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This study investigates the transcriptomic variations in the jejunum and liver of Golden Montazah (GM) 
chickens to better understand the biological mechanisms influencing poultry growth and production. 
Given the vital role of poultry in fulfilling global protein demands, especially with the rising consumer 
preference for chicken, it is essential to explore these underlying genetic and molecular factors that 
drive growth. From a larger cohort of 480 GM chickens, the top 10 males in both the high-weight (HW) 
and low-weight (LW) groups were selected for RNA sequencing. Tissues from their jejunum and liver 
were collected for transcriptomic analysis. The results revealed 38 up- and 36 down-regulated genes 
in the jejunum, while the liver exhibited 109 up- and 74 down-regulated genes. Among these, notable 
differentially expressed genes (DEGs) such as CHST14 and LOC429682 in the jejunum, alongside 
RBP2 and STC2 in the liver, appeared to be integral to growth regulation, immune response, and 
metabolic processes. Functional enrichment analyses using GO and KEGG pathways highlighted 
processes like cytokine-cytokine receptor interactions in the jejunum and steroid biosynthesis in the 
liver. Additionally, protein–protein interaction networks identified key hub genes essential for various 
biological functions. Overall, our findings emphasize the distinct gene expressions profiles associated 
with body weight in the jejunum and liver, providing valuable insights for genetic improvement in 
poultry breeding. Understanding these molecular mechanisms paves the way for targeted strategies to 
enhance growth performance in the poultry industry.
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Animal production is vital for providing protein nutrition to the rapidly growing global population, with the 
poultry industry being a significant sector focused on cost-effective meat production. Chicken is favored for its 
tender meat quality and nutritional profile, leading to increased demand. Key performance indicators in poultry 
production, such as body weight, are vital measures of animal health and growth, directly impacting economic 
viability1.As the poultry industry faces new challenges, understanding physiological dynamics is essential for 
optimizing production practices and sustainability in food supply. Enhancing poultry production in the context 
of global warming increasingly relies on the utilization and development of local chicken breeds2. Many of these 
breeds may not have undergone intensive selection processes like some foreign breeds, which could contribute 
to their unique genetic traits and potential resilience3,4.

Investigating molecular mechanisms related to growth performance is crucial, as many key genes influence 
growth traits, though their regulatory processes remain unclear5. RNA sequencing (RNA-seq) provides a cost-
effective and efficient method for detecting genetic variants that are likely to influence phenotypic traits, facilitating 
advancements in breeding strategies for improved poultry production6. Recent studies have leveraged RNA-seq 
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to explore differentially expressed genes (DEGs) in chicken that linked to traits such as meat quality7–11, disease 
resistance12,13, and growth performance6,11,14. Digestive efficiency, a highly heritable trait, plays a crucial role 
in determining feed conversion15. The jejunum, a vital section of the small intestine, ensures effective nutrient 
absorption and serves as the first line of defense against pathogens16, ensuring the health and growth of the 
birds17. Furthermore, the liver plays a complex role in metabolism and immune response18 impacting digestion, 
cholesterol regulation, and vitamin production. It synthesizes proteins and regulates hormones crucial for 
production while contributing to metabolic homeostasis18–20. Recent studies utilizing RNA sequencing (RNA-
seq) have provided valuable insights into gut biological processes in chickens, highlighting key aspects related 
to gene expression, metabolic pathways, and immune responses10,18,21,22. Also, RNA-seq significantly advanced 
our understanding of liver’ biological processes, revealing valuable insights into developmental stages, maternal 
effects, environmental adaptations, and metabolic pathways in chickens8,18,23.

Golden Montazah (GM) chickens hold significant importance in Egypt, particularly for smallholder poultry 
production, due to their remarkable disease resistance, ability to adapt to various climates, and impressive growth 
performance24. As one of the three officially recognized native Egyptian strains—alongside Silver Montazah 
and Mandarah—GM chickens are widely used in rural and small-scale poultry systems25. While large-scale 
commercial enterprises are dominated by breeds like Cobb and Ross, local breeds such as GM chickens are vital 
for ensuring food security in rural communities. Their resilience, capacity to thrive under low-input conditions, 
and role in conserving genetic diversity make them invaluable for sustainable poultry farming25,26. Despite their 
importance, the molecular mechanisms driving their exceptional growth remain largely elusive. Most existing 
transcriptomic research has focused on other breeds, leaving a notable gap in our understanding of GM chickens’ 
biology27. Also, to the best of our knowledge, no data has been published on the differential transcriptome 
between jejunal and liver tissues in chickens with high versus low body weights.

To address this gap, our study investigates potential candidate genes associated with high body weight and 
explores how these genes interact within the core network linking the jejunum and liver in GM chickens. Using 
integrated transcriptomic analysis, we aim to shed light on the genetic factors underpinning their growth, which 
could support more sustainable and tailored breeding strategies of local chicken production in Egypt.

Methods
Ethical approval and study location
This study was approved by the Animal Care and Use Committee at the Animal Production Research Institute 
(APRI), under the ethical approval number 2023393429, and in accordance with the "Principles of laboratory 
animal care" (NIH publication No. 86–23, revised 1985) and the ARRIVE guidelines. All methods were performed 
in accordance with the relevant guidelines and regulations. The field study was conducted at the APRI poultry 
research farm in El-Azab, Fayoum governorate, Egypt, while the laboratory analyses were performed at National 
Research Centre, Dokki, Giza.

Bird management, housing and environmental conditions
A total of 480 Golden Montazah chickens were housed in battery cages, consisting of 20 cages with 24 birds each, 
in a brooder pen maintained at a constant temperature of 30 °C for the first three days. Following this initial 
period, the temperature gradually decreased by 3 °C each week until it reached 24 °C. Temperature control was 
automated using a thermostat, while ventilation was managed manually. Throughout the study, the chickens had 
ad libitum access to a mash diet and fresh water. From days 1 to 20, the birds were fed a starter diet containing 
3025 kcal/kg of metabolizable energy and 21.5% crude protein. After day 21, they transitioned to a grower diet 
providing 3175 kcal/kg of metabolizable energy and 18% crude protein for the remainder of the study. These 
nutrient compositions were calculated based on NRC guidelines (1994). The lighting schedule began with 24 h 
of light for the first three days, followed by 20 h of light until day 7, before being reduced to 16 h thereafter. On 
their first day at the hatchery, all birds were vaccinated against Newcastle disease, infectious bronchitis, and 
Marek’s disease.

Experimental design and sample collection
On the day of hatching, all birds were wing-banded and weighed, with equal numbers of males and females. At 
49 days of age, the 20 heaviest (High Weight, HW) and the 20 lightest (Low Weight, LW) chickens were selected 
from the entire group of 480 GM chickens, representing 10 males and 10 females in each weight category to 
ensure balanced representation, based on their body weight rankings. Body weight gain was calculated as the 
difference between the initial body weight at hatching and the final body weight at 49 days. From these groups, 
only 10 males from each were selected for tissue sampling. After slaughter, the chickens were eviscerated, 
removing the gastrointestinal tract and internal organs—and their carcasses were weighed. The breast and leg 
muscles, including thigh and drumstick, were carefully dissected and weighed separately. Samples of jejunal 
mucosa and liver tissue were then collected and stored at -80 °C for further analysis.

RNA extraction, library construction, and RNA-Seq
Samples of jejunal mucosa and liver tissue were collected from the 10 heaviest and 10 lightest males for RNA 
extraction. Total RNA was extracted from each using Trans-Zol Reagent (Transgen, Cat. #ET101) following 
the manufacturer’s instructions. To evaluate RNA integrity, the Agilent Bioanalyzer 2100 system (Agilent 
Technologies, USA) was utilized. Only RNA samples with a RIN of 7 or higher were selected for constructing 
cDNA sequencing libraries from the jejunum and liver samples using the NEBNext® Ultra™ RNA Library Prep 
Kit. The resulting cDNA libraries were sequenced by Bioss Biotechnologies in China using Illumina HiSeq 
platform.
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Differentially expressed gene (DEG) and function annotation analyses
The quality of raw read data for each sample was assessed using FastQC28. Low-quality reads (Q value ≤ 20), 
along with adaptors sequences, were trimmed using Trimmomatic (Bolger et al., 2014). The trimmed reads were 
then mapped to the Gallus gallus reference genome (GRCg6a, GCA_000002315.5) using HISAT229. Mapped 
reads were quantified based on exons using the Gallus gallus GTF annotation file (galGal6.ensGene.gtf) with 
feature Counts30. Differential expression analysis for the Jejunum and liver, each consisting of 20 birds,  was 
conducted using EdgeR v3.34.131, following data normalization with the trimmed mean of M-values (TMM). 
Differentially expressed genes (DEGs) were identified with a Log2 fold change > 2 and a P-value < 0.05. Top set 
of most significant gene was selected by Benjamini–Hochberg method on the p-value. All expressed gene values 
and P-values were visualized in a volcano plot using the ggplot2 R package32. Multidimensional scaling (MDS) 
was performed to illustrate the similarity among samples for each tissue type. Additionally, heatmaps of the 
normalized read counts of DEGs were generated using the pheatmap R package33. Common and unique DEGs 
between tissue samples were represented using a Venn diagram created with Venny ​(​​​h​t​t​p​s​:​/​/​b​i​o​i​n​f​o​g​p​.​c​n​b​.​c​s​i​c​
.​e​s​/​t​o​o​l​s​/​​​​ venny/). To determine the biological functions associated with the DEGs, the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms (Cellular Component: CC, Molecular 
Function: MF, Biological Process: BP) were analyzed using the g:Profiler (https://biit.cs.ut.ee/gprofiler/gost)34 
and ShinyGO (http://bioinformatics.sdstate.edu/go) databases35. A false discovery rate (FDR) < 0.05 was 
considered indicative of significant enrichment.

Gene set enrichment analysis (GSEA)
The GSEA was conducted on all expressed genes, regardless of their differential expression status. The analysis 
utilized GSEA software from the Broad Institute (http://software.broadin stitute.org/gsea/index.jsp) and the 
C2.CP: KEGG gene set collections from the Molecular Signatures Database (MSigDB v7.0, Broad Institute, 
Cambridge, MA, USA)36. To assess the significance of gene expression differences between HW and LW groups 
in the jejunum and liver tissues, GSEA ranked all expressed genes. The enrichment score for each gene set was 
calculated using the complete ranked list of expressed genes, and the normalized enrichment score (NES) was 
determined for each gene set. Gene sets were considered significantly enriched based on the following criteria: 
absolute NES values > 1, nominal P-values ≤ 0.05, and false discovery rates (FDR) ≤ 0.0537.

Protein–protein interactions network
The protein–protein interactions (PPIs) network, encompassing both direct and indirect relationships between 
proteins, was analyzed using STRING (http://string-db.org/)38. After evaluating the STRING results and the 
expression changes for each differentially expressed gene (DEG), a network diagram was constructed for the 
selected DEGs (those connected with one or more other DEGs) using Cytoscape v3.10.039.

Multi-omics factor analysis (MOFA)
The MOFA2 v1.8.0 package was employed to conduct Multi-Omics Factor Analysis (MOFA), an unsupervised 
statistical method designed to integrate various types of omics data40. Additionally, we used the Reactome 
Pathway Knowledgebase (https://reactome.org) to identify genes involved in protein metabolism41.

Validation of RNA-seq through quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from each sample using the Trans-Zol Reagent (Transgen, Cat. #ET101), following the 
manufacturer’s instructions. RNA integrity was assessed using 1% agarose gel, and RNA concentration and purity 
were determined with NanoDrop1000 (Thermo Scientific, Wilmington, DE, USA). First-strand complementary 
DNA (cDNA) was synthesized using RQ1 RNase-Free DNase (Promega, Cat. # M6101) and RevertAid First 
Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Cat.# K1622) according to the manufacturer’s guidelines. 
After synthesizing cDNA from 1 μg of total RNA, qRT-PCR was conducted to validate the expression levels of 
five randomly selected DEGs identified in the RNA-seq analysis for both the jejunum and liver tissues.

Primers were designed using Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer -blast/) and 
synthesized by Synbio technologies (Table 1). The qRT-PCR was conducted using the QuantStudio 5 Dx Real-

Gene Forward primer Reverse primer Product length Accession number

Beta-Actin ​G​A​C​T​G​A​C​C​G​C​G​T​T​A​C​T​C​C​C​A ​A​G​A​T​G​G​G​A​A​C​A​C​A​G​C​A​C​G​G​G 128 NM_205518.2

CALB1-201 ​T​A​C​G​A​C​T​C​C​G​A​C​G​G​C​A​A​T​G​G ​A​T​T​C​T​C​C​T​C​C​G​T​C​G​G​C​A​A​C​A 195 NM_205513.2

CHST14-201 ​A​T​G​A​C​G​C​C​G​G​A​C​G​A​G​A​T​C​A​A ​A​C​T​C​G​G​A​G​A​A​G​G​T​C​A​C​G​T​C​G 205 NM_001407339.1

FADS6-201 ​C​T​G​C​C​A​T​T​A​C​T​G​C​C​T​G​C​T​G​C ​G​A​T​C​A​G​C​C​G​C​A​A​A​C​A​T​G​G​G​G 152 XM_426241.8

HSPB9-202 ​C​G​T​C​T​T​C​T​G​C​T​G​A​G​A​G​G​A​G​T​G ​C​C​G​T​T​G​T​T​C​C​G​T​C​C​C​A​T​C​A 114 NM_001010842.3

SGK2-203 ​G​A​G​C​G​T​T​G​T​T​T​C​C​G​T​G​A​G​C​C ​A​A​C​A​C​C​A​C​A​T​G​T​C​C​C​T​G​G​C​A 143 XM_046930972.1

ACCS ​T​C​C​G​A​C​G​A​G​G​A​G​G​G​G​T​A​C​A​A ​A​G​C​T​G​T​T​C​C​T​T​T​A​G​C​C​G​T​T​T​G​G 137 XM_015287196.4

IRS2 ​G​T​C​C​A​G​G​A​G​A​A​A​A​C​C​T​A​T​G​C​T​T​G​G ​A​C​G​C​T​G​T​C​C​T​C​T​C​T​C​T​T​G​T​T​C​T 105 XM_015277882.4

RBP2 ​A​A​G​G​A​C​T​C​G​A​T​A​A​C​C​G​G​G​T​G​G ​A​T​C​C​A​G​T​G​C​T​T​C​C​A​G​C​C​A​C​G 106 NM_001277417.1

SPTBN5 ​G​G​T​G​A​G​C​G​G​C​T​G​A​A​A​G​A​T​G​C ​T​G​T​T​C​C​A​G​G​G​C​C​A​C​A​T​G​G​T​T 161 XM_040673837.2

STC2 ​G​G​G​G​C​A​C​A​T​G​G​G​A​T​C​A​T​G​G​A ​G​C​A​G​C​C​T​T​T​G​T​C​A​C​T​G​C​G​T​T 143 XM_040683047.2

Table 1.  The primer’s sequences used in the present study.
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Time PCR System (Thermo Fisher Scientific) with Maxima SYBR Green qPCR Master Mix (2X) (Thermo Fisher 
Scientific, Cat. # K0251). Each qPCR reaction was performed in a final volume of 15 μL, containing 0.75 μL 
cDNA, 0.6 μL of each forward and reverse primer (10 μM), 7.5 μL 2 × SYBR green Master Mix, and 5.5 μL RNase-
free ddH2O. Samples were run in triplicate. The quantitative PCR program consisted of an initial denaturation at 
95.0 °C for 10 min, followed by 40 cycles of 95.0 °C for 15 s, 60.0 °C for 30 s and 72.0 °C for 30 s, concluding with 
a melting curve program consisting of 1 cycle at 95.0 °C for 15 s, 60.0 °C for 1 min, 95.0 °C 0.1 s. All samples were 
run in triplicate, with negative controls (no template) included on the same plate. The mRNA levels of DEGs 
were normalized to the housekeeping genes β-Actin. Relative gene expression values were calculated using the 
2 − ΔΔCt method42. Finally, correlations between RNA-Seq data of the selected DEGs and the mRNA expression 
levels obtained from qRT-PCR were assessed to validate the RNA-seq results.

Statistical analysis
All productive data were represented as means ± SEM with using Generalized Linear Model (GLM) technique in 
SAS software (2002 version, SAS Institute Inc., Cary, NC, USA). A t-test was employed to compare means, with 
differences deemed significant at P < 0.05. Statistical analyses were conducted on the 10 heaviest and 10 lightest 
males from both the high- and low-weight groups of GM chickens.

Results
Body weight, daily body weight gain and carcass weight
The final body weight at 7 weeks of age (BW7) and daily body weight gains for the top 10 males in both the 
high-weight (HW) and low-weight (LW) groups showed significant differences (P < 0.05), as illustrated in Fig. 1. 
Additionally, carcass weight also varied significantly between the groups (Fig. 1).

Sequencing data and differentially expressed genes in the jejunum and liver
Transcriptome sequencing of libraries from the jejunum and liver produced a total of 21.13 million and 20.78 
million reads, respectively (Supplementary files, Table S1). Differential expression analysis between the HW and 
LW groups for each tissue was conducted using Edge-R, following data normalization. Multidimensional scaling 
(MDS) analysis revealed distinct clustering for each tissue (Fig. 2A).

Using a fold change threshold greater than 2 and a P-value of less than 0.05, we identified 38 genes that were 
upregulated and 36 that were downregulated in jejunal tissue when comparing the high-weight (HW) and low-
weight (LW) groups (Supplementary Files, Table S2, and Fig. 2B). In liver tissue, the number of differentially 
expressed genes was higher,  with 109 genes upregulated and 74 downregulated between the same groups 
(Supplementary Files, Table S3, and Fig. 2C). Tables 2 and 3 present the top 20 differentially expressed genes 
(DEGs) in the jejunum and liver in these groups, respectively, ranked by their log fold change (Log FC).

In jejunal tissue, the high-weight group exhibited 38 upregulated and 36 downregulated genes. According to 
false discovery rate (FDR) P-value, all the top 20 DEGs were significantly different (Table 2). Notably, CHST14, 
LOC429682 and SGK2 were identified as the most upregulated genes in the high-weight birds compared to their 
low-weight counterparts. Conversely, LOC772158 and HSPB9 showed significant downregulation (Table 2).

In liver tissue, a total of 109 upregulated and 74 downregulated genes were identified in the high-weight 
group. The top 20 DEGs are listed in Table 3. Among these genes, RBP2 and STC2 exhibited the highest levels of 
upregulation, while ACCS and SPTBN5 displayed the greatest downregulation in high-weight birds, as indicated 
by their lower fold changes (Log FC) (Table 3).

To visualize the relative abundance of significant genes across different tissues in high-weight birds 
compared to the low weight ones, a heatmap of differentially expressed genes (DEGs) was generated for all 
40 samples (Fig. 3A). A Venn diagram illustrated the overlapping DEGs between the tissues (Fig. 3B), which 
included four up-regulated genes (ENSGALG00000046177, ENSGALG00000049716, ENSGALG00000048362, 
and ENSGALG00000053074), three downregulated genes (heat shock protein family B (small) member 
9, ENSGALG00000050544, and ENSGALG00000042963), and three genes exhibiting reverse regulation. 
Specifically, two genes were upregulated in the jejunum (ENSGALG00000041258 and peptide methionine 
sulfoxide reductase (MsrA)) but downregulated in the liver (glycoprotein nmb (GPNMB). In contrast, one gene 

Fig. 1.  Final body weight at 7 weeks of age (BW7), daily body weight gain (Daily gain), and carcass weight 
(carcass) between high weight (HW) and low weight (LW) birds, significant at P < 0.05.
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was downregulated in the jejunum (ENSGALG00000032282) and upregulated in the liver (calbindin 1 (CALB1)) 
(Fig. 3B). Functionally, CALB1 encodes a vitamin D-dependent calcium-binding protein crucial for calcium 
homeostasis, supporting skeletal development and muscle function. Its expression may influence body weight 
and growth-related processes.

Gene ontology and KEGG pathway analysis in each tissue
To explore the biological processes occurring in the studied tissues, a gene ontology analysis of differentially 
expressed genes (DEGs) was performed. The functional annotations and related genes were categorized into three 
groups: molecular function, cellular component, and biological process. In the jejunum, the most significant gene 
ontology categories (adjusted P-value < 0.05) included molecular function (GO: 0,003,674), molecular function 
regulator activity (GO: 0,098,772), biological process (GO: 0,008,150), cellular process (GO: 0,009,987), cellular 
anatomical entity (GO: 0,110,165) and cellular component (GO: 0,005,575) (Fig. 4A, Supplementary files, Table 
S4). In the liver, significant gene ontology categories similarly included molecular function (GO: 0,003,674), 
binding (GO: 0,005,488), biological process (GO: 0,008,150), multicellular organismal process (GO: 0,032,501), 
cell periphery (GO: 0,071,944), and plasma membrane (GO: 0,005,886) (Fig. 4B, Supplementary files, Table S4).

KEGG pathway analysis revealed significant enrichment of the cytokine-cytokine receptor interaction 
pathway (p < 0.05) in jejunal tissue (Table 4), when comparing high and low weight groups. This pathway 
involved key genes such as Activin receptor type IIB (ACVR2B), Growth Differentiation Factor 2 (GDF2), and 
Tumor Necrosis Factor Receptor Superfamily Member 13C (TNFRSF13C).

In liver tissue, the analysis identified significant (p < 0.05) enrichment in the neuroactive ligand-receptor 
interaction pathway and the steroid biosynthesis pathway (Table 4) in high weight birds compared to the 
low weight. The neuroactive ligand-receptor interaction pathway included six DEGs: Neuropeptide Y (NPY), 
Cholinergic Receptor Muscarinic 5 (CHRM5), Islet Amyloid Polypeptide (IAPP), G Protein-Coupled Receptor 
83 (GPR83L), G Protein-Coupled Receptor 25 (GPR25), and Motilin Receptor (MLNR). Meanwhile, the steroid 

Fig. 2.  Overall transcriptomes in jejunal and liver tissues. (A): Multidimensional scaling (MDS) shows 
distinct clusters between the two tissues based on the transcriptomes of different weight groups (HW & LW). 
(B): Volcano plots reveal significantly differently expressed genes (DEGs) in the jejunum. (C): Volcano plots 
indicate significantly differently expressed genes (DEGs) in the liver. The x-axis represents log2 fold changes, 
while the y-axis represents log10 P-values.
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biosynthesis pathway analysis highlighted the involvement of genes such as Cytochrome P450 family 24 
subfamily A member 1 (CYP24A1) and Lipase member M-like 5 (LIPML5) (Table 4).

Gene set enrichment analysis
To compare gene expression levels between the high weight (HW) and low weight (LW) groups in each tissue, 
we conducted Gene Set Enrichment Analysis (GSEA). We identified significantly enriched gene sets, with a false 
discovery rate (FDR) of less than 0.05 for each tissue (Supplementary files, Table S5). Based on the KEGG-based 

Gene Log FC p-Value FDR Trend

RBP2 Retinol Binding Protein 2 5.58 1.05E-06 0.0019 Up

STC2 Stanniocalcin 2 3.11 1.12E-06 0.0019 Up

IRS2 insulin receptor substrate 2 2.10 5.33E-08 0.0002 Up

DUSP16 Dual specificity phosphatase 16 1.56 7.87E-06 0.0054 Up

MTSS1 MTSS1, I-BAR domain containing 1.26 1.34E-06 0.0019 Up

GALE UDP-galactose-4′-epimerase (GALE) 1.19 1.77E-06 0.0021 Up

GPCPD1 Glycerophosphocholine phosphodiesterase 1 1.15 6.36E-06 0.0049 Up

NFKBIA NFKB inhibitor alpha 0.99 3.59E-06 0.0034 Up

SIMC1 SUMO interacting motifs containing 1 0.82 2.45E-07 0.0009 Up

PRPSAP2 Phosphoribosyl pyrophosphate synthetase associated protein 2 0.77 7.08E-06 0.0052 Up

EMC8 ER membrane protein complex subunit 8 −0.48 1.30E-06 0.0019 Down

NFE2L2 Nuclear factor, erythroid 2 like 2 −0.64 8.13E-06 0.0054 Down

SRP14 Signal recognition particle 14 −0.87 3.26E-06 0.0033 Down

SCAP Cleavage activating protein (SCAP) −0.94 2.22E-06 0.0024 Down

PLPP7 Inactive Phospholipid Phosphatase 7 −1.15 5.97E-06 0.0049 Down

FDPS Farnesyl diphosphate synthase −1.42 1.49E-06 0.0019 Down

ARRDC2 arrestin domain containing 2 −1.61 5.21E-12 0.00001 Down

NECAB2 N-terminal EF-hand calcium binding protein 2 −1.77 3.04E-07 0.0009 Down

ACCS 1-aminocyclopropane-1-carboxylate synthase homolog −2.00 5.02E-06 0.0044 Down

SPTBN5 Spectrin Beta, Non-Erythrocytic 5 −7.26 1.49E-08 0.0001 Down

Table 3.  Top 20 differentially expressed genes in the liver between high and low weight groups, ranked by their 
log2 fold change (Log2 FC).

 

Gene Log FC p-Value FDR Trend

CHST14 Carbohydrate sulfotransferase 14 3.41 4.21E-08 0.0006 Up

LOC429682 GTPase IMAP family member 7-like 1.40 7.57E-06 0.0116 Up

SGK2 Serine/threonine kinase 2 1.40 5.11E-05 0.0358 Up

FADS6 Fatty acid desaturase 6 1.15 9.04E-06 0.0116 Up

CD3E CD3e molecule 1.14 1.50E-06 0.0058 Up

HCLS1 Hematopoietic cell-specific Lyn substrate 1 1.09 1.19E-05 0.0119 Up

LIMD1 LIM domains containing 1 1.08 3.04E-05 0.0266 Up

LSP1P1 Lymphocyte-specific protein 1 pseudogene 1 1.02 4.44E-05 0.0327 Up

PLEKHA2 Pleckstrin homology domain containing A2 0.99 5.76E-05 0.0371 Up

TACC1 Transforming acidic coiled-coil containing protein 1 0.93 1.08E-05 0.0119 Up

UNC119B Unc-119 lipid binding chaperone B 0.92 1.55E-07 0.0011 Up

SEPTIN6 Septin 6 0.65 2.47E-06 0.0058 Up

GNAI3 G protein subunit alpha i3 0.57 1.10E-05 0.0119 Up

USP12-like Ubiquitin specific peptidase 12-like −0.61 9.09E-06 0.0116 Down

HNF1A HNF1 homeobox A −0.77 5.87E-06 0.0103 Down

HSPD1 Heat Shock Protein Family D (Hsp60) Member 1 −0.78 2.22E-06 0.0058 Down

CALB1 Calbindin 1 −2.57 5.83E-05 0.0371 Down

SULT6B1L Sulfotransferase family, cytosolic, 6B, member 1-like −3.74 2.35E-05 0.0219 Down

HSPB9 Heat Shock Protein Family B (Small) Member 9 −4.01 1.80E-06 0.0058 Down

LOC772158 Heat shock protein 30C-like −4.74 4.89E-06 0.0098 Down

Table 2.  Top 20 differentially expressed genes in the Jejunum between high and low weight groups, ranked by 
their log2 fold change (Log2 FC).
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list, positive and negative normalized enrichment scores (NES) indicate higher and lower expression levels, 
respectively.

In jejunal tissue, the gene sets with higher expression included the ‘Phosphatidylinositol Signaling_System’ 
and ‘B_Cell _ Receptor_Signaling_ Pathway’ (Fig.  5 A, B). Conversely, the gene sets with lower expression 
encompassed the ‘p53_Signaling_Pathway’ and ‘Homologous_Recombination’ (Fig. 5 C, D).

In liver tissue, the gene sets exhibiting higher expression included the ‘Neurotrophin_ Signaling_Pathway’ 
and ‘Adherens_Junction’ in the birds were the high weight birds (Fig. 6 A, B). In contrast, the gene sets with lower 
expression were ‘Ribosome’ and ‘Protein_Export’ (Fig. 6 C, D).

Protein–protein interactions (PPIs) analysis of DEGs
Comparing high- and low-weight birds, our analysis identified the top 10 hub nodes in jejunal tissue, which were 
as follows: alpha 2-HS glycoprotein (AHSG), fibrinogen gamma chain (FGG), orosomucoid 1 (ORM1), inter-
trypsin inhibitor heavy chain 3 (ITIH3), hierarchical random graph (HRG), lipase (LIPC), elongases of very long 
chain fatty acids 2 (ELOVL2), avian β-defensin 9 (AvBD9), hydroxyacid oxidase 2 (HAO2), and neuromedin U 
receptor 2 (E1BX N4) (Fig. 7A).

Similarly, in liver tissue, the top 10 hub nodes included neuropeptide Y (NPY), regulator of G protein 
signaling 13 (RGS13), aquaporin 4 (AQP4), S100B protein, calbindin 1 (CALB1), islet amyloid polypeptide 
(IAPP), proprotein convertase subtilisin/kexin type 1 (PCSK1), cytochrome P450 family 7 subfamily A member 
1 (CYP7A1), lipase member M-like 5 (LIPML5), and thymocyte selection-associated (THEMIS) (Fig. 7B).

Fig. 3.  A: Heatmap illustrating differentially expressed genes (DGEs) at FDR < 0.05 among ten replicates of 
jejunum and liver tissues; expression values are transformed to log2. B: Venn diagram showing DGEs between 
jejunum and liver tissues, with “DR” indicating downregulated genes and “Up” indicating upregulated genes 
the high weight (HW) and low weight (LW) groups.
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Multi-omics integration through factor analysis
We applied MOFA (Multi-Omics Factor Analysis) to evaluate chicken samples, focusing on the key genes 
associated with jejunal RNA expression, liver RNA expression, and data from chicken assays. MOFA identified 
two factors that accounted for over 10% of the variance in the data. Factor 1 captured variability across all data 
modalities, while factor 2 was specific to the chicken data assay (Fig. 8A).

In the chicken data assay, factor 1 was linked to body weight at 6 weeks of age (BW6) (Fig. 8B). Furthermore, 
the analysis of the top weights in mRNA data showed that factor 1 was associated with ZBTB46 in the jejunum 
and WDR86 in the liver (Fig. 8C& D).

Figure 9 illustrates the molecular signatures within the mRNA data from the jejunum and liver, highlighting 
genes with significant positive weights. This analysis indicates that these genes exhibited higher expression levels 
in samples from younger birds, specifically at 6  weeks of age. In jejunal tissue, a significant correlation was 
observed between BW6 and the expression of genes, with the top four expressed genes being Sulfotransferase 
Family 6B Member 1 (SULT6B1),  Ubiquitin Specific Peptidase 12-like (USP12-like),  Unc-119 Lipid Binding 
Chaperone B (UNC-119 B), and Zinc Finger and BTB Domain Containing 46 (ZBTB46) (Fig. 9A). In liver tissue, 
a significant correlation was also found between weight at 6 weeks of age and gene expression, with the top 
four genes being Spectrin Beta Non-Erythrocytic 5 (SPTBN5), Stanniocalcin 2 (STC2), Tetratricopeptide Repeat 
Domain 7A (TTC7A), and WD Repeat-Containing Protein 86 (WDR86) (Fig.  9B). Additionally, we utilized 
the Reactome Pathway Knowledgebase (https://reactome.org) to identify genes involved in protein metabolism, 
specifically emphasizing STC2 and USP12, which are recognized as key markers associated with Factor 1.

Verification of DEGs using qRT-PCR
For validation, we randomly selected five DEGs for qRT-PCR analysis in jejunal and liver tissues from both 
the HW and LW groups. The primers used are presented in Table 1. The results indicated that the trends of 
relative mRNA expression levels of these selected genes were consistent with the findings from the transcriptome 
analysis (Fig. 10).

Tissue KEGG pathway
Adjusted 
p- value Count Genes

Jejunum Cytokine-cytokine receptor 
interaction 0.0348 3 Activin receptor type IIB (ACVR2B), Growth Differentiation Factor 2 (GDF2), Tumor Necrosis Factor Receptor 

Superfamily Member 13C (TNFRSF13C)

Liver
Neuro-active ligand-
receptor interaction 0.0443 6 Neuropeptide Y (NPY), Cholinergic Receptor Muscarinic 5 (CHRM5), Islet amyloid polypeptide (IAPP), G 

protein-coupled receptor 83 like (GPR83L), G protein-coupled receptor 25 (GPR25), Motilin receptor gene (MLNR)

Steroid biosynthesis 0.0496 2 Cytochrome P450 family 24 subfamily A member 1 (CYP24A1) and Lipase member M-like 5 (LIPML5)

Table 4.  Enriched KEGG pathway of differentially expressed genes (DEGs) in each tissue for each group.

 

Fig. 4.  Gene ontology analysis of differentially expressed genes (DEGs) in HW and LW groups. (A): Gene 
ontology terms for DEGs in the jejunum. (B): Gene ontology terms for DEGs in the liver.
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Discussion
The body weight and daily weight gain values for Golden Montazah chickens are consistent with previous 
findings by Youssef et al.43, revealing significant differences in final body weight at 7  weeks despite similar 
feeding conditions. These variations can be attributed to the breed’s genetic diversity and lack of structured 
artificial selection among ten Egyptian chicken strains43–46. To explore the molecular changes between high-
weight (HW) and low-weight (LW) groups, we employed RNA sequencing techniques to identify differentially 
expressed genes (DEGs) in both the jejunum and liver. Our research highlights the crucial roles of both the 
jejunum and liver in poultry health, and metabolism, emphasizing their complementary functions in regulating 
various biological processes relevant to growth performance.

In the jejunum, the upregulation of genes such as CHST14 and LOC429682 enhances mucosal defenses against 
toxins and pathogens, suggesting that high-weight broilers may exhibit stronger immune functionality47–50. 
Conversely, downregulated genes like LOC772158 and HSPB9 in heavier birds may increase susceptibility to 
infections in lighter birds51,52. This relationship is supported by findings from Mishra and Jha53, indicating that 
enteric commensal bacteria produce reactive oxygen and nitrogen species, leading to intestinal inflammation 
and heightened heat shock protein (HSP) responses, which suggest that gene expression significantly affects the 
immune capacity of birds54,55.

Fig. 5.  Gene set enrichment analysis (GSEA) performed between the HW and LW groups in jejunal tissue. (A) 
& (B): Gene sets with positive enrichment scores (ES). (C) & (D): Gene sets with negative enrichment scores 
(ES).
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GO analysis revealed six significant categories. Molecular functions involve binding and catalysis, while 
regulatory roles influencing macromolecular complexes essential for metabolic pathways and gene expression56. 
Cellular processes include cell communication, and cellular anatomical entities refer to cell parts as organelles 
and membranes57. Additionally, cellular components describe various cell structures, all of which highlight the 
complex roles of these genes in regulating essential biological processes in poultry. Enrichment in the cytokine-
cytokine receptor interaction pathway further highlights the jejunum’s role in maintaining gut health, regulating 
immune responses, and promoting cell growth and differentiation, involving key genes such as ACVR2B, GDF2, 
and TNFRSF13C. ACVR2B mediates the effects of myostatin, which negatively regulates muscle mass, making 
this signaling pathway vital for muscle development and metabolic health. GDF2 promotes cell growth and 
regeneration, supporting muscle tissue repair and angiogenesis, which are critical for nutrient supply and gut 
immune function. TNFRSF13C plays a key role in B-cell development and differentiation, enhancing B-cell 
survival and maturation for antibody production, while also influencing T-cell responses through immune 
interactions58–60. Together, these genes underscore the communication between the jejunum and systemic 
circulation through metabolic processes and immune interactions, emphasizing the connection between 
the jejunum and liver. Moreover, positive expressions in phosphatidylinositol and B cell receptor signaling 
pathways highlight the metabolic and immune regulation of jejunum61,62. Conversely, reduced expression in 
p53 and Homologous Recombination pathways in heavier birds suggest lower stress response activation, while 

Fig. 6.  Gene set enrichment analysis (GSEA) performed between the HW and LW groups in liver tissue. (A) 
& (B): Gene sets with positive enrichment scores (ES). (C) & (D): Gene sets with negative enrichment scores 
(ES).
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lighter birds may be more prone to inflammation and barrier disruption52,63–65. Protein–protein interaction 
(PPI) analysis in the jejunum identified proteins (AHSG, FGG, ORM1, ITIH3, HRG) involved in immunity 
and gut homeostasis66,67. Lipid metabolism proteins (LIPC, ELOVL2) support energy production and storage, 
while AvBD9 and HAO2 contribute to antimicrobial defense and fatty acid metabolism, respectively. E1BX 
N4 regulates gut motility and appetite, impacting nutrient uptake efficiency. Given the jejunum’s high demand 
for energy and amino acids, these proteins are vital for efficient nutrient absorption and energy production in 
chickens68,69. These findings highlight the jejunum’s pivotal roles in digestion, nutrient absorption, immune 
regulation, and energy production. Notably, over 80% of jejunal mucosal cells are enterocytes, which support 
rapid protein turnover and growth70. Furthermore, Multi-Omics Factor Analysis (MOFA) established significant 
associations between weight at six weeks with the expression of SULT6B1, USP12-like, UNC-119 B, and ZBTB46 
in the jejunum. This highlights their roles in metabolism and immune responses, underscoring the jejunum’s 
integral role in overall poultry health71–76.

Additionally, our research highlights the complementary role of the liver in regulating growth and metabolic 
processes in poultry. The upregulation of RBP2 and STC2 genes enhances metabolic efficiency and immune 
function. RBP2  facilitates vitamin A transport, binds unesterified fatty acids, and acts as a transcriptional 
regulator, while  STC2  regulates glucose, phosphorus, and lipid metabolism77–79. These findings suggest that 
nutritional absorption and immune signaling from the jejunum directly impact the liver’s metabolic processes. 
Enhanced gene expression in heavier birds may contribute to improved metabolic, immune functions, as well 
as better growth performance. In contrast, the downregulation of ACCS and SPTBN5 may indicate potential 
metabolic deficiencies that could hinder growth performance in lighter birds75,80.

Key GO categories in the liver highlight essential molecular functions, biological processes, and multicellular 
organismal activities that contribute to development and metabolism in chickens, with an emphasis on the 
importance of the cell periphery and plasma membrane in facilitating cellular communication8,22,81–83. The 
enrichment of the neuroactive ligand-receptor interaction pathway highlights its role in appetite regulation and 
energy metabolism by integrating hunger and satiety signals to modulate feeding behavior based on nutritional 
needs84. Key genes in this pathway, including NPY, CHRM5, IAPP, GPR83, GPR25, MLNR, regulate feed intake 
and energy balance85,86. For instance, NPY stimulates appetite, CHRM5 impacts appetite and gastrointestinal 
motility, and IAPP regulates insulin secretion and appetite87,88. GPR83L is involved in behavioral regulation and 
immune modulation, whereas GPR25 may contribute to metabolic processes. MLNR regulates gastrointestinal 
motility and gastric emptying, thus affecting feed intake efficiency88,89. The steroid biosynthesis pathway features 
CYP24A1 and LIPML5, critical for steroid hormone regulation and lipid metabolism, respectively. Additionally, 
the Neurotrophin signaling pathway promotes cell survival and growth, during development90,91, while the 
Adherens Junctions pathway is essential for maintaining tissue integrity and cellular movement92,93. Negative 
expression patterns in the Ribosome and Protein Export pathways indicate potential challenges in protein 
synthesis among bird populations, potentially leading to impaired growth and development due to inadequate 
protein production94. These findings emphasize the liver’s critical role in managing energy balance and 
physiological functions in response to nutrients and immune signals from the jejunum. Moreover, lower weights 
in chickens may be linked to increased acute heat stress responses95, further underscoring the liver’s significance 
in lipid metabolism and overall health23. Thus, enhancing the interconnected genes and pathways is essential for 
improving liver function, which is vital for the growth and health of poultry. Liver PPI analysis has identified 
ten key hub proteins—NPY, RGS13, THEMIS, S100B, CALB1, AQP4, IAPP, PCSK1, LIPML5, CYP7A1— that 

Fig. 7.  Identification and ranking of hub genes based on Maximal Clique Centrality (MCC) in (A) Jejunum 
and (B) Liver in HW and LW groups. Node color intensity reflects MCC scores: red indicates highly ranked 
hub genes (high MCC score), yellow represents low-ranking genes (low MCC score), and intermediate shades 
denote medium-ranking nodes.
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are essential for appetite regulation, metabolism, and immune function. These proteins collectively highlight 
the interconnectedness of metabolic regulation and immune responses within the liver. Specifically, NPY 
stimulates appetite and energy homeostasis, RGS13 modulates G protein-coupled receptor signaling, and 
THEMIS influences T-cell development. Other proteins, such as S100B, CALB1, AQP4, IAPP, PCSK1, LIPML5, 
and CYP7A1, play critical roles in inflammation, calcium homeostasis, osmotic balance, glucose metabolism, 
prohormone processing, lipid metabolism, and bile acid synthesis86,96. Overall, these findings underscore the 
liver’s vital role in maintaining energy balance and metabolic activity97.

MOFA has linked the genes SPTBN5, STC2, TTC7A, and WDR86 in the liver to weight at six weeks of 
age, indicating their roles in metabolism and immune responses75,98,99. These genes may influence critical 
physiological processes, particularly in protein and lipid metabolism essential for growth and development. 
Additionally, a predicted association was found between ZBTB46 in the jejunum and WDR86 in the liver. 
ZBTB46, a transcription factor in group 3 innate lymphoid cells (ILC3s), regulates inflammatory responses and 
promotes the secretion of antimicrobial peptides via IL-22 production, protecting against bacterial invasion and 
aiding nutrient absorption90,91. While specific information about WDR86 is limited, it is known to play a vital 
role in various cellular processes, including metabolism and immune responses, crucial for liver function and 
energy homeostasis. The predicted association between ZBTB46 and WDR86 illustrates the complex relationship 
between gut health and liver metabolism and immune function, offering insights into how nutritional and 
immune factors work together to support overall health in chickens. The identification of STC2 and USP12 as 
markers related to Factor 1 highlights their significant roles in poultry production. STC2 is known for its diverse 
functions, including calcium regulation, stress-induced cell survival, and potential growth modulation79. USP12, 
a deubiquitinating enzyme, regulates protein stability, function, and degradation, impacting immune signaling 
and stress responses100. Dysregulation of STC2 can disrupt lipid metabolism, affecting nutrient absorption and 
immune function, potentially intensified by alterations in protein stability controlled by USP12. Together, STC2 

Fig. 8.  Integrative analyses of mRNA data from jejunum and liver. (A): Proportion of total variance explained 
(R2) by individual factors for each assay, showing absolute loadings of the top features of Factor 1 across all 
data. (B): Absolute loadings of the top features of Factor 1 in chicken data. (C): Absolute loadings of the top 
features of Factor 1 in the mRNA data of jejunal tissue. (D): Absolute loadings of the top features of Factor 1 in 
the mRNA data of liver tissue.
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and USP12 influence essential factors like growth rates, feed efficiency, and skeletal development, which are 
critical for optimal chicken production. Their involvement in stress responses and immune regulation suggests 
they may improve disease resistance and facilitate environmental adaptation by modulating cellular and 
metabolic pathways. Overall, these characteristics position STC2 and USP12 as valuable genetic markers for 
selective breeding programs aimed at improving poultry health and productivity.

Although transcriptomic profiling provides a comprehensive overview of gene expression changes, it remains 
largely descriptive and cannot establish causal relationships on its own. Limitations such as tissue heterogeneity 
and potential confounders can affect interpretation. To address these issues, future studies integrating multi-
omics approaches, particularly proteomics, are proposed to validate whether transcriptional changes correspond 
to alterations at the protein level, thereby enabling more robust mechanistic insights and broader biological 
implications to better understand complex traits like body weight regulation.

Fig. 10.  Quantitative real-time PCR (qRT-PCR) and RNA-Seq data of selected genes in (A) jejunum and (B) 
liver tissues from the top 10 males in both the high-weight and low-weight groups. Five randomly selected 
upregulated/ downregulated DEGs were selected for qPCR analysis and validation. Beta-actin served as the 
reference gene for qRT-PCR normalization. The mRNA expression levels for the selected genes were calculated 
using the 2 − △△CT method.

 

Fig. 9.  Molecular signature scatter plots. (A): Scatterplot displaying Factor 1 (x-axis) against expression values 
(y-axis) for the top four genes with the largest positive weight in the jejunal mRNA data. (B): Scatterplot of 
Factor 1 (x-axis) versus expression values (y-axis) for the top four genes with the largest positive weight in the 
liver mRNA data. Samples are color-coded based onBW6.
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Conclusion
Our findings emphasize the intricate interplay between the jejunum and liver in regulating growth, metabolism, 
and immune function in poultry. The gene expression patterns observed in both organs are vital for maintaining 
optimal health and performance, with key genes such as ZBTB46, STC2, WDR86, and USP12 playing central roles 
in essential biological processes. The upregulation of immune-related genes in the jejunum appears to bolster 
mucosal defenses and enhance nutrient absorption, while gene activity in the liver contributes significantly 
to metabolic efficiency and appetite regulation. These interconnected pathways highlight the importance of a 
coordinated response between the gut and liver, which collectively support growth and bolster resilience against 
environmental stressors. The insights gained from this research not only deepen our understanding of the 
molecular mechanisms underpinning poultry health but also open new avenues for targeted nutritional and 
genetic interventions. Such strategies hold promises for improving overall productivity, promoting health, and 
advancing sustainability in the poultry industry—ultimately leading to more resilient and profitable production 
systems.

Data availability
All raw data from RNA sequencing were uploaded to the National Center for Biotechnology Information (NCBI) 
and can be found under BioProject ID PRJNA1230854, accessed on March 3, 2025.

Received: 9 March 2025; Accepted: 30 December 2025

References
	 1.	 P Barrow, V Nair, S Baigent, R Atterbury. & M Clark. Poultry health: a guide for professionals. (Cabi, 2021)
	 2.	 Gheyas, A. A. et al. Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous 

chickens. Mol. Biol. Evol. 38, 4268–4285 (2021).
	 3.	 Mpenda, F. N., Schilling, M. A., Campbell, Z., Mngumi, E. B. & Buza, J. The genetic diversity of local african chickens: A potential 

for selection of chickens resistant to viral infections. J. Appl. Poultry Res. 28(1), 1–12 (2019).
	 4.	 El-Komy, E. M. et al. Genetic diversity, population structure and their association with body weight in Egyptian chicken strains. 

J. World’s Poult. Res. 13, 440–449 (2023).
	 5.	 Zhang, X. et al. Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microb. 

Biotechnol. 15, 844–861 (2022).
	 6.	 Chen, F. et al. Transcriptome analysis of differentially expressed genes related to the growth and development of the Jinghai yellow 

chicken. Genes (Basel). 10, 539 (2019).
	 7.	 Liu, L. et al. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC 

Genomics 20(1), 863 (2019).
	 8.	 Kumar, H. et al. RNA seq analyses of chicken reveals biological pathways involved in acclimation into different geographical 

locations. Sci. Rep. 10, 19288 (2020).
	 9.	 Xing, S. et al. RNA-Seq analysis reveals hub genes involved in chicken intramuscular fat and abdominal fat deposition during 

development. Front. Genet. 11, 1009 (2020).
	 10.	 Yang, L. et al. Identification of key genes and pathways associated with feed efficiency of native chickens based on transcriptome 

data via bioinformatics analysis. BMC Genomics 21, 292 (2020).
	 11.	 Zhang, G. et al. Study on the transcriptome for breast muscle of chickens and the function of key gene RAC2 on fibroblasts 

proliferation. BMC Genomics 22, 157 (2021).
	 12.	 Perlas, A. et al. Dual Host and Pathogen RNA-Seq Analysis Unravels Chicken Genes Potentially Involved in Resistance to Highly 

Pathogenic Avian Influenza Virus Infection. Front. Immunol. 12, 800188 (2021).
	 13.	 Dar, M. A. et al. Identification of SNPs related to salmonella resistance in chickens using RNA-Seq and integrated bioinformatics 

approach. Genes (Basel). 14, 1283 (2023).
	 14.	 Tan, X. et al. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J. Adv. 

Res. 55, 1–16 (2024).
	 15.	 Ravindran, V. & Abdollahi, M. R. Nutrition and digestive physiology of the broiler chick: State of the art and outlook. Animals 

(Basel). 11, 2795 (2021).
	 16.	 Song, J. et al. The effect of Epigallocatechin-3-gallate on small intestinal morphology, antioxidant capacity and anti-inflammatory 

effect in heat-stressed broilers. J. Anim. Physiol. Anim. Nutr. (Berl) 103, 1030–1038 (2019).
	 17.	 Sinpru, P. et al. Jejunal transcriptomic profiling for differences in feed conversion ratio in slow-growing chickens. Animals (Basel). 

11, 2606 (2021).
	 18.	 Kalra, A., Yetiskul, E., Wehrle, C. & Tuma, F. (StatPearls Publishing, 2023).
	 19.	 Aimee, Y. Y. et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. 

J. Clin. Investig. 103, 691–696 (1999).
	 20.	 Trefts, E., Williams, A. S. & Wasserman, D. H. Exercise and the regulation of hepatic metabolism. Prog. Mol. Biol. Transl. Sci. 135, 

203–225 (2015).
	 21.	 Bertocchi, M. et al. Exploring differential transcriptome between jejunal and cecal tissue of broiler chickens. Animals (Basel). 9, 

221 (2019).
	 22.	 Kim, H. et al. Transcriptomic response under heat stress in chickens revealed the regulation of genes and alteration of metabolism 

to maintain homeostasis. Animals (Basel). 11, 2241 (2021).
	 23.	 Li, H. et al. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying 

hens. BMC Genomics 16, 1–13 (2015).
	 24.	 El-Sheikh, T.M.J.E.P.S.J. Effect of continuous and intermittent high ambient temperature on growing males of gimmizah and 

golden-montazah chicken performanCE. 36, 725–741 (2016).
	 25.	 Hosny, F. A. The structure and importance of the commercial and village based poultry systems in Egypt. Poult. Sect. Count. Rev 

1, 39 (2006).
	 26.	 Bélanger, J. & Pilling, D. The state of the world’s biodiversity for food and agriculture. (FAO;, 2019).
	 27.	 Wu, P. et al. Transcriptome profile analysis of leg muscle tissues between slow-and fast-growing chickens. PLoS ONE 13(11), 

e0206131 (2018).
	 28.	 Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single 

report. Bioinformatics 32, 3047–3048 (2016).
	 29.	 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 12, 357–360 

(2015).

Scientific Reports |         (2026) 16:3477 14| https://doi.org/10.1038/s41598-025-34620-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 30.	 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic 
features. Bioinformatics 30, 923–930 (2014).

	 31.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene 
expression data. Bioinformatics 26, 139–140 (2010).

	 32.	 Wickham, H., Chang, W. & Wickham, M.H.J.C.E.D.V.U.T.G.O.G.V. Package ‘ggplot2’. 2, 1–189 (2016).
	 33.	 Kolde, R. (R-Project, 2019).
	 34.	 Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic 

Acids Res. 47, W191–W198 (2019).
	 35.	 Ge, S. X., Jung, D. & Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 

(2020).
	 36.	 Bertocchi, M. et al. In ovo Injection of a Galacto-Oligosaccharide Prebiotic in Broiler Chickens Submitted to Heat-Stress: Impact 

on Transcriptomic Profile and Plasma Immune Parameters. Animals (Basel). 9, 1067 (2019).
	 37.	 Hoshikawa, M. et al. NK cell and IFN signatures are positive prognostic biomarkers for resectable pancreatic cancer. Biochem 

Biophys Res Commun. 495, 2058–2065 (2018).
	 38.	 Mering, C. V. et al. STRING: a database of predicted functional associations between proteins. Nucleic acids res. 31, 258–261 

(2003).
	 39.	 Kohl, M., Wiese, S. & Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol. 

696, 291–303 (2011).
	 40.	 Argelaguet, R. et al. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol. sys. 

biol. 14, e8124 (2018).
	 41.	 Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018).
	 42.	 Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT 

method. Methods 25(4), 402–408 (2001).
	 43.	 Youssef, S., Yassein, D., El-Bahy, N. M. & Faddle, A. J. P. S. A comparative studies among golden montazah, el-salam and fayoumi 

chickens. 1-response to acute heat stress as early heat conditioning procedure. Egypt. Egypt. Poult. Sci. 34, 1075–1097 (2014).
	 44.	 Eltanany, M., Philipp, U., Weigend, S. & Distl, O. Genetic diversity of ten Egyptian chicken strains using 29 microsatellite markers. 

Anim. Genet. 42, 666–669 (2011).
	 45.	 Ashour, A., Badwi, Y., El-Karim, A., Ragaa, E. J. J. O. A. & Production, P. Effect of selection for body weight on egg production, 

egg quality, fertility and hatchability traits in El-salam chicken strain in Egypt. J. Anim. Poult. Prod. 6, 781–796 (2015).
	 46.	 Elbeltagy, A. R. et al. Natural selection footprints among African chicken breeds and village ecotypes. Front. Genet. 10, 376 (2019).
	 47.	 Hubbard, S. J. et al. Transcriptome analysis for the chicken based on 19,626 finished cDNA sequences and 485,337 expressed 

sequence tags. Genome Res. 15, 174–183 (2005).
	 48.	 Min, W. et al. Expressed sequence tag analysis of Eimeria-stimulated intestinal intraepithelial lymphocytes in chickens. Mol 

Biotechnol. 30, 143–150 (2005).
	 49.	 McKee, T. J., Perlman, G., Morris, M. & Komarova, S. V. Extracellular matrix composition of connective tissues: A systematic 

review and meta-analysis. Sci. Rep. 9, 10542 (2019).
	 50.	 Begolli, G., Markovic, I., Knezevic, J. & Debeljak, Z. Carbohydrate sulfotransferases: a review of emerging diagnostic and 

prognostic applications. Biochem. Med (Zagreb) 33, 030503 (2023).
	 51.	 Al-Zghoul, M. B. & El-Bahr, S. M. Basal and dynamics mRNA expression of muscular HSP108, HSP90, HSF-1 and HSF-2 in 

thermally manipulated broilers during embryogenesis. BMC Vet. Res. 15, 83 (2019).
	 52.	 Abdel-Kafy, E. M. et al. Gut microbiota, intestinal morphometric characteristics, and gene expression in relation to the growth 

performance of chickens. Animals (Basel) 12, 3474 (2022).
	 53.	 Mishra, B. & Jha, R. Oxidative stress in the poultry gut: Potential challenges and interventions. Front. Vet. Sci. 6, 60 (2019).
	 54.	 Alqazlan, N. et al. Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus 

H9N2. Sci. Rep. 11, 20462 (2021).
	 55.	 Hu, C. et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (2020) 3, 

e161 (2022).
	 56.	 Pan, Z. et al. An atlas of regulatory elements in chicken: A resource for chicken genetics and genomics. Sci. Adv. 9, eade1204 

(2023).
	 57.	 Vanamamalai, V. K., Priyanka, E., Kannaki, T. R. & Sharma, S. Integrative study of chicken lung transcriptome to understand the 

host immune response during Newcastle disease virus challenge. Front. Cell. Infect. Microbiol. 14, 1368887 (2024).
	 58.	 Lee, S.-J. et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. 

U. S. 102, 18117–18122 (2005).
	 59.	 Mackay, F. & Schneider, P. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological 

properties. Cytokine Growth Factor Rev. 19, 263–276 (2008).
	 60.	 Black, A. N. et al. A Highly Contiguous and Annotated Genome Assembly of the Lesser Prairie-Chicken (Tympanuchus 

pallidicinctus). Genome Biol. Evol. 15, evad043 (2023).
	 61.	 Erf, G. F. Cell-mediated immunity in poultry. Poult. Sci. 83, 580–590 (2004).
	 62.	 Mazet, F., Tindall, M. J., Gibbins, J. M. & Fry, M. J. A model of the PI cycle reveals the regulating roles of lipid-binding proteins 

and pitfalls of using mosaic biological data. Sci. Rep. 10, 13244 (2020).
	 63.	 Michel, B., Boubakri, H., Baharoglu, Z., LeMasson, M. & Lestini, R. Recombination proteins and rescue of arrested replication 

forks. DNA Repair (Amst). 6, 967–980 (2007).
	 64.	 Levine, A. J. The many faces of p53: something for everyone. J. Mol. Cell Biol. 11, 524–530 (2019).
	 65.	 Zhang, X. et al. Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microbial 

Biotechnol. 15(3), 844–861 (2022).
	 66.	 Tian, W.-D. et al. Proteomic identification of alpha-2-HS-glycoprotein as a plasma biomarker of hypopharyngeal squamous cell 

carcinoma. Int. J. Clin. Exp. Pathol. 8, 9021 (2015).
	 67.	 Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnov, E. M. BUSCO update: Novel and streamlined workflows along 

with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 
4647–4654 (2021).

	 68.	 Kim, D. Y., Lim, B., Kim, J. M. & Kil, D. Y. Integrated transcriptome analysis for the hepatic and jejunal mucosa tissues of broiler 
chickens raised under heat stress conditions. J. Anim. Sci. Biotechnol. 13, 79 (2022).

	 69.	 Zhao, W. et al. Ligand recognition and activation of neuromedin U receptor 2. Nat. Commun. 13, 7955 (2022).
	 70.	 Zhu, Q. et al. RNA sequencing transcriptomics and metabolomics in three poultry breeds. Sci. Data. 10, 594 (2023).
	 71.	 Maduro, M. F., Gordon, M., Jacobs, R. & Pilgrim, D. B. J. J. O. N. The UNC-119 family of neural proteins is functionally conserved 

between humans. Drosophila and C. elegans. J. Neurogenet. 13, 191–212 (2000).
	 72.	 Constantine, R., Zhang, H., Gerstner, C. D., Frederick, J. M. & Baehr, W. Uncoordinated (UNC)119: Coordinating the trafficking 

of myristoylated proteins. Vision Res. 75, 26–32 (2012).
	 73.	 Chen, S., Liu, Y. & Zhou, H. Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int. J. Mol. Sci. 22, 4546 

(2021).
	 74.	 Yi, M., Negishi, M. & Lee, S. J. Estrogen sulfotransferase (SULT1E1): Its molecular regulation, polymorphisms, and clinical 

perspectives. J. Pers. Med. 11, 194 (2021).

Scientific Reports |         (2026) 16:3477 15| https://doi.org/10.1038/s41598-025-34620-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 75.	 Farrell, C. M. et al. RefSeq functional elements as experimentally assayed nongenic reference standards and functional interactions 
in human and mouse. Genome res. 32, 175–188 (2022).

	 76.	 W Zhou et al. ZBTB46 defines and regulates ILC3s that protect the intestine. 609, 159–165 (2022).
	 77.	 Hebiguchi, T. et al. Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein 

II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats. Int. J. Mol. Med. 35, 724–730 (2015).
	 78.	 Li, S. et al. The significance of Stanniocalcin 2 in malignancies and mechanisms. Bioengineered 12, 7276–7285 (2021).
	 79.	 Cao, Y. et al. stc2 inhibits hepatic lipid synthesis and correlates with intramuscular fatty acid composition, body weight and 

carcass traits in chickens. Animals (Basel). 14, 383 (2024).
	 80.	 Khan, S., Alvi, A. F., Saify, S., Iqbal, N. & Khan, N. A. The ethylene biosynthetic enzymes, 1-aminocyclopropane-1-carboxylate 

(ACC) synthase (ACS) and ACC Oxidase (ACO): The less explored players in abiotic stress tolerance. Biomolecules 14, 90 (2024).
	 81.	 Mossio, M., Montevil, M. & Longo, G. Theoretical principles for biology: Organization. Prog. Biophys Mol. Biol. 122, 24–35 

(2016).
	 82.	 Alessandroni, L., Sagratini, G. & Gagaoua, M. Proteomics and bioinformatics analyses based on two-dimensional electrophoresis 

and LC-MS/MS for the primary characterization of protein changes in chicken breast meat from divergent farming systems: 
Organic versus antibiotic-free. Food Chem (Oxf). 8, 100194 (2024).

	 83.	 Xie, X. et al. Danzhou chicken: a unique genetic resource revealed by genome-wide resequencing data. Poult. Sci. 103, 103960 
(2024).

	 84.	 Morton, G. J., Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367–378 
(2014).

	 85.	 Akter, R. et al. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J. Diabetes Res. 2016, 2798269 (2016).
	 86.	 Greene, E. S., Abdelli, N., Dridi, J. S. & Dridi, S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Vet. Sci. 9, 171 (2022).
	 87.	 Pedersen, J.E., Bergqvist, C.A. & Larhammar, D. Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates. eNeuro. 5 

(2018)
	 88.	 Saroz, Y., Kho, D. T., Glass, M., Graham, E. S. & Grimsey, N. L. Cannabinoid Receptor 2 (CB(2)) Signals via G-alpha-s and 

Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes. ACS Pharmacol. Transl. Sci. 2, 414–428 (2019).
	 89.	 Kitazawa, T., Teraoka, H. & Kaiya, H. J. E. J. The chicken is an interesting animal for study of the functional role of ghrelin in the 

gastrointestinal tract. Endocr. J. 64, S5–S9 (2017).
	 90.	 Arevalo, J. C. & Wu, S. H. Neurotrophin signaling: many exciting surprises!. Cell Mol. Life Sci. 63, 1523–1537 (2006).
	 91.	 Skaper, S. D. The neurotrophin family of neurotrophic factors: an overview. Methods Mol. Biol. 846, 1–12 (2012).
	 92.	 Irie, K., Shimizu, K., Sakisaka, T., Ikeda, W. & Takai, Y. in Seminars in cell & developmental biology, Vol. 15 643–656 (Elsevier, 

2004).
	 93.	 Harris, T. J. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell. Biol. 11, 502–514 (2010).
	 94.	 Warner, J. R. & McIntosh, K. B. J. M. C. How common are extraribosomal functions of ribosomal proteins?. Mol. cell. 34, 3–11 

(2009).
	 95.	 Chauhan, S. S., Rashamol, V. P., Bagath, M., Sejian, V. & Dunshea, F. R. Impacts of heat stress on immune responses and oxidative 

stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 65, 1231–1244 (2021).
	 96.	 Yang, C. et al. Function and regulation of RGS family members in solid tumours: a comprehensive review. Cell Commun Signal. 

21, 316 (2023).
	 97.	 Luo, X., Guo, J., Zhang, J., Ma, Z. & Li, H. Overview of chicken embryo genes related to sex differentiation. PeerJ 12, e17072 

(2024).
	 98.	 Jardine, S., Dhingani, N. & Muise, A. M. TTC7A: Steward of Intestinal Health. Cell Mol Gastroenterol Hepatol. 7, 555–570 (2019).
	 99.	 McGarvey, K. M. et al. Mouse genome annotation by the RefSeq project. Mamm. Genome. 26, 379–390 (2015).
	100.	 Niu, K. et al. Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological 

mechanisms. J. Transl. Med. 21, 665 (2023).

Acknowledgements
Acknowledgments: The authors greatly appreciate the help of the staff at the APRI and the poultry research farm 
in el-Azab, in the Fayoum governorate, Egypt.

Author contributions
Conceptualization: EMA, HL and WAHA; Supervision: EMA and HAS. Bird handling, tissues collection and 
productive data collection and statistical analysis: MHA, EMA, FMB, YZA, SSG, NSE and SFY. RNA sequencing 
analysis: AME; NIA conducted the RNA extraction and qRT-PCR validation experiments. Writing original draft 
preparation: EMA, NIA and AME; Writing, reviewing and editing: EMA, NIA and AME. All authors have read 
and agreed to the published version of the manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in coopera-
tion with The Egyptian Knowledge Bank (EKB). This work was funded by the Science and Technology Develop-
ment Fund (STDF), Egypt, under project number 30339, in cooperation with the Animal Production Research 
Institute (APRI) under project number 2023393429.

Declarations

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​3​4​6​2​0​-​0​​​​​.​​

Correspondence and requests for materials should be addressed to E.-S.M.A.-K.

Scientific Reports |         (2026) 16:3477 16| https://doi.org/10.1038/s41598-025-34620-0

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-34620-0
https://doi.org/10.1038/s41598-025-34620-0
http://www.nature.com/scientificreports


Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |         (2026) 16:3477 17| https://doi.org/10.1038/s41598-025-34620-0

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Integrated transcriptome analysis of jejunum and liver to identify key genes and pathways associated with body weight in chickens
	﻿Methods
	﻿Ethical approval and study location
	﻿Bird management, housing and environmental conditions
	﻿Experimental design and sample collection
	﻿RNA extraction, library construction, and RNA-Seq
	﻿Differentially expressed gene (DEG) and function annotation analyses
	﻿Gene set enrichment analysis (GSEA)
	﻿Protein–protein interactions network
	﻿Multi-omics factor analysis (MOFA)
	﻿Validation of RNA-seq through quantitative real-time PCR (qRT-PCR)
	﻿Statistical analysis


	﻿Results
	﻿Body weight, daily body weight gain and carcass weight
	﻿Sequencing data and differentially expressed genes in the jejunum and liver
	﻿Gene ontology and KEGG pathway analysis in each tissue
	﻿Gene set enrichment analysis
	﻿Protein–protein interactions (PPIs) analysis of DEGs
	﻿Multi-omics integration through factor analysis
	﻿Verification of DEGs using qRT-PCR

	﻿Discussion
	﻿Conclusion
	﻿References


