
Numerical simulation of hydraulic–natural fracture interaction based on the continuous–discontinuous element method

Received: 17 August 2025

Accepted: 29 December 2025

Published online: 05 January 2026

Cite this article as: Yang K., Huang G., Zhou F. *et al.* Numerical simulation of hydraulic–natural fracture interaction based on the continuous–discontinuous element method. *Sci Rep* (2025). <https://doi.org/10.1038/s41598-025-34508-z>

Kai Yang, Guopeng Huang, Fujian Zhou, Tianbo Liang, Jie Zuo & Minghui Li

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Numerical simulation of hydraulic-natural fracture interaction based on the continuous-discontinuous element method

Kai Yang^{1,2}, Guopeng Huang^{1,2}, Fujian Zhou^{1,2*}, Tianbo Liang^{1,2}, Jie Zuo^{1,2} □
Minghui Li^{3,4}

1 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China

2 Unconventional Petroleum Research Institute, China University of Petroleum (Beijing),
Beijing, 102249, China

3 Research Institute of Petroleum Exploration & Development, PetroChina Corporation, Beijing 100083, China

4 Oil & Gas and New Energy Branch, PetroChina Corporation, Beijing 100010, China

*Corresponding Author: Fujian Zhou (zhoufj@cup.edu.cn)

Abstract Shale reservoirs commonly contain numerous geological discontinuities, such as natural fractures, faults, and lithological interfaces. These discontinuities significantly influence the formation of hydraulic fracture networks. Therefore, to investigate the impact of different natural fracture parameters on fracture network development, this study establishes a stress-seepage-fracture multi-field coupling model for fractured reservoirs based on the continuous-discontinuous algorithm. The effects of natural fracture angle, stress difference, natural fracture strength, and injection rate on fracture network morphology, injection pressure, and fracture complexity are systematically analyzed. The results indicate that the natural fracture angle and stress difference jointly control fracture propagation patterns. At high natural fracture angles and high stress differences, hydraulic fractures tend to directly cross natural fractures. Additionally, as natural fracture strength increases, the difficulty of natural fracture activation gradually rises, while the number of branch fractures increases. Under high injection rates, the fluid pressure builds up rapidly, facilitating better activation of natural fractures. Meanwhile, as the injection rate increases, the growth rate of fracture complexity accelerates significantly. However, under the same injected volume, the fracture complexity is highest at $0.001\text{ m}^3/\text{s}$ and lowest at $0.01\text{ m}^3/\text{s}$. This study aims to provide guidance for understanding the interaction mechanisms between hydraulic and natural fractures and optimizing fracturing design parameters.

Keywords □ Continuous-discontinuous element method □ Natural fracture □ Fracture

34 network□Hydraulic fracturing

35

36 **1 Introduction**

37 Unconventional oil and gas resources have become a crucial component of the global
 38 oil and gas supply¹⁻⁴. Hydraulic fracturing technology is the key technical means for the
 39 economic development of unconventional reservoirs⁵. Unconventional reservoirs typically
 40 exhibit low porosity, low permeability, and strong heterogeneity, with widespread
 41 geological discontinuities such as natural fractures and weak planes^{6,7}. These geological
 42 discontinuities significantly influence the propagation path of hydraulic fractures, thereby
 43 further affecting hydrocarbon production. Therefore, in-depth investigation of the
 44 interaction mechanisms between hydraulic fractures and natural fractures is essential for
 45 optimizing fracturing parameters and enhancing well productivity. Weng et al.⁸ classified
 46 the interaction modes between hydraulic fractures (HFs) and natural fractures (NFs) into
 47 five categories: (i) direct penetration of the HF through the NF, (ii) crossing with or without
 48 offset, (iii) intersection between fracture trajectories, (iv) branching, and (v) shear slip along
 49 the NF. Zheng et al.⁹ evaluated parameters such as the approach angle, fluid viscosity, and
 50 injection rate, and developed qualitative diagrams to illustrate their respective influences
 51 on HF propagation. Bakhshi et al.¹⁰ demonstrated how different orthotropic in-situ stress
 52 states, friction angles, tensile strengths, and shear strengths of natural fractures affect the
 53 interaction behavior of cemented and uncemented fractures at various approach angles, and
 54 constructed diagrams depicting arresting, opening, and crossing scenarios.

55 In recent decades, numerous scholars have investigated hydraulic fracture propagation
 56 behavior through theoretical analysis, numerical simulation, and laboratory
 57 experiments^{11,12}. For theoretical models, the primary approaches include the KGD model¹³,
 58 PKN model¹⁴, and Penny-shaped model¹⁵. However, these theoretical models are often
 59 based on numerous assumptions and fail to account for the influence of interactions between
 60 hydraulic fractures and natural fractures¹⁶. Various numerical algorithms have been
 61 developed to enable further investigation of interaction mechanisms between hydraulic
 62 fractures and natural fractures under complex scenarios, including finite element method
 63 (FEM^{17,18}), discrete element method (DEM¹⁹⁻²¹), boundary element method (BEM^{22,23}), and

64 extended finite element method (XFEM)^{24,25}. The DEM discretizes the rock matrix into
 65 individual rigid blocks interconnected through contacts. The explicit difference method is
 66 employed to simulate the mutual motion and interaction between these rigid blocks. The
 67 discontinuous interfaces formed between the rigid blocks can effectively characterize
 68 fractures and rock defects. Chong²⁶, Fatahi²⁷, Lyu et al²⁸. have utilized DEM to investigate
 69 the interaction mechanisms between hydraulic fractures and natural fractures. The BEM
 70 discretizes only the domain boundaries or discontinuous interfaces, significantly reducing
 71 model complexity. Olson et al. first employed two-dimensional displacement discontinuity
 72 method (DDM) to simulate hydraulic fracture propagation. Zheng et al.²⁹ utilized a boundary
 73 element method incorporating rock failure criteria to demonstrate the influence of hydraulic
 74 fracture geometry on fracture interaction mechanisms. The extended finite element method
 75 (XFEM) achieves mesh-independent fracture propagation simulation by incorporating
 76 enriched discontinuous shape functions into conventional finite element displacement
 77 interpolation functions, thereby representing displacement field discontinuities without
 78 requiring mesh refinement³⁰. In recent years, hybrid algorithms combining the advantages
 79 of different numerical methods have been proposed for enhanced fracture simulation. Zhang
 80 et al.³¹ proposed a novel XFEM-PFM coupled approach for hydraulic fracturing simulation
 81 and investigated the interaction mechanisms between hydraulic fractures and natural
 82 fractures. Zhu et al.³² developed a hybrid FEM-DEM numerical algorithm that combines the
 83 advantages of both finite element and discrete element methods to simulate hydraulic
 84 fracture propagation.

85 Hybrid methods demonstrate superior advantages in hydraulic fracture propagation
 86 simulation, yet their application in complex scenarios requires further investigation. In this
 87 study, a stress-seepage-fracture multi-field coupling algorithm based on the continuous-
 88 discontinuous method was developed to investigate the interaction behavior between
 89 hydraulic fractures and natural fractures in fractured reservoirs. The interaction behavior
 90 was validated against theoretical criteria. Furthermore, the coupled effects of natural
 91 fracture angles and stress differences, natural fracture strength, and injection rate on
 92 fracture geometry, pressure response, and stimulation effectiveness were systematically
 93 analyzed. The paper is organized as follows: Section 2 introduces the numerical

94 methodology and coupling scheme; Section 3 describes the model construction and
 95 simulation schemes; Sections 4 and 5 present the interaction results for a single natural
 96 fracture and natural fracture networks, respectively; and Section 6 summarizes the main
 97 findings, significance, limitations, and future research directions.

98 2 Numerical methods

99 The continuum-discontinuum algorithm integrates the advantages of the finite element
 100 method and discrete element method, employing the generalized Lagrange equation to
 101 accurately describe rock damage and failure processes^{33,34}. The algorithm divides the model
 102 into block elements and interface elements. Each block element consists of one or more
 103 finite elements to characterize rock's continuous behavior. Interface elements include real
 104 interfaces (representing natural discontinuities such as natural fractures and weak planes)
 105 and virtual interfaces (providing potential propagation paths for hydraulic fracturing).
 106 Adjacent blocks are connected through normal and tangential springs that transmit
 107 interaction forces, where spring failure reflects rock fracture characteristics.

108 2.1 Solid constitutive model

109 Assuming the rock deformation follows linear elasticity and satisfies the small
 110 deformation hypothesis, the fracture propagation process is considered quasi-static³⁵. All
 111 finite elements within the block elements satisfy stress equilibrium, and the matrix form of
 112 the stress field governing equation can be expressed as:

$$113 \quad \mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u}^e = \mathbf{F}^e \quad (1)$$

114 where \mathbf{M} , \mathbf{C} , and \mathbf{u}^e is the acceleration matrix, velocity matrix, and displacement matrix of
 115 all nodes in the element, respectively. \mathbf{M} , \mathbf{C} , \mathbf{K} , \mathbf{F}^e is the element mass matrix, damping
 116 matrix, stiffness matrix, and external force respectively.

117 The CDEM employs an explicit Euler forward difference method for time-domain
 118 iterative solutions. The iterative formulation can be expressed as:

$$119 \quad \begin{cases} \dot{\mathbf{u}}^{n+1} = \dot{\mathbf{u}} + \mathbf{M}^{-1} \mathbf{F}^e \\ \mathbf{u}^{n+1} = \mathbf{u}^n + \dot{\mathbf{u}}^{n+1} \Delta t \end{cases} \quad (2)$$

120 where n is the iteration steps, Δt is the time step.

121 2.2 Failure criterion

122 Two adjacent block elements are connected via tangential and normal springs. The
 123 relative displacement at the contact point between neighboring blocks and the
 124 corresponding spring forces obey Hooke's law:

$$\Delta u_n = \frac{F_n}{K_n} = \frac{(s_{n1} + s_{n2})A}{2K_n} \quad (3)$$

$$\Delta u_t = \frac{F_t}{K_t} = \frac{(s_{t1} + s_{t2})A}{2K_t} \quad (4)$$

127 where, Δu_n and Δu_t are the normal displacement and tangential displacement, F_n and F_t are the
 128 normal force and tangential force, K_n and K_t are the normal stiffness and tangential stiffness of
 129 the spring, A is the contact area, s_{n1} and s_{n2} are the normal stress at the contact point, s_{t1} and s_{t2}
 130 are tangential stress at the contact point.

131 The Coulomb-Mohr criterion and maximum tensile stress criterion are adopted as the
 132 rock failure criteria to characterize tensile and shear failure modes. Specifically, the
 133 maximum tensile stress criterion can be expressed as: $s_n > \sigma_n^3 / T$ (5)

135 where s_n is the normal stress, T is the tensile strength.

136 The Coulomb-Mohr criterion can be expressed as:

$$s_t > c + s_n \tan j \quad (6)$$

138 where, s_t is the tangential stress, c and j are the cohesion and internal friction angle,
 139 respectively.

140 2.3 Seepage calculation

141 Assuming the material is isotropic, the finite volume method is employed to separately
 142 compute the pore seepage field and fracture seepage field. Both fields satisfy Darcy's law
 143 and mass conservation³⁶. When the nodal saturation reaches unity, the pore fluid pressure
 144 and fracture fluid pressure can be calculated according to Equations (7-8).

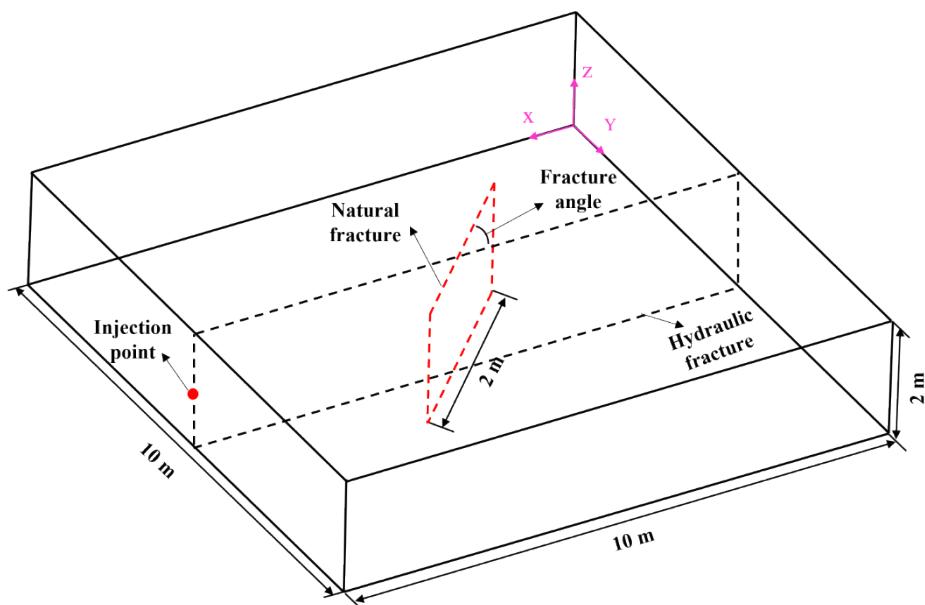
$$p_p^E = - \frac{d}{dt} \left(\frac{(Q^E + Q_{app})}{nV} \right) \quad (7)$$

$$p_f^E = - \frac{d}{dt} \left(\frac{(Q^F + Q_{app})}{nV} \right) \quad (8)$$

147 where, p_p^F is the pore fluid pressure \square p_f^F is the fracture fluid pressure \square k^F is the permeability
 148 coefficient of the porous matrix \square k^F is the fracture permeability coefficient \square Q^F is the pore
 149 nodal flow rate \square Q^F is the fracture nodal flow rate \square Q_{ext} is the external flow boundary
 150 condition.

151 The total pressure at pore element nodes and fracture element nodes can be determined
 152 according to Eq. (9~10).

$$153 \quad P^F = p_p^F - s^F r(xg_x + yg_y + zg_z) \quad (9)$$


$$154 \quad P^F = p_f^F - s^F r(xg_x + yg_y + zg_z) \quad (10)$$

155 where, P^F is the total pressure at pore element nodes \square P^F is the total pressure at fracture
 156 element nodes \square s^F is the average saturation of pore elements \square s^F is the average saturation of
 157 fracture elements \square $g_x \square g_y \square g_z$ are the global components of gravitational acceleration \square r is
 158 the fluid density.

159 3 Model construct and parameters

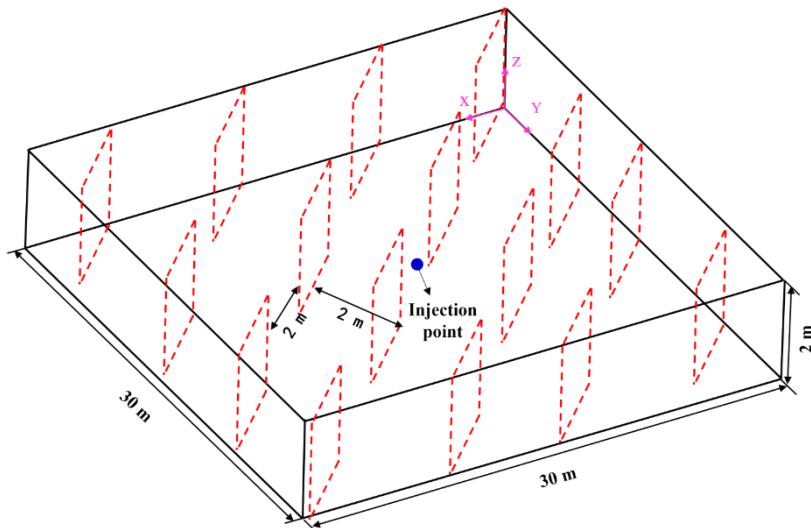
160 3.1 The model construction of single hydraulic fracture and single natural 161 fracture

162 Fig.1 shows the schematic diagram of the single hydraulic fracture and single natural
 163 fracture model. The model dimensions are $10 \text{ m} \times 10 \text{ m} \times 2 \text{ m}$. The natural fracture is
 164 predefined as a hard line, with its center located 5 m from the injection point, measuring 2
 165 $\text{m} \times 2 \text{ m}$ in size. The model was discretized using the open-source software Gmsh³⁷ (Version
 166 [2.16.0]; <https://gmsh.info/>), comprising a total of 960 block elements and 1,240 interface
 167 elements. The mesh size is set at 1 m. The block elements employ triangular prism meshes,
 168 while the interface elements utilize quadrilateral meshes. The model is primarily used to
 169 investigate the interaction mechanisms between hydraulic fractures and natural fractures,
 170 comparing the results with theoretical criteria to validate the reliability of the proposed
 171 interaction model. The study systematically examines hydraulic-natural fracture
 172 interactions under varying natural fracture angles (30° , 45° , 60° , and 90°) and different
 173 horizontal stress differences (2 MPa, 6 MPa, 10 MPa, and 14 MPa). Model parameters are
 174 provided in Table 1, and detailed simulation schemes are listed in Table 2.

175
176 **Fig. 1 The schematic diagram of single hydraulic fracture and natural fracture**
177 **model**
178

179 **Table 1 The model parameter**

Types	Parameter	Value	Unit
Rock Matrix	In-situ stress (X/Y/Z)	34/20/35	MPa
	Elastic modulus	50	GPa
	Poisson's Ratio	0.22	/
	Tensile Strength	3	MPa
	Cohesion	8	MPa
	Internal Friction Angle	40	°
Natural fracture	Loss Coefficient	1e-14	$\text{m}^2/\text{Pa/s}$
	Tensile Strength	0	MPa
	Cohesion	1	MPa
	Internal Friction Angle	20	°
Injection parameter	Injection rate	0.001	m^3/s
	Fluid viscosity	1	$\text{mPa}\cdot\text{s}$


180 **Table 2 The parameter simulation scheme**

No.	Stress	Natural fracture	Tensile strength/ Cohesion/	Injection	Viscosity
-----	--------	------------------	-----------------------------	-----------	-----------

difference	MPa	°	Internal friction angle	rate	mPa·s
			MPa/MPa/°		
1	0	30			
2	5	30			
3	10	30			
4	15	30			
5	0	45			
6	5	45			
7	10	45			
8	15	45			
9	0	60	0/1/20	0.001	1
10	5	60			
11	10	60			
12	15	60			
13	0	90			
14	5	90			
15	10	90			
16	15	90			

181 **3.2 The model construction of single hydraulic fracture and the natural fracture
182 network**

183 Fig. 2 shows the schematic of a single hydraulic fracture interacting with the natural
184 fracture network. The model sizes is 30 m × 30 m × 2 m, with the injection well centered at
185 (15 m, 15 m, 1 m). The naturally fractured system contains uniformly distributed discrete
186 fractures, each measuring 2 m × 2 m × 2 m with 2 m spacing between adjacent fractures.
187 The computational mesh was generated using Gmsh software with the element size of 1 m.
188 The matrix was discretized using triangular prism elements, while the interface network
189 was represented by quadrilateral elements.

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

Fig. 2 The schematic diagram of single hydraulic fracture and natural fractures model

191

192

193

194

195

196

197

198

199

200

201

202

203

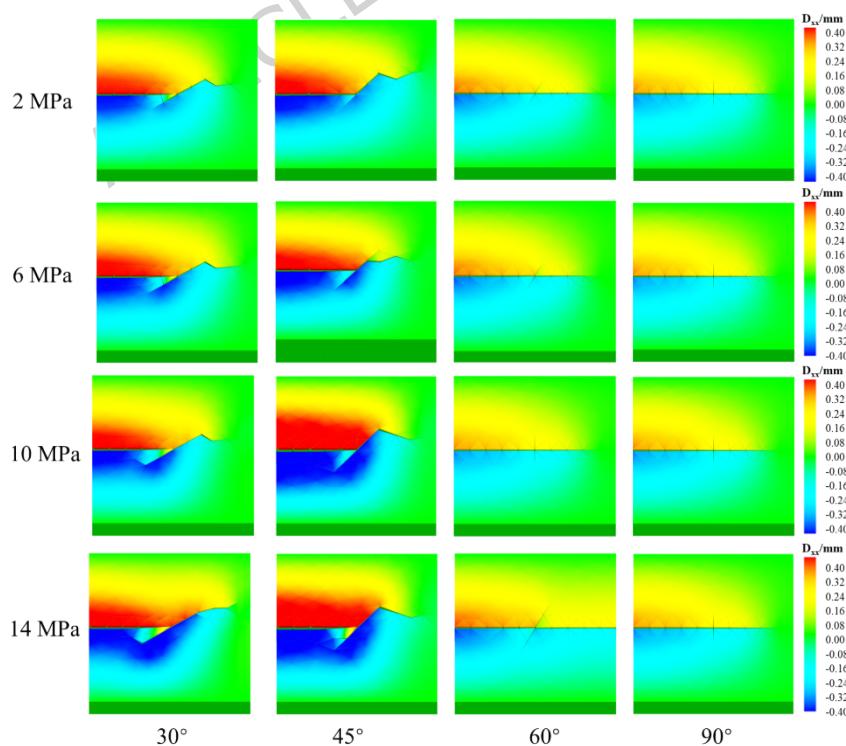
204

205

Table 3 The parameter simulation scheme

No.	Stress difference	Natural fracture angle	Tensile strength/ Cohesion/ Internal friction angle	Injection rate	Viscosity
	[MPa]	[°]	[MPa/MPa/°]	[m ³ /s]	[mPa·s]
1	0	30			
2	0	45	0/1/20	0.005	10
3	0	60			

4	0	90			
5	5	30			
6	5	45			
7	5	60			
8	5	90			
9	10	30			
10	10	45			
11	10	60			
12	10	90			
13	15	30			
14	15	45			
15	15	60			
16	15	90			
17	0	60+120	0/1/20	0.005	10
18	0	60+120	1.5/4/20	0.005	10
19	0	60+120	0/0/0		
20	0	60+120	0/1/20	0.001	10
21	0	60+120	0/1/20	0.01	10

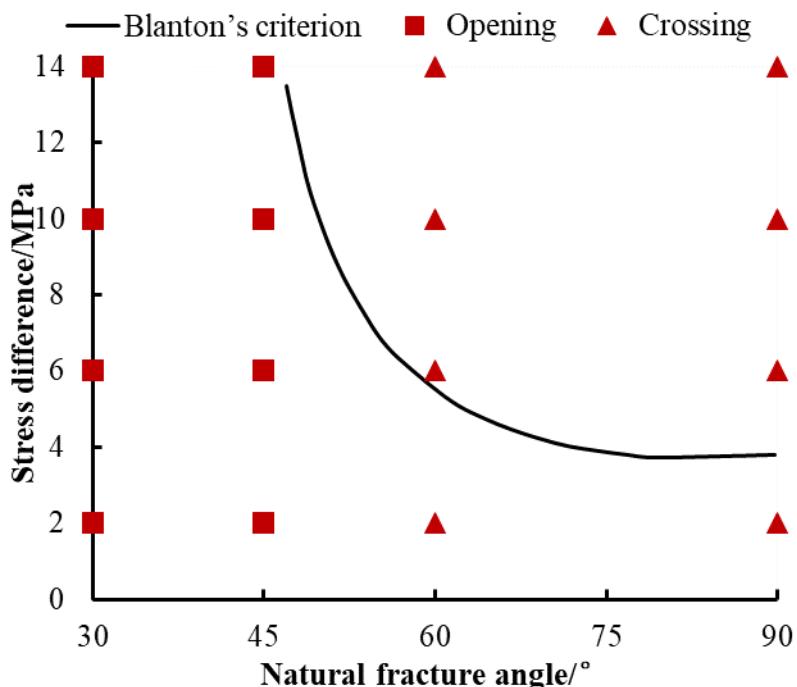

206

207 **4 The results of interactions between hydraulic fracture and single 208 natural fracture**

209 Fig. 3 shows the interaction patterns between hydraulic fracture and natural fracture
210 under different stress differences and natural fracture angles. The results show that the
211 interaction modes can be categorized into three types: (1) fully activating the natural
212 fracture; (2) partially activating the natural fracture; (3) crossing the natural fracture. When
213 the natural fracture angle is 30° or 45°, the natural fractures are activated under all stress
214 differences. For natural fracture angles exceeding 60°, the hydraulic fractures cross the
215 natural fractures when the stress difference exceeds 2 MPa.

216 Fig. 3 shows the interaction patterns between the hydraulic fracture (HF) and natural

217 fracture (NF) under different stress differences and NF orientations. Three interaction
 218 modes are observed: (1) full activation of the NF; (2) partial activation of the NF; and (3)
 219 HF crossing. When the NF angle is 30° or 45° , the NFs are activated under all stress
 220 differences. This is because low-angle NFs are subjected to a lower normal stress and a
 221 higher shear component of the far-field stress, which promotes shear slip and tensile dilation.
 222 As a result, the energy required for HF diversion along the NF plane is lower than that
 223 needed for direct propagation, making NF activation more favorable. In contrast, NFs with
 224 orientations greater than 60° experience significantly higher normal stress, which
 225 suppresses both shear displacement and tensile opening. When the horizontal stress
 226 difference exceeds 2 MPa, the driving stress intensity at the HF tip becomes sufficiently
 227 large to overcome the sliding potential of the high-angle NF. Under these conditions, the
 228 HF maintains its trajectory and crosses the NF rather than being arrested or diverted.
 229 Furthermore, increased confining stress strengthens the NF by increasing normal stress on
 230 the fracture plane, which further inhibits NF activation and promotes HF crossing. These
 231 mechanisms explain the observed transition from NF activation to HF crossing with
 232 increasing fracture angle and stress difference.

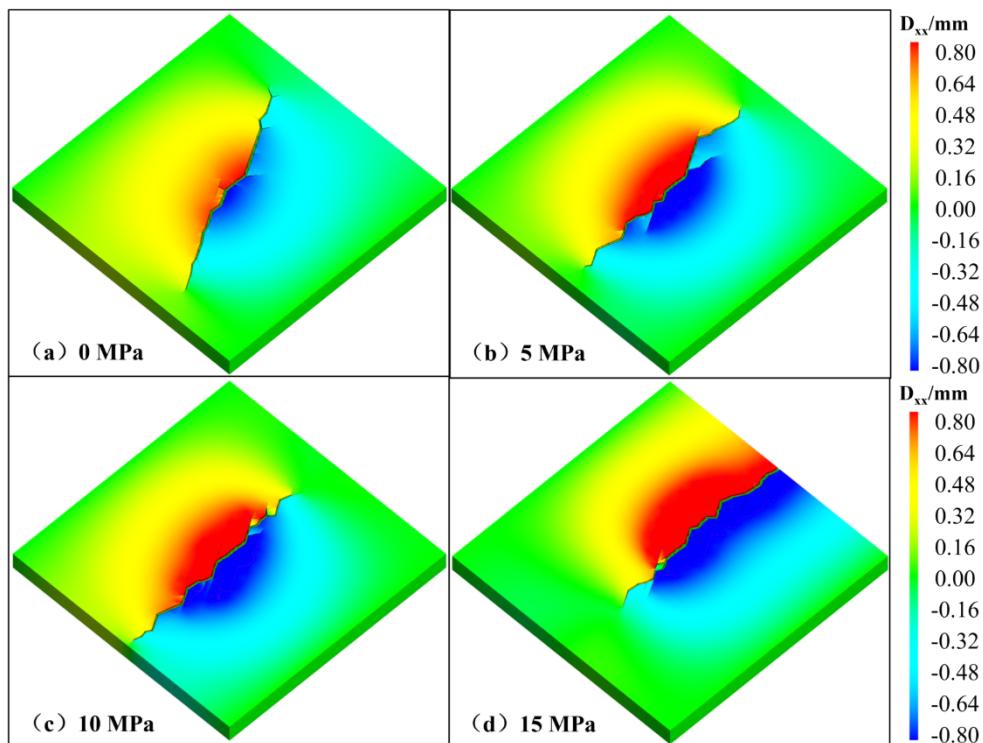


233

234 **Fig. 3 The interaction pattern of hydraulic fracture and natural fracture under different stress**

235 **difference and natural fracture angle**

236 Fig. 4 compares the simulation results of this study with Blanton's criterion. The area
 237 above the curve indicates hydraulic fracture penetration through natural fractures, while
 238 the region below the curve signifies natural fracture activation by hydraulic fracturing. The
 239 results demonstrate good agreement with Blanton's criterion. Specifically, hydraulic
 240 fractures tend to activate natural fractures even under high stress difference when the
 241 natural fracture angle is less than 45°. Conversely, when natural fractures are oriented at
 242 angles exceeding 60°, hydraulic fractures will penetrate through them even at low stress
 243 difference.


244 **Fig. 4 Comparison of numerical simulation and Blanton's criterion**

245

246 **5 The results of interactions between hydraulic fracture and natural
 247 fracture network**248 **5.1 The effect of natural fracture angle and stress difference**249 **(1) The natural fracture network with 30°**

250 Fig. 5 shows the interaction patterns between hydraulic fractures and a 30° natural
 251 fracture network under different stress differences. It can be observed that at 0 MPa stress
 252

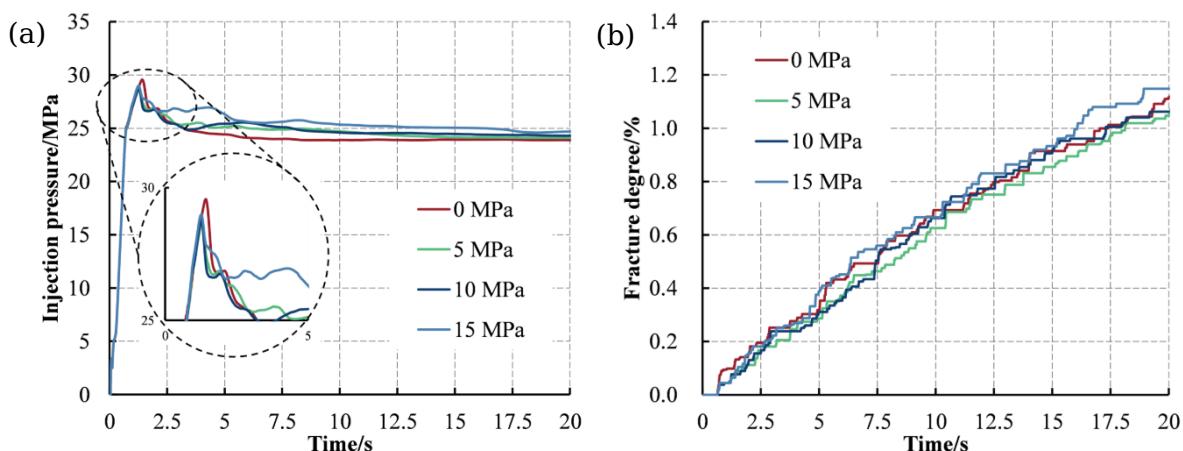
253 difference, the hydraulic fracture activates the natural fractures and propagates along their
 254 orientation. Under a 5 MPa stress difference, the hydraulic fracture initially extends in the
 255 direction of the maximum horizontal principal stress, then activates and diverts along the
 256 natural fractures upon encountering them. When the stress difference exceeds 10 MPa, the
 257 natural fractures are no longer activated, and the hydraulic fracture propagates solely along
 258 the direction of the maximum horizontal principal stress.

259

260 **Fig. 5 The hydraulic fracture morphology under different stress difference**

261

262 Fig. 6(a) shows the injection pressure evolution curves versus time under different
 263 stress differences. The results indicate that within the 30° natural fracture network, the
 264 maximum breakdown pressure of 29.6 MPa occurs at 0 MPa stress difference. For stress
 265 differences exceeding 5 MPa, the breakdown pressures remain relatively consistent.
 266 Additionally, the fracture propagation pressure shows a gradual increase with rising stress
 267 difference. Fig. 6(b) shows the evolution of fracture degree with time under various stress
 268 differences. At 20 s, the highest breakdown degree occurs at 15 MPa, followed by 0 MPa
 269 and 10 MPa, while 5 MPa exhibits the lowest value. This phenomenon primarily results from
 270 the 15 MPa hydraulic fracture propagating along the maximum horizontal principal stress

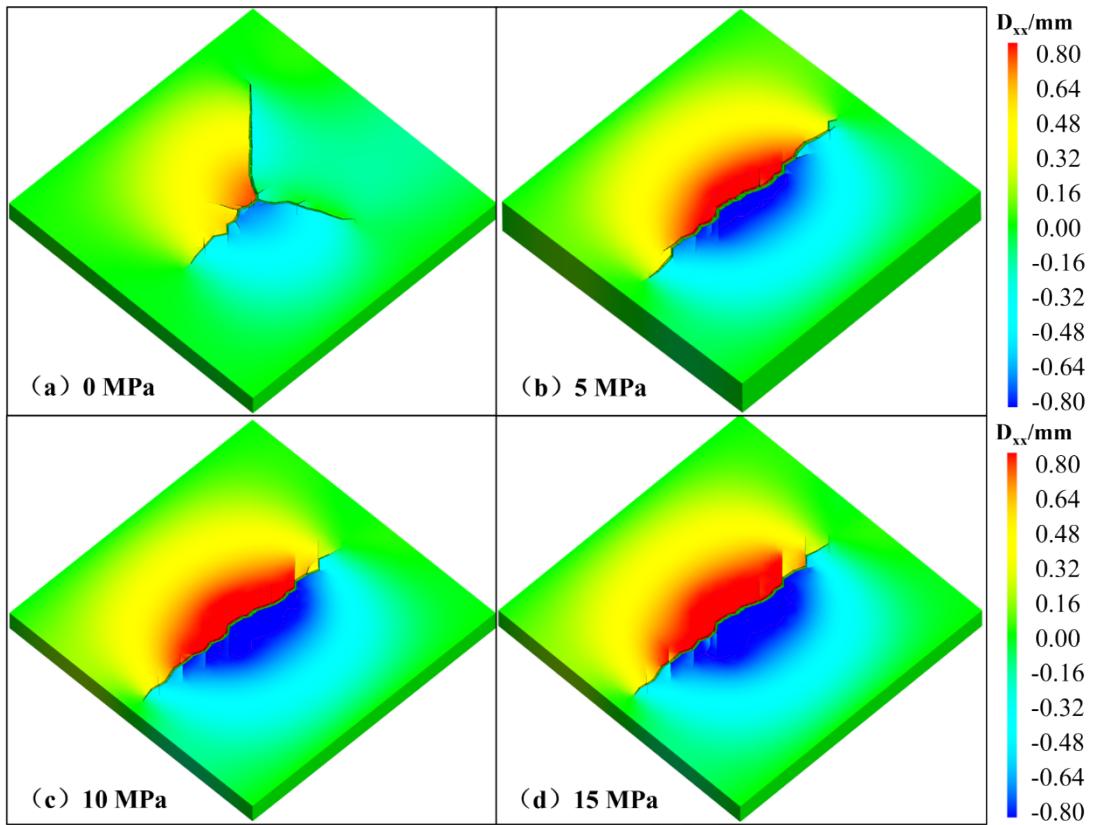

271 direction, enabling earlier arrival at the model boundary. Under the constant-pressure
 272 boundary condition employed in this study, the hydraulic fracture stop propagation upon
 273 reaching the boundary and undergoes pressure accumulation followed by re-initiation. Fig.
 274 6(b) clearly demonstrates a significant increase in fracture breakdown degree at 16 s,
 275 attributable to this pressure buildup and subsequent re-fracturing process.

276

277

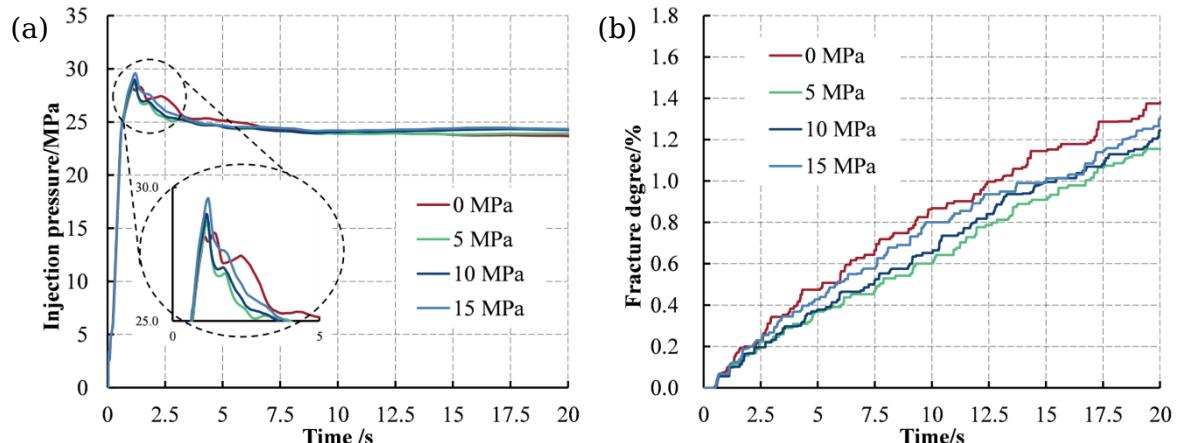
278

279


280

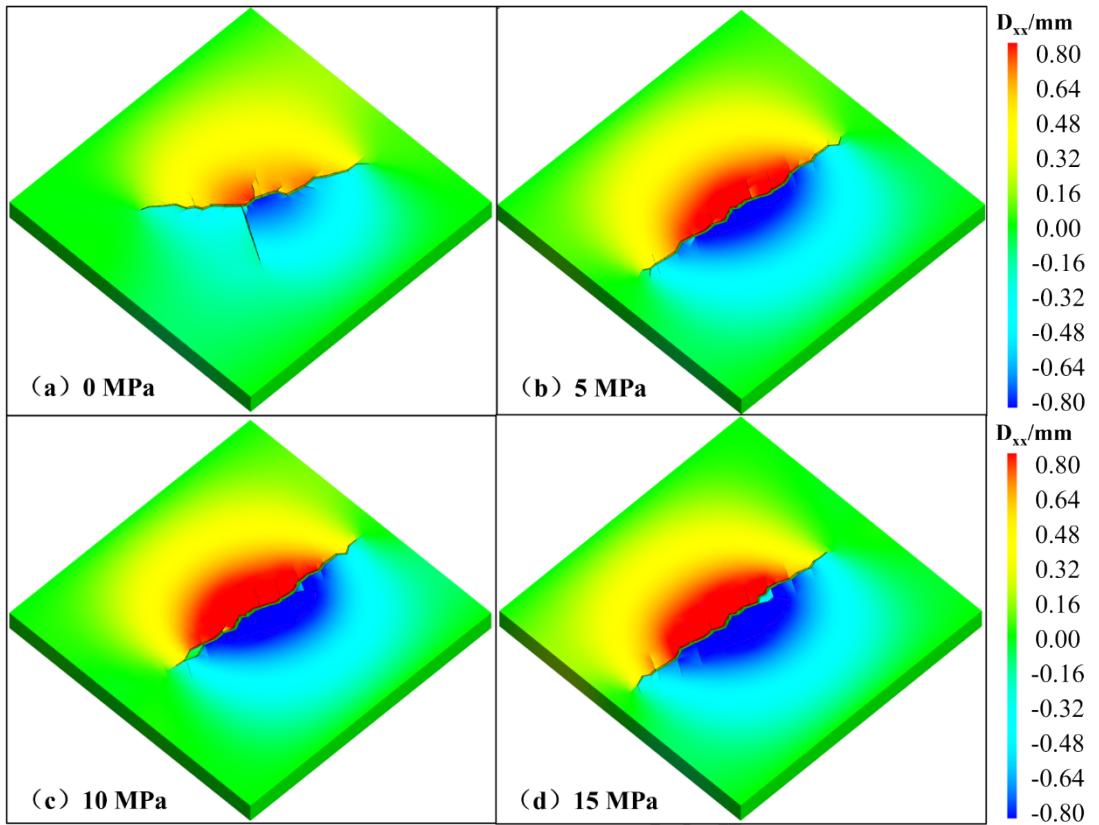
281 **Fig. 6 The injection pressure (a) and fracture degree (b) with the time evolution**

282


(2) The natural fracture network with 45°

283 Fig. 7 shows the interaction patterns between hydraulic fractures and 45° natural
 284 fracture networks under different stress differences. The results show that at 0 MPa stress
 285 difference, three distinct fracture branches develop: one propagating along the maximum
 286 horizontal principal stress direction, one extending along the natural fracture orientation,
 287 and one advancing perpendicular to the natural fractures. However, when the stress
 288 difference exceeds 5 MPa, the hydraulic fractures predominantly propagate along the
 289 maximum horizontal principal stress direction.

Fig. 7 The hydraulic fracture morphology under different stress difference


Fig. 8 (a) shows the injection pressure evolution curves under different stress differences. The results show that at 0 MPa, two distinct breakdown pressures are observed due to the formation of branch fractures. The breakdown pressure gradually increases with increasing stress difference, reaching a maximum value of 29.6 MPa at 15 MPa. Fig. 8 (b) shows the fracture degree evolution curves under various stress differences. At 20 s, the fracture degree follows the order: 0 MPa > 15 MPa > 10 MPa > 5 MPa. This demonstrates that during hydraulic fracturing, simply activating natural fractures does not enhance the stimulated reservoir volume. Conversely, the formation of branch fractures while activating natural fractures during hydraulic fracture propagation can significantly improve the stimulation area.

302
303 **Fig. 8 The injection pressure (a) and fracture degree (b) with the time evolution**
304

305 **(3) The natural fracture network with 60°**

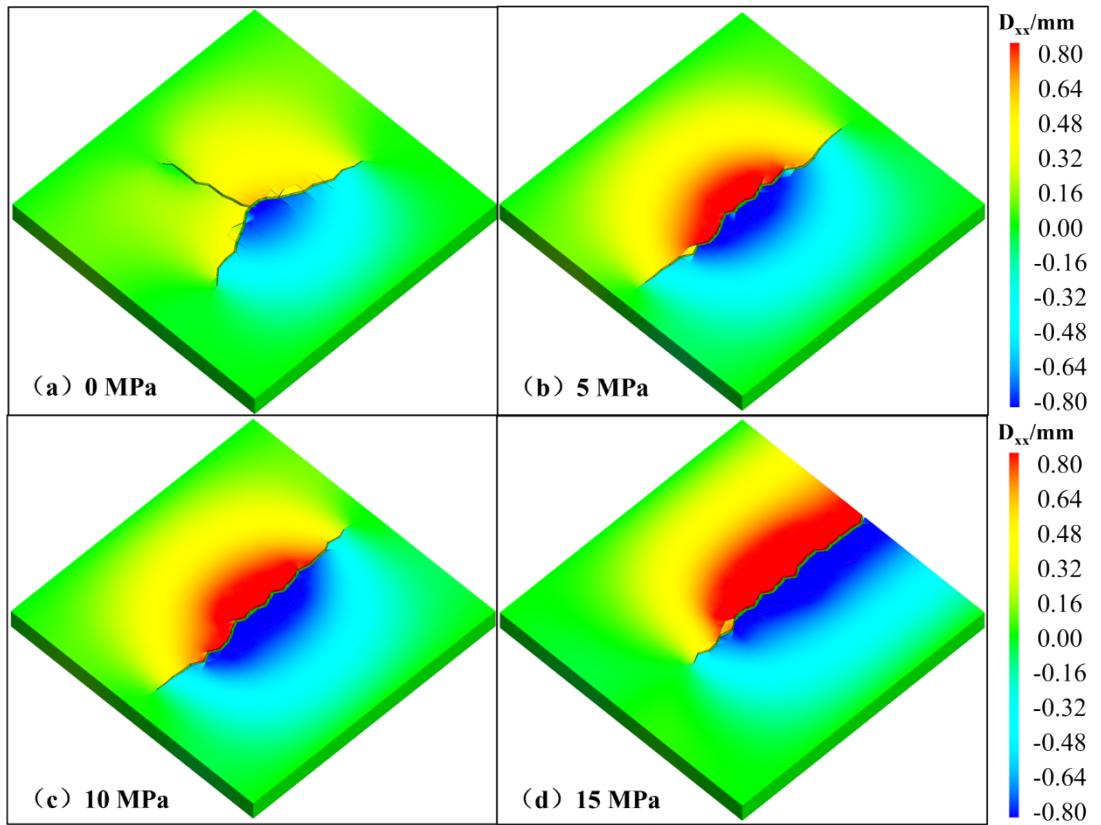
306 Fig. 9 shows the interaction patterns between hydraulic fractures and 60° natural
307 fracture networks under different stress differences. At 0 MPa stress difference, three
308 branch fractures form near the injection point, with one propagating along the 60° natural
309 fracture direction and two extending perpendicular to natural fractures at higher
310 propagation velocities. When the stress difference exceeds 5 MPa, natural fractures are
311 nearly completely deactivated and hydraulic fractures propagate predominantly along the
312 maximum horizontal principal stress direction. The results clearly demonstrate a critical
313 stress threshold (5 MPa) that governs the transition from complex fracture network
314 development to simplified stress-dominated propagation for 60° natural fracture systems.

Fig. 9 The hydraulic fracture morphology under different stress difference

Fig. 10(a) shows the evolution of injection pressure with time under different stress differences. The results show that the maximum breakdown pressure of 29.3 MPa occurs at 0 MPa stress difference, while the breakdown pressure gradually increases as the stress difference rises from 5 MPa to 15 MPa. Fig. 10(b) presents the evolution of fracture breakdown degree with time under various stress differences, revealing that the highest breakdown degree occurs at 15 MPa, followed by 10 MPa, with 0 MPa and 5 MPa showing comparable values. This behavior primarily results from distinct fracture propagation mechanisms: under high stress differences, fractures propagate predominantly along the maximum horizontal principal stress direction with relatively larger fracture widths, while under low stress differences, hydraulic fracture propagation is less constrained by stress differences and is influenced by the activation of partial branch fractures in natural fractures, leading to relatively smaller fracture widths. Consequently, when the activated length of natural fractures is relatively small, the overall stimulated area is less effective compared to the single dominant fracture formed under high stress difference conditions.

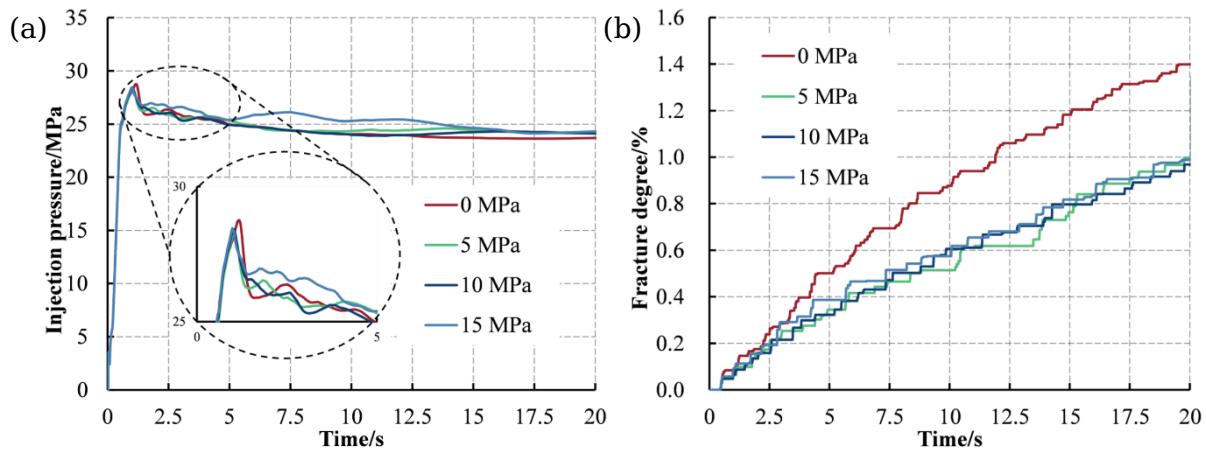
332

333


334 **Fig. 10 The injection pressure (a) and fracture degree (b) with the time evolution**

335

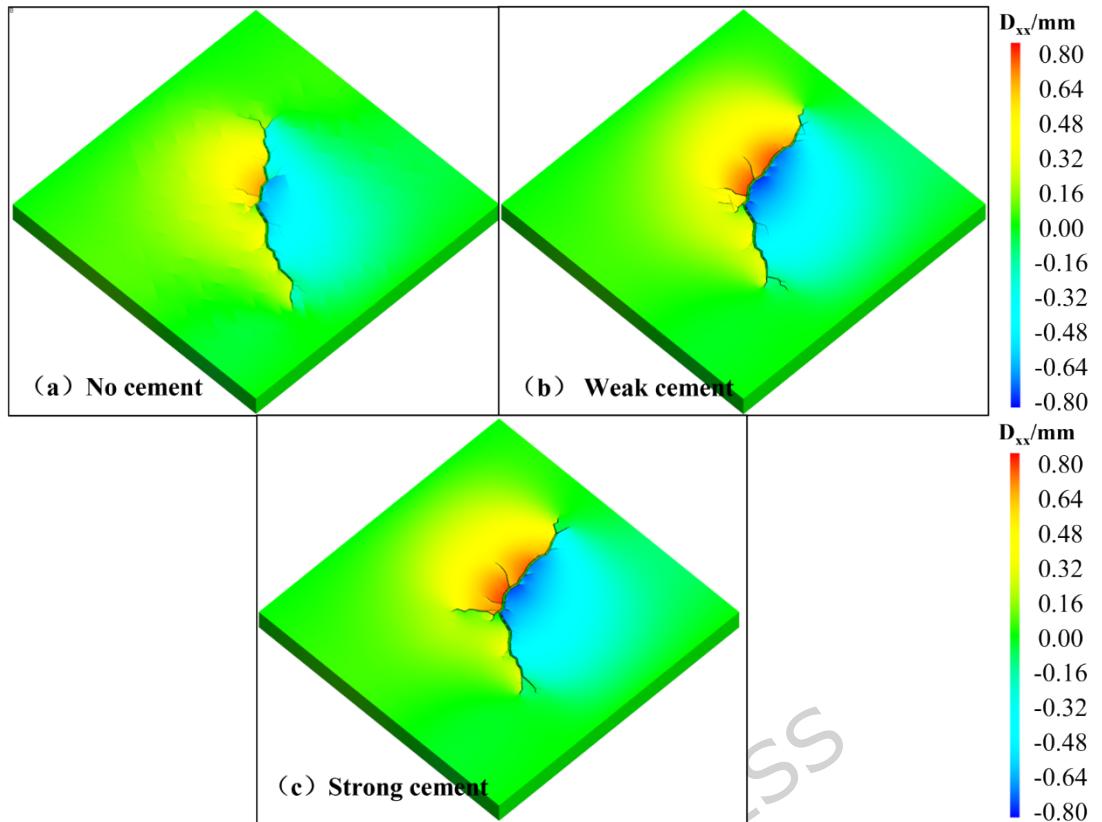
336 **(4) The natural fracture network with 90°**


337 Fig. 11 shows the interaction patterns between hydraulic fractures and 90° natural
 338 fracture networks under varying stress differences. The results demonstrate that at 0 MPa
 339 stress difference, three branch fractures form near the injection point: one propagating
 340 along the 90° natural fracture orientation while the other two extend horizontally. When the
 341 stress difference exceeds 5 MPa, natural fractures remain completely inactive and hydraulic
 342 fractures propagate exclusively along the maximum horizontal principal stress direction.
 343 This behavior confirms the critical 5 MPa stress threshold observed in other configurations,
 344 beyond which fracture propagation becomes purely stress-dominated regardless of natural
 345 fracture orientation. The consistent 5 MPa transition threshold across different natural
 346 fracture angles (30°, 45°, 60°, and 90°) suggests a universal stress-controlled mechanism
 347 governing the interaction between hydraulic and natural fractures in this system.

348

Fig. 11 The hydraulic fracture morphology under different stress difference

Fig. 12 (a) shows the evolution pattern of injection pressure under different stress differences, showing that the maximum breakdown pressure of 28.7 MPa occurs at 0 MPa. While the breakdown pressure shows insignificant variation as the stress difference increases from 5 MPa to 15 MPa, the fracture propagation pressure exhibits a substantial increase at 15 MPa. Fig. 12 (b) displays the evolution of fracture breakdown degree with time under various stress differences, revealing that the 0 MPa condition achieves significantly higher breakdown degree due to the formation of branch fractures and activation of numerous 90° natural fractures. In contrast, the breakdown degree remains relatively consistent across 5-15 MPa stress differences as the fractures propagate predominantly along the maximum horizontal principal stress direction in these cases. The results demonstrate that complex fracture networks with multiple branches (0 MPa) provide superior stimulation effectiveness compared to single planar fractures (5-15 MPa), despite requiring higher initial breakdown pressures.

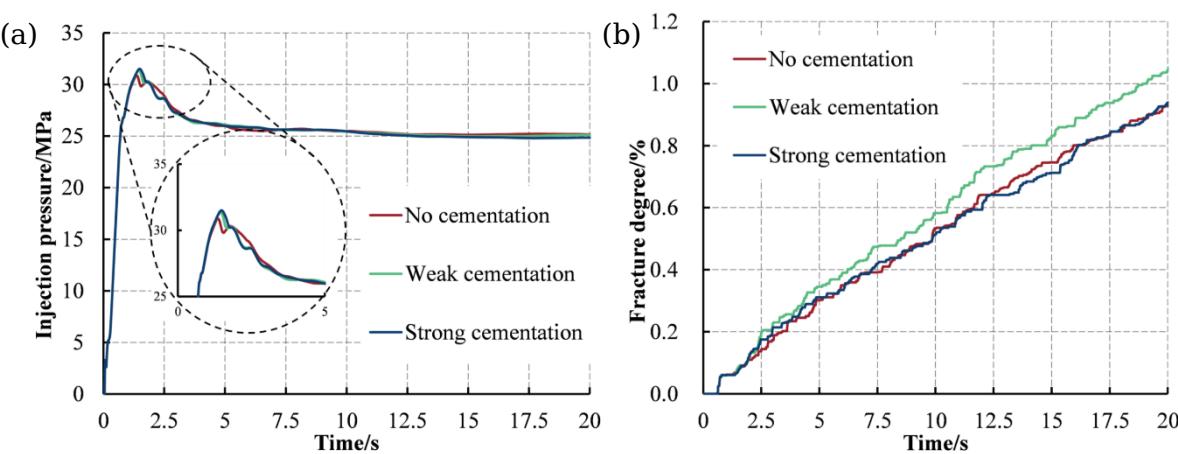

364

365

366

367 **5.2 The effect of natural fracture strength**

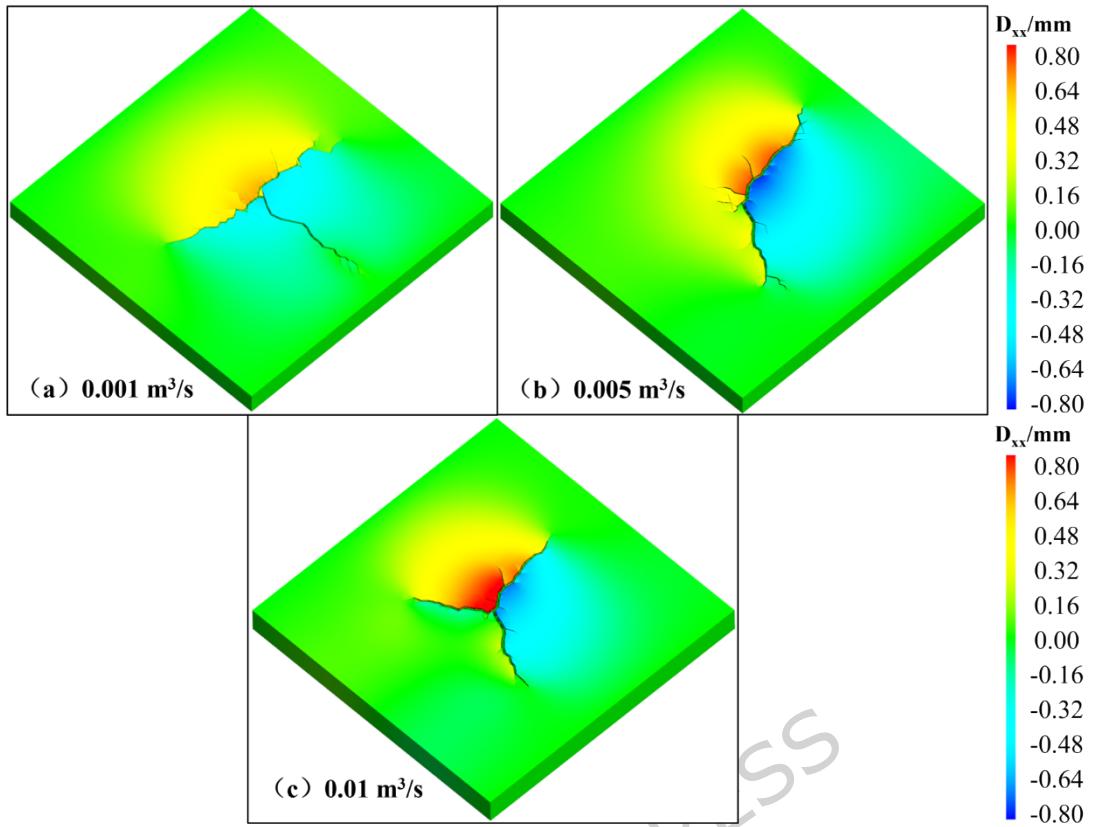
368 To investigate the influence of natural fracture strength on hydraulic fracture
 369 propagation, this study established three types of natural fracture networks with different
 370 cementation strengths by varying their tensile strength, cohesion, and internal friction angle.
 371 The natural fracture networks consisted of conjugate fractures at 60° and 120° , categorized
 372 as: (a) uncemented (zero tensile strength, cohesion, and internal friction angle); (b) weakly
 373 cemented (0 MPa tensile strength, 1 MPa cohesion, and 20° internal friction angle); and (c)
 374 strongly cemented (1.5 MPa tensile strength, 4 MPa cohesion, and 20° internal friction
 375 angle). Fig. 13 shows the interaction patterns between hydraulic fractures and natural
 376 fractures under different cementation strengths. The results show that at 0 MPa in-situ
 377 stress difference, the number of branch fractures increases with natural fracture strength.
 378 This occurs because, under uncemented conditions, hydraulic fractures tend to propagate
 379 along low-angle natural fractures following the principle of energy minimization. However,
 380 as natural fracture strength increases, fracture opening becomes more difficult.
 381 Consequently, in the absence of significant stress differences, hydraulic fractures tend to
 382 develop multiple branch fractures rather than following a single dominant path.


383

384 **Fig. 13 The hydraulic fracture morphology under different cementation strength**

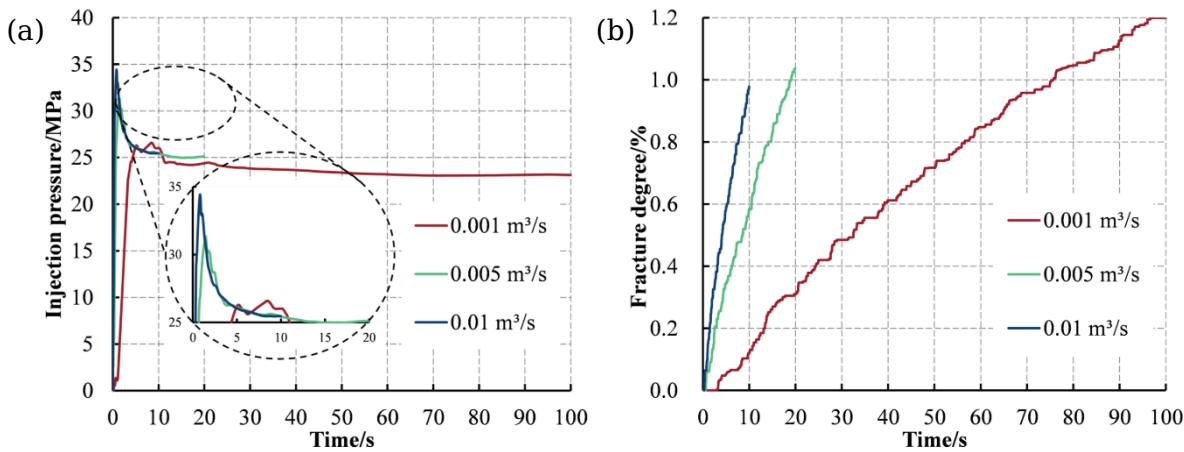
385

386 Fig. 14(a) shows the evolution of injection pressure with time under different natural
 387 fracture strengths. The result show that the breakdown pressure gradually increases with
 388 higher cementation strength. Fig. 14(b) displays the evolution of fracture degree with time
 389 for various natural fracture strengths, revealing that the weakly cemented condition
 390 achieves the maximum breakdown degree, while both uncemented and strongly cemented
 391 cases exhibit relatively lower values. Under weakly cemented conditions, the fracture
 392 interface has moderate cohesion and stiffness, so hydraulic pressure can partially debond
 393 and open the interface, inducing both shear slip and tensile dilation along the natural
 394 fracture. At the same time, the remaining bond strength is sufficient to transfer stress
 395 perturbations into the surrounding matrix, which promotes repeated branching and re-
 396 initiation of fractures at the natural-fracture tips. This leads to the highest fracture
 397 complexity and stimulated volume. In contrast, strongly cemented natural fractures behave
 398 similarly to intact rock; the high cohesion and normal stiffness favor direct crossing of the
 399 interface and suppress fracture diversion, resulting in a simpler, more planar hydraulic-


400 fracture geometry. Under uncemented conditions, the interfaces are easily activated and
 401 quickly become dominant, highly conductive flow channels. Fluid then preferentially
 402 migrates along these pre-existing open fractures, reducing the net pressure at the hydraulic-
 403 fracture tip and limiting the formation of new branches in the matrix. Therefore, both very
 404 low and very high interface strengths tend to reduce the degree of newly generated
 405 fracturing, whereas intermediate (weakly cemented) conditions promote the most complex
 406 fracture network.

407
 408 **Fig. 14 The injection pressure (a) and fracture degree (b) with the time evolution**

409 **5.3 The effect of injection rate**


410 To investigate the influence of injection rate on hydraulic fracture propagation, this
 411 study simulated three different injection rate conditions: (a) $0.001 \text{ m}^3/\text{s}$, (b) $0.005 \text{ m}^3/\text{s}$, and
 412 (c) $0.01 \text{ m}^3/\text{s}$, with corresponding simulation times of 100 s, 20 s, and 10 s respectively to
 413 maintain consistent total injection volume. Fig. 15 presents the hydraulic fracture
 414 propagation patterns under different injection rates. Under low injection rate ($0.001 \text{ m}^3/\text{s}$),
 415 natural fractures were rarely activated, resulting in three branch fractures - two
 416 propagating horizontally and one extending perpendicular to the horizontal direction. At the
 417 medium injection rate ($0.005 \text{ m}^3/\text{s}$), limited natural fracture activation occurred, forming
 418 two branch fractures: one propagating horizontally and another following the natural
 419 fracture orientation. The high injection rate condition ($0.01 \text{ m}^3/\text{s}$) demonstrated significantly
 420 improved natural fracture activation due to rapid pressure buildup, ultimately developing
 421 three branch fractures - one propagating along natural fractures while continuously
 422 activating them, and the other two crossing through natural fractures during extension.

423
424 **Fig. 15 The hydraulic fracture morphology under different flow rate**
425

426 Fig. 16(a) presents the evolution of injection pressure with time under different
427 injection rates. The results demonstrate a significant increase in rock breakdown pressure
428 with higher injection rates. At $0.001 \text{ m}^3/\text{s}$, two distinct breakdown pressure peaks occur
429 (26.1 MPa and 26.4 MPa). When the rate increases to $0.005 \text{ m}^3/\text{s}$, the breakdown pressure
430 rises to 31.3 MPa, and further increases to 34.3 MPa at $0.01 \text{ m}^3/\text{s}$. Fig. 16(b) shows the
431 fracture breakdown degree evolution under various injection rates. While the rate of
432 breakdown degree increase accelerates with higher injection rates, the final breakdown
433 degree at equal injected volume reveals an inverse relationship: the $0.001 \text{ m}^3/\text{s}$ condition
434 achieves the maximum breakdown degree, whereas $0.01 \text{ m}^3/\text{s}$ yields the minimum value.
435 Under a high injection rate, the rapid increase in fluid pressure generates a stronger driving
436 force at the fracture tip. This promotes rapid dilation of the main hydraulic fracture near
437 the wellbore and facilitates hydraulic fracture crossing rather than the reactivation of
438 natural fractures. As a result, fewer shear-activated natural fractures and fewer secondary
439 branches are formed, which reduces the overall fracture complexity. In contrast, under a

440 low injection rate and with the same total injected volume, pressure buildup is slower,
 441 allowing more time for stress redistribution around the fracture tip. This condition favors
 442 the shear activation of natural fractures, leading to the formation of multiple secondary and
 443 branching fractures as well as a more tortuous propagation path. Consequently, fracture
 444 complexity is significantly higher at lower injection rates.

445

446 **Fig. 16 The injection pressure (a) and fracture degree (b) with the time evolution**

447

448 **6 Conclusion**

449 In this study, a stress-seepage-fracture multi-field coupling algorithm based on a
 450 continuous-discontinuous framework was developed to investigate the interaction between
 451 hydraulic fractures and natural fractures in fractured reservoirs. The results clarify the
 452 mechanistic relationships among stress difference, natural fracture orientation, and the
 453 resulting hydraulic fracture-natural fracture interaction mode, thereby providing new
 454 theoretical insights and predictive capability for fracture propagation behavior.

455 (1) Single natural fracture: The simulations show that natural fractures with
 456 orientations of 30° and 45° are consistently activated under all tested stress differences due
 457 to favorable shear stress conditions. When the natural fracture angle exceeds 60° , hydraulic
 458 fractures tend to cross the natural fracture once the horizontal stress difference is greater
 459 than 2 MPa. This identifies a critical threshold for the transition from fracture activation to
 460 fracture crossing.

461 (2) Natural fracture networks: For networks with multiple fracture orientations, the
 462 stress difference exerts a dominant influence on the overall fracture geometry. When the

463 stress difference exceeds 5 MPa, hydraulic fractures predominantly propagate in the
 464 direction of the maximum horizontal principal stress, resulting in a more linear, directionally
 465 controlled fracture morphology.

466

467 (3) Effect of natural-fracture mechanical properties: The number of branching fractures
 468 increases as the natural fracture strength increases. Under uncemented conditions,
 469 hydraulic fractures preferentially propagate along low-angle natural fractures due to
 470 energy-minimization mechanisms.

471

472 **7 Limitations and Outlook**

473 Despite these advances, the present model still adopts several simplifying
 474 assumptions. The simulations are based on quasi-static deformation and single-
 475 phase flow, without incorporating proppant transport, fracture roughness, or
 476 fluid leak-off heterogeneity. In addition, although the model is three-dimensional
 477 in mesh structure, fracture behavior is effectively constrained to quasi-2D
 478 propagation due to computational cost considerations. These simplifications may
 479 limit the direct applicability of the results to highly heterogeneous or strongly
 480 three-dimensional reservoirs. Future work will focus on incorporating multi-
 481 phase flow, proppant transport mechanisms, and fully three-dimensional
 482 fracture propagation to better capture the complexity of actual field operations.
 483 These developments are expected to support more reliable prediction of fracture
 484 network geometry and more effective optimization of hydraulic fracturing
 485 strategies in naturally fractured reservoirs.

486 **Funding**

487 Supported by the National Natural Science Foundation of China (No. 52174045, No.
 488 U23B2084 and No.5241002).

489 **Data availability**

490 The data that support the findings of this study are available from the corresponding
 491 authors upon reasonable request.

492 **References**

493 ¹ J. Yu, N. Li, B. Hui, W. Zhao, Y. Li, J. Kang, P. Hu, and Y. Chen, "Experimental
494 simulation of fracture propagation and extension in hydraulic fracturing: A state-of-the-
495 art review," *Fuel* **363**, 131021 (2024).

496 ² P. Yang, S. Zhang, Y. Zou, A. Zhong, F. Yang, D. Zhu, and M. Chen, "Numerical
497 Simulation of integrated three-dimensional hydraulic fracture propagation and proppant
498 transport in multi-well pad fracturing," *Computers and Geotechnics* **167**, 106075 (2024).

499 ³ G. Huang, M. Li, J. Chu, F. Zhou, and G. Lu, "Longitudinal propagation mechanisms
500 of multiple fractures in heterogeneous multi-lithology stacked reservoirs: A continuum-
501 discontinuum simulation study," *Engineering Fracture Mechanics* **322**, 111181 (2025).

502 ⁴ Y. Guo, L. Huang, and X. Li, "Experimental and numerical investigation on the
503 fracture behavior of deep anisotropic shale reservoir under in-situ temperature," *Energy*
504 **282**, 128969 (2023).

505 ⁵ Y. Xia, M. Yao, T. Li, H. Yang, and C. Tang, "Numerical analysis of hydraulic
506 fracture propagation in deep shale reservoir with different injection strategies," *Journal*
507 of Rock Mechanics and Geotechnical Engineering **16**(9), 3558-3574 (2024).

508 ⁶ L. Barale, S. Botta, F. Piana, S. Tallone, C. Fidelibus, C. Avataneo, F. Turci, R.
509 Compagnoni, R. Cossio, and W. Alberto, "Estimation of natural asbestos content in rocks
510 by fracture network modeling and petrographic characterization," *Engineering Geology*
511 **271**, 105566 (2020).

512 ⁷ Z. Jinzhou, Q. Wang, H. Yongquan, Z. Chaoneng, and Z. Jin, "Prediction of Pore
513 Pressure-Induced Stress Changes during Hydraulic Fracturing of Heterogeneous
514 Reservoirs through Coupled Fluid Flow/Geomechanics," *Journal of Engineering*
515 Mechanics **145**(12), 05019001 (2019).

516 ⁸ X. Weng, "Modeling of complex hydraulic fractures in naturally fractured
517 formation," *Journal of Unconventional Oil and Gas Resources* **9**, 114-135 (2015).

518 ⁹ H. Zheng, C. Pu, and C. Sun, "Study on the interaction between hydraulic fracture
519 and natural fracture based on extended finite element method," *Engineering Fracture*
520 *Mechanics* **230**, 106981 (2020).

521 ¹⁰ E. Bakhshi, V. Rasouli, A. Ghorbani, M. Fatehi Marji, B. Damjanac, and X. Wan,
522 "Lattice Numerical Simulations of Lab-Scale Hydraulic Fracture and Natural Interface
523 Interaction," *Rock Mech Rock Eng* **52**(5), 1315-1337 (2019).

524 ¹¹ D. Xiong, and X. Ma, "Influence of natural fractures on hydraulic fracture
525 propagation behaviour," *Engineering Fracture Mechanics* **276**, 108932 (2022).

526 ¹² A. Merzoug, V. Pandey, V. Rasouli, B. Damjanac, and H. Pu, "Comparison of lattice
527 and pseudo 3D numerical simulation of tip screen out operation," *Petroleum* **9**(3), 454-
528 467 (2023).

529 ¹³ J. Geertsma, and F. De Klerk, "A Rapid Method of Predicting Width and Extent of
530 Hydraulically Induced Fractures," *Journal of Petroleum Technology* **21**(12), 1571-1581
531 (1969).

532 ¹⁴ T.K. Perkins, and L.R. Kern, "Widths of Hydraulic Fractures," *Journal of Petroleum*
533 *Technology* **13**(09), 937-949 (1961).

534 ¹⁵ N. Zolfaghari, and A.P. Bunger, "Numerical model for a penny-shaped hydraulic
535 fracture driven by laminar/turbulent fluid in an impermeable rock," *International Journal*
536 of Solids and Structures **158**, 128-140 (2019).

¹⁶ L.G. Barbosa, P.R. Cleto, M.A. Maedo, M. Camargo, E.A. Rodrigues, and O.L. Manzoli, "Simulation of the natural fractures influence on hydraulic fractures propagation using high aspect ratio interface elements," *Computers and Geotechnics* **179**, 107026 (2025).

¹⁷ Y. Li, J. Deng, W. Liu, W. Yan, Y. Feng, W. Cao, P. Wang, and Y. Hou, "Numerical simulation of limited-entry multi-cluster fracturing in horizontal well," *Journal of Petroleum Science and Engineering* **152**, 443-455 (2017).

¹⁸ M.-H. Li, F.-J. Zhou, B. Wang, X.-D. Hu, D.-B. Wang, X.-Y. Zhuang, S.-B. Han, and G.-P. Huang, "Numerical simulation on the multiple planar fracture propagation with perforation plugging in horizontal wells," *Petroleum Science* **19**(5), 2253-2267 (2022).

¹⁹ B. Chen, S. Li, and D. Tang, "Numerical simulation study on hydraulic fracture propagation of multi-cluster fracturing of horizontal well in deep fractured coal seams," *Engineering Fracture Mechanics* **318**, 110983 (2025).

²⁰ S. Wang, L. Zhang, L. Cong, J. Zhou, D. Yang, X. Zhang, and Z. Han, "Three-Dimensional Lattice Modeling of Interaction Behavior Between Hydraulic Fractures and Natural Fractures with Varied Morphologies in Hot Dry Rock," *Rock Mech Rock Eng* **58**(3), 2971-2998 (2025).

²¹ J. Zhou, L. Zhang, Z. Pan, and Z. Han, "Numerical studies of interactions between hydraulic and natural fractures by Smooth Joint Model," *Journal of Natural Gas Science and Engineering* **46**, 592-602 (2017).

²² K. Wu, J. Olson, M.T. Balhoff, and W. Yu, "Numerical Analysis for Promoting Uniform Development of Simultaneous Multiple-Fracture Propagation in Horizontal Wells," *SPE Production & Operations* **32**(01), 41-50 (2017).

²³ W. Cheng, C. Lu, and B. Xiao, "Perforation Optimization of Intensive-Stage Fracturing in a Horizontal Well Using a Coupled 3D-DDM Fracture Model," *Energies* **14**(9), 2393 (2021).

²⁴ R. Gutierrez Escobar, E.C. Mejia Sanchez, D. Roehl, and C. Romanel, "Xfem modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations," *Journal of Natural Gas Science and Engineering* **70**, 102950 (2019).

²⁵ D. Yang, Y. Zhou, X. Xia, S. Gu, Q. Xiong, and W. Chen, "Extended finite element modeling nonlinear hydro-mechanical process in saturated porous media containing crossing fractures," *Computers and Geotechnics* **111**, 209-221 (2019).

²⁶ Z. Chong, Q. Yao, X. Li, and J. Liu, "Investigations of seismicity induced by hydraulic fracturing in naturally fractured reservoirs based on moment tensors," *Journal of Natural Gas Science and Engineering* **81**, 103448 (2020).

²⁷ H. Fatahi, M.M. Hossain, and M. Sarmadivaleh, "Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture," *Journal of Natural Gas Science and Engineering* **37**, 409-424 (2017).

²⁸ S. Lyu, S. Wang, X. Chen, S. Wang, T. Wang, X. Shi, Q. Dong, and J. Li, "Natural fractures in soft coal seams and their effect on hydraulic fracture propagation: A field study," *Journal of Petroleum Science and Engineering* **192**, 107255 (2020).

²⁹ P. Zheng, Y. Xia, T. Yao, X. Jiang, P. Xiao, Z. He, and D. Zhou, "Formation mechanisms of hydraulic fracture network based on fracture interaction," *Energy* **243**, 123057 (2022).

581 ³⁰ F. Shi, X. Wang, C. Liu, H. Liu, and H. Wu, "An XFEM-based method with reduction
582 technique for modeling hydraulic fracture propagation in formations containing
583 frictional natural fractures," *Engineering Fracture Mechanics* **173**, 64-90 (2017).

584 ³¹ J. Zhang, H. Yu, W. Xu, C. Lv, M. Micheal, F. Shi, and H. Wu, "A hybrid numerical
585 approach for hydraulic fracturing in a naturally fractured formation combining the
586 XFEM and phase-field model," *Engineering Fracture Mechanics* **271**, 108621 (2022).

587 ³² X. Zhu, C. Feng, P. Cheng, X. Wang, and S. Li, "A novel three-dimensional
588 hydraulic fracturing model based on continuum-discontinuum element method,"
589 *Computer Methods in Applied Mechanics and Engineering* **383**, 113887 (2021).

590 ³³ B. Zhang, T. Guo, M. Chen, J. Wang, J. Cao, H. Wang, and Z. Qu, "Effect of bedding
591 planes and property contrast between layers on the propagation mechanism of hydraulic
592 fracture height in shale reservoirs," *Computers and Geotechnics* **175**, 106715 (2024).

593 ³⁴ X. Zhu, C. Feng, P. Cheng, X. Wang, and S. Li, "A novel three-dimensional
594 hydraulic fracturing model based on continuum-discontinuum element method,"
595 *Computer Methods in Applied Mechanics and Engineering* **383**, 113887 (2021).

596 ³⁵ Q. Ren, Y. Zhao, X. Zhu, Y. Zhou, Y. Jiang, P. Wang, and C. Zhang, "CDEM-based
597 simulation of the 3D propagation of hydraulic fractures in heterogeneous Coalbed
598 Methane reservoirs," *Computers and Geotechnics* **152**, 104992 (2022).

599 ³⁶ G. Huang, X. Hu, F. Zhou, X. Li, E. Dong, and Z. Li, "A New Multi-Cluster
600 Fracturing Simulation Model Coupled with Perforation Erosion: Based on the
601 Continuous-Discontinuous Method," *Rock Mech Rock Eng* **56**(6), 3887-3901 (2023).

602 ³⁷ C. Geuzaine, and J.-F. Remacle, "Gmsh: A 3-D finite element mesh generator with
603 built-in pre- and post-processing facilities," *International Journal for Numerical Methods
604 in Engineering* **79**(11), 1309-1331 (2009).