing five real-world datasets from reliability, engineering, biomedical, and environmental sciences. In 
particular, these datasets are employed as independent validation tools to rigorously assess the generalizability 
and empirical relevance of the proposed model beyond the controlled settings of the simulation study. Our 
objective is to highlight the enhanced flexibility of the KAPLL model compared to existing extensions of the LL 
distribution. To this end, we focused on two primary criteria for selecting these datasets: their benchmark use in 
the literature and their practical relevance to real-world reliability, engineering, biomedical, and environmental 
contexts. All five datasets have been previously analyzed in well-established studies, allowing for meaningful 
comparisons with existing lifetime models. Additionally, they represent diverse practical scenarios—including 
mechanical component failure, stress testing of materials, biomedical, and environmental analysis—where 
flexible distributions are essential. Furthermore, the selected datasets exhibit, as shown from Table 14, a range 
of skewness values—both negative and positive—highlighting the diverse distributional characteristics that the 
proposed KAPLL model aims to capture. These datasets were chosen specifically to highlight the modeling 
flexibility and adaptability of the proposed KAPLL distribution across a variety of realistic reliability applications. 
The datasets vary in size, with 40, 63, 119, 300, and 576 observations, respectively. This section demonstrates the 
importance and practical applicability of the proposed KAPLL distribution by analyzing five real-world datasets. 
Our objective is to showcase the enhanced flexibility of the KAPLL model compared to existing extensions of 
the LL distribution. To this end, we selected the datasets based on two primary criteria: (1) their frequent use as 
benchmarks in the literature, and (2) their practical relevance to real-world reliability, engineering, biomedical, 
and environmental problems. All five datasets have been previously analyzed in well-established studies, enabling 
meaningful comparisons with existing lifetime models. Moreover, they reflect a variety of practical scenarios—
including mechanical component failure, material stress testing, and fracture toughness analysis—where flexible 
distributions are critical for accurate modeling.

The first dataset is addressed by50, and it contains 40 observations of time to failure (103h) of turbocharger of 
one type of engine. The data are: 3.5, 1.6, 5.4, 4.8, 6.0, 7.0, 6.5, 7.3, 8.0, 7.7, 8.4, 3.9, 2.0, 5.0, 6.1, 5.6, 8.1, 6.5, 7.3, 
7.1, 7.8, 2.6, 8.4, 4.5, 5.8, 5.1, 6.3, 7.3, 6.7, 7.7, 8.3, 7.9, 8.5, 4.6, 3.0, 5.3, 8.7, 6.0, 9.0, 8.8.

The second dataset is studied by51, and it consists of 63 observations of strengths of 1.5 cm glass fibers. The 
data are: 0.93, 0.55, 1.25, 1.49, 1.36, 1.52, 1.61, 1.58, 1.64, 1.73, 1.68, 1.81, 0.74, 2, 1.04, 1.39, 1.27, 1.49, 1.53, 1.59, 
1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5,1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 
1.29, 1.48, 1.50, 1.55, 1.61, 1.62,1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 
1.89.

The third dataset contains 119 observations of fracture toughness MPa m1/2 data from the material Alumina 
(AL2O3)52. The data are: 5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 4.1, 4.56, 5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 
2.7, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 
4, 3.95, 4, 4.5, 4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7, 5.15, 4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 5.8, 5.85, 5.9, 5.75, 
6.25, 6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3, 5.2, 5.3, 5.25, 4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 
3.51, 4.13, 5.4, 5, 2.1, 4.6, 3.2, 2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 4.3, 4.5, 5.5, 4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, 5.

The fourth dataset comprised 300 adult Egyptian individuals with documented age (ranging from 18 to 
85 years) and sex, equally distributed between males and females. All participants underwent high-resolution 
three-dimensional multidetector computed tomography (MDCT) imaging of the neck at the Radiodiagnosis 
Department, Ain Shams University Hospital, Egypt, for clinical indications unrelated to neck disorders, and 
were classified as Group I. Individuals in the preadolescent age group were excluded, as skeletal structures at this 
stage are not reliable for sex determination due to the absence of secondary sexual characteristics, which only 
emerge following hormonally driven bone remodeling during puberty. This dataset was studied by53. The data 
are: 33.7, 36, 38.3, 33.7, 32, 34.4, 38.5, 38.2, 33.2, 32.3, 32.5, 30.5, 32.7, 38.2, 28.4, 29.5, 32, 37, 32, 31.4, 27.7, 30.9, 
33.5, 36.3, 29.5, 31.2, 31.4, 33.6, 33, 33.7, 36.8, 28.9, 34.7, 31.9, 32.8, 28.3, 38.1, 36.2, 36.9, 32.5, 37.7, 41, 31.9, 36.3, 
40.7, 38.7, 35.5, 36.1, 36.9, 35.9, 35.6, 33.2, 34.8, 31.7, 39.5, 39.9, 34.7, 35.9, 34.3, 39.7, 36, 38.5, 29.9, 35.4, 36.4, 
35, 33.5, 36.6, 35, 30.1, 31, 36.4, 34.7, 33.9, 36.1, 39.7, 38.9, 36.6, 32.6, 39.3, 33.8, 34.2, 32.5, 38.8, 36, 36, 35, 37.8, 
41.3, 32.4, 38.1, 37.6, 36.3, 36.8, 36.5, 38, 33.4, 36, 43.8, 41.1, 38, 36.7, 35.9, 31.3, 33.5, 37, 33, 33.8, 35.8, 40.7, 40.9, 
36.7, 37.4, 33.4, 31.6, 37.5, 36.5, 39.2, 31.1, 35.9, 29.5, 35.7, 37.5, 37.4, 37.5, 37.4, 40, 42.3, 32.5, 35.5, 45.1, 39, 32.6, 
33, 41.7, 38.5, 37.3, 34.4, 37.8, 31.7, 37.9, 34.3, 32.2, 34.2, 35.1, 44.6, 33.4, 30.3, 30.5, 29.4, 30.9, 31.7, 28.5, 32.6, 
32.6, 33.2, 29.1, 32.1, 26.5, 29.4, 35.3, 29.3, 32.3, 29.4, 33.3, 30.4, 27.9, 25.7, 32.3, 30.4, 27.6, 24.3, 30.8,29.7, 24.2, 
25, 29.7, 30.3, 28.8, 31, 25.9, 30.1, 26.1, 27.3, 27.2, 28.6, 34.6, 27.8, 26.5, 26.8, 29.3, 31.6, 30.1, 30.8, 29.2, 30.9, 30, 
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n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 13.79918 {7} 1.66602 {2} 1.39576 {1} 2.64101 {4} 2.25594 {3} 19.15002 {8} 2.89846 {5} 3.49067 {6}

β̂ 1.00666 {5} 1.04565 {8} 0.74098 {2} 1.03743 {6} 1.04350 {7} 0.68923 {1} 0.98406 {4} 0.94772 {3}

λ̂ 5.35467 {7} 1.76256 {4} 1.05001 {1} 2.55171 {5} 3.17232 {6} 7.02271 {8} 1.54795 {2} 1.66010 {3}

â 3.72812 {8} 1.03218 {3} 0.91647 {2} 1.21232 {5} 1.49265 {7} 0.78424 {1} 1.29096 {6} 1.17564 {4}

b̂ 18.45088 {8} 2.90396 {2} 2.45908 {1} 4.55886 {5} 4.06692 {3} 14.23576 {7} 4.38515 {4} 4.60979 {6}

MSE

α̂ 4496.01494 {8} 150.92487 {2} 54.10721 {1} 375.43290 {5} 505.07704 {6} 4032.36281 {7} 285.33144 {3} 304.83374 {4}

β̂ 1.66459 {5} 1.78519 {6} 1.00143 {2} 1.84526 {7} 2.32696 {8} 0.77654 {1} 1.65078 {4} 1.56039 {3}

λ̂ 994.95771 {7} 247.97180 {4} 83.23976 {2} 569.31107 {5} 1382.89690 {8} 598.79310 {6} 156.68726 {3} 57.78546 {1}

â 38.64495 {8} 2.59955 {3} 2.75564 {1} 3.55463 {6} 11.03842 {5} 1.89334 {7} 4.64761 {4} 3.40989 {2}

b̂ 4133.99120 {7} 310.23642 {2} 127.70231 {1} 1122.53557 {4} 664.56571 {3} 1559.78305 {8} 404.97672 {5} 222.30922 {6}

MRE

α̂ 27.59835 {7} 3.33204 {2} 2.79152 {1} 5.28202 {4} 4.51187 {3} 38.30004 {8} 5.79692 {5} 6.98134 {6}

β̂ 0.67110 {5} 0.69710 {8} 0.49399 {2} 0.69162 {6} 0.69567 {7} 0.45948 {1} 0.65604 {4} 0.63181 {3}

λ̂ 10.70934 {7} 3.52511 {4} 2.10002 {1} 5.10341 {5} 6.34464 {6} 14.04542 {8} 3.09589 {2} 3.32020 {3}

â 4.14235 {8} 1.14686 {3} 1.01830 {2} 1.34702 {5} 1.65850 {7} 0.87138 {1} 1.43440 {6} 1.30627 {4}

b̂ 15.37573 {8} 2.41997 {2} 2.04924 {1} 3.79905 {5} 3.38910 {3} 11.86313 {7} 3.65429 {4} 3.84149 {6}

∑
Ranks 106 {8} 55 {2} 23 {1} 78 {6} 86 {7} 72 {5} 62 {4} 58 {3}

100

|BIAS|

α̂ 5.05188 {7} 0.86692 {5} 0.58358 {1} 1.07198 {6} 0.58784 {2} 8.17783 {8} 0.77034 {3} 0.80811 {4}

β̂ 0.77895 {6} 0.85800 {8} 0.47962 {1} 0.84831 {7} 0.70582 {3} 0.65163 {2} 0.73659 {4} 0.75226 {5}

λ̂ 3.37272 {7} 0.57680 {3} 0.25796 {1} 0.88317 {6} 0.59993 {4} 8.11096 {8} 0.37768 {2} 0.61071 {5}

â 2.27357 {8} 0.90070 {4} 0.55609 {1} 1.08044 {7} 0.81232 {2} 0.89265 {3} 0.91134 {5} 0.95876 {6}

b̂ 9.23428 {7} 1.68772 {3} 1.01127 {1} 2.35051 {6} 1.68871 {4} 9.70375 {8} 1.62873 {2} 1.80643 {5}

MSE

α̂ 580.86187 {7} 32.98763 {5} 2.15039 {1} 46.56683 {6} 18.61853 {4} 975.35707 {8} 2.77178 {2} 3.94429 {3}

β̂ 0.94633 {4} 1.12881 {8} 0.43502 {1} 1.10448 {6} 1.11399 {7} 0.61952 {2} 0.85686 {3} 0.96658 {5}

λ̂ 1476.04710 {7} 4.69822 {3} 0.47992 {1} 43.22758 {5} 47.69396 {6} 2540.74150 {8} 0.83818 {2} 5.83434 {4}

â 16.75731 {8} 1.92415 {2} 1.02403 {1} 2.89343 {6} 3.07291 {7} 2.17721 {3} 2.35934 {5} 2.31088 {4}

b̂ 2074.14772 {8} 16.33372 {3} 4.18200 {1} 132.32043 {6} 38.67804 {5} 1769.44317 {7} 10.21161 {2} 17.03038 {4}

MRE

α̂ 10.10375 {7} 1.73384 {5} 1.16717 {1} 2.14395 {6} 1.17567 {2} 16.35567 {8} 1.54067 {3} 1.61623 {4}

β̂ 0.51930 {6} 0.57200 {8} 0.31975 {1} 0.56554 {7} 0.47055 {3} 0.43442 {2} 0.49106 {4} 0.50151 {5}

λ̂ 6.74544 {7} 1.15359 {3} 0.51592 {1} 1.76634 {6} 1.19987 {4} 16.22193 {8} 0.75537 {2} 1.22141 {5}

â 2.52619 {8} 1.00078 {4} 0.61788 {1} 1.20049 {7} 0.90257 {2} 0.99184 {3} 1.01260 {5} 1.06528 {6}

b̂ 7.69523 {7} 1.40644 {3} 0.84273 {1} 1.95876 {6} 1.40726 {4} 8.08646 {8} 1.35727 {2} 1.50536 {5}

∑
Ranks 104 {8} 67 {4} 15 {1} 93 {7} 59 {3} 86 {6} 46 {2} 70 {5}

Continued
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33.2, 30.5, 33.1, 35.8, 30.2, 29.7, 26.8, 29.5, 32.8, 30.3, 34.2, 27, 30.3, 36.3, 33.5, 31.7, 31.1, 31.5, 26.6, 31.3, 31.2, 
31.2, 30.3, 26.2, 29.4, 34.5, 29.5, 28.6, 34.2, 40.5, 34.1, 36.6, 35.2, 36.2, 30.7, 38.3, 34, 38.8, 29.7, 31.2, 26.1, 33.3, 
30.5, 28.9, 26.2, 30, 34.3, 25.9, 27.8, 28.5, 34.8, 26.5, 24.4, 28.5, 28.9, 30.9, 24.6, 30.5, 31.2, 33.8, 29.5, 34.8, 26.7, 
29.5, 33, 33.4, 26.3, 26.1, 35, 31.9, 34.4, 26.8, 31, 29.5, 25.4, 30.8, 29.3, 24.9, 29.2, 33.9, 33.3, 26.6, 23.3, 37.4, 31, 
31, 27.2, 31.9, 29, 40.1, 31.2, 32.9, 29, 29.9, 32.9, 26.9, 33.6, 29.5, 26.4, 28.9, 32.7, 38, 34.3

The fifth dataset represents wind speed data extracted from a comprehensive meteorological dataset recorded 
at 15-minute intervals by the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water 
Management Research Unit (SWMRU) research weather station located in Bushland, Texas. Although the 
original dataset includes several meteorological variables, only the wind speed (m/s) variable is analyzed in 
this study. A subsample covering six consecutive days in early 2019 was selected, resulting in a total of 576 
observations. The measurements were collected under standardized reference conditions using calibrated 
sensors installed at a height of 2 meters, with quality control and gap-filling procedures applied as described in 
the original data source. The dataset is publicly available at: https://doi.org/10.15482/USDA.ADC/1526433. The 
data are: 10.590, 10.560, 10.800, 10.190, 9.570, 9.100, 9.920, 10.010, 9.820, 9.330, 9.290, 8.740, 9.320, 8.930, 8.000, 
8.720, 9.010, 9.640, 9.170, 9.500, 9.700, 9.370, 9.520, 9.130, 9.030, 9.490, 8.890, 7.860, 7.790, 8.330, 7.010, 7.120, 
6.370, 5.890, 7.230, 7.030, 6.420, 6.600, 7.000, 6.850, 6.290, 6.790, 6.070, 5.910, 5.620, 5.620, 5.740, 5.150, 5.340, 
4.880, 4.690, 4.590, 4.750, 4.780, 4.530, 4.310, 4.200, 4.050, 3.790, 3.840, 3.380, 3.670, 3.250, 2.850, 2.820, 2.680, 

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 1.26404 {7} 0.52345 {3} 0.33111 {2} 0.52551 {4} 0.26806 {1} 2.83250 {8} 0.67427 {6} 0.66050 {5}

β̂ 0.48791 {3} 0.61734 {8} 0.29139 {1} 0.61173 {6} 0.40703 {2} 0.61572 {7} 0.51946 {4} 0.53884 {5}

λ̂ 0.29854 {5} 0.31398 {7} 0.14820 {1} 0.30620 {6} 0.19171 {2} 2.91575 {8} 0.24833 {3} 0.25654 {4}

â 0.91192 {8} 0.69673 {4} 0.33248 {1} 0.74385 {5} 0.42524 {2} 0.90212 {7} 0.66131 {3} 0.79576 {6}

b̂ 1.85281 {7} 1.22654 {5} 0.55765 {1} 1.29630 {6} 0.82871 {2} 3.92978 {8} 1.13651 {3} 1.14696 {4}

MSE

α̂ 10.97826 {7} 1.54446 {5} 0.46527 {2} 0.74536 {3} 0.22027 {1} 301.36595 {8} 1.63710 {6} 1.53825 {4}

β̂ 0.38304 {3} 0.55064 {6} 0.16251 {1} 0.55696 {7} 0.37921 {2} 0.55759 {8} 0.44808 {4} 0.46189 {5}

λ̂ 0.20222 {5} 0.30962 {7} 0.05199 {1} 0.24957 {6} 0.10480 {2} 421.23930 {8} 0.11836 {3} 0.12082 {4}

â 3.14928 {8} 1.17028 {3} 0.42246 {1} 1.31932 {4} 0.82446 {2} 2.37599 {7} 1.32609 {5} 1.59916 {6}

b̂ 18.44476 {7} 3.96596 {3} 1.36041 {1} 4.12561 {4} 6.10806 {6} 451.58806 {8} 4.21853 {5} 3.49327 {2}

MRE

α̂ 2.52808 {7} 1.04689 {3} 0.66222 {2} 1.05103 {4} 0.31685 {1} 5.66500 {8} 1.34854 {6} 1.32100 {5}

β̂ 0.32527 {3} 0.41156 {8} 0.19426 {2} 0.40782 {6} 0.15024 {1} 0.41048 {7} 0.34631 {4} 0.35923 {5}

λ̂ 0.59709 {5} 0.62796 {7} 0.29641 {2} 0.61240 {6} 0.19880 {1} 5.83151 {8} 0.49666 {3} 0.51309 {4}

â 1.01324 {8} 0.77414 {4} 0.36942 {1} 0.82650 {5} 0.47249 {2} 1.00236 {7} 0.73479 {3} 0.88418 {6}

b̂ 1.54400 {7} 1.02212 {5} 0.46470 {1} 1.08025 {6} 0.69059 {2} 3.27481 {8} 0.94710 {3} 0.95580 {4}

∑
Ranks 90 {7} 78 {5.5} 20 {1} 78 {5.5} 29 {2} 115 {8} 61 {3} 69 {4}

500

|BIAS|

α̂ 0.67606 {7} 0.46508 {3} 0.22501 {2} 0.48212 {5} 0.15842 {1} 8.00000 {8} 0.50971 {6} 0.46621 {4}

β̂ 0.34748 {3} 0.46420 {6} 0.21281 {1} 0.46803 {7} 0.22536 {2} 0.58812 {8} 0.36087 {4} 0.39258 {5}

λ̂ 0.28825 {7} 0.21510 {6} 0.11010 {2} 0.21209 {5} 0.09940 {1} 1.93546 {8} 0.20566 {3} 0.21114 {4}

â 0.47357 {4} 0.55642 {7} 0.22413 {2} 0.55128 {6} 0.22366 {1} 0.99824 {8} 0.40954 {3} 0.53338 {5}

b̂ 0.85521 {5} 0.94331 {6} 0.35714 {2} 1.00397 {7} 0.35428 {1} 2.40966 {8} 0.71385 {3} 0.74353 {4}

MSE

α̂ 3.38281 {7} 0.54509 {3} 0.20604 {2} 0.63743 {4} 0.08541 {1} 34.31505 {8} 0.85354 {6} 0.67213 {5}

β̂ 0.19538 {3} 0.32266 {6} 0.09283 {1} 0.32385 {7} 0.12981 {2} 0.49723 {8} 0.21925 {4} 0.24787 {5}

λ̂ 0.18995 {7} 0.09508 {6} 0.02531 {2} 0.09490 {5} 0.02384 {1} 621.04050 {8} 0.07490 {3} 0.07848 {4}

â 0.90991 {7} 0.74891 {5} 0.16155 {1} 0.69816 {4} 0.19002 {2} 2.50944 {8} 0.50329 {3} 0.76939 {6}

b̂ 5.06531 {7} 2.27457 {5} 0.53478 {1} 2.63117 {6} 0.84308 {2} 354.43454 {8} 1.77273 {4} 1.57918 {3}

MRE

α̂ 1.35211 {7} 0.93015 {3} 0.45002 {2} 0.96423 {5} 0.31685 {1} 2.48736 {8} 1.01943 {6} 0.93241 {4}

β̂ 0.23165 {3} 0.30947 {6} 0.14187 {1} 0.31202 {7} 0.15024 {2} 0.39208 {8} 0.24058 {4} 0.26172 {5}

λ̂ 0.57649 {7} 0.43021 {6} 0.22019 {2} 0.42418 {5} 0.19880 {1} 3.87092 {8} 0.41132 {3} 0.42229 {4}

â 0.52619 {4} 0.61824 {7} 0.24904 {2} 0.61253 {6} 0.24851 {1} 1.10916 {8} 0.45504 {3} 0.59264 {5}

b̂ 0.71267 {5} 0.78609 {6} 0.29762 {2} 0.83664 {7} 0.29523 {1} 2.00805 {8} 0.59488 {3} 0.61961 {4}

∑
Ranks 83 {6} 81 {5} 25 {2} 86 {7} 20 {1} 120 {8} 58 {3} 67 {4}

Table 5.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.5, 0.9, 1.2)T.
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n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 7.33456 {7} 1.38926 {2} 1.35976 {1} 1.65595 {3} 1.80146 {5} 12.65589 {8} 1.75620 {4} 1.99641 {6}

β̂ 1.04280 {7} 1.00917 {5} 0.74365 {2} 0.97049 {4} 1.08162 {8} 0.70165 {1} 1.03252 {6} 0.96964 {3}

λ̂ 3.61486 {7} 0.97180 {3} 0.43525 {1} 0.99036 {4} 2.51147 {6} 6.45657 {8} 0.67095 {2} 1.35638 {5}

â 4.69408 {8} 1.13577 {2} 1.17080 {3} 1.29105 {4} 1.66163 {7} 0.89241 {1} 1.51592 {6} 1.30182 {5}

b̂ 12.81277 {8} 2.33602 {2} 1.74975 {1} 2.65505 {3} 3.31281 {5} 11.33044 {7} 2.83263 {4} 3.54498 {6}

MSE

α̂ 1980.28316 {7} 36.56780 {1} 104.03092 {4} 93.10813 {3} 310.88334 {6} 2028.52414 {8} 154.01348 {5} 63.97997 {2}

β̂ 1.91463 {6} 1.67370 {5} 1.01067 {2} 1.65201 {3} 2.78783 {8} 0.82660 {1} 1.92654 {7} 1.67047 {4}

λ̂ 1052.96209 {8} 15.17457 {4} 2.20518 {1} 9.24062 {3} 956.98240 {7} 384.60779 {6} 6.84232 {2} 24.20128 {5}

â 57.20212 {8} 2.70028 {2} 4.02568 {1} 3.57443 {3} 12.12977 {6} 2.24387 {7} 5.68728 {4} 3.72829 {5}

b̂ 3051.10202 {7} 39.12638 {2} 25.55038 {1} 43.72462 {3} 393.18296 {5} 944.54632 {8} 103.58815 {4} 110.37023 {6}

MRE

α̂ 14.66912 {7} 2.77852 {2} 2.71952 {1} 3.31190 {3} 3.60293 {5} 25.31178 {8} 3.51240 {4} 3.99281 {6}

β̂ 0.69520 {7} 0.67278 {5} 0.49577 {2} 0.64699 {4} 0.72108 {8} 0.46777 {1} 0.68835 {6} 0.64643 {3}

λ̂ 7.22972 {7} 1.94360 {3} 0.87051 {1} 1.98072 {4} 5.02294 {6} 12.91315 {8} 1.34189 {2} 2.71275 {5}

â 4.26735 {8} 1.03252 {2} 1.06436 {3} 1.17368 {4} 1.51057 {7} 0.81129 {1} 1.37810 {6} 1.18347 {5}

b̂ 10.67731 {8} 1.94668 {2} 1.45812 {1} 2.21254 {3} 2.76067 {5} 9.44203 {7} 2.36053 {4} 2.95415 {6}

∑
Ranks 111 {8} 42 {2} 29 {1} 51 {3} 96 {7} 73 {6} 68 {4} 70 {5}

100

|BIAS|

α̂ 2.42640 {7} 0.55106 {3} 0.50483 {2} 0.77253 {6} 0.49271 {1} 5.12919 {8} 0.66276 {4} 0.68811 {5}

β̂ 0.80877 {6} 0.87406 {8} 0.52866 {1} 0.83991 {7} 0.69908 {3} 0.66093 {2} 0.77118 {4} 0.77679 {5}

λ̂ 1.33128 {7} 0.43880 {3} 0.22592 {1} 0.51526 {6} 0.46614 {4} 5.07549 {8} 0.31129 {2} 0.48645 {5}

â 2.77457 {8} 1.07371 {4} 0.72560 {1} 1.22572 {7} 0.97362 {2} 0.98439 {3} 1.12954 {6} 1.12948 {5}

b̂ 5.64302 {7} 1.47045 {3} 1.00659 {1} 1.81188 {6} 1.49176 {4} 6.78444 {8} 1.44124 {2} 1.58196 {5}

MSE

α̂ 151.72662 {7} 1.24826 {2} 1.22870 {1} 13.83277 {6} 6.53826 {5} 418.91065 {8} 1.77298 {3} 4.15017 {4}

β̂ 1.08838 {5} 1.22056 {8} 0.54272 {1} 1.10947 {6} 1.20524 {7} 0.67294 {2} 0.98338 {3} 1.08278 {4}

λ̂ 344.87276 {7} 1.05437 {3} 0.11262 {1} 2.43180 {5} 13.43283 {6} 829.52179 {8} 0.21779 {2} 2.26268 {4}

â 22.61881 {8} 2.37882 {2} 1.59389 {1} 3.23610 {6} 4.03338 {7} 2.43539 {3} 3.15933 {5} 2.84484 {4}

b̂ 930.33900 {8} 6.34267 {3} 3.47107 {1} 17.68316 {5} 25.63750 {6} 728.96137 {7} 5.82179 {2} 13.98925 {4}

MRE

α̂ 4.85280 {7} 1.10212 {3} 1.00967 {2} 1.54506 {6} 0.98542 {1} 10.25839 {8} 1.32551 {4} 1.37622 {5}

β̂ 0.53918 {6} 0.58271 {8} 0.35244 {1} 0.41773 {7} 0.46606 {3} 0.44062 {2} 0.51412 {4} 0.51786 {5}

λ̂ 2.66257 {7} 0.87760 {3} 0.45183 {1} 1.03053 {6} 0.93229 {4} 10.15098 {8} 0.62258 {2} 0.97290 {5}

â 2.52233 {8} 0.97610 {4} 0.65963 {1} 1.11429 {7} 0.88511 {2} 0.89490 {3} 1.02685 {6} 1.02680 {5}

b̂ 4.70252 {7} 1.22538 {3} 0.83883 {1} 1.50990 {6} 1.24313 {4} 5.65370 {8} 1.20103 {2} 1.31830 {5}

∑
Ranks 105 {8} 60 {4} 17 {1} 92 {7} 59 {3} 86 {6} 51 {2} 70 {5}

Continued
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2.930, 2.580, 2.720, 1.950, 1.670, 1.320, 1.290, 0.720, 0.740, 0.410, 0.530, 0.850, 0.970, 1.210, 1.900, 1.600, 1.690, 
1.360, 0.720, 0.960, 0.660, 0.390, 0.870, 0.990, 0.900, 1.500, 1.900, 2.170, 2.230, 2.880, 2.860, 2.910, 2.760, 2.130, 
1.400, 1.400, 1.750, 1.820, 2.010, 2.370, 2.600, 2.550, 2.530, 2.250, 2.390, 2.110, 1.770, 1.790, 1.490, 1.370, 1.310, 
1.930, 1.780, 1.670, 1.390, 1.070, 1.050, 1.270, 1.550, 2.390, 2.710, 2.600, 2.050, 1.840, 2.210, 2.580, 2.870, 3.360, 
3.390, 3.280, 3.620, 3.300, 3.180, 3.070, 3.440, 3.000, 1.930, 0.920, 1.650, 1.890, 1.190, 1.950, 1.470, 1.400, 0.970, 
1.170, 1.110, 0.810, 0.870, 0.690, 1.570, 4.050, 4.290, 4.500, 4.270, 4.290, 4.000, 3.740, 3.380, 3.200, 2.870, 1.830, 
1.500, 1.470, 1.560, 2.450, 2.740, 2.510, 2.390, 2.550, 2.050, 2.490, 2.590, 2.940, 3.250, 3.170, 2.580, 2.580, 2.360, 
2.780, 2.390, 2.390, 3.010, 2.910, 2.320, 1.310, 1.310, 0.610, 1.350, 1.280, 1.280, 1.200, 1.950, 1.860, 1.490, 1.060, 
0.740, 1.310, 1.790, 1.850, 1.540, 1.770, 1.950, 1.970, 1.790, 1.490, 2.030, 2.490, 3.070, 2.570, 2.630, 2.840, 2.750, 
2.790, 3.050, 2.250, 2.160, 2.530, 3.190, 3.700, 2.890, 2.520, 2.620, 3.350, 3.620, 2.930, 3.790, 4.000, 4.090, 4.230, 
3.810, 3.980, 3.650, 3.600, 3.580, 3.710, 3.710, 4.080, 3.960, 4.160, 4.450, 4.940, 5.460, 5.680, 4.950, 5.450, 5.550, 
5.070, 5.490, 5.640, 5.560, 5.890, 6.510, 6.120, 5.330, 5.780, 4.320, 2.570, 2.570, 2.630, 2.130, 0.940, 1.020, 1.640, 
1.640, 1.750, 1.840, 1.570, 1.680, 1.790, 1.340, 1.340, 1.430, 1.480, 1.530, 1.620, 1.770, 1.730, 1.000, 1.530, 1.330, 
1.110, 0.500, 1.130, 1.830, 1.950, 1.850, 1.490, 1.190, 2.220, 2.140, 1.830, 1.550, 1.640, 2.010, 3.440, 3.010, 3.270, 
3.520, 3.260, 3.180, 3.260, 3.960, 4.230, 4.350, 4.050, 4.120, 4.360, 3.810, 3.610, 4.490, 4.910, 4.260, 3.570, 2.960, 
2.930, 2.030, 2.830, 2.900, 2.280, 2.650, 2.220, 2.280, 2.450, 2.440, 1.750, 1.250, 1.550, 1.950, 2.300, 3.180, 3.030, 
2.650, 2.570, 2.580, 2.180, 2.030, 1.930, 1.740, 1.950, 1.540, 1.900, 1.640, 0.990, 1.460, 1.070, 1.520, 1.400, 1.490, 

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 0.74436 {7} 0.42494 {3} 0.27098 {2} 0.43157 {4} 0.25931 {1} 1.34578 {8} 0.48593 {6} 0.46979 {5}

β̂ 0.48119 {3} 0.64179 {8} 0.29941 {1} 0.62659 {7} 0.41092 {2} 0.61360 {6} 0.53331 {4} 0.54595 {5}

λ̂ 0.29436 {7} 0.23069 {3} 0.13571 {1} 0.24185 {5} 0.17811 {2} 1.48411 {8} 0.23247 {4} 0.25769 {6}

â 1.22361 {8} 0.90018 {4} 0.45350 {1} 0.94375 {5} 0.53277 {2} 0.98477 {7} 0.85536 {3} 0.96788 {6}

b̂ 1.54671 {7} 1.13231 {5} 0.56658 {1} 1.20242 {6} 0.75828 {2} 2.18539 {8} 1.01671 {3} 1.02101 {4}

MSE

α̂ 3.33489 {7} 0.42465 {4} 0.23743 {2} 0.41778 {3} 0.19265 {1} 42.08727 {8} 0.78241 {6} 0.70966 {5}

β̂ 0.37727 {2} 0.60976 {8} 0.17786 {1} 0.58674 {7} 0.42207 {3} 0.55548 {6} 0.48271 {5} 0.47553 {4}

λ̂ 0.20610 {7} 0.11413 {4} 0.03550 {1} 0.14141 {6} 0.08150 {2} 78.50242 {8} 0.09260 {3} 0.12883 {5}

â 5.41023 {8} 1.73323 {3} 0.73747 {1} 1.93751 {4} 1.27584 {2} 2.70132 {7} 2.03777 {5} 2.10666 {6}

b̂ 11.42179 {7} 3.07742 {4} 1.27643 {1} 3.39453 {5} 5.27248 {6} 74.89245 {8} 3.03455 {3} 2.57829 {2}

MRE

α̂ 1.48871 {7} 0.84987 {3} 0.54195 {2} 0.86313 {4} 0.31171 {1} 2.69155 {8} 0.97186 {6} 0.93958 {5}

β̂ 0.32079 {3} 0.42786 {8} 0.19960 {2} 0.41773 {7} 0.14498 {1} 0.40906 {6} 0.35554 {4} 0.36397 {5}

λ̂ 0.58873 {7} 0.46137 {3} 0.27143 {2} 0.48370 {5} 0.18713 {1} 2.96822 {8} 0.46495 {4} 0.51537 {6}

â 1.11237 {8} 0.81835 {4} 0.41228 {1} 0.85795 {5} 0.48433 {2} 0.89525 {7} 0.77760 {3} 0.87989 {6}

b̂ 1.28893 {7} 0.94359 {5} 0.47215 {1} 1.00202 {6} 0.63190 {2} 1.82116 {8} 0.84726 {3} 0.85084 {4}

∑
Ranks 95 {7} 69 {4} 20 {1} 79 {6} 30 {2} 111 {8} 62 {3} 74 {5}

500

|BIAS|

α̂ 0.45700 {7} 0.38068 {4} 0.18916 {2} 0.42425 {6} 0.15585 {1} 8.00000 {8} 0.39933 {5} 0.34425 {3}

β̂ 0.35195 {3} 0.47907 {7} 0.22324 {2} 0.47757 {6} 0.21748 {1} 0.58784 {8} 0.37349 {4} 0.40889 {5}

λ̂ 0.27922 {7} 0.17447 {4} 0.10275 {2} 0.16728 {3} 0.09357 {1} 0.92382 {8} 0.18674 {5} 0.20692 {6}

â 0.65039 {4} 0.74067 {7} 0.28280 {2} 0.74066 {6} 0.27836 {1} 1.07300 {8} 0.55749 {3} 0.69247 {5}

b̂ 0.75424 {5} 0.88013 {6} 0.34005 {1} 0.95158 {7} 0.34495 {2} 1.56713 {8} 0.68952 {3} 0.69752 {4}

MSE

α̂ 0.61419 {7} 0.33102 {4} 0.09468 {2} 0.43840 {5} 0.07462 {1} 4.95213 {8} 0.45935 {6} 0.32327 {3}

β̂ 0.20023 {3} 0.34194 {7} 0.10455 {1} 0.33449 {6} 0.13594 {2} 0.50041 {8} 0.23760 {4} 0.26315 {5}

λ̂ 0.17778 {7} 0.04559 {4} 0.01777 {1} 0.04449 {3} 0.02196 {2} 88.16119 {8} 0.05950 {5} 0.07808 {6}

â 1.76911 {7} 1.27425 {6} 0.24527 {1} 1.21132 {5} 0.31193 {2} 2.91211 {8} 0.90346 {3} 1.14540 {4}

b̂ 2.89955 {7} 1.84740 {5} 0.39680 {1} 2.21361 {6} 0.90606 {2} 49.11612 {8} 1.52244 {4} 1.23049 {3}

MRE

α̂ 0.91399 {7} 0.76135 {4} 0.37831 {2} 0.84849 {6} 0.31171 {1} 1.33575 {8} 0.79866 {5} 0.68850 {3}

β̂ 0.23463 {3} 0.31938 {7} 0.14883 {2} 0.31838 {6} 0.14498 {1} 0.39189 {8} 0.24900 {4} 0.27259 {5}

λ̂ 0.55845 {7} 0.34894 {4} 0.20550 {2} 0.33456 {3} 0.18713 {1} 1.84763 {8} 0.37348 {5} 0.41384 {6}

â 0.59127 {4} 0.67334 {7} 0.25709 {2} 0.67333 {6} 0.25305 {1} 0.97545 {8} 0.50681 {3} 0.62952 {5}

b̂ 0.62853 {5} 0.73344 {6} 0.28337 {1} 0.79298 {7} 0.28746 {2} 1.30594 {8} 0.57460 {3} 0.58127 {4}

∑
Ranks 83 {7} 82 {6} 24 {2} 81 {5} 21 {1} 120 {8} 62 {3} 67 {4}

Table 6.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.5, 1.1, 1.2)T.
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n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 3.93312 {7} 1.01714 {4} 0.83242 {1} 1.04594 {5} 0.86109 {2} 9.57785 {8} 1.00265 {3} 1.47971 {6}

β̂ 1.05376 {6} 0.99863 {5} 0.80202 {2} 0.96798 {3} 1.08363 {8} 0.73295 {1} 1.06518 {7} 0.99262 {4}

λ̂ 2.29374 {7} 0.79990 {3} 0.45629 {1} 0.87379 {4} 0.89547 {5} 5.78546 {8} 0.55845 {2} 1.10547 {6}

â 5.74078 {8} 1.22598 {2} 1.35092 {4} 1.33741 {3} 1.80774 {7} 1.01636 {1} 1.67183 {6} 1.39469 {5}

b̂ 9.03582 {7} 2.13614 {3} 1.49371 {1} 2.36181 {5} 2.10756 {2} 9.88831 {8} 2.18338 {4} 2.91530 {6}

MSE

α̂ 455.05529 {7} 8.94097 {2} 16.38925 {4} 8.02337 {1} 20.95470 {5} 1474.37252 {8} 10.68622 {3} 28.19877 {6}

β̂ 2.08534 {6} 1.71142 {4} 1.21994 {2} 1.68813 {3} 2.97266 {8} 0.90974 {1} 2.10723 {7} 1.82623 {5}

λ̂ 361.13516 {7} 4.96876 {2} 7.60626 {4} 6.46392 {3} 45.53682 {6} 393.36590 {8} 3.55248 {1} 14.78641 {5}

â 83.78229 {8} 2.81482 {2} 4.69174 {1} 3.39328 {3} 12.59144 {6} 2.49430 {7} 6.07295 {4} 3.87087 {5}

b̂ 1081.38525 {7} 20.79202 {4} 12.22512 {1} 25.87663 {5} 77.44083 {2} 871.60132 {8} 32.42482 {3} 73.77608 {6}

MRE

α̂ 7.86624 {7} 2.03427 {4} 1.66485 {1} 2.09187 {5} 1.72217 {2} 19.15571 {8} 2.00531 {3} 2.95943 {6}

β̂ 0.70251 {6} 0.66575 {5} 0.53468 {2} 0.64532 {3} 0.72242 {8} 0.48863 {1} 0.71012 {7} 0.66174 {4}

λ̂ 4.58748 {7} 1.59980 {3} 0.91258 {1} 1.74757 {4} 1.79095 {5} 11.57092 {8} 1.11690 {2} 2.21094 {6}

â 4.41598 {8} 0.94306 {2} 1.03917 {4} 1.02878 {3} 1.39057 {7} 0.78181 {1} 1.28602 {6} 1.07284 {5}

b̂ 7.52985 {7} 1.78011 {3} 1.24476 {1} 1.96818 {5} 1.75630 {2} 8.24026 {8} 1.81948 {4} 2.42942 {6}

∑
Ranks 106 {8} 46 {2} 34 {1} 53 {3} 80 {7} 77 {5} 65 {4} 79 {6}

100

|BIAS|

α̂ 1.24153 {7} 0.50907 {3} 0.36319 {1} 0.59168 {5} 0.42588 {2} 3.56225 {8} 0.55255 {4} 0.59552 {6}

β̂ 0.80638 {6} 0.89233 {8} 0.56662 {1} 0.85182 {7} 0.70281 {3} 0.67294 {2} 0.77663 {4} 0.79657 {5}

λ̂ 0.65956 {7} 0.37923 {3} 0.22310 {1} 0.43336 {6} 0.38522 {4} 4.31181 {8} 0.31835 {2} 0.42725 {5}

â 3.32806 {8} 1.20256 {4} 0.95967 {1} 1.32971 {7} 1.16938 {3} 1.08864 {2} 1.28651 {6} 1.24808 {5}

b̂ 3.66364 {7} 1.40726 {5} 0.98523 {1} 1.61606 {6} 1.22079 {2} 6.32767 {8} 1.28787 {3} 1.37300 {4}

MSE

α̂ 16.68662 {7} 1.23050 {4} 0.53242 {1} 3.04661 {6} 0.77863 {2} 217.14918 {8} 1.13992 {3} 2.36896 {5}

β̂ 1.15750 {4} 1.32129 {8} 0.63375 {1} 1.19286 {6} 1.29367 {7} 0.69095 {2} 1.01849 {3} 1.16068 {5}

λ̂ 25.40878 {7} 0.89816 {4} 0.09431 {1} 1.36695 {6} 0.84141 {3} 1234.52459 {8} 0.21901 {2} 0.95744 {5}

â 30.35583 {8} 2.65161 {2} 2.61829 {1} 3.31920 {5} 6.05689 {7} 2.96839 {3} 3.64692 {6} 3.06725 {4}

b̂ 84.47239 {7} 6.46549 {3} 3.18586 {1} 10.41527 {6} 9.08248 {5} 2590.68728 {8} 4.39740 {2} 7.84346 {4}

MRE

α̂ 2.48307 {7} 1.01815 {3} 0.72637 {1} 0.65308 {6} 0.29742 {2} 1.14904 {8} 0.57935 {4} 0.55220 {5}

β̂ 0.53758 {6} 0.59489 {8} 0.37775 {1} 0.56788 {7} 0.46854 {3} 0.44862 {2} 0.35670 {4} 0.36972 {5}

λ̂ 1.31911 {7} 0.75846 {3} 0.44620 {1} 0.86673 {6} 0.77043 {4} 8.62363 {8} 0.63671 {2} 0.85450 {5}

â 2.56005 {8} 0.92505 {4} 0.73821 {1} 1.02285 {7} 0.89952 {3} 0.83741 {2} 0.98962 {6} 0.96006 {5}

b̂ 3.05303 {7} 1.17272 {5} 0.82103 {1} 1.34672 {6} 1.01733 {2} 5.27306 {8} 1.07322 {3} 1.14417 {4}

∑
Ranks 103 {8} 67 {4} 15 {1} 91 {7} 52 {2} 85 {6} 54 {3} 73 {5}

Continued
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1.680, 1.390, 0.710, 1.100, 0.990, 0.370, 0.510, 0.620, 1.170, 0.970, 0.690, 0.710, 0.400, 0.770, 0.990, 1.080, 1.050, 
1.570, 2.110, 2.290, 2.240, 2.090, 1.900, 2.160, 2.250, 1.880, 1.940, 1.790, 1.380, 1.660, 1.900, 2.260, 2.560, 2.690, 
3.090, 3.440, 3.320, 3.430, 3.840, 3.660, 2.720, 2.570, 2.200, 1.900, 1.790, 1.930, 2.010, 1.760, 1.430, 1.150, 1.230, 
1.750, 1.990, 2.180, 2.050, 2.740, 3.420, 3.130, 2.670, 3.320, 3.600, 3.520, 2.960, 3.020, 3.680, 3.680, 3.600, 3.130, 
2.540, 2.780, 2.950, 3.000, 2.940, 3.610, 4.280, 4.680, 5.010, 5.360, 5.360, 4.700, 5.170, 4.920, 5.120, 4.110, 5.090, 
6.060, 5.870, 5.730, 6.070, 5.540, 5.370, 4.930, 4.910, 4.860, 4.590, 4.180, 3.650, 3.740, 2.800, 2.920, 3.050, 2.930, 
3.070, 2.670, 2.210, 2.820, 2.760, 2.680, 2.420, 3.000, 3.060, 3.220, 3.420, 3.410, 3.540, 3.420, 3.340, 3.560, 4.100, 
3.340, 3.350, 4.010, 3.810, 4.520, 5.360, 5.728, 5.957, 4.963, 4.780, 3.966, 4.138, 3.928, 4.480, 5.243, 5.162, 4.681, 
5.241, 5.265, 3.824, 3.782, 3.646, 3.913, 3.463, 3.274, 3.169, 3.609, 3.217, 3.267, 4.124, 4.654, 4.716, 4.056, 4.198, 
3.854, 3.744, 3.764, 3.340, 3.539, 3.792, 3.480, 3.267, 2.980, 3.523, 4.555, 4.876, 4.954, 4.473, 4.863, 4.638, 4.485, 
4.887, 5.889, 5.840, 6.566, 5.105, 5.478, 6.173, 7.829, 7.721, 7.546, 7.863, 8.140, 8.590, 9.010, 7.907, 5.997, 6.118, 
5.842, 5.954, 6.111, 5.570, 4.627, 3.836, 3.148, 3.445, 3.483, 3.538, 2.752, 2.612, 2.618, 2.200, 2.810, 3.516, 4.258, 
4.700, 5.358, 5.013, 5.081, 4.970, 4.517, 6.434, 6.619, 7.068, 6.562, 6.873, 6.312, 6.648, 6.907, 9.350, 9.910, 10.270.

The descriptive statistics summarized in Table 14 underscore the diversity among the five datasets in terms of 
size (n), central tendency, variability, and distributional shape. Notably, the skewness values range from negative 
to positive, indicating that the datasets are not symmetrically distributed. This variation reflects the complexity 

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 0.45154 {7} 0.36368 {4} 0.21404 {1} 0.36893 {5} 0.24152 {2} 1.07309 {8} 0.35666 {3} 0.38764 {6}

β̂ 0.48107 {3} 0.64276 {8} 0.32441 {1} 0.63639 {7} 0.39594 {2} 0.63393 {6} 0.53506 {4} 0.55458 {5}

λ̂ 0.28746 {7} 0.21215 {4} 0.13752 {1} 0.21120 {3} 0.18756 {2} 1.21756 {8} 0.22315 {5} 0.26008 {6}

â 1.62851 {8} 1.05386 {4} 0.57234 {1} 1.09009 {7} 0.60794 {2} 1.05833 {5} 0.98189 {3} 1.08570 {6}

b̂ 1.33138 {7} 1.03592 {5} 0.56036 {1} 1.09034 {6} 0.66999 {2} 1.89716 {8} 0.87844 {3} 0.91333 {4}

MSE

α̂ 0.73770 {7} 0.28090 {3} 0.09846 {1} 0.29619 {4} 0.16049 {2} 23.65790 {8} 0.37411 {5} 0.46541 {6}

β̂ 0.37105 {2} 0.62392 {8} 0.21024 {1} 0.61582 {7} 0.43261 {3} 0.61439 {6} 0.50622 {5} 0.50418 {4}

λ̂ 0.19568 {7} 0.07986 {2} 0.03581 {1} 0.08064 {3} 0.08487 {4} 80.70630 {8} 0.08833 {5} 0.14179 {6}

â 9.33550 {8} 2.13198 {3} 1.06111 {1} 2.34296 {5} 1.74541 {2} 2.85968 {7} 2.39320 {6} 2.25930 {4}

b̂ 7.32543 {7} 2.45706 {4} 1.14393 {1} 2.69180 {5} 3.92688 {6} 60.56412 {8} 2.08155 {3} 1.90151 {2}

MRE

α̂ 0.90308 {7} 0.72736 {4} 0.42807 {2} 0.73785 {5} 0.29742 {1} 2.14617 {8} 0.71332 {3} 0.77529 {6}

β̂ 0.32072 {3} 0.42850 {8} 0.21627 {2} 0.42426 {7} 0.13509 {1} 0.39663 {8} 0.25141 {4} 0.27933 {5}

λ̂ 0.57491 {7} 0.32904 {4} 0.19195 {1} 0.32292 {3} 0.20629 {2} 1.10149 {8} 0.35804 {5} 0.40727 {6}

â 0.63300 {5} 0.68519 {6} 0.26245 {2} 0.69799 {7} 0.23609 {1} 0.83696 {8} 0.52349 {3} 0.63186 {4}

b̂ 0.58632 {5} 0.68100 {6} 0.27224 {2} 0.73277 {7} 0.25848 {1} 1.01292 {8} 0.52224 {3} 0.53229 {4}

∑
Ranks 95 {7} 70 {4} 18 {1} 80 {6} 34 {2} 107 {8} 60 {3} 76 {5}

500

|BIAS|

α̂ 0.35885 {7} 0.30070 {5} 0.14756 {1} 0.32654 {6} 0.14871 {2} 8.00000 {8} 0.28968 {4} 0.27610 {3}

β̂ 0.34982 {3} 0.48291 {6} 0.21401 {2} 0.48327 {7} 0.20264 {1} 0.59495 {8} 0.37712 {4} 0.41900 {5}

λ̂ 0.27474 {7} 0.16452 {4} 0.09598 {1} 0.16146 {3} 0.10314 {2} 0.55075 {8} 0.17902 {5} 0.20364 {6}

â 0.82290 {5} 0.89074 {6} 0.34118 {2} 0.90739 {7} 0.30692 {1} 1.08804 {8} 0.68054 {3} 0.82142 {4}

b̂ 0.70358 {5} 0.81720 {6} 0.32668 {2} 0.87932 {7} 0.31018 {1} 1.21551 {8} 0.62668 {3} 0.63875 {4}

MSE

α̂ 0.29257 {7} 0.21993 {5} 0.04636 {1} 0.24856 {6} 0.06675 {2} 1.96818 {8} 0.19921 {4} 0.17010 {3}

β̂ 0.19410 {3} 0.34633 {7} 0.09831 {1} 0.34434 {6} 0.13022 {2} 0.52823 {8} 0.24468 {4} 0.27192 {5}

λ̂ 0.17655 {7} 0.04480 {4} 0.01452 {1} 0.04181 {3} 0.02604 {2} 1.42854 {8} 0.05935 {5} 0.08624 {6}

â 2.55423 {7} 1.65318 {5} 0.39050 {1} 1.68069 {6} 0.41505 {2} 2.82497 {8} 1.21969 {3} 1.40095 {4}

b̂ 2.39326 {7} 1.48191 {5} 0.35758 {1} 1.74645 {6} 0.59674 {2} 3.97401 {8} 1.12441 {4} 0.91611 {3}

MRE

α̂ 0.71769 {7} 0.60141 {5} 0.29512 {1} 0.65308 {6} 0.29742 {2} 1.14904 {8} 0.57935 {4} 0.55220 {3}

β̂ 0.23321 {3} 0.32194 {6} 0.14267 {2} 0.32218 {7} 0.13509 {1} 0.39663 {8} 0.25141 {4} 0.27933 {5}

λ̂ 0.54947 {7} 0.32904 {4} 0.19195 {1} 0.32292 {3} 0.20629 {2} 1.10149 {8} 0.35804 {5} 0.40727 {6}

â 0.63300 {5} 0.68519 {6} 0.26245 {2} 0.69799 {7} 0.23609 {1} 0.83696 {8} 0.52349 {3} 0.63186 {4}

b̂ 0.58632 {5} 0.68100 {6} 0.27224 {2} 0.73277 {7} 0.25848 {1} 1.01292 {8} 0.52224 {3} 0.53229 {4}

∑
Ranks 85 {6} 80 {5} 21 {1} 87 {7} 24 {2} 120 {8} 58 {3} 65 {4}

Table 7.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.5, 1.3, 1.2)T.
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n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 2.10982 {7} 0.98476 {6} 0.60669 {2} 0.61406 {3} 0.47519 {1} 4.01192 {8} 0.70275 {5} 0.69017 {4}

β̂ 0.68973 {6} 0.85650 {8} 0.62423 {3} 0.82091 {7} 0.29652 {1} 0.37823 {2} 0.68909 {5} 0.65208 {4}

λ̂ 9.74554 {8} 1.09309 {6} 0.64656 {3} 0.75128 {4} 0.51383 {1} 3.89186 {7} 0.64320 {2} 0.97694 {5}

â 3.79455 {8} 0.84377 {2} 0.77113 {1} 0.98346 {5} 1.28942 {7} 1.08595 {6} 0.94879 {4} 0.94841 {3}

b̂ 3.53050 {8} 0.40299 {5} 0.27779 {1} 0.36626 {4} 0.35944 {3} 1.01159 {7} 0.31448 {2} 0.40860 {6}

MSE

α̂ 667.02712 {7} 107.70264 {6} 3.54587 {4} 1.53320 {2} 0.62266 {1} 3606.82461 {8} 3.84992 {5} 2.23235 {3}

β̂ 0.67637 {4} 1.12874 {8} 0.61105 {3} 0.99738 {7} 0.84821 {6} 0.26576 {1} 0.69775 {5} 0.59647 {2}

λ̂ 83232.95657 {8} 158.05868 {6} 1.69126 {3} 2.38192 {4} 0.68193 {1} 584.32791 {7} 1.16142 {2} 13.69024 {5}

â 63.15764 {8} 1.85323 {6} 2.15647 {1} 2.50965 {3} 10.07516 {5} 7.37178 {7} 2.84686 {2} 2.58046 {4}

b̂ 8417.58478 {7} 4.47107 {6} 0.35712 {2} 0.45203 {3} 1.16293 {1} 24.13930 {8} 0.40043 {5} 0.75442 {4}

MRE

α̂ 4.21964 {7} 1.96952 {6} 1.21338 {2} 1.22811 {3} 0.95038 {1} 8.02383 {8} 1.40551 {5} 1.38033 {4}

β̂ 0.45982 {5} 0.57100 {8} 0.41615 {2} 0.54728 {7} 0.49022 {6} 0.25216 {1} 0.45939 {4} 0.43472 {3}

λ̂ 12.99406 {8} 1.45745 {6} 0.86208 {3} 1.00171 {4} 0.68510 {1} 5.18915 {7} 0.85761 {2} 1.30258 {5}

â 6.32425 {8} 1.40628 {2} 1.28522 {1} 1.63910 {5} 2.14903 {7} 1.80991 {6} 1.58132 {4} 1.58068 {3}

b̂ 11.76834 {8} 1.34328 {5} 0.92595 {1} 1.22088 {4} 1.19812 {3} 3.37196 {7} 1.04828 {2} 1.36199 {6}

∑
Ranks 108 {8} 81 {6} 32 {1} 65 {5} 51 {2} 88 {7} 54 {3} 61 {4}

100

|BIAS|

α̂ 0.84301 {7} 0.43550 {5} 0.30507 {2} 0.46623 {6} 0.28281 {1} 1.62325 {8} 0.41301 {4} 0.40497 {3}

β̂ 0.53143 {5} 0.66938 {7} 0.45487 {2} 0.69243 {8} 0.52057 {3} 0.35033 {1} 0.52768 {4} 0.53825 {6}

λ̂ 0.49169 {6} 0.47443 {5} 0.42226 {3} 0.49851 {7} 0.29409 {1} 2.63782 {8} 0.39593 {2} 0.45934 {4}

â 1.68292 {8} 0.72696 {5} 0.50268 {1} 0.88526 {7} 0.70873 {4} 0.69930 {3} 0.65472 {2} 0.77654 {6}

b̂ 0.32922 {7} 0.23814 {4} 0.15888 {1} 0.29142 {6} 0.16946 {2} 0.92702 {8} 0.19033 {3} 0.23877 {5}

MSE

α̂ 13.37040 {7} 0.56205 {3} 0.20691 {2} 0.73231 {6} 0.14081 {1} 170.17219 {8} 0.60274 {5} 0.56324 {4}

β̂ 0.42093 {5} 0.67254 {7} 0.33392 {2} 0.68990 {8} 0.44338 {6} 0.26207 {1} 0.39759 {3} 0.40575 {4}

λ̂ 0.67064 {7} 0.45537 {3} 0.47893 {4} 0.59990 {5} 0.18468 {1} 188.09102 {8} 0.35698 {2} 0.60456 {6}

â 16.12036 {8} 1.35335 {2} 0.94222 {1} 1.90221 {5} 4.64823 {7} 2.35848 {6} 1.55865 {3} 1.81776 {4}

b̂ 0.62858 {7} 0.18464 {3} 0.08822 {1} 0.26222 {6} 0.19429 {5} 21.60443 {8} 0.12108 {2} 0.18856 {4}

MRE

α̂ 1.68602 {7} 0.87101 {5} 0.61014 {2} 0.93246 {6} 0.56561 {1} 3.24651 {8} 0.82603 {4} 0.80994 {3}

β̂ 0.35428 {5} 0.44625 {7} 0.30325 {2} 0.46162 {8} 0.34705 {3} 0.23356 {1} 0.35179 {4} 0.35883 {6}

λ̂ 0.65559 {6} 0.63257 {5} 0.56302 {3} 0.66468 {7} 0.39212 {1} 3.51709 {8} 0.52791 {2} 0.61245 {4}

â 2.80486 {8} 1.21160 {5} 0.83780 {1} 1.47544 {7} 1.18121 {4} 1.16549 {3} 1.09120 {2} 1.29423 {6}

b̂ 1.09739 {7} 0.79381 {4} 0.52960 {1} 0.97141 {6} 0.56488 {2} 3.09005 {8} 0.63445 {3} 0.79589 {5}

∑
Ranks 100 {8} 70 {4.5} 28 {1} 98 {7} 42 {2} 87 {6} 45 {3} 70 {4.5}

Continued
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often encountered in real-world reliability and engineering data. Therefore, it is crucial to employ a flexible 
distribution capable of capturing such heterogeneity.

The proposed KAPLL model is particularly well-suited for this purpose, as it can accommodate a wide range 
of skewness and kurtosis levels, making it a strong candidate for modeling these datasets effectively.

The fits of the KAPLL distributions is compared with some existing LL distributions namely: the alpha power 
transformed LL (APTLL)17, KMOLL21, McLL20, AWLL22, alpha power LL (APLL)54, TLL18, and LL distributions.

The performance of the fitted distributions is explored using some measures including the Akaike information 
criterion (AIC), consistent Akaike IC (CAIC), Hannan–Quinn IC (HQIC), Bayesian IC (BIC), (−ℓ), where ℓ the 
maximized log-likelihood, as well as some statistics include the Cramér–Von Mises (W ∗), Anderson-–Darling 
(A∗), Kolmogorov–Smirnov (KS) and the KS p-value (PV).

All numerical results in this section are calculated using the R software. Table 15 provides goodness-of-fit 
measures of the competing models for the five analyzed datasets. The results in this table indicate the superior 
fitting performance of the proposed KAPLL distribution over other existing LL extensions. The ML estimates 
and standard errors (SEs) for the models’ parameters are reported in Tables 16 and 17, for all datasets. Overall, 
the KAPLL distribution have the lowest values for goodness-of-fit criteria among all LL fitted models. Then, it 
could be chosen as the most adequate model for fitting the five datasets.

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 0.37957 {7} 0.28330 {5} 0.18161 {2} 0.26826 {4} 0.16323 {1} 0.65826 {8} 0.31424 {6} 0.25495 {3}

β̂ 0.34004 {4} 0.46961 {8} 0.28146 {1} 0.45493 {7} 0.29652 {3} 0.28988 {2} 0.37506 {5} 0.39717 {6}

λ̂ 0.37470 {7} 0.35558 {5} 0.21668 {2} 0.36921 {6} 0.16002 {1} 0.64644 {8} 0.30441 {4} 0.25259 {3}

â 0.51041 {5} 0.51452 {6} 0.27239 {2} 0.52402 {7} 0.23736 {1} 0.42427 {4} 0.36967 {3} 0.57541 {8}

b̂ 0.13292 {4} 0.14792 {6} 0.08819 {2} 0.13899 {5} 0.07459 {1} 0.42310 {8} 0.11971 {3} 0.15186 {7}

MSE

α̂ 2.40148 {7} 0.15180 {4} 0.05285 {2} 0.12138 {3} 0.04961 {1} 26.45866 {8} 0.27786 {6} 0.21749 {5}

β̂ 0.19176 {3} 0.32962 {8} 0.13360 {1} 0.31452 {7} 0.16404 {2} 0.24845 {6} 0.20346 {4} 0.24100 {5}

λ̂ 0.45584 {7} 0.29471 {5} 0.12495 {2} 0.31329 {6} 0.05716 {1} 4.91916 {8} 0.24773 {4} 0.15484 {3}

â 1.61523 {8} 0.74439 {4} 0.27168 {1} 0.77097 {5} 0.34305 {2} 0.78066 {6} 0.45301 {3} 1.07124 {7}

b̂ 0.05766 {6} 0.05575 {5} 0.02094 {2} 0.04668 {4} 0.01329 {1} 1.62186 {8} 0.03775 {3} 0.06527 {7}

MRE

α̂ 0.75914 {7} 0.56661 {5} 0.36321 {2} 0.53652 {4} 0.19566 {1} 1.31653 {8} 0.62848 {6} 0.50989 {3}

β̂ 0.22669 {3} 0.31308 {8} 0.18764 {2} 0.30329 {7} 0.11117 {1} 0.19325 {5} 0.18314 {4} 0.20869 {6}

λ̂ 0.49960 {7} 0.47410 {5} 0.28891 {2} 0.49228 {6} 0.13870 {1} 0.86192 {8} 0.40587 {4} 0.33678 {3}

â 0.85068 {5} 0.85753 {6} 0.45398 {2} 0.87337 {7} 0.39560 {1} 0.70711 {4} 0.61611 {3} 0.95901 {8}

b̂ 0.44308 {4} 0.49305 {6} 0.29398 {2} 0.46331 {5} 0.24863 {1} 1.41032 {8} 0.39902 {3} 0.50619 {7}

∑
Ranks 85 {6} 86 {7} 27 {2} 83 {5} 19 {1} 97 {8} 62 {3} 81 {4}

500

|BIAS|

α̂ 0.20066 {4} 0.23162 {6} 0.11984 {2} 0.24449 {7} 0.09783 {1} 8.00000 {8} 0.21114 {5} 0.17249 {3}

β̂ 0.22994 {3} 0.35988 {8} 0.18305 {2} 0.34879 {7} 0.16676 {1} 0.28890 {5} 0.27471 {4} 0.31303 {6}

λ̂ 0.28490 {5} 0.31362 {7} 0.13005 {2} 0.30834 {6} 0.10402 {1} 0.41688 {8} 0.23302 {4} 0.16351 {3}

â 0.22302 {3} 0.35847 {6} 0.13626 {2} 0.34017 {5} 0.13410 {1} 0.42478 {7} 0.22849 {4} 0.42549 {8}

b̂ 0.07570 {3} 0.09947 {5} 0.04874 {2} 0.10226 {6} 0.04565 {1} 0.36592 {8} 0.07598 {4} 0.10468 {7}

MSE

α̂ 0.07033 {4} 0.08190 {6} 0.02626 {2} 0.09573 {7} 0.01669 {1} 0.57406 {8} 0.08039 {5} 0.05798 {3}

β̂ 0.10282 {3} 0.19632 {7} 0.05904 {1} 0.18247 {6} 0.06310 {2} 0.26862 {8} 0.11585 {4} 0.15634 {5}

λ̂ 0.30601 {7} 0.23048 {5} 0.04296 {2} 0.24301 {6} 0.01887 {1} 0.92476 {8} 0.17077 {4} 0.05198 {3}

â 0.16721 {4} 0.36527 {6} 0.05193 {2} 0.32355 {5} 0.04398 {1} 0.93583 {8} 0.14753 {3} 0.62543 {7}

b̂ 0.01696 {4} 0.02240 {5} 0.00542 {2} 0.02409 {6} 0.00527 {1} 1.62186 {8} 0.01310 {3} 0.02663 {7}

MRE

α̂ 0.40132 {4} 0.46324 {6} 0.23969 {2} 0.48898 {7} 0.19566 {1} 0.68197 {8} 0.42227 {5} 0.34498 {3}

β̂ 0.15330 {3} 0.23992 {8} 0.12203 {2} 0.23252 {7} 0.11117 {1} 0.19260 {5} 0.18314 {4} 0.20869 {6}

λ̂ 0.37986 {5} 0.41816 {7} 0.17340 {2} 0.41112 {6} 0.13870 {1} 0.55584 {8} 0.31070 {4} 0.21801 {3}

â 0.37170 {3} 0.59746 {6} 0.22710 {2} 0.56695 {5} 0.22351 {1} 0.70797 {7} 0.38082 {4} 0.70915 {8}

b̂ 0.25234 {3} 0.33155 {5} 0.16246 {2} 0.34088 {6} 0.15217 {1} 1.21973 {8} 0.25328 {4} 0.34893 {7}

∑
Ranks 58 {3} 93 {7} 29 {2} 92 {6} 16 {1} 112 {8} 61 {4} 79 {5}

Table 8.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.75, 0.6, 0.3)T.
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n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 2.90857 {7} 1.22842 {4} 1.00526 {2} 1.79282 {5} 0.83292 {1} 4.89560 {8} 1.09398 {3} 1.90487 {6}

β̂ 0.82589 {4} 0.99989 {8} 0.66345 {2} 0.92154 {7} 0.91364 {6} 0.49144 {1} 0.84217 {5} 0.82534 {3}

λ̂ 3.13493 {7} 1.05086 {4} 0.85252 {1} 1.47774 {5} 1.01798 {3} 7.55158 {8} 0.92569 {2} 2.93827 {6}

â 2.87125 {8} 0.79138 {3} 0.66428 {2} 0.97617 {6} 1.16550 {7} 0.50244 {1} 0.92428 {5} 0.91783 {4}

b̂ 2.53118 {8} 0.77439 {3} 0.55727 {1} 0.99909 {5} 0.94477 {4} 2.46564 {7} 0.74759 {2} 1.21091 {6}

MSE

α̂ 531.40926 {8} 49.64205 {4} 21.67096 {2} 224.83942 {5} 42.40955 {3} 355.90411 {7} 11.90844 {1} 278.31952 {6}

β̂ 1.04045 {3} 1.75791 {8} 0.84114 {2} 1.40113 {6} 1.52433 {7} 0.39204 {1} 1.20348 {5} 1.07041 {4}

λ̂ 2290.39863 {8} 36.72915 {3} 8.90711 {1} 188.77097 {5} 81.90253 {4} 518.44224 {6} 17.30250 {2} 1049.53033 {7}

â 34.96166 {8} 1.70296 {3} 1.63230 {1} 2.57092 {5} 8.06744 {4} 1.12744 {7} 2.71833 {2} 2.33411 {6}

b̂ 228.98944 {7} 6.02364 {4} 1.95820 {2} 25.45254 {5} 8.57837 {1} 66.15547 {8} 3.77918 {3} 56.07007 {6}

MRE

α̂ 5.81713 {7} 2.45683 {4} 2.01051 {2} 3.58564 {5} 1.66585 {1} 9.79119 {8} 2.18795 {3} 3.80973 {6}

β̂ 0.55059 {4} 0.66659 {8} 0.44230 {2} 0.61436 {7} 0.60909 {6} 0.32763 {1} 0.56144 {5} 0.55023 {3}

λ̂ 4.17991 {7} 1.40114 {4} 1.13669 {1} 1.97032 {5} 1.35731 {3} 10.06877 {8} 1.23425 {2} 3.91770 {6}

â 4.78541 {8} 1.31896 {3} 1.10714 {2} 1.62695 {6} 1.94250 {7} 0.83740 {1} 1.54047 {5} 1.52972 {4}

b̂ 5.06236 {8} 1.54879 {3} 1.11454 {1} 1.99817 {5} 1.88953 {4} 4.93129 {7} 1.49518 {2} 2.42183 {6}

∑
Ranks 103 {8} 65 {3} 24 {1} 82 {7} 67 {4} 72 {5} 50 {2} 77 {6}

100

|BIAS|

α̂ 1.07088 {7} 0.62198 {4} 0.44930 {2} 0.66856 {6} 0.34291 {1} 2.63029 {8} 0.65040 {5} 0.59401 {3}

β̂ 0.64445 {5} 0.72886 {7} 0.46458 {2} 0.73665 {8} 0.66613 {6} 0.44619 {1} 0.57810 {3} 0.62353 {4}

λ̂ 0.71471 {7} 0.56536 {4} 0.49202 {2} 0.55993 {3} 0.38894 {1} 4.39275 {8} 0.57973 {5} 0.64209 {6}

â 1.34586 {8} 0.70769 {5} 0.43194 {1} 0.79781 {7} 0.52980 {2} 0.67406 {4} 0.60647 {3} 0.75193 {6}

b̂ 0.89239 {7} 0.48625 {5} 0.33148 {1} 0.61587 {6} 0.43611 {3} 1.06133 {8} 0.40707 {2} 0.45342 {4}

MSE

α̂ 25.94600 {7} 2.04009 {5} 0.95218 {2} 1.37902 {3} 0.25008 {1} 98.43325 {8} 2.16820 {6} 1.68689 {4}

β̂ 0.61986 {4} 0.90178 {8} 0.41049 {2} 0.88131 {7} 0.82344 {6} 0.31821 {1} 0.55808 {3} 0.62913 {5}

λ̂ 1.89292 {7} 0.63732 {3} 0.62856 {2} 0.89926 {5} 0.39868 {1} 221.29767 {8} 0.73840 {4} 0.95177 {6}

â 7.88808 {8} 1.38746 {3} 0.79083 {1} 1.66226 {6} 1.48858 {4} 2.46499 {7} 1.32767 {2} 1.62387 {5}

b̂ 5.37620 {7} 0.74403 {4} 0.55886 {1} 1.18140 {5} 1.67507 {6} 15.27756 {8} 0.68384 {2} 0.74061 {3}

MRE

α̂ 2.14177 {7} 1.24396 {4} 0.89860 {2} 1.33711 {6} 0.68583 {1} 5.26057 {8} 1.30079 {5} 1.18803 {3}

β̂ 0.42963 {5} 0.48590 {7} 0.30972 {2} 0.49110 {8} 0.44409 {6} 0.29746 {1} 0.38540 {3} 0.41569 {4}

λ̂ 0.95295 {7} 0.75381 {4} 0.65602 {2} 0.74657 {3} 0.51858 {1} 5.85700 {8} 0.77297 {5} 0.85612 {6}

â 2.24310 {8} 1.17949 {5} 0.71989 {1} 1.32968 {7} 0.88300 {2} 1.12344 {4} 1.01078 {3} 1.25322 {6}

b̂ 1.78478 {7} 0.97250 {5} 0.66297 {1} 1.23174 {6} 0.87223 {3} 2.12266 {8} 0.81414 {2} 0.90684 {4}

∑
Ranks 101 {8} 73 {5} 24 {1} 86 {6} 44 {2} 90 {7} 53 {3} 69 {4}

Continued
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Furthermore, the visual fitting performance of the proposed KAPLL distribution is comprehensively assessed 
in Figs. 4 and 5. These figures present a detailed graphical comparison between the empirical data and the fitted 
KAPLL model through various diagnostic plots. Specifically, each panel includes the histogram of the observed 
dataset overlaid with the estimated PDF, the empirical and fitted CDF, and the probability–probability (PP) plots. 
These plots collectively illustrate how well the KAPLL model captures the overall distributional behavior of the 
data.

In addition, Figs. 6, 7 and 8 show the histogram-based visual comparison of the KAPLL model against several 
other competing lifetime distributions, including known extensions of the LL distribution. For each dataset, the 
histogram is overlaid with the fitted density curves from all candidate models. This comparative visualization 
allows for a clear, direct assessment of goodness-of-fit among the competing models.

From the visual evidence provided in all these figures, it is apparent that the KAPLL distribution consistently 
aligns more closely with the empirical data than the alternative models. Specifically, the KAPLL model’s 
density curves match the peaks, tails, and spread of the histograms more accurately; its CDF trace follows the 
empirical curves with minimal deviation; and the PP plots demonstrate that the fitted values are nearly perfectly 
aligned with the 45-degree reference line, indicating strong agreement between the observed and theoretical 
distributions. These visual diagnostics confirm the superior flexibility and accuracy of the KAPLL model in 

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 0.56287 {7} 0.44686 {4} 0.23867 {2} 0.44941 {5} 0.19324 {1} 1.38295 {8} 0.49578 {6} 0.42810 {3}

β̂ 0.40230 {5} 0.48239 {8} 0.25857 {1} 0.47287 {7} 0.38439 {2} 0.39727 {4} 0.38443 {3} 0.42399 {6}

λ̂ 0.54412 {7} 0.42275 {4} 0.27435 {2} 0.41514 {3} 0.18875 {1} 2.23589 {8} 0.47022 {5} 0.51823 {6}

â 0.40746 {4} 0.44588 {5} 0.20477 {1} 0.47617 {6} 0.25153 {2} 0.87951 {8} 0.31189 {3} 0.50607 {7}

b̂ 0.25904 {4} 0.30711 {6} 0.14639 {1} 0.31505 {7} 0.16286 {2} 0.39706 {8} 0.22334 {3} 0.28871 {5}

MSE

α̂ 3.68958 {7} 0.52678 {3} 0.10008 {2} 0.53647 {4} 0.05861 {1} 19.59192 {8} 0.80459 {6} 0.60588 {5}

β̂ 0.24612 {3} 0.39810 {8} 0.13075 {1} 0.35900 {7} 0.28482 {5} 0.28003 {4} 0.24287 {2} 0.28842 {6}

λ̂ 0.71841 {7} 0.30884 {4} 0.18572 {2} 0.29863 {3} 0.11549 {1} 115.47011 {8} 0.46093 {5} 0.65328 {6}

â 0.61835 {4} 0.62015 {5} 0.15031 {1} 0.70440 {6} 0.29737 {3} 4.28709 {8} 0.28427 {2} 0.78647 {7}

b̂ 0.30876 {6} 0.29085 {5} 0.08705 {2} 0.31608 {7} 0.07992 {1} 1.48625 {8} 0.16834 {3} 0.27586 {4}

MRE

α̂ 1.12574 {7} 0.89372 {4} 0.47734 {2} 0.89883 {5} 0.26955 {1} 2.76590 {8} 0.99156 {6} 0.85620 {3}

β̂ 0.26820 {5} 0.32160 {8} 0.17238 {2} 0.31525 {7} 0.16130 {1} 0.26485 {4} 0.25629 {3} 0.28266 {6}

λ̂ 0.72549 {7} 0.56366 {4} 0.36579 {2} 0.55352 {3} 0.14785 {1} 2.98118 {8} 0.62696 {5} 0.69097 {6}

â 0.67911 {4} 0.74314 {5} 0.34128 {1} 0.79362 {6} 0.41922 {2} 1.46584 {8} 0.51982 {3} 0.84345 {7}

b̂ 0.51808 {4} 0.61422 {6} 0.29277 {1} 0.63010 {7} 0.32571 {2} 0.79412 {8} 0.44667 {3} 0.57742 {5}

∑
Ranks 81 {5} 79 {4} 23 {1} 83 {7} 26 {2} 108 {8} 58 {3} 82 {6}

500

|BIAS|

α̂ 0.35357 {4} 0.36374 {6} 0.17285 {2} 0.37030 {7} 0.13478 {1} 8.00000 {8} 0.35495 {5} 0.31465 {3}

β̂ 0.30556 {4} 0.34570 {7} 0.17627 {1} 0.32521 {5} 0.24195 {2} 0.37764 {8} 0.28503 {3} 0.32710 {6}

λ̂ 0.52884 {7} 0.36884 {3} 0.18028 {2} 0.38021 {4} 0.11089 {1} 1.97140 {8} 0.39543 {5} 0.42642 {6}

â 0.23268 {4} 0.28645 {6} 0.12057 {1} 0.27005 {5} 0.15481 {2} 0.61507 {8} 0.20101 {3} 0.31954 {7}

b̂ 0.14161 {4} 0.19432 {7} 0.08525 {1} 0.19033 {6} 0.10283 {2} 0.57555 {8} 0.13726 {3} 0.17547 {5}

MSE

α̂ 0.19244 {4} 0.30280 {6} 0.05171 {2} 0.35495 {7} 0.02902 {1} 51.12266 {8} 0.19634 {5} 0.16377 {3}

β̂ 0.14285 {4} 0.20492 {7} 0.06365 {1} 0.18131 {6} 0.11682 {2} 0.24380 {8} 0.12794 {3} 0.16612 {5}

λ̂ 0.67324 {7} 0.24360 {3} 0.07777 {2} 0.26126 {4} 0.03325 {1} 84.23066 {8} 0.33924 {5} 0.42776 {6}

â 0.12854 {4} 0.24103 {6} 0.03816 {1} 0.21001 {5} 0.04518 {2} 1.70006 {8} 0.09966 {3} 0.31236 {7}

b̂ 0.04448 {4} 0.11285 {6} 0.01859 {1} 0.11422 {7} 0.02323 {2} 7.94497 {8} 0.04441 {3} 0.07889 {5}

MRE

α̂ 0.70715 {4} 0.72747 {6} 0.34570 {2} 0.74060 {7} 0.26955 {1} 2.45739 {8} 0.70989 {5} 0.62931 {3}

β̂ 0.20371 {4} 0.23047 {7} 0.11752 {1} 0.21680 {5} 0.16130 {2} 0.25176 {8} 0.19002 {3} 0.21807 {6}

λ̂ 0.70511 {7} 0.49178 {3} 0.24037 {2} 0.50695 {4} 0.14785 {1} 2.62853 {8} 0.52725 {5} 0.56856 {6}

â 0.38780 {4} 0.47742 {6} 0.20095 {1} 0.45008 {5} 0.25801 {2} 1.02512 {8} 0.33502 {3} 0.53256 {7}

b̂ 0.28322 {4} 0.38863 {7} 0.17051 {1} 0.38067 {6} 0.20565 {2} 1.15109 {8} 0.27452 {3} 0.35095 {5}

∑
Ranks 69 {4} 86 {7} 21 {1} 83 {6} 24 {2} 120 {8} 57 {3} 80 {5}

Table 9.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.75, 0.6, 0.5)T.

 

Scientific Reports |         (2026) 16:3266 22| https://doi.org/10.1038/s41598-025-34460-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 9.67712 {7} 2.01966 {2} 2.04697 {3} 4.09986 {6} 1.98052 {1} 12.30644 {8} 2.63589 {4} 4.01571 {5}

β̂ 0.85793 {5} 0.96952 {8} 0.65025 {3} 0.94520 {7} 0.38832 {1} 0.54574 {2} 0.89161 {6} 0.84504 {4}

λ̂ 13.26830 {8} 2.22478 {3} 1.34355 {1} 4.79735 {6} 2.37869 {4} 12.32516 {7} 2.22258 {2} 3.25133 {5}

â 2.73706 {8} 0.74476 {3} 0.57849 {2} 0.98187 {6} 1.03022 {7} 0.34142 {1} 0.83439 {4} 0.86610 {5}

b̂ 10.14909 {8} 1.76173 {2} 1.22796 {1} 3.48303 {6} 2.19672 {4} 6.16541 {7} 2.14781 {3} 2.79630 {5}

MSE

α̂ 2489.56419 {7} 455.16735 {3} 148.30146 {1} 3094.44862 {8} 166.27420 {2} 1730.53234 {6} 619.52017 {4} 823.44777 {5}

β̂ 1.12950 {3} 1.59376 {7} 0.80926 {2} 1.46266 {6} 1.87058 {8} 0.49722 {1} 1.39820 {5} 1.26993 {4}

λ̂ 10115.99764 {8} 747.92924 {4} 113.79328 {1} 5210.34968 {7} 262.16742 {2} 1682.08638 {6} 953.08910 {5} 621.68754 {3}

â 30.12420 {8} 1.71278 {4} 1.26915 {1} 2.75748 {7} 6.65465 {2} 0.44780 {5} 2.27188 {6} 2.19017 {3}

b̂ 2657.06258 {7} 324.98946 {2} 34.83131 {3} 1916.90763 {6} 118.81959 {1} 364.05678 {8} 423.79549 {4} 313.62395 {5}

MRE

α̂ 19.35425 {7} 4.03932 {2} 4.09395 {3} 8.19973 {6} 3.96104 {1} 24.61288 {8} 5.27179 {4} 8.03142 {5}

β̂ 0.57195 {4} 0.64635 {8} 0.43350 {2} 0.63013 {6} 0.64565 {7} 0.36383 {1} 0.59441 {5} 0.56336 {3}

λ̂ 17.69107 {8} 2.96637 {3} 1.79141 {1} 6.39646 {6} 3.17158 {4} 16.43355 {7} 2.96344 {2} 4.33510 {5}

â 4.56177 {8} 1.24127 {3} 0.96414 {2} 1.63645 {6} 1.71703 {7} 0.56903 {1} 1.39065 {4} 1.44350 {5}

b̂ 14.49870 {8} 2.51676 {2} 1.75423 {1} 4.97576 {6} 3.13817 {4} 8.80773 {7} 3.06831 {3} 3.99472 {5}

∑
Ranks 105 {8} 57 {2} 26 {1} 95 {7} 61 {3} 68 {6} 62 {4} 66 {5}

100

|BIAS|

α̂ 2.16364 {6} 0.94478 {5} 0.75327 {2} 3.10311 {7} 0.43409 {1} 6.11863 {8} 0.91021 {4} 0.84820 {3}

β̂ 0.66456 {5} 0.75758 {7} 0.47592 {2} 0.78285 {8} 0.67493 {6} 0.46826 {1} 0.61663 {3} 0.64549 {4}

λ̂ 1.36379 {6} 0.83453 {5} 0.64038 {3} 3.32039 {7} 0.50292 {1} 8.94560 {8} 0.62523 {2} 0.74755 {4}

â 1.25376 {8} 0.70241 {5} 0.37232 {2} 0.75603 {7} 0.50498 {3} 0.30254 {1} 0.59676 {4} 0.71469 {6}

b̂ 2.16218 {6} 0.99282 {5} 0.60716 {1} 2.56580 {7} 0.79736 {4} 3.61195 {8} 0.75797 {2} 0.77455 {3}

MSE

α̂ 70.62486 {6} 16.09093 {5} 6.95665 {4} 1498.39858 {8} 2.91614 {1} 545.87552 {7} 4.86195 {2} 5.04971 {3}

β̂ 0.67290 {4} 0.92739 {7} 0.44046 {2} 1.00213 {8} 0.87348 {6} 0.36643 {1} 0.64481 {3} 0.74530 {5}

λ̂ 91.75183 {6} 24.55164 {4} 25.63545 {5} 2177.14525 {8} 5.55434 {3} 695.88672 {7} 1.93923 {1} 4.65979 {2}

â 6.62882 {8} 1.49417 {5} 0.52842 {2} 1.60826 {7} 1.42185 {4} 0.46663 {1} 1.23847 {3} 1.55006 {6}

b̂ 34.15734 {6} 9.99693 {5} 5.62349 {3} 774.90471 {8} 6.17170 {4} 128.14934 {7} 2.40886 {2} 2.38248 {1}

MRE

α̂ 4.32727 {6} 1.88957 {5} 1.50654 {2} 6.20621 {7} 0.86819 {1} 12.23727 {8} 1.82041 {4} 1.69639 {3}

β̂ 0.44304 {5} 0.50505 {7} 0.31728 {2} 0.52190 {8} 0.44995 {6} 0.31217 {1} 0.41108 {3} 0.43033 {4}

λ̂ 1.81839 {6} 1.11271 {5} 0.85384 {3} 4.42719 {7} 0.67056 {1} 11.92747 {8} 0.83364 {2} 0.99673 {4}

â 2.08960 {8} 1.17068 {5} 0.62053 {2} 1.26006 {7} 0.84163 {3} 0.50423 {1} 0.99461 {4} 1.19115 {6}

b̂ 3.08883 {6} 1.41831 {5} 0.86737 {1} 3.66542 {7} 1.13909 {4} 5.15993 {8} 1.08282 {2} 1.10650 {3}

∑
Ranks 92 {7} 80 {6} 36 {1} 111 {8} 48 {3} 75 {5} 41 {2} 57 {4}
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capturing the complex characteristics of the datasets, thereby validating its efficacy as a robust and generalizable 
extension of the LL family.

To validate the proposed KAPLL distribution beyond controlled simulations, we used five independent real-
world datasets as external validation benchmarks. These datasets were chosen because they represent diverse 
domains (mechanical failure, material strength, and fracture toughness), cover a range of sample sizes (40–576), 
and exhibit different distributional shapes (positive skewness, heavy tails). By analyzing these datasets, we aimed 
to test the generalizability and robustness of the KAPLL model under practical conditions.

Table 18 presents the parameter estimates of the KAPLL distribution obtained using the eight estimation 
methods, along with the corresponding KS statistics and their associated PV for the five real datasets. Taken 
together, these analyses confirm that the datasets serve as effective validation tools: the KAPLL consistently 
adapts across domains, and the observed fit patterns are consistent with those obtained in the simulation study, 
thereby validating both the model and its estimation strategies. Based on the KS statistics and p-values, the 
CRVME method provides the best fit for Dataset 1, while the ML method performs best for Dataset 2. For 
Datasets 3, 4 and 5, the LS method yields the most favorable results. Overall, all estimation methods produce 
strong and consistent performance across the datasets, reinforcing the robustness and flexibility of the KAPLL 
model. Furthermore, the estimates derived from real data are largely consistent with the findings from the 
simulation study, where the WLSE method was most effective on average. Although WLSE is not always the 

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 0.82587 {7} 0.62340 {4} 0.31406 {2} 0.68447 {5} 0.22139 {1} 2.73846 {8} 0.70599 {6} 0.61480 {3}

β̂ 0.42239 {4} 0.51508 {8} 0.25675 {1} 0.50376 {7} 0.38832 {2} 0.42636 {5} 0.40156 {3} 0.43625 {6}

λ̂ 0.55364 {7} 0.37957 {4} 0.24858 {2} 0.36084 {3} 0.20235 {1} 4.82410 {8} 0.41619 {5} 0.50569 {6}

â 0.43256 {6} 0.43004 {5} 0.19663 {1} 0.46549 {8} 0.23577 {2} 0.33515 {4} 0.31286 {3} 0.46273 {7}

b̂ 0.59968 {6} 0.55272 {5} 0.24388 {1} 0.60430 {7} 0.26822 {2} 1.32062 {8} 0.42652 {3} 0.48014 {4}

MSE

α̂ 5.69923 {7} 1.20227 {3} 0.45545 {2} 1.63393 {5} 0.07931 {1} 134.99496 {8} 2.73710 {6} 1.58262 {4}

β̂ 0.28333 {3} 0.43183 {8} 0.13268 {1} 0.39463 {7} 0.29262 {4} 0.29600 {5} 0.27111 {2} 0.31955 {6}

λ̂ 0.67957 {7} 0.22384 {4} 0.13277 {2} 0.20119 {3} 0.11365 {1} 336.23169 {8} 0.31536 {5} 0.52774 {6}

â 0.78395 {8} 0.56911 {5} 0.13984 {1} 0.66643 {6} 0.15116 {2} 0.51435 {4} 0.31648 {3} 0.67523 {7}

b̂ 3.12773 {7} 0.94707 {5} 0.26579 {2} 1.21731 {6} 0.26268 {1} 20.27756 {8} 0.81260 {4} 0.80625 {3}

MRE

α̂ 1.65174 {7} 1.24680 {4} 0.62811 {2} 1.36895 {5} 0.30583 {1} 5.47691 {8} 1.41198 {6} 1.22960 {3}

β̂ 0.28160 {4} 0.34339 {8} 0.17116 {2} 0.33584 {7} 0.16279 {1} 0.28424 {5} 0.26770 {3} 0.29083 {6}

λ̂ 0.73819 {7} 0.50610 {4} 0.33144 {2} 0.48112 {3} 0.16406 {1} 6.43213 {8} 0.55492 {5} 0.67426 {6}

â 0.72093 {6} 0.71673 {5} 0.32772 {1} 0.77581 {8} 0.39295 {2} 0.55858 {4} 0.52143 {3} 0.77122 {7}

b̂ 0.85668 {6} 0.78960 {5} 0.34840 {1} 0.86329 {7} 0.38318 {2} 1.88660 {8} 0.60932 {3} 0.68592 {4}

∑
Ranks 92 {7} 77 {4} 23 {1} 87 {6} 24 {2} 99 {8} 60 {3} 78 {5}

500

|BIAS|

α̂ 0.40975 {4} 0.47575 {6} 0.18043 {2} 0.49396 {7} 0.15292 {1} 8.00000 {8} 0.41072 {5} 0.40580 {3}

β̂ 0.30412 {4} 0.37011 {7} 0.17144 {1} 0.35221 {6} 0.24418 {2} 0.39017 {8} 0.29132 {3} 0.31158 {5}

λ̂ 0.51293 {7} 0.31844 {3} 0.17756 {2} 0.33591 {4} 0.12305 {1} 3.12398 {8} 0.34707 {5} 0.41005 {6}

â 0.22530 {4} 0.28002 {7} 0.10931 {1} 0.27400 {5} 0.15033 {2} 0.30692 {8} 0.19189 {3} 0.27683 {6}

b̂ 0.23501 {4} 0.35597 {7} 0.12407 {1} 0.35175 {6} 0.16184 {2} 0.72900 {8} 0.22660 {3} 0.27655 {5}

MSE

α̂ 0.40440 {5} 0.71226 {6} 0.07205 {2} 0.83106 {7} 0.03838 {1} 56.69572 {8} 0.37205 {3} 0.38928 {4}

β̂ 0.13965 {4} 0.22695 {7} 0.06367 {1} 0.21156 {6} 0.11189 {2} 0.25908 {8} 0.13940 {3} 0.16335 {5}

λ̂ 0.59414 {7} 0.15478 {3} 0.06434 {2} 0.17191 {4} 0.03926 {1} 172.80713 {8} 0.22486 {5} 0.33706 {6}

â 0.14118 {4} 0.22698 {6} 0.03087 {1} 0.21407 {5} 0.04387 {2} 0.29298 {8} 0.09359 {3} 0.24602 {7}

b̂ 0.20236 {4} 0.40840 {6} 0.04266 {1} 0.42089 {7} 0.06778 {2} 6.26779 {8} 0.15151 {3} 0.23461 {5}

MRE

α̂ 0.81950 {4} 0.95149 {6} 0.36086 {2} 0.98793 {7} 0.30583 {1} 3.45655 {8} 0.82143 {5} 0.81161 {3}

β̂ 0.20275 {4} 0.24674 {7} 0.11429 {1} 0.23480 {6} 0.16279 {2} 0.26011 {8} 0.19422 {3} 0.20772 {5}

λ̂ 0.68390 {7} 0.42458 {3} 0.23675 {2} 0.44788 {4} 0.16406 {1} 4.16530 {8} 0.46276 {5} 0.54673 {6}

â 0.37550 {4} 0.46670 {7} 0.18218 {1} 0.45667 {5} 0.25054 {2} 0.51153 {8} 0.31981 {3} 0.46138 {6}

b̂ 0.33573 {4} 0.50853 {7} 0.17724 {1} 0.50251 {6} 0.23120 {2} 1.04143 {8} 0.32371 {3} 0.39507 {5}

∑
Ranks 70 {4} 88 {7} 21 {1} 85 {6} 24 {2} 120 {8} 55 {3} 77 {5}

Table 10.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 0.75, 1.3, 0.3)T.
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n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 1.47507 {7} 1.35017 {6} 0.60770 {2} 0.83142 {3} 0.58597 {1} 2.19882 {8} 0.86140 {4} 1.08296 {5}

β̂ 0.73413 {6} 0.87595 {8} 0.63505 {3} 0.82633 {7} 0.29422 {1} 0.40347 {2} 0.70372 {5} 0.65429 {4}

λ̂ 0.80595 {2} 1.33009 {7} 0.89118 {4} 0.89758 {5} 0.60297 {1} 3.81477 {8} 0.80754 {3} 1.15516 {6}

â 4.21671 {8} 0.81180 {2} 0.78065 {1} 0.95423 {6} 1.27450 {7} 0.87367 {3} 0.95152 {5} 0.92921 {4}

b̂ 0.66267 {7} 0.41288 {6} 0.27785 {1} 0.36366 {4} 0.33930 {3} 1.26333 {8} 0.31985 {2} 0.40640 {5}

MSE

α̂ 113.47375 {6} 245.53194 {8} 2.34354 {2} 2.44269 {3} 1.11265 {1} 144.57115 {7} 5.46429 {4} 6.16705 {5}

β̂ 0.75280 {5} 1.16945 {8} 0.63200 {3} 1.01361 {7} 0.84466 {6} 0.30605 {1} 0.72891 {4} 0.60183 {2}

λ̂ 1.57522 {2} 223.18141 {7} 4.21676 {5} 2.46128 {4} 1.03667 {1} 500.75830 {8} 1.66193 {3} 15.06015 {6}

â 77.40649 {6} 1.64067 {7} 2.17354 {1} 2.28303 {3} 9.20477 {5} 3.38021 {8} 2.86580 {2} 2.46340 {4}

b̂ 2.95225 {7} 6.20152 {6} 0.34010 {2} 0.44953 {3} 0.92717 {1} 52.54912 {8} 0.41140 {4} 0.71895 {5}

MRE

α̂ 2.95014 {7} 2.70034 {6} 1.21539 {2} 1.66283 {3} 1.17193 {1} 4.39764 {8} 1.72280 {4} 2.16593 {5}

β̂ 0.48942 {5} 0.58396 {8} 0.42337 {2} 0.55089 {7} 0.49012 {6} 0.26898 {1} 0.46915 {4} 0.43619 {3}

λ̂ 0.80595 {2} 1.33009 {7} 0.89118 {4} 0.89758 {5} 0.60297 {1} 3.81477 {8} 0.80754 {3} 1.15516 {6}

â 7.02785 {8} 1.35300 {2} 1.30108 {1} 1.59038 {6} 2.12417 {7} 1.45612 {3} 1.58586 {5} 1.54868 {4}

b̂ 2.20889 {7} 1.37626 {6} 0.92615 {1} 1.21220 {4} 1.13101 {3} 4.21109 {8} 1.06618 {2} 1.35467 {5}

∑
Ranks 86 {6} 89 {8} 34 {1} 70 {5} 51 {2} 87 {7} 55 {3} 68 {4}

100

|BIAS|

α̂ 1.10249 {7} 0.56864 {4} 0.31303 {1} 0.60828 {5} 0.32779 {2} 1.41597 {8} 0.46566 {3} 0.62576 {6}

β̂ 0.53028 {4} 0.70489 {7} 0.47865 {2} 0.71237 {8} 0.52511 {3} 0.34542 {1} 0.53286 {5} 0.53934 {6}

λ̂ 0.61146 {6} 0.59804 {5} 0.54349 {3} 0.62656 {7} 0.34043 {1} 2.69888 {8} 0.54220 {2} 0.59756 {4}

â 1.71458 {8} 0.72309 {4} 0.50748 {1} 0.87052 {7} 0.66570 {3} 0.73914 {5} 0.66122 {2} 0.75501 {6}

b̂ 0.32276 {7} 0.23969 {5} 0.16642 {1} 0.28636 {6} 0.16672 {2} 0.88621 {8} 0.19188 {3} 0.23874 {4}

MSE

α̂ 64.02910 {7} 1.25178 {4} 0.22012 {2} 1.41248 {5} 0.20341 {1} 80.52489 {8} 0.79765 {3} 2.11849 {6}

β̂ 0.42283 {5} 0.75950 {8} 0.36905 {2} 0.74388 {7} 0.44824 {6} 0.26565 {1} 0.40734 {3} 0.40799 {4}

λ̂ 0.92763 {6} 0.70433 {3} 0.72169 {4} 0.79417 {5} 0.23896 {1} 331.39594 {8} 0.66874 {2} 0.93658 {7}

â 16.87478 {8} 1.32053 {2} 0.96302 {1} 1.80628 {5} 3.63644 {6} 3.84563 {7} 1.58257 {3} 1.68163 {4}

b̂ 0.53473 {7} 0.18147 {4} 0.09872 {1} 0.24515 {6} 0.16152 {3} 28.55340 {8} 0.12042 {2} 0.18824 {5}

MRE

α̂ 2.20498 {7} 1.13729 {4} 0.62606 {1} 1.21656 {5} 0.65557 {2} 2.83195 {8} 0.93132 {3} 1.25152 {6}

β̂ 0.35352 {4} 0.46993 {7} 0.31910 {2} 0.47492 {8} 0.35007 {3} 0.23028 {1} 0.35524 {5} 0.35956 {6}

λ̂ 0.61146 {6} 0.59804 {5} 0.54349 {3} 0.62656 {7} 0.34043 {1} 2.69888 {8} 0.54220 {2} 0.59756 {4}

â 2.85764 {8} 1.20516 {4} 0.84580 {1} 1.45087 {7} 1.10951 {3} 1.23190 {5} 1.10203 {2} 1.25835 {6}

b̂ 1.07587 {7} 0.79895 {5} 0.55472 {1} 0.95452 {6} 0.55574 {2} 2.95403 {8} 0.63959 {3} 0.79581 {4}

∑
Ranks 97 {8} 71 {4} 26 {1} 94 {7} 39 {2} 92 {6} 43 {3} 78 {5}
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top performer in the real data analysis, the observed variability is expected, as these results are based on single-
sample evaluations, unlike the broader simulations that span various sample sizes and parameter configurations. 
These findings collectively confirm the practical utility of the KAPLL distribution and the adaptability of its 
estimation procedures to diverse data conditions.

Comparative evaluation and discussion
This comparative evaluation across validation datasets further strengthens the case for the KAPLL distribution. 
Unlike purely illustrative examples, these datasets act as independent benchmarks, confirming that the proposed 
model is not overfitted to simulated data but performs well in diverse empirical contexts.

The performance of the proposed KAPLL model was evaluated against several recent extensions of the LL 
distribution, including the APTLL, KMOLL, McLL, AWLL, APLL, TLL, and classical LL models. The comparison, 
based on criteria such as AIC, CAIC, HQIC, BIC, −ℓ, W ∗, A∗, KS and PV statistics, consistently showed that 
the proposed model provided superior goodness-of-fit across multiple real-life datasets. This improvement can 
be attributed to the added flexibility introduced by the KAP transformation, which enable the model to capture 
complex hazard rate shapes—including bathtub and unimodal patterns—more effectively than existing models. 
Additionally, the KAPLL model retains closed-form expressions for its density and distribution functions, 
which is a practical advantage over more computationally intensive alternatives. These findings confirm that 

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 0.26812 {3} 0.30941 {6} 0.18630 {2} 0.27686 {4} 0.18017 {1} 0.42371 {8} 0.31139 {7} 0.29818 {5}

β̂ 0.33627 {4} 0.49570 {8} 0.29639 {3} 0.47771 {7} 0.29422 {1} 0.29446 {2} 0.38212 {5} 0.39836 {6}

λ̂ 0.44028 {6} 0.43630 {5} 0.26810 {2} 0.45685 {7} 0.18179 {1} 0.56347 {8} 0.38745 {4} 0.34445 {3}

â 0.55082 {7} 0.52289 {5} 0.27959 {2} 0.53319 {6} 0.23904 {1} 0.43160 {4} 0.38191 {3} 0.57117 {8}

b̂ 0.13236 {4} 0.15056 {6} 0.09119 {2} 0.14224 {5} 0.07435 {1} 0.35848 {8} 0.12340 {3} 0.15214 {7}

MSE

α̂ 0.19310 {4} 0.23497 {5} 0.05472 {1} 0.15695 {3} 0.05922 {2} 1.37516 {8} 0.26105 {6} 0.37526 {7}

β̂ 0.19078 {3} 0.36537 {8} 0.14267 {1} 0.34303 {7} 0.16323 {2} 0.25713 {6} 0.21245 {4} 0.24228 {5}

λ̂ 0.55121 {7} 0.39393 {5} 0.18005 {2} 0.42076 {6} 0.07436 {1} 15.22493 {8} 0.35373 {4} 0.27357 {3}

â 2.21197 {8} 0.75770 {4} 0.28897 {1} 0.77491 {5} 0.40756 {2} 0.84513 {6} 0.49940 {3} 1.07326 {7}

b̂ 0.05924 {6} 0.05547 {5} 0.02230 {2} 0.04790 {4} 0.01343 {1} 0.48880 {8} 0.04139 {3} 0.06575 {7}

MRE

α̂ 0.53625 {3} 0.61883 {6} 0.37261 {2} 0.55373 {4} 0.22470 {1} 0.84742 {8} 0.62279 {7} 0.59636 {5}

β̂ 0.22418 {4} 0.33047 {8} 0.19760 {3} 0.31847 {7} 0.11139 {1} 0.19631 {2} 0.25474 {5} 0.26557 {6}

λ̂ 0.44028 {6} 0.43630 {5} 0.26810 {2} 0.45685 {7} 0.11369 {1} 0.56347 {8} 0.38745 {4} 0.34445 {3}

â 0.91804 {7} 0.87148 {5} 0.46599 {2} 0.88866 {6} 0.39841 {1} 0.71933 {4} 0.63652 {3} 0.95195 {8}

b̂ 0.44121 {4} 0.50185 {6} 0.30398 {2} 0.47414 {5} 0.24785 {1} 1.19492 {8} 0.41133 {3} 0.50713 {7}

∑
Ranks 76 {4} 87 {6.5} 29 {2} 83 {5} 18 {1} 96 {8} 64 {3} 87 {6.5}

500

|BIAS|

α̂ 0.22421 {5} 0.23118 {6} 0.13038 {2} 0.24395 {7} 0.11235 {1} 8.00000 {8} 0.21054 {4} 0.17752 {3}

β̂ 0.22833 {3} 0.36684 {8} 0.19173 {2} 0.36103 {7} 0.16708 {1} 0.29401 {5} 0.27700 {4} 0.31467 {6}

λ̂ 0.32169 {5} 0.40167 {8} 0.16680 {2} 0.37895 {6} 0.11369 {1} 0.39481 {7} 0.29942 {4} 0.23304 {3}

â 0.23835 {4} 0.36776 {6} 0.14127 {2} 0.34591 {5} 0.13397 {1} 0.44996 {8} 0.22884 {3} 0.41975 {7}

b̂ 0.07456 {3} 0.10155 {5} 0.05089 {2} 0.10379 {6} 0.04671 {1} 0.39989 {8} 0.07615 {4} 0.10456 {7}

MSE

α̂ 0.72911 {7} 0.08826 {5} 0.03018 {2} 0.11029 {6} 0.02238 {1} 1.84928 {8} 0.08583 {4} 0.06527 {3}

β̂ 0.10082 {3} 0.20417 {7} 0.06473 {2} 0.19448 {6} 0.06419 {1} 0.27770 {8} 0.11921 {4} 0.15784 {5}

λ̂ 0.35164 {7} 0.34549 {6} 0.07306 {2} 0.32677 {5} 0.02424 {1} 1.60735 {8} 0.24969 {4} 0.10124 {3}

â 0.26772 {4} 0.38560 {6} 0.05788 {2} 0.32624 {5} 0.04805 {1} 1.14848 {8} 0.15310 {3} 0.59417 {7}

b̂ 0.01650 {4} 0.02386 {5} 0.00570 {1} 0.02450 {6} 0.00576 {2} 0.74513 {8} 0.01328 {3} 0.02642 {7}

MRE

α̂ 0.44842 {5} 0.46237 {6} 0.26076 {2} 0.48791 {7} 0.22470 {1} 0.84215 {8} 0.42108 {4} 0.35504 {3}

β̂ 0.15222 {3} 0.24456 {8} 0.12782 {2} 0.24069 {7} 0.11139 {1} 0.19600 {5} 0.18467 {4} 0.20978 {6}

λ̂ 0.32169 {5} 0.40167 {8} 0.16680 {2} 0.37895 {6} 0.11369 {1} 0.39481 {7} 0.29942 {4} 0.23304 {3}

â 0.39725 {4} 0.61294 {6} 0.23545 {2} 0.57651 {5} 0.22328 {1} 0.74993 {8} 0.38140 {3} 0.69959 {7}

b̂ 0.24853 {3} 0.33852 {5} 0.16964 {2} 0.34595 {6} 0.15571 {1} 1.33298 {8} 0.25382 {4} 0.34853 {7}

∑
Ranks 65 {4} 95 {7} 29 {2} 90 {6} 16 {1} 112 {8} 56 {3} 77 {5}

Table 11.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 1, 0.6, 0.3)T.
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n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

50

|BIAS|

α̂ 2.46873 {7} 1.50327 {4} 1.07512 {2} 2.24531 {5} 1.05461 {1} 5.68023 {8} 1.27365 {3} 2.28022 {6}

β̂ 0.83438 {4} 1.02485 {8} 0.68106 {3} 0.95433 {7} 0.38875 {1} 0.48673 {2} 0.85267 {6} 0.84835 {5}

λ̂ 4.72668 {7} 1.20624 {4} 1.07947 {1} 1.79835 {5} 1.18788 {3} 10.35418 {8} 1.11514 {2} 2.72375 {6}

â 2.78063 {8} 0.76499 {3} 0.66556 {2} 0.93139 {6} 1.13931 {7} 0.57598 {1} 0.90956 {4} 0.91439 {5}

b̂ 2.92586 {8} 0.78496 {3} 0.56769 {1} 1.04694 {5} 0.92752 {4} 2.85140 {7} 0.74643 {2} 1.12961 {6}

MSE

α̂ 228.97008 {5} 74.73521 {3} 19.49588 {1} 480.10332 {8} 94.92917 {4} 334.95326 {6} 21.91302 {2} 437.03864 {7}

β̂ 1.03780 {3} 1.86183 {8} 0.88015 {2} 1.55943 {6} 1.61369 {7} 0.38582 {1} 1.23939 {5} 1.14230 {4}

λ̂ 8210.41973 {8} 50.93842 {3} 21.32715 {1} 271.40051 {5} 122.51676 {4} 990.32258 {7} 23.78871 {2} 607.71077 {6}

â 35.03124 {8} 1.56229 {3} 1.66976 {1} 2.35482 {6} 7.25773 {4} 1.82019 {7} 2.58486 {2} 2.28277 {5}

b̂ 824.43492 {7} 7.90810 {4} 2.19108 {2} 41.89879 {5} 8.41371 {1} 116.62293 {8} 4.51998 {3} 39.14577 {6}

MRE

α̂ 4.93746 {7} 3.00653 {4} 2.15024 {2} 4.49062 {5} 2.10921 {1} 11.36046 {8} 2.54730 {3} 4.56044 {6}

β̂ 0.55625 {3} 0.68323 {8} 0.45404 {2} 0.63622 {7} 0.63086 {6} 0.32448 {1} 0.56845 {5} 0.56557 {4}

λ̂ 4.72668 {7} 1.20624 {4} 1.07947 {1} 1.79835 {5} 1.18788 {3} 10.35418 {8} 1.11514 {2} 2.72375 {6}

â 4.63439 {8} 1.27499 {3} 1.10926 {2} 1.55232 {6} 1.89885 {7} 0.95997 {1} 1.51593 {4} 1.52398 {5}

b̂ 5.85172 {8} 1.56992 {3} 1.13538 {1} 2.09388 {5} 1.85505 {4} 5.70280 {7} 1.49286 {2} 2.25921 {6}

∑
Ranks 99 {8} 62 {3} 24 {1} 86 {7} 63 {4} 75 {5} 50 {2} 81 {6}

100

|BIAS|

α̂ 1.07208 {7} 0.77388 {5} 0.41171 {2} 0.82799 {6} 0.37952 {1} 3.55031 {8} 0.72975 {4} 0.72623 {3}

β̂ 0.64446 {5} 0.75245 {7} 0.48024 {2} 0.76151 {8} 0.68140 {6} 0.40954 {1} 0.58448 {3} 0.63475 {4}

λ̂ 0.88780 {7} 0.69234 {4} 0.61278 {2} 0.67647 {3} 0.43630 {1} 6.32103 {8} 0.74036 {5} 0.85385 {6}

â 1.27283 {8} 0.69867 {4} 0.41716 {1} 0.78040 {7} 0.54511 {2} 0.71922 {5} 0.59991 {3} 0.74615 {6}

b̂ 0.84778 {7} 0.48846 {5} 0.29979 {1} 0.60746 {6} 0.42882 {3} 1.34441 {8} 0.41222 {2} 0.45605 {4}

MSE

α̂ 22.31918 {7} 7.84381 {6} 0.61650 {2} 2.19473 {3} 0.35059 {1} 271.09529 {8} 3.40561 {5} 2.97883 {4}

β̂ 0.62929 {4} 0.96223 {7} 0.45664 {2} 0.96562 {8} 0.83703 {6} 0.27979 {1} 0.58119 {3} 0.65746 {5}

λ̂ 2.89763 {7} 0.82032 {2} 1.09764 {4} 1.05818 {3} 0.49223 {1} 610.41828 {8} 1.19403 {5} 1.66506 {6}

â 6.98005 {8} 1.33234 {3} 0.72800 {1} 1.57330 {4} 1.57802 {5} 2.37358 {7} 1.26787 {2} 1.57882 {6}

b̂ 4.48509 {7} 0.76355 {4} 0.42530 {1} 1.11715 {5} 1.57909 {6} 49.34355 {8} 0.71176 {2} 0.75368 {3}

MRE

α̂ 2.14417 {7} 1.54775 {5} 0.82342 {2} 1.65598 {6} 0.75905 {1} 7.10062 {8} 1.45951 {4} 1.45246 {3}

β̂ 0.42964 {5} 0.50163 {7} 0.32016 {2} 0.50767 {8} 0.45427 {6} 0.27303 {1} 0.38965 {3} 0.42317 {4}

λ̂ 0.88780 {7} 0.69234 {4} 0.61278 {2} 0.67647 {3} 0.43630 {1} 6.32103 {8} 0.74036 {5} 0.85385 {6}

â 2.12139 {8} 1.16445 {4} 0.69527 {1} 1.30066 {7} 0.90852 {2} 1.19870 {5} 0.99985 {3} 1.24358 {6}

b̂ 1.69555 {7} 0.97691 {5} 0.59957 {1} 1.21492 {6} 0.85763 {3} 2.68882 {8} 0.82444 {2} 0.91210 {4}

∑
Ranks 101 {8} 72 {5} 26 {1} 83 {6} 45 {2} 92 {7} 51 {3} 70 {4}

Continued
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the proposed model not only enhances flexibility but also improves empirical performance, making it a valuable 
addition to the family of generalized LL distributions.

Furthermore, we conducted an ablation study to evaluate the performance of the proposed KAPLL model 
in comparison to its nested sub-models, as listed in Table 2. The models were assessed using several goodness-
of-fit criteria, including the −ℓ, W ∗, A∗, KS statistics, and the corresponding PV. We intentionally excluded 
information-based criteria such as AIC, CAIC, BIC, and HQIC from this comparison, as these metrics are 
influenced by the number of model parameters, which could bias the evaluation in favor of simpler models. 
Instead, we focused on distributional goodness-of-fit measures that assess how well the models capture the 
empirical behavior of the data. The comparison was carried out across all five real datasets. As presented in 
Table 19, the KAPLL model consistently achieved lower goodness-of-fit statistics and higher p-values, indicating 
a superior fit relative to its sub-models.

Figures 9, 10, 11, 12 and 13 display the quantile-quantile (QQ) plots comparing the empirical quantiles of 
the observed data with the theoretical quantiles of the KAPLL model and its nested sub-models across the five 
datasets. A model that fits well will produce points that closely follow the 45-degree reference line. As evident 
from the plots, the KAPLL distribution consistently shows the closest alignment to this line in all cases, visually 
confirming its superior goodness-of-fit and flexibility relative to its sub-models.

n Est. Param. MLE LSE WLSE CRVME MPSE PCE ADE RADE

250

|BIAS|

α̂ 0.54621 {7} 0.46629 {4} 0.26668 {2} 0.46766 {5} 0.20313 {1} 2.16331 {8} 0.51787 {6} 0.46558 {3}

β̂ 0.40508 {5} 0.48611 {8} 0.26969 {1} 0.47957 {7} 0.38875 {4} 0.38195 {2} 0.38668 {3} 0.42177 {6}

λ̂ 0.68615 {7} 0.55401 {4} 0.35997 {2} 0.53779 {3} 0.19201 {1} 4.15394 {8} 0.60633 {5} 0.68281 {6}

â 0.40668 {4} 0.44402 {5} 0.21086 {1} 0.48021 {6} 0.25007 {2} 0.55649 {8} 0.31699 {3} 0.50003 {7}

b̂ 0.25910 {4} 0.30269 {6} 0.14913 {1} 0.31372 {7} 0.16224 {2} 0.76898 {8} 0.23147 {3} 0.28774 {5}

MSE

α̂ 3.78127 {7} 0.62432 {3} 0.12188 {2} 0.69081 {4} 0.06487 {1} 114.98991 {8} 1.10701 {6} 0.84401 {5}

β̂ 0.25117 {3} 0.39963 {8} 0.13788 {1} 0.37206 {7} 0.29037 {6} 0.25328 {4} 0.24794 {2} 0.28902 {5}

λ̂ 1.08780 {6} 0.56228 {4} 0.31544 {2} 0.52554 {3} 0.12261 {1} 274.42554 {8} 0.74532 {5} 1.09131 {7}

â 0.65997 {5} 0.60117 {4} 0.14377 {1} 0.71359 {6} 0.21295 {2} 1.28579 {8} 0.30044 {3} 0.76844 {7}

b̂ 0.32634 {7} 0.27528 {5} 0.07706 {2} 0.30584 {6} 0.07612 {1} 10.83367 {8} 0.19746 {3} 0.27193 {4}

MRE

α̂ 1.09243 {7} 0.93258 {4} 0.53336 {2} 0.93532 {5} 0.28938 {1} 4.32663 {8} 1.03574 {6} 0.93116 {3}

β̂ 0.27005 {5} 0.32407 {8} 0.17980 {2} 0.31971 {7} 0.16238 {1} 0.25464 {3} 0.25779 {4} 0.28118 {6}

λ̂ 0.68615 {7} 0.55401 {4} 0.35997 {2} 0.53779 {3} 0.11303 {1} 4.15394 {8} 0.60633 {5} 0.68281 {6}

â 0.67781 {4} 0.74003 {5} 0.35143 {1} 0.80035 {6} 0.41678 {2} 0.92748 {8} 0.52831 {3} 0.83339 {7}

b̂ 0.51820 {4} 0.60538 {6} 0.29827 {1} 0.62743 {7} 0.32447 {2} 1.53795 {8} 0.46295 {3} 0.57549 {5}

∑
Ranks 82 {6} 78 {4} 23 {1} 82 {6} 28 {2} 105 {8} 60 {3} 82 {6}

500

|BIAS|

α̂ 0.34139 {4} 0.37230 {6} 0.19367 {2} 0.38140 {7} 0.14469 {1} 8.00000 {8} 0.34746 {5} 0.31042 {3}

β̂ 0.30145 {4} 0.34737 {7} 0.18065 {1} 0.32520 {5} 0.24357 {2} 0.36135 {8} 0.28151 {3} 0.33093 {6}

λ̂ 0.62313 {7} 0.48516 {3} 0.26110 {2} 0.49756 {4} 0.11303 {1} 1.45986 {8} 0.51943 {5} 0.55246 {6}

â 0.23341 {4} 0.28740 {6} 0.11910 {1} 0.27032 {5} 0.15609 {2} 0.57342 {8} 0.19806 {3} 0.31712 {7}

b̂ 0.13862 {4} 0.19450 {7} 0.08456 {1} 0.19011 {6} 0.10401 {2} 0.38428 {8} 0.13584 {3} 0.17567 {5}

MSE

α̂ 0.19516 {5} 0.33961 {6} 0.06017 {2} 0.41146 {7} 0.03274 {1} 20.82571 {8} 0.18623 {3} 0.18712 {4}

β̂ 0.13963 {4} 0.20622 {7} 0.06497 {1} 0.18109 {6} 0.11810 {2} 0.22528 {8} 0.12649 {3} 0.17203 {5}

λ̂ 0.91856 {7} 0.42759 {3} 0.16814 {2} 0.46390 {4} 0.03722 {1} 40.43600 {8} 0.58600 {5} 0.69728 {6}

â 0.13128 {4} 0.23670 {6} 0.03610 {1} 0.20947 {5} 0.04661 {2} 1.07637 {8} 0.09867 {3} 0.29810 {7}

b̂ 0.04268 {3} 0.10968 {6} 0.01709 {1} 0.11099 {7} 0.02372 {2} 1.74608 {8} 0.04400 {4} 0.07739 {5}

MRE

α̂ 0.68278 {4} 0.74460 {6} 0.38735 {2} 0.76280 {7} 0.28938 {1} 1.67945 {8} 0.69493 {5} 0.62084 {3}

β̂ 0.20096 {4} 0.23158 {7} 0.12044 {1} 0.21680 {5} 0.16238 {2} 0.24090 {8} 0.18768 {3} 0.22062 {6}

λ̂ 0.62313 {7} 0.48516 {3} 0.26110 {2} 0.49756 {4} 0.11303 {1} 1.45986 {8} 0.51943 {5} 0.55246 {6}

â 0.38902 {4} 0.47900 {6} 0.19850 {1} 0.45053 {5} 0.26016 {2} 0.95570 {8} 0.33011 {3} 0.52854 {7}

b̂ 0.27725 {4} 0.38901 {7} 0.16912 {1} 0.38023 {6} 0.20803 {2} 0.76855 {8} 0.27167 {3} 0.35135 {5}

∑
Ranks 69 {4} 86 {7} 21 {1} 83 {6} 24 {2} 120 {8} 56 {3} 81 {5}

Table 12.  Numerical values of the KAPLL distribution for θ = (0.5, 1.5, 1, 0.6, 0.5)T.
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To justify the necessity of the proposed KAPLL distribution, which extends the classical LL model by 
introducing three additional shape parameters (α, a, and b), we conducted a rigorous ablation study using the 
LRT. This test compares the KAPLL model against its nested sub-model, the LL distribution, across five real-
world datasets. Since the KAPLL distribution is a generalization of LL distribution, the LRT statistic follows a 
chi-square distribution with 3 degrees of freedom. The LRT statistic is calculated as w = 2(ℓKAPLL − ℓLL), 
where ℓKAPLL and ℓLL are the maximumized log-likelihoods of the KAPLL and LL models, respectively. As 
shown in Table 20, the LRT statistics are highly significant across all five datasets, with very small p-values, 
indicating strong evidence in favor of the KAPLL model.

These findings provide strong statistical evidence that the added complexity of the KAPLL model translates 
into meaningful improvements in fit, validating both its theoretical advancement and practical utility in 

n µX Median SD VA SK KU

Data 1 40 6.2525 6.50 1.955530 3.824096 − 0.6886558 − 0.241834

Data 2 63 1.5068 1.59 0.324126 0.105058 − 0.9220262 1.103138

Data 3 119 4.3254 4.38 1.018495 1.037332 − 0.4220524 0.149670

Data 4 300 32.9150 32.80 4.158355 17.291910 0.1668816 − 0.332076

Data 5 576 3.5140 3.01 2.179863 4.751801 4.7518010 1.156017

Table 14.  Descriptive statistics for the five real-life datasets.

 

θT n MLE LSE WLSE CRVME MPSE PCE ADE RADE

α = 0.5, β = 1.5, λ = 0.5, a = 0.9, b = 1.2

50 8 2 1 6 7 5 4 3

100 8 4 1 7 3 6 2 5

250 7 5.5 1 5.5 2 8 3 4

500 6 5 2 7 1 8 3 4

α = 0.5, β = 1.5, λ = 0.5, a = 1.1, b = 1.2

50 8 2 1 3 7 6 4 5

100 8 4 1 7 3 6 2 5

250 7 4 1 6 2 8 3 5

500 7 6 2 5 1 8 3 4

α = 0.5, β = 1.5, λ = 0.5, a = 1.3, b = 1.3

50 8 2 1 3 7 5 4 6

100 8 4 1 7 2 6 3 5

250 7 4 1 6 2 8 3 5

500 6 5 1 7 2 8 3 4

α = 0.5, β = 1.5, λ = 0.75, a = 0.6, b = 0.3

50 8 6 1 5 2 7 3 4

100 8 4.5 1 7 2 6 3 4.5

250 6 7 2 5 1 8 3 4

500 3 7 2 6 1 8 4 5

α = 0.5, β = 1.5, λ = 0.75, a = 0.6, b = 0.5

50 8 3 1 7 4 5 2 6

100 8 5 1 6 2 7 3 4

250 5 4 1 7 2 8 3 6

500 4 7 1 6 2 8 3 5

α = 0.5, β = 1.5, λ = 0.75, a = 1.3, b = 0.3

50 8 2 1 7 3 6 4 5

100 7 6 1 8 3 5 2 4

250 7 4 1 6 2 8 3 5

500 4 7 1 6 2 8 3 5

α = 0.5, β = 1.5, λ = 1, a = 0.6, b = 0.3

50 6 8 1 5 2 7 3 4

100 8 4 1 7 2 6 3 5

250 4 6.5 2 5 1 8 3 6.5

500 4 7 2 6 1 8 3 5

α = 0.5, β = 1.5, λ = 1, a = 0.6, b = 0.5

50 8 3 1 7 4 5 2 6

100 8 5 1 6 2 7 3 4

250 6 4 1 6 2 8 3 6

500 4 7 1 6 2 8 3 5∑
Ranks 212 154.5 38 193.5 81 223 96 154

Overall rank 7 5 1 6 2 8 3 4

Table 13.  The ordering performance of all estimators for combinations of parameters
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modeling complex data patterns. Thus, the validation datasets not only highlight the superiority of the KAPLL 
model over its sub-models but also establish its empirical relevance across varied real-world scenarios.

Conclusions and future perspectives
In this paper, a flexible five-parameter model called the Kumaraswamy alpha-power log-logistic (KAPLL) 
distribution is introduced. The hazard function of the KAPLL model provides monotonic and non-monotonic 
failure rates, as well as its density can be symmetric and asymmetric. The KAPLL distribution exhibits various 
types of hazard rate behaviors including increasing, decreasing, J-shaped, reversed J-shaped, bathtub-shaped, 

Distribution AIC CAIC BIC HQIC W ∗ A∗ −ℓ KS PV

Dataset 1

 KAPLL 167.85890 169.62360 176.30330 170.91210 0.01941 0.15087 78.92943 0.07307 0.98318

 LL 181.41330 181.73760 184.79100 182.63450 0.21418 1.40722 88.70663 0.14369 0.38072

 APLL 209.75120 210.07550 213.12890 210.97240 0.45929 2.73731 102.87560 0.26291 0.00793

 TLL 424.59910 425.26580 429.66580 426.43110 0.29479 1.86508 209.29960 0.71682 0.00000

 APTLL 183.39570 184.06230 188.46230 185.22760 0.21332 1.40194 88.69784 0.14407 0.37745

 KMOLL 174.94480 176.70950 183.38920 177.99800 0.07693 0.57260 82.47240 0.10770 0.74232

 McLL 183.85530 185.62000 192.29970 186.90850 0.19024 1.27427 86.92764 0.12411 0.56878

 AWLL 176.95100 179.49650 187.08430 180.61490 0.07699 0.57304 82.47551 0.10770 0.74231

Dataset 2

 KAPLL 27.68430 28.73693 38.39997 31.89882 0.01775 0.12224 8.84215 0.04469 0.99961

 LL 49.57993 49.77993 53.86619 51.26574 0.49694 2.74897 22.78996 0.15371 0.10187

 APLL 64.63768 64.83768 68.92394 66.32349 0.73896 4.09825 30.31884 0.22029 0.00442

 TLL 495.06690 495.47370 501.49630 497.59560 0.69029 3.77390 244.53350 0.71750 0.00000

 APTLL 51.41486 51.82164 57.84426 53.94358 0.49183 2.71991 22.70743 0.14979 0.11834

 KMOLL 28.08611 29.13874 38.80178 32.30064 0.01807 0.12722 9.04306 0.05363 0.99349

 McLL 43.98007 45.03270 54.69574 48.19459 0.31606 1.72577 16.99003 0.18998 0.02118

 AWLL 42.41368 43.91368 55.27249 47.47111 0.23724 1.30370 15.20684 0.15224 0.10784

Dataset 3

 KAPLL 345.03000 345.56100 358.92560 350.67260 0.04197 0.26565 167.51500 0.04633 0.96039

  LL 360.67000 360.77340 366.22820 362.92700 0.35495 2.23138 178.33500 0.08032 0.42650

 APLL 456.01840 456.12180 461.57660 458.27540 0.96857 5.58224 226.00920 0.23852 0.00000

 TLL 1142.62400 1142.83300 1150.96200 1146.01000 0.55031 3.27610 568.31220 0.71297 0.00000

 APTLL 362.60310 362.81180 370.94050 365.98860 0.35212 2.21646 178.30150 0.07881 0.45075

 KMOLL 345.70010 346.23110 359.59570 351.34270 0.05179 0.31448 167.85010 0.05364 0.88336

 McLL 345.61430 346.14530 359.50990 351.25690 0.05363 0.32622 167.80710 0.05591 0.85091

AWLL 349.04620 349.79620 365.72090 355.81720 0.07612 0.46281 168.52310 0.06662 0.66640

Dataset 4

 KAPLL 1713.42200 1713.62600 1731.94100 1720.83300 0.05771 0.38980 851.71080 0.04204 0.66406

 LL 2150.37200 2150.41200 2157.78000 2153.33700 0.07734 0.56860 1073.18600 0.28760 0.00000

 APLL 2858.35800 2858.39800 2865.76500 2861.32200 0.08269 0.61983 1427.17900 0.44998 0.00000

 TLL 1722.23500 1722.31600 1733.34600 1726.68200 0.15225 1.02731 858.11750 0.05205 0.39073

 APTLL 1722.23500 1722.31600 1733.34600 1726.68200 0.15225 1.02730 858.11750 0.05205 0.39073

 KMOLL 1713.75400 1713.95800 1732.27300 1721.16500 0.05992 0.40195 851.87690 0.04233 0.65566

 McLL 1713.51900 1713.72300 1732.03800 1720.93000 0.05966 0.38997 851.75960 0.04248 0.65101

 AWLL 1742.39500 1742.68200 1764.61800 1751.28900 0.31129 1.88895 865.19770 0.05706 0.28271

Dataset 5

 KAPLL 2350.58500 2350.69000 2372.36500 2359.07900 0.03279 0.35649 1170.29200 0.02575 0.83958

 LL 2366.13600 2366.15700 2374.84800 2369.53400 0.18117 1.20096 1181.06800 0.03638 0.43104

 APLL 2401.04800 2401.06900 2409.76100 2404.44600 0.63964 3.86817 1198.52400 0.06408 0.01764

 TLL 5063.91900 5063.96100 5076.98800 5069.01600 0.10583 0.71790 2528.96000 0.68000 0.00000

 APTLL 2368.13600 2368.17800 2381.20400 2373.23200 0.18117 1.20096 1181.06800 0.03638 0.43104

 KMOLL 2382.33100 2382.43600 2404.11100 2390.82500 0.46581 3.34421 1186.16500 0.05880 0.03725

 McLL 2350.65000 2350.75500 2372.43000 2359.14400 0.03321 0.35872 1170.32500 0.02611 0.82711

 AWLL 2383.62600 2383.77400 2409.76300 2393.81900 0.45517 3.27307 1185.81300 0.05796 0.04171

Table 15.  Goodness-of-fit measures for the five datasets of the KAPLL distribution and other competing LL 
models.
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inverted bathtub-shaped, and even more complex forms such as decreasing–increasing–decreasing failure rates. 
Its mathematical features are explored. Furthermore, the KAPLL parameters are estimated by eight approaches 
of estimation. A simulation study is performed to compare these approaches and showed that the weighted 
least-squares (WLS) method outperforms all considered estimation methods. Hence, our results, confirms the 
superiority of the WLS approach in estimating the KAPLL parameters. Finally, the practical importance of the 
KAPLL distribution is addressed through the analysis of five real-life datasets from reliability, engineering, 
biomedical, and environmental sciences. Goodness-of-fit statistics and graphical assessments illustrated that the 
KAPLL model consistently provides a superior fit compared to other log-logistic-based models. Furthermore, 
this superiority was substantiated through a comprehensive ablation study and likelihood ratio testing. 
Compared to its nested sub-models, the KAPLL distribution consistently achieved better goodness-of-fit across 
all datasets. These findings highlight the practical value of the additional shape parameters in enhancing model 
flexibility and capturing complex data behaviors. Despite its flexibility and strong empirical performance, the 
KAPLL distribution has some limitations due to its five-parameter structure. In particular, parameter estimation 
can be challenging for small or low-variability datasets, and the risk of overfitting may be higher than that of 
simpler models. Users should weigh these considerations carefully when applying the model.

Building upon the foundation of the KAPLL distribution, several promising directions can be pursued to 
expand its scope and practical relevance across diverse domains. Potential avenues for future research include: 
Enhancing existing parameter estimation techniques, such as maximum likelihood and Bayesian methods, 
particularly in the presence of censored data, to increase the model’s reliability and precision in real-world 
applications. Investigating non-parametric or semi-parametric adaptations of the model, which could offer 
greater flexibility and broader applicability. Further integrating Bayesian frameworks for both inference and 
model selection, which may provide deeper insights and comparative advantages over traditional methods. 

Distribution Estimates and SEs

Dataset 1

 KAPLL
(α, β, λ, a, b)

9658.12900 6.19488 999785.20000 0.43938 30.83448

6823.38144 0.35984 6803.29770 0.11247 43.97041

 LL
(β, λ)

4.84162 6996.47772

0.70121 9447.15447

 APLL
(β, λ)

8.74463 680523.30000

0.10925 16777.78000

 TLL
(α, β, λ)

979989.90000 0.14731 1.00000

8388.79200 0.01632 0.39324

 APTLL
(α, a, b)

1.93292 5.82120 4.81336

5.62217 1.72831 0.69531

 KMOLL
(α, β, λ, a, b)

28.71171 22.67472 5.66345 0.68373 2087.31877

241.16458 984.37198 26.24854 3.16798 26900.79379

 McLL
(α, β, λ, a, b)

5.83242 77.11220 1.10483 79.95686 0.18127

2.63637 3.15352 0.72072 51.18584 0.12886

 AWLL
(α, λ, a, b, c, d)

1.89384 41.17856 0.01666 4.73299 998.90351 2.04481

26.33612 341.11273 74.60581 76.26542 32032.35327 28.43561

Dataset 2

 KAPLL
(α, β, λ, a, b)

1436.63900 26.01191 99993.32000 0.11148 0.53881

20.76099 2.59224 5.18317 0.02883 0.24718

 LL
(β, λ)

7.92598 28.52572

0.87357 12.74795

 APLL
(β, λ)

5.04477 263.37020

0.40022 222.39458

 TLL
(α, β, λ)

376985.90000 0.14224 0.99999

11868.46000 0.01256 0.31326

 APTLL
(α, a, b)

3.06807 1.42544 7.81452

4.99846 0.14176 0.92053

 KMOLL
(α, β, λ, a, b)

1.62207 0.99388 47.42360 0.05883 0.27869

1.21255 34.91133 15.51009 0.03362 0.10505

 McLL
(α, β, λ, a, b)

1.01073 0.04710 133.51100 3977.39000 345.44880

0.25336 0.01798 81.29733 4894.88900 326.84480

 AWLL
(α, λ, a, b, c, d)

2.03601 5.37781 0.00485 4.73315 999.36750 2.83922

25.66087 17.84901 11.77119 61.95393 19163.01736 35.78454

Table 16.  The ML estimates (first line) and SEs (second line) for datasets 1 and 2.
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Distribution Estimates

Dataset 3

 KAPLL
(α, β, λ, a, b)

220.44540 5.49738 4511.03345 0.63990 4.74243

503.42917 1.45103 9165.94237 0.25529 4.26687

 LL
(β, λ)

7.06485 31046.87530

0.24683 10727.58000

 APLL
(β, λ)

2.25132 13611220.00000

0.07740 8388.60800

 TLL
(α, β, λ)

176885.90000 0.16637 0.99999

5939.24000 0.01070 0.22795

 APTLL
(α, a, b)

2.15546 4.09800 7.01220

3.68724 0.48910 0.59645

 KMOLL
(α, β, λ, a, b)

7.31997 0.00758 14.43501 0.28314 1.01216

1.59190 0.00812 5.42979 0.15190 0.74382

 McLL
(α, β, λ, a, b)

11.84917 5.33969 0.34948 1.44853 1.29014

8.91872 0.60862 0.29000 2.01147 3.25343

 AWLL
(α, λ, a, b, c, d)

2.22794 11.62858 117.62741 2.66350 13.85730 1.73335

38.95822 202.30712 12143.47378 46.57716 932.56018 30.31895

Dataset 4

 KAPLL
(α, β, λ, a, b)

23.31405 2.41533 75.29050 71.22478 30.37861

149.69154 0.51116 247.35434 176.85543 24.97003

 LL
(\beta,\lambda)

3.89209 680523.30008

0.0240808 4205.44583

 APLL
(β, λ)

0.88554 1311209.00000

0.01947 4194.32000

 TLL
(α, β, λ)

32.71872 13.55423 0.00001

0.85115 0.64420 0.33768

 APTLL
(α, a, b)

1.000012 32.71868 13.554218

1.169706 1.4328704 0.6441981

 KMOLL
(α, β, λ, a, b)

43.62890813 0.06814131 2.7119242 25.83916478 24.02102188

27.48347369 0.05012497 0.8532488 42.30184451 23.17259184

 McLL
(α, β, λ, a, b)

0.8405785 14.6431311 75.8602774 516.7208455 10.5506913

0.6805722 93.2899103 221.0265196 1395.983161 49.1655846

 AWLL
(α, λ, a, b, c, d)

11.7042955 53.5315497 37.4434629 0.7169097 10.9982328 6.0223624

260.76694 791.50854 4645.44321 15.97216 12068.48902 169.45835

Dataset 5

 KAPLL
(α, β, λ, a, b)

0.45513 0.42199 0.49178 24.99089 73.18344

1.29520 0.15053 0.80706 36.77463 80.95251

 LL
(β, λ)

2.725903 19.220727

0.09414488 2.43323393

 APLL
(β, λ)

2.02530 506.43154

0.05523 158.99106

 TLL
(α, β, λ)

99098.49000 0.16966 0.99999

2102.52900 0.00497 0.10373

 APTLL
(α, a, b)

1.00002 2.95768 2.72590

1.08451063 0.59363472 0.09414487

 KMOLL
(α, β, λ, a, b)

66.380378 2.113243 5.7743319 0.2968885 155.758913

114.5620659 19.7509401 6.8833595 0.3539369 186.5446495

 McLL
(α, β, λ, a, b)

0.354461 0.1913761 21.6689575 129.685355 14.8414287

0.1508124 0.5223339 15.3279925 163.401685 14.2225325

 AWLL
(α, λ, a, b, c, d)

0.4264577 98.096872 52.5357368 4.0373439 198.3542142 4.0372805

0.7589986 613.7514336 3360.410356 7.2031995 3172.175641 7.18952

Table 17.  The ML estimates (first line) and SEs (second line) for datasets 3, 4, and 5.
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Developing a discrete analogue of the KAPLL distribution to facilitate its use in modeling count data, thereby 
extending its utility to a wider array of applied settings.

Fig. 4.  The fitted PDF, CDF, and PP plots of the KAPLL model for dataset 1 (top panel), and dataset 2 (bottom 
panel).
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Fig. 5.  The fitted PDF, CDF, and PP plots of the KAPLL model for dataset 3 (top panel), dataset 4 (middle 
panel), and dataset 5 (bottom panel).

 

Scientific Reports |         (2026) 16:3266 34| https://doi.org/10.1038/s41598-025-34460-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


x

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

KAPLL
LL
APLL
TLL
APTLL
KMOLL
McLL
AWLL

x

D
en

si
ty

20 25 30 35 40 45 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

KAPLL
LL
APLL
TLL
APTLL
KMOLL
McLL
AWLL

Fig. 7.  Plots of histogram for datasets 3 (left panel) and 4 (right panel), and the fitted densities of the KAPLL 
model and other competing models.
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Fig. 6.  Plots of histogram for datasets 1 (left panel) and 2 (right panel), and the fitted densities of the KAPLL 
model and other competing models.
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Fig. 8.  Plots of histogram for datasets 5 and the fitted densities of the KAPLL model and other competing 
models.
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α β λ a b KS PV

Dataset 1

 WLSE 9658.176 6.31418 999785.2 0.37130 14.74825 0.05529 0.99970

 LSE 9658.176 6.28688 999785.2 0.36797 14.74810 0.05931 0.99896

 MLE 9658.129 6.19488 999785.2 0.43938 30.74999 0.07307 0.98318

 MPSE 9658.129 6.12636 999785.2 0.42753 30.83327 0.06410 0.99660

 CRVME 9658.129 6.11900 999785.2 0.42987 30.83390 0.05376 0.99983

 ADE 9658.176 6.34331 999785.2 0.37615 14.75095 0.05859 0.99915

 RADE 9658.129 6.16281 999785.2 0.43731 30.83406 0.05938 0.99894

 PCE 9658.129 6.08308 999785.2 0.42254 30.79981 0.05607 0.99961

Dataset 2

 WLSE 1436.639 26.23486 99993.32 0.09833 0.48821 0.04700 0.99905

 LSE 1436.639 26.07562 99993.32 0.09907 0.50234 0.04885 0.99823

 MLE 1436.639 26.01191 99993.32 0.11148 0.53881 0.04469 0.99961

 MPSE 1436.639 26.50730 99993.32 0.09632 0.45978 0.04617 0.99930

 CRVME 1436.639 26.00942 99993.32 0.10470 0.52595 0.04587 0.99938

 ADE 1436.639 26.04734 99993.32 0.10520 0.52341 0.04573 0.99941

 RADE 1436.639 26.11433 99993.32 0.10339 0.51358 0.04686 0.99910

 PCE 1436.639 26.01628 99993.32 0.09837 0.48961 0.05314 0.99421

Dataset 3

 WLSE 1733.49630 5.76102 4556.323 0.46950 3.22229 0.04262 0.98207

 LSE 1733.49650 5.81391 4556.323 0.46490 2.94379 0.04252 0.98254

 MLE 220.44540 5.49738 4511.033 0.63990 4.74243 0.04633 0.96039

 MPSE 220.44540 5.46146 4511.033 0.62359 4.73342 0.05199 0.90453

 CRVME 220.45180 5.67260 4511.033 0.62804 3.54337 0.04311 0.97985

 ADE 1733.49640 5.72355 4556.323 0.47774 3.50797 0.04344 0.97825

 RADE 220.44480 5.63679 4511.033 0.63217 3.77746 0.04319 0.97948

 PCE 220.45100 5.53717 4511.034 0.60343 4.00592 0.05497 0.86477

Dataset 4

 WLSE 22.47070 2.28171 41.79316 83.30084 33.61044 0.03560 0.84163

 LSE 21.82941 2.27494 40.64416 82.65706 31.16669 0.03100 0.93528

 MLE 23.42137 2.29129 43.44313 84.22156 37.26948 0.04096 0.69560

 MPSE 23.31401 2.41512 75.29045 71.22473 30.37840 0.04122 0.68791

 CRVME 22.21453 2.41619 74.17018 69.87137 25.29357 0.03200 0.91848

 ADE 22.48297 2.28174 41.81348 83.31341 33.71126 0.03587 0.83499

 RADE 1.90420 1.77396 52.35557 38.25680 124.27802 0.03391 0.88054

 PCE 18.61174 2.32732 68.48394 63.14832 33.56257 0.03867 0.76077

Dataset 5

 WLSE 0.36393 0.40602 0.39714 33.64823 74.57827 0.02280 0.92568

 LSE 0.18164 0.39299 0.54802 34.84714 73.00073 0.02208 0.94160

 MLE 0.20037 0.39915 0.52362 34.83679 73.02978 0.02456 0.87796

 MPSE 0.45441 0.41870 0.49027 24.99085 73.18344 0.02388 0.89773

 CRVME 0.18132 0.40089 0.67043 28.67835 70.40277 0.02257 0.93083

 ADE 0.17507 0.40915 0.40437 46.12263 56.50213 0.02263 0.92958

 RADE 0.13652 0.41335 0.46201 45.46708 50.82757 0.02288 0.92366

 PCE 3.27232 0.33737 0.89869 9.46334 767.84825 0.03499 0.48106

Table 18.  Parameter estimates of the KAPLL distribution along with KS statistics and corresponding p-values 
for the five datasets.
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Model ML estimates (first line) and SEs (second line) W A −ℓ KS PV

Dataset 1

 KAPLL
9658.12900 6.19488 999785.20000 0.43938 30.83448

0.01941 0.15087 78.92943 0.07307 0.98318
6823.38144 0.35984 6803.29770 0.11247 43.97041

 EAPLL
179939.60000 7.29782 435733.30000 0.17248

0.10372
0.67660 84.31631 0.09004 0.90195

4609.87300 0.18158 4982.03100 0.03189

 KLL
2.34786 53161.39587 1.65016 35047.53318 0.07737 0.57556 82.49136 0.10782 0.74109

0.19131 592.11260 0.10880 18360.23000

 ELL
8.55688 19.00280 0.13576 0.02319 0.19185 79.52812 0.07374 0.98150

0.09729 0.09742 0.02165

 APLL
1.93292 4.81336 4811.50862 0.21332 1.40194 88.69784 0.14407 0.37745

7.50218 0.91778 15622.00000

 LL
4.84162 6996.47772 0.21418 1.40722 88.70663 0.14369 0.38072

0.70121 9447.15447

Dataset 2

 KAPLL
1436.63900 26.01191 99993.32000 0.11148 0.53881 0.01775 0.12224 8.84215 0.04469 0.99961

20.76099 2.59224 5.18317 0.02883 0.24718

 EAPLL
2491.30247 18.33016 4557.59726 0.17325 0.02361 0.15886 9.17168 0.05281 0.99467

25.48549 0.55580 25.42991 0.02335

 KLL
28.30767 1432435.00000 0.12903 0.44704 0.06079 0.35294 10.06389 0.10377 0.50614

2.05906 1208.43500 0.03259 0.14317

 ELL
1.79002 20.66851 0.22262 0.11363 0.62789 11.91290 0.12931 0.24280

0.04115 1.24394 0.03718

 APLL
3.06817 7.81451 15.95996 0.49183 2.71991 22.70743 0.14979 0.11834

4.99850 0.92053 15.36130

 LL
7.92598 28.52572 0.49694 2.74897 22.78996 0.15371 0.10187

0.87357 12.74795

Dataset 3

 KAPLL
220.44540 5.49738 4511.03345 0.63990 4.74243 0.04197 0.26565 167.51500 0.04633 0.96039

503.42917 1.45103 9165.94237 0.25529 4.26687

 EAPLL
188.80120 9.66612 1026831.00000 0.34177 0.04752 0.34897 168.40520 0.05073 0.91941

386.59798 0.19155 4845.45713 0.08316

 KLL
2.71216 4529.83183 1.85638 2572.55370 0.09369 0.57610 168.74540 0.07255 0.55817

0.63565 924.22779 0.41222 8957.53149

 ELL
5.21133 14.52152 0.28071 0.05162 0.31326 167.85030 0.05343 0.88610

0.16832 2.77725 0.07668

 APLL
2.15548 7.01220 19745.67954 0.35212 2.21646 178.30150 0.07881 0.45075

4.65242 0.76506 38577.28000

 LL
7.06485 31046.87530 0.35495 2.23138 178.33500 0.08032 0.42650

0.24683 10727.58000

Dataset 4

 KAPLL
23.3140 2.4153 75.2905 71.2248 30.3786 0.05771 0.38980 851.7108 0.04204 0.66406

149.6915 0.5112 247.3543 176.8554 24.9700

 EAPLL
29900.0601 6.4182 45915.5005 7746.2828 0.45639 3.13694 888.7469 0.13489 0.00004

307.7114 0.1235 118.5567 3214.5225

 KLL
2.9062 4511.2885 20.5667 19.6535 0.06055 0.41152 851.9442 0.04340 0.62437

0.4897 9818.9545 20.3003 12.4187

 ELL
33.0638 14.0205 0.9113 0.15213 1.00920 858.0565 0.05227 0.38541

0.9965 1.5236 0.2393

 APLL
22702890000.0 7.9436 29521620000.0 0.46512 3.20041 873.9975 0.08171 0.03640

0.0186 0.0186 0.0000

 LL
3.8921 680523.3001 0.07734 0.56860 1073.1860 0.28760 0.00000

0.0241 4205.4458

Dataset 5

 KAPLL
0.4551 0.4220 0.4918 24.9909 73.1834 0.03279 0.35649 1170.2920 0.02575 0.83958

1.2952 0.1505 0.8071 36.7746 80.9525

Continued

Scientific Reports |         (2026) 16:3266 38| https://doi.org/10.1038/s41598-025-34460-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 9.  The QQ plots of the KAPLL model and its sub-models for Dataset 1.

 

Model ML estimates (first line) and SEs (second line) W A −ℓ KS PV

 EAPLL
0.4450 6.3840 102683.1000 0.2124 1.31462 8.35268 1216.8130 0.09969 0.00002

0.2372 0.1566 35.8677 0.0105

 KLL
0.4069 0.3632 23.7272 95.9248 0.03856 0.40754 1170.3400 0.02657 0.81086

0.1394 0.3952 24.8463 138.9288

 ELL
3.5418 3.1257 0.7117 0.11607 0.88960 1178.9690 0.04023 0.30872

0.2934 0.2397 0.1131

 APLL
1.0000 2.7259 19.2205 0.18117 1.20096 1181.0680 0.03638 0.43104

1.0845 0.0941 10.7023

 LL
2.7259 19.2207 0.18117 1.20096 1181.0680 0.03638 0.43104

0.0941 2.4332

Table 19.  Goodness-of-fit comparison between the proposed KAPLL model and its sub-models using five 
real-world datasets.
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Fig. 11.  The QQ plots of the KAPLL model and its sub-models for Dataset 3.

 

Fig. 10.  The QQ plots of the KAPLL model and its sub-models for Dataset 2.
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Fig. 13.  The QQ plots of the KAPLL model and its sub-models for Dataset 5.

 

Fig. 12.  The QQ plots of the KAPLL model and its sub-models for Dataset 4.
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Data availability
All datasets analyzed during this study are included within the article.
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