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Across all fields, experts strive to collect and analyze numerous data to extract meaningful insight.

In response to this trend, Hadoop and Spark have emerged, and many organizations have adopted
these platforms for big data storage and processing. In addition, data centers with powerful servers are
constantly expanding to accommodate the increasing number of data, causing significant costs and
environmental problems due to the tremendous energy consumption. Single board computer (SBC)
clusters have emerged as a promising alternative for efficient computing. Most SBCs have adopted a
microSD slot for data storage; thus effectively processing massive data has some limitations. However,
the latest generation Raspberry Pi (RPi), model 5B provides a peripheral component interconnect
express (PCle) interface, enabling high-performance storage media, such as solid state drives (SSD).
This paper extensively investigates the practicability and potential of SBCs for terabyte-scale big data
processing. We build the SBC Hadoop cluster, adopting the most powerful, latest RPi 5B (8 GB of RAM)
with a fast PCle-based SSD via the PCle interface, and perform six widely known benchmarks with a
large (up to 2 TB) data size. Furthermore, this paper discusses challenges and suggestions, including
the effects of input/output (1/0) throughput, central processing unit (CPU) overclocking, power supply,
and trim command, which significantly affect SBC Hadoop performance. This comprehensive study
concludes that integrating the enhanced computing of RPi 5B with unlocked 1/O performance finally
paves the way for a practical solution to real-world big data processing on SBC clusters.

In contemporary society, the significance of big data has increased due to its significant potential across sectors,
including business, health care, finance, and government!-3. This exponential data growth requires efficient
data processing and analysis. Apache Hadoop and Spark platforms have emerged to address these challenges,
revolutionizing the market by providing scalable and efficient solutions for big data storage and processing*. Their
advent marks a pivotal development in the field of big data analytics. Hadoop, using the Hadoop Distributed File
System (HDFS) and MapReduce processing framework, offers a scalable and fault-tolerant solution for managing
massive datasets. Spark provides an in-memory processing framework to accelerate data computation and has
become the preferred choice for real-time analytics, stream processing, and machine learning applications.

The rapidly increasing scale of data increases the need for efficient storage and processing capabilities to
manage massive volumes of data. Cloud service providers, such as Amazon Web Service (AWS) and Microsoft
Azure have been expanding their global data center infrastructure to reduce cloud costs®. Data centers consume
an enormous amount of electricity to operate and cool their systems. Today, geographical features, such as a cold
climate, are commonly employed as solutions to reduce data center heat generation and power consumption’.
However, this approach is impractical for most enterprises (other than big tech companies). Introducing servers
with high power efficiency for big data processing could provide a more direct solution. From this perspective,
a single board computer (SBC) offers significant advantages in terms of power efficiency, making it a promising
solution to financial and environmental challenges.

The SBC has significantly evolved since its inception in the 1970s, with the market experiencing substantial
growth following the launch of the Raspberry Pi (RPi) controller in 20128, Initially aimed at promoting computer
science education, RPi has transcended its original purpose to become a versatile tool embraced by hobbyists,
educators, and professionals. With each new iteration, the capabilities of RPi have been enhanced, offering more
memory, better processing power, and improved connectivity. Researchers have begun investigating using RPi
clusters in more challenging applications, such as big data processing and micro data centers*. Moreover, RPi has
consistently relied on a micro secure digital (microSD) card for storage media. Due to the low performance and
small capacity of microSDs, processing big data at practical, useful speeds has been challenging®.
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With the release of the latest generation RPi (i.e., RPi 5B) in late 2023, the peripheral component interconnect
express (PCle) interface was finally adopted, providing an option to mount modern high-performance storage
media other than the slow microSD. Thus far, the central processing unit (CPU) has been upgraded to a quad-
core processor running at speeds of up to 2.4 GHz, the random access memory (RAM) has increased to 8 GB,
and the Ethernet speed has improved to 1 Gbps.

Research on the potential use of SBCs for big data processing has been steadily conducted. However,
conventional SBCs have had limitations in terms of integration with other hardware. To mitigate structural
constraints on storage performance, some studies have adopted Network Attached Storage (NAS) or Universal
Flash Storage (UFS) cards, but higher-performance storage media are still required for practical big data
processing. With the introduction of a PCle interface, the RPi 5B can be regarded as the first SBC model
to effectively break free from storage media constraints. In this study, the concrete performance of big data
processing in an SBC environment combined with an SSD is presented, and the potential of SBCs for big data
processing is demonstrated.

This study investigates the feasibility of processing big data using the SBC cluster by natively integrating
an M.2 solid state drive (SSD) into the latest generation RPi (i.e., RPi 5B with 8 GB of RAM) via a PCle 3.0 (X
1) interface by adopting a new hardware-attached-on-top (HAT) board. This hardware configuration of RPi is
currently the most powerful for big data processing. First, this study extensively measures the performance of RPi
5B individually to investigate its computational capability enhancement compared to the previous generation
of RPi (i.e., RPi 4B) released in 2019. Then, an SBC Hadoop cluster is built, consisting of one RPi 5B as a master
node and eight RPi 5B units as worker nodes, and a series of representative benchmarks, including WordCount,
TeraGen and TeraSort, Pi computation, Grep, and TestDFSIO, are used to evaluate the performance of RPi
Hadoop and Spark clusters. In addition, for a more objective evaluation, the RPi 5B cluster is compared with the
newest generation of desktop computer, providing informative insight into the possibility of real-world big data
processing using SBC Hadoop clusters.

Furthermore, this study examines the storage media effect on the big data processing platforms by comparing
the differences between the fastest microSD and PCle-based SSD storage options available for the RPi 5B. Last, a
discussion and the findings are presented, covering CPU overclocking (2.4 to 3.0 GHz) to discuss the influence
of CPU performance, the PCle bandwidth (PCle 2.0 to 3.0) to study the influence of storage bandwidth, the trim
command to explore the garbage collection problem of flash memory, the power supply to verify the correlation
between the power supply amount and RPi performance, and multiple application execution to evaluate the
parallel computing capability.

To our knowledge, this study is quite comprehensive, covering several problems, findings, and suggestions for
the feasibility of SBCs in real-world big data processing by adopting the most powerful RPi configurations. This
study concludes that the latest significantly improved computing capability of RPi 5B with the fastest modern SSD
storage media offers a practical solution for small, terabyte-scale big data processing on SBC Hadoop clusters.
Unlike previous RPis, the data size is no longer a limitation because the RPi 5B Hadoop cluster effectively and
stably expands processing and storage capabilities. Overall, the PCle interface of RPi 5B is extremely beneficial.

The main contributions of this paper are as follows:

« Big data processing on a powerful SBC without an I/O Bottleneck The existing SBC-based big data pro-
cessing has limitations due to the performance of the SBC and the storage media constraints. The latest M.2
SSDs (500 GB) are directly connected to each SBC node via the PCle interface, rather than other slower I/O
interfaces, such as a universal serial bus (USB) port to overcome the bottleneck in SBC-based big data pro-
cessing. Thus, each SBC node improves storage performance by an average of 7x faster for reading and 16
faster for writing compared to one of the fastest microSD cards on the market. This study is the first to con-
figure the strongest RPi 5B node to explore the possibility of big data processing on the SBC Hadoop cluster
comprehensively using an terabyte-scale dataset size (up to 2 TB; Section Raspberry Pi cluster performance).

« Challenges and predicting the future Most existing studies have primarily aimed to measure the experimen-
tal performance of each SBC Hadoop cluster because the previous SBC nodes did not have sufficient comput-
ing capabilities. Thus, these studies have focused on running Hadoop benchmarks. This study extensively dis-
cusses diverse challenges and findings that significantly affect SBC node performance. For example, a higher
1/0 throughput (PCle 2.0 vs. 3.0) could not be fully utilized by RPi 5B due to the unexpected CPU bottleneck,
even though its CPU performance had substantially improved, which was verified by the CPU overclocking
experiments (2.4 vs. 3.0 GHz). This finding implies that the I/O throughput expansion of future SBCs must
consider CPU performance improvement accordingly. In addition to this suggestion, several challenges and
experiments offer insight into the potential performance of future SBC models (Section Discussion).

« Extensive scale-Out evaluation We evaluate six well-known benchmarks for Hadoop and Spark. Each
benchmark is conducted by varying the node count from one to eight with various data sizes. These compre-
hensive performance evaluations offer insight into several factors, such as the hardware improvement effects
and performance trends. We also measure the diverse performance metrics (CPU, network, storage media
performance, and power consumption) of individual RPi models, 4B and 5B, investigating the relationship
between the performance improvement of the individual node and the cluster. In the comparison of the per-
formance of the SBC Hadoop cluster to that of the desktop computer, the Hadoop performance offers insight
into the future possibilities and opportunities for the SBC Hadoop cluster for real-world big data processing
(Sections Individual Raspberry Pi performance and Raspberry Pi cluster performance).

The remainder of this paper is organized as follows. Section Background knowledge provides an overview of
RPi and SSD. Next, Section Related work presents the related studies. Then, Sections Individual Raspberry Pi
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performance and Raspberry Pi cluster performance present a variety of experimental results and analyses and
Section Discussion discusses the diverse challenges. Finally, Section Conclusion concludes the work.

Background knowledge
Raspberry Pi
The RPi is a series of SBCs developed by the RPi Foundation to promote the study of computer science'.
Designed to make computing affordable and available to everyone, the RPi quickly gained popularity and has
transformed into a powerful and versatile platform used in schools, businesses, and projects worldwide. The
first model, RPi Model B (RPi B), was released in February 2012, and since then, it has significantly evolved.
The RPi B features a 700 MHz single-core ARM processor with 256 MB of RAM, targeting educational use to
promote computer science. Launched in 2015, RPi 2B offers a quad-core processor and 1 GB of RAM. Starting
in 2016, RPi 3B introduced built-in Wi-Fi and Bluetooth. In 2019, RPi 4B included substantial upgrades, initially
including up to 4 GB of RAM (which was recently upgraded to 8 GB), a USB 3.0, and dual 4K display support'!.
The fifth and latest generation in the series, RPi 5B was again significantly upgraded over its predecessor. It
featured a new Broadcom BCM2712 system-on-a-chip with four ARM Cortex-A76 cores clocked at 2.4 GHz,
offering two times faster computing performance than its predecessor, the RPi 4B. In addition, RPi 5B was
enhanced with a VideoCore VII graphics processing unit (GPU) for better graphics and introduced a new RP1
chip for improved I/O handling. A PCle interface provides expanded customization potential, such as a non-
volatile memory express (NVMe) SSD and 10 Gb for networking. The RPi 5B maintains its legacy of offering
high performance at an affordable price. Each iteration has built on the success of its predecessors, cementing the
reputation of RPi as a powerful and versatile platform for a wide range of applications'?.

Storage connection interface

Recently, SSDs have rapidly gained popularity due to their improved performance, reliability, and price and
have gradually been widely adopted in personal computers and servers'>!%. Early SSDs were connected to the
motherboard using the serial advanced technology attachment (SATA) interface, the same interface used by
traditional hard disk drive (HDD)">.

However, the SATA interface was initially designed for conventional HDDs, making it difficult to exploit
the SSD speed fully. An NVMe SSD connected to the PCle interface has emerged to eliminate this bottleneck!®.
The PCle interface resolves the limitations of conventional interfaces in terms of bandwidth and scalability. The
number of lanes (X1, x4, X8, X16, etc.) allows bandwidth adjustments as needed. Although the SATA III SSD
is limited to a maximum transfer rate of 6 GT/s, the PCle 3.0 x4 NVMe SSD offers transfer rates of up to 32
GT/s, and the PCle 4.0 x4 NVMe SSD offers transfer rates of up to 64 GT/s'”. The PCI Special Interest Group
recently released the PCle 7.0 specification (up to 128 GT/s per lane), and plenty of room exists to improve SSD
performance.

The RPi 5B officially supports the PCle interface. Although the PCle connection of the RPI 5B is certified for
PCle 2.0 speeds (5 GT/s), PCle 3.0 (8 GT/s) speeds can be forced by configuring the PCle option. The previous
generation of RPi (i.e., RPi 4B) was able to connect an SSD indirectly using a USB 3.0 port. However, the RPi 5B
is the first generation to provide a native PCle interface on the board, allowing a direct PCIe SSD connection.
The USB 3.0 port, with a maximum bandwidth of 5 Gbps, limits the ability to apply the SSD performance
fully, whereas PCle allows scalability depending on the version and number of lanes. With the continuous
advancement of big data and artificial intelligence (AI), the SBC must increasingly handle high bandwidths.
Thus, the next generation RPi is expected to upgrade the PCle version or increase the lane count to improve SSD
employment.

Related work

Many researchers have studied low-powered SBC clusters in diverse fields, such as edge computingls, cloud®?,
database?, blockchain?!, A%, and cryptography?’. Among the many papers on SBC clusters, this section focuses
on SBC-based big data processing because it is directly associated with this research.

Adnan et al.? built a cluster using Banana Pi M3 (octa-core 2 GHz CPU with 2 GB of RAM and a 1 Gbps
Ethernet) and evaluated the big data processing performance with two storage types: microSD and NAS. They
aimed to address the limitations of the microSD as the primary storage media for the SBC and proposed the
NAS as an alternative. They evaluated the performance of Hadoop using the TeraSort benchmark for single and
multinode configurations. Although the performance difference between the two storage media options was just
2 seconds for a single node and 7 seconds for multiple nodes, they suggested the NAS due to its lower I/O wait
time. However, they adopted a small data size (up to 2 GB for a single node and up to 4 GB for multiple nodes)
for big data and focused on the primary storage limitations of SBCs.

Qureshi and Koubaa?* explored the energy efficiency of SBC clusters for big data applications. They built an
ARM-based RPi 2B cluster and an Odroid XU-4 cluster and evaluated the performance of these clusters. Their
study claimed that SBC-based clusters are generally energy efficient, whereas the cost-to-performance ratio
depends on the workload. For a smaller workload, the XU-4 cluster, comprising 20 Odroid XU-4 in a cluster,
is more cost-effective and power-efficient than the RPi cluster. For high-intensity tasks, such as TeraGen and
TeraSort, the XU-4 cluster consumes significantly more energy. They concluded that the RPi cluster consistently
underperformed on all benchmarks. However, they employed an older generation RPi (i.e., RPi 2B) with a 900
MHz quad-core ARM Cortex-A7 CPU and 1 GB of RAM, which did not have sufficient computing capabilities
to run big data applications.

Lee et al.”® conducted an in-depth investigation into the challenges and potential of big data processing using
an RPi 4B cluster. They constructed a five-node RPi 4B (quad-core 1.5 GHz CPU with 4 GB of RAM) cluster.
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RPi 4B RPi 5B
ARM Cortex-A72 ARM Cortex-A76
cru @ 1.5 or 1.8 GHz (4 cores) @ 2.4 GHz (4 cores)
RAM 1,2,4, or 8 GB LPDDR4 4 or 8 GB LPDDR4X
Ethernet Native Gigabit Ethernet
Bluetooth Bluetooth 5.0
USB USB3.0 x 2+ USB2.0 X 2
GPU VideoCore VI @ 600 MHz VideoCore VII @ 1 GHz
PCle PCle2.0 X 1
SDIO speed Up to 43 MB/s Up to 89 MB/s
Power consumption | 3.7 W(idle), 7.0 W(full-load) | 5.5 W(idle), 10.3 W(full-load)
Release June 2019 October 2023
Price $35(1 GB), $45(2 GB), $60(4 GB), $80(8 GB)
$55(4 GB), $75(8 GB)

Table 1. Specifications for Raspberry Pi models 4B and 5B.

microSD NVMe SSD
Model code | MB-MD256SA SHGP31-500GM-2
Model name | Samsung PRO plus SK Hynix GOLD P31
Capacity 256 GB 500 GB
Form factor | microSD (SDXC) M.2 (NVMe)

Read(seq.) | Up to 180 MB/s Up to 3,500 MB/s
Write(seq.) | Up to 130 MB/s Up to 3,200 MB/s
Read(rand.) | Minimum 4,000 IOPS (A2) | Up to 570,000 IOPS
Write(rand.) | Minimum 2,000 IOPS (A2) | Up to 600,000 IOPS

Table 2. Characteristics of the microSD and solid state drive (SSD) employed for our experiments. Note:
Performance numbers excerpted from their product specifications.

This study focused on the effect of storage media performance in the RPi cluster using three portable storage
media cards with various performance characteristics: a typical microSD, the fastest microSD, and UFS cards.
The study claimed that faster storage media significantly improve SBC cluster performance, demonstrating a
1.3 to 7.07x performance improvement. They concluded that the RPi 4B cluster exhibited the potential to
process actual big data.

Unlike these studies, this study aims to explore the possibility of real-world big data processing on the most
powerful RPi Hadoop clusters by adopting terabyte-scale big data (up to 2 TB) and the most powerful RPi
Hadoop cluster. Moreover, a variety of challenges and extreme experiments are provided for informative insight.

Individual Raspberry Pi performance

Hardware configurations

Raspberry Pi: 4B vs. 5B

First, we compared the capability of the individual RPi 4B and 5B. Table 1 presents the hardware specifications
of both models, where RPi 5B displays performance improvements over RPi 4B, especially on the CPU. The
number of CPU cores remains the same at four, but the clock speed increased from 1.5 to 2.4 GHz. The initial
RPi 4B models with 1, 2, and 4 GB of RAM provided a 1.5 GHz CPU clock speed and only the recently released
RPi 4B with 8 GB of RAM had a 1.8 GHz CPU clock speed. An identical RAM size (8 GB) was selected for a fair
evaluation. The most critical part is the PCle interface of RPi 5B. The single-lane PCle 2.0 interface was provided.
However, we can easily switch the default PCle version of RPi 5B from PCle 2.0 to 3.0 via boot configurations,
causing a substantial 2x I/O throughput improvement from 400 to 800 MB/s (Section PCle Version: 2.0 vs. 3.0).

Storage media: Fastest MicroSD vs. PCle-based SSD

Two types of storage media (microSD and NVMe SSD) were employed to investigate the effect of the NVMe
SSD directly connected to RPi via PCle interface. Since the first generation of RPi, the microSD has been used
as primary storage media, and even the latest RPi 5B supports a single microSD card slot. An M.2 HAT board is
required to attach an NVMe SSD to RPi 5B via the PCle interface. Because SSD is an additional storage media,
it must be mounted to be recognized by the operating system (OS) (e.g., mount /dev/nvmeOnl /mnt/nvmeOnl).
Table 2 presents the microSD (Samsung PRO Plus) and SSD (SK Hynix GOLD P31) specifications. Currently,
Samsung PRO Plus is recognized as one of the fastest microSD cards®®. Moreover, SK Hynix GOLD P31 is one
of the best-selling PCle 3.0-based NVMe SSDs worldwide*”.
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Modes RPi4B | RPi5B
Idle mode 3.75W | 554 W
Stress mode | 7.06 W | 10.31 W

Table 3. Power consumption of Raspberry Pi (RPi) model 4B and 5B in idle and stress modes.

Threads 1 2 4 8 16
RPi 5B (8 GB) | 24,699.51 | 49,408.40 | 98,699.69 | 98,741.23 | 98,690.85
RPi 4B (8 GB) | 14,122.55 | 28,345.28 | 56,644.43 | 56,619.70 | 56,744.83

Table 4. CPU performance (events per second) of RPi model 4B and 5B based on the number of threads.

Network Interface | RPi 4B RPi 5B

Ethernet 936 Mb/s | 937 Mb/s
Wi-Fi 2.4 GHz 52.1 Mb/s | 52.7 Mb/s
Wi-Fi 5.0 GHz 90.4 Mb/s | 97.5 Mb/s

Table 5. Network bandwidth of RPi 4B and 5B.

Peripheral components and accessories

HAT board: The HAT board is an essential component for connecting the RPi 5B with an SSD, and the Pinberry
Pi Hat Drive Bottom was used in this experiment. The HAT board connects the RPi 5B and SSD via an FPC
ribbon cable, which also provides power. It supports both PCle versions 2 and 3, and in this experiment, a HAT
board compatible with the 2280 M.2 SSD form factor was employed.

Cooling fan: Both the RPi 4B and RPi 5B use cooling fans officially supported by Raspberry Pi. The RPi 4B
fan is connected via a GPIO header, whereas the RPi 5B is designed with cooling in mind and can be connected
through a four-pin fan header. The maximum airflow of the RPi 4B fan is 1.4 CFM, while that of the RPi 5B fan
is 1.09 CFM.

Power supply: The power supply is also officially supported by Raspberry Pi. However, the power
requirements differ between the RPi 4B and RPi 5B. The RPi 4B is provided with a 15W power supply, whereas
the RPi 5B, due to increased power consumption, requires a 27W power supply. Using an RPi 4B power supply
for the RPi 5B results in performance degradation. Details about power and performance will be discussed in
Section Discussion.

Power consumption

The Bplug SO1 power meter was employed to measure the power consumption of each RPi model (4B and 5B).
In idle mode, the power consumption was measured for 1 hour without running programs. In stress mode, the
CPU was subjected to the maximum load for 1 hour (stress -cpu 4 -timeout 3600). According to Table 3, both
models consumed 1.8x more power in the stress mode than in the idle mode. Compared to RPi 4B, RPi 5B
consumed an average of 1.4x more power in both modes due to the upgraded CPU performance. Therefore,
RPi 4B uses a power supply capable of delivering 20 W, whereas RPi 5B employs a 27 W power supply to ensure
sufficient power.

CPU performance

The CPU performance of RPi 4B and 5B was measured using the sysbench tool by varying the thread count.
Although both models have the same core count (four cores), RPi 5B (2.4 GHz) has a higher clock speed than
RPi 4B (1.8 GHz). The number of threads increases from 1 to 16 (sysbench —num-threads=1 -test=cpu -cpu-
max-prime=2000 run). As in Table 4, the performance doubles to four threads and does not increase afterward
because both RPi 4B and 5B are a quad-core models. The RPi 5B displays an average of 1.74 X better performance
than the RPi 4B.

Network performance

In a cluster, the network performance significantly affects the overall performance because cluster nodes
communicate with each other intensively?®. The RPi 4B and 5B have 1 Gbps Ethernet and dual-band 802.11ac
wireless network interfaces. Table 5 presents their network bandwidth. An open-source network performance
measurement tool called iPerf3 was employed to test the on-board raw network throughput. The iPerf3 measures
and analyzes the network performance, including testing the bandwidth, latency, packet loss rate, and other
aspects of network connections. In addition, iPerf3 requires two performance measurement steps. First, we must
open a socket on the server where the performance is measured (iperf3 -s). Then, on the client sending data, the
target server IP is referred to transmit data (iperf3 -c 192.168.45.99 -i 1). A noticeable performance discrepancy
was not found because both models have the same network specifications. Therefore, the wired network
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Record | Read | Write | Read Write
Storage media Node | size (seq.) | (seq.) | (rand.) | (rand.)

4KB 9.14 3.62 7.14 3.40
RPi4B | 512KB |37.90 |31.79 |37.93 31.64
16 MB | 43.29 |34.38 |43.40 34.18
4 KB 2571 | 8.63 25.02 9.19
RPi5B | 512KB | 87.70 |51.41 |87.48 51.88
16 MB | 88.07 |52.22 |88.30 48.84
4KB 201.95 | 134.01 | 169.48 | 174.42
SK Hynix GOLD P31 | RPi5B | 512 KB | 798.30 | 742.66 | 717.13 | 751.87
16 MB | 869.80 | 814.47 | 873.48 | 800.23

Samsung PRO Plus

Table 6. Storage media performance (MB/s) for microSD and SSD on RPi 4B and 5B. Note: RPi 4B does not
have a PCle interface; hence, PCle SSD experiments are omitted.

Storage media Node |4KRand. Read | 4K Rand. Write
RPi4B | 1,828 870

Samsung PRO Plus
RPi5B | 6,405 2,353

SK Hynix GOLD P31 | RPi5B | 17,787 44,652

Table 7. 4K random read and write performance (IOPS) for the microSD and SSD on RPi 4B and 5B.

throughput of both models indicates an average performance close to a maximum theoretical throughput of 1
Gbps.

Storage media performance

The iozone benchmark tool was employed to measure file system performance. The sequential and random read/
write performance for Samsung PRO Plus (representing the fastest microSD card) and SK Hynix GOLD P31
(representing the most powerful PCIe 3.0 SSD) on RPi were measured using iozone. The total file size was set to
100 MB and the record size to 4 KB (a small I/O unit), 512 KB (a medium I/O unit), and 16 MB (a large I/O unit)
to test the storage performance (iozone -e -1 -a -s 100M -r 4k -r 512k -r 16 M -i 0 -i 1 -i 2).

In Table 6, the microSD and NVMe SSD displayed weak performance at the 4 KB record size due to the
significantly reduced efficiency of I/O operations when accessing data in very small blocks. As the record size
increased from 4 KB to 16 MB, the read and write performance noticeably improved. For instance, the sequential
read performance of RPi 5B increased to 3.42x (microSD) and 4.31 x (NVMe SSD). Similarly, the sequential
write performance of RPi 5B improved by an average of 6.05x (microSD) and 6.07x (NVMe SSD).

The CPU performance also significantly affects the storage performance. The performance of the microSD
card in RPi 5B improved substantially compared to RPi 4B (e.g., under 4 KB of the record size, 2.81x for
sequential read, 2.38x for sequential write, 3.5x for random read, 2.7x for random write). Although the
CPU performance of RPi 5B noticeably improved, the maximum performance of the microSD card can still
be improved. This finding implies that the next generation of RPi might saturate microSD card, particularly
regarding the write performance, by further upgrading the CPU performance.

The PCle 3.0 theoretically provides approximately 984 MB/s of bandwidth per lane. The NVMe SSD (SK
Hynix GOLD P31) can provide up to 3.5 GB/s for a read and 3.2 GB/s for a write with four PCle 3.0 lanes.
However, due to the constraint (i.e., a single PCle lane) of RPi 5, the actual performance of this NVMe SSD is
limited to the bandwidth of the single PCle 3.0 lane. Table 6 and 7 present the NVMe SSD performance on RPi
5B. For the 16 MB record size, the SSD dominates the fastest microSD card by an average of 9.8 (read) and
15.98x (write). Currently, considering that just one-fourth of the full performance of the SSD is employed in
RPi 5B, we could achieve even greater SSD performance if more PCle lanes were added or if the PCle version
were upgraded in the future.

Raspberry Pi cluster performance

Experimental setup

Cluster configurations

Figure 1 illustrates the RPi Hadoop cluster architecture, consisting of eight worker nodes and one master node,
all connecting to a 1 GbE network switch. Two RPi clusters (RPi 4B and 5B) were built for a more objective
comparison. Table 8 lists the configurations of the RPi 4B and 5B clusters. A single master node was designated
as the namenode. We increased the worker node count to 1, 2, 4, and 8, expanding the total cluster storage
capacity accordingly (up to 2 TB for the RPi 4B cluster and 4 TB for the RPi 5B cluster). Ubuntu Server 23.10
(64-bit) was installed, as it is supported by the RPi Foundation as a general-purpose OS. Apache Hadoop (v3.3.6)
and Spark (v3.5.0) were adopted for the experiments.
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Fig. 1. RPi 5B cluster architecture with one master node and eight worker nodes.

RPi 4B Cluster RPi 5B Cluster
ARM Cortex-A72 ARM Cortex-A76
cPU @ 1.8 GHz (4 cores) | @ 2.4 GHz (4 cores)
RAM 8 GB LPDDR4 8 GB LPDDR4X
Storage 256 GB microSD 256 GB microSD, 500 GB NVMe SSD
Cluster Storage | Up to 2 TB Up to 2 TB (microSD) or 4 TB (SSD)

Master node no. | 1 (designated for a namenode)

Worker node no. | 1,2,40r8

Network 1 Gigabit Ethernet RJ45 Jack, GbE Switches (16 ports)
(O Ubuntu Server 23.10, 64-Bit
Software Apache Hadoop V3.3.6, Spark V3.5.0

Table 8. Cluster configurations of RPi 4B and 5B.

Hadoop and spark configurations

Tables 9 and 10 list Hadoop and Spark configurations. The number of reducers and replications in Hadoop and
the number of instances and cores in Spark were adjusted for more effective evaluations. Other parameters were
not changed to minimize any factors that could affect the experimental results.

Hadoop with a single reducer (by default) causes ineflicient operations and performance. Thus, we set it to
two, considering performance and reliability. The Hadoop replication factor has a trade-off between storage
consumption and reliability. We set the replication count to one to evaluate an terabyte-scale dataset.

By default, Spark sets the number of instances to two, meaning even with four nodes, only two nodes are
operating. This implies that a four-node cluster and a two-node cluster perform identically. Thus, according to
the node counts, this option is appropriately adjusted to match the number of nodes. In addition, the number of
cores is set to two considering performance and stability.

Input data and method

Public data (2006.csv, 678 MB) from the American Statistical Association (ASA) were employed for an objective
evaluation®. These data include flight arrival and departure information for every commercial aircraft operating
in the United States between October 1987 and April 5, 2008. We created datasets up to 32 GB (i.e., from 1 GB
to 32 GB) to investigate the performance trends and 2 TB for terabyte-scale experiments. We did not manipulate
the data and only appended the file to reach the desired size. Representative benchmarks, such as WordCount,
TeraGen/TeraSort, Grep, Pi computation, and TestDFSIO, were performed five times each with Hadoop and
Spark. The variability across runs is presented using 95% confidence intervals in all corresponding figures. The
microSD and NVMe SSD were employed to explore the influence of the storage media performance. In addition,
the benchmarks were assessed using various cluster sizes by varying the cluster node count from one to eight.

Scientific Reports|  (2026) 16:4486 | https://doi.org/10.1038/s41598-025-34623-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

mapred-site.xml Value

yarn.app.mapreduce.am.resource.mb 1536 (default)

yarn.app.mapreduce.am.resource.cpu-vcores | 1 (default)

mapreduce.map.memory.mb 1024 (default)
mapreduce.reduce.memory.mb 1024 (default)
mapreduce.map.cpu.vcores 1 (default)
mapreduce.reduce.cpu.vcores 1 (default)
mapreduce.job.reduces 2
hdfs-site.xml Value
dfs.replication 1
/hdfs/
namenode
(microSD) or
dfs.namenode.name.dir /mnt/
nvme/hdfs/
namenode
(SSD)
/hdfs/
datanode
(microSD) or
dfs.namenode.data.dir /mnt/
nvme/hdfs/
datanode
(SSD)
yarn-site.xml Value
yarn.nodemanager.resource.memory-mb 8192 (default)
yarn.nodemanager.resource.cpu-vcores 8 (default)
yarn.scheduler.minimum-allocation-mb 1024 (default)
yarn.scheduler.maximum-allocation-mb 4096 (default)

yarn.scheduler.minimum-allocation-vcores | 1 (default)

yarn.scheduler.maximum-allocation-vcores | 32 (default)

yarn.nodemanager.vmem-pmem-ratio 2.1 (default)

Table 9. Hadoop configurations.

spark-defaults.conf Value

spark.master yarn

spark.executor.instances | 1,2, 4 or 8

spark.executor.cores 2

Table 10. Spark configurations.

Experimental results and analyses

WordCount

WordCount calculates the frequency of each word. Hadoop splits the input data into multiple blocks and performs
map operations on each block in parallel. The map operation reads the input data and generates intermediate
data (i.e., key (word) and value (count) pairs). After the map phase, Hadoop performs a shuffling step to send
the mappers’ intermediate (key, value) pairs to the Reducers. The reducer takes the list of values associated with
each key, aggregates these values, and produces the result.

Spark transforms the input data into a resilient distributed dataset (RDD) and splits each line into words to
create a collection of words. The data are distributed across multiple worker nodes, and each worker processes
them in parallel. Spark uses the map operation of the RDD to convert each word into a key-value pair of the
form (word, 1). Finally, the reduceByKey operation aggregates the values for the same key (i.e., the same word).

Table 11 presents the intermediate data volume written to storage for the Hadoop and Spark WordCount
benchmarks, offering insight into the workload characteristics of WordCount. The intermediate data were
measured using the trim command (fstrim in Linux) supported by the OS. Section Discussion discusses the
effects of the trim command further. WordCount generates intermediate data during the map phase. With
32 GB of input data, Hadoop and Spark produced 126.2 GB (3.94x) and 20 GB (0.63 x) respectively of the
intermediate data. Spark processes the data in memory, resulting in significantly less intermediate data than
Hadoop. Generating a large volume of intermediate data suggests that the performance depends more on the
storage and network performance. In Fig. 2, the network consumption of Hadoop is noticeably higher than that
of Spark under the WordCount benchmark because the intermediate data in each node are transferred to the
node with reducers.
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Datasize | 1GB |2GB |4GB |8GB | 16 GB | 32 GB
Hadoop | 1.8 3.6 10.5 | 252 | 583 126.2
Spark 1.3 21 34 57 11.1 20

Table 11. Intermediate data volume (GB) generated under the Hadoop and Spark WordCount benchmarks on
RPi 5B cluster.
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worker nodes.
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Fig. 3. Execution time for the Hadoop and Spark WordCount benchmarks with 16 GB of data on the RPi 5B
cluster.

Figure 3 presents the total execution time of the WordCount benchmark on the RPi 5B cluster. As the node
count increases, each execution time decreases for Hadoop and Spark. In addition, the NVMe SSD performs
noticeably faster than the microSD (particularly under the Hadoop WordCount) because it generates significantly
more intermediate data than Spark WordCount. Exceptional I/O performance of the NVMe SSD influences the
Hadoop WordCount performance. For instance, the SSD performs faster than the microSD by an average of
2.25x and 1.98x under a single node and two nodes, respectively.

Tables S24 and S25 present the experimental results of WordCount on Hadoop and Spark with diverse
configurations. As the data size increases from 1 to 32 GB, the total execution time also increases almost linearly.
Similarly, as the node count doubles, WordCount for both Hadoop and Spark improves by an average of 1.57
and 1.78 x, respectively.

TeraGen and TeraSort

The TeraSort benchmark sorts large datasets as quickly as possible. This benchmark consists of three primary
components: TeraGen, TeraSort, and TeraValidate. TeraGen generates random data, and TeraSort rearranges the
generated data. Finally, TeraValidate verifies that the sorting was performed correctly.
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Hadoop | 199 |208.8 | 198.9 | 268.5 | 91.9 152.3
Spark 484.3 | 277.1 | 353.5 | 551.5 | 326.1 | 366.2

Table 12. Intermediate data volume (MB) generated on the Hadoop and Spark TeraGen benchmarks on RPi
5B cluster.
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Fig. 4. Data throughput received by each node when running the TeraGen benchmark on an RPi 5B cluster
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Fig. 5. Execution time for the Hadoop and Spark TeraGen benchmarks with a 16GB data size on the RPi 5B
cluster.

TeraGen: Hadoop TeraGen randomly generates data records comprising unique keys and values during
the map phase. Then, each mapper directly writes the data to the HDFS (no reduce phase is required). Spark
TeraGen creates an empty RDD with the specified number of partitions, determines the amount of data to
generate in each partition, and generates random data. As in Table 12, the workload of TeraGen generates almost
no intermediate data because it only needs to write to the storage media. Therefore, as shown in Fig. 4, no data
are transferred between nodes during the reduce phase.

Figure 5 presents the total execution time for the TeraGen benchmark. The difference in performance
between the microSD and SSD was more pronounced because the TeraGen consists entirely of write workloads.
Under Spark WordCount benchmark with 16 GB of data on a single node, the performance gap between the
microSD and SSD was 1.1X, whereas it was 2.66 x for TeraGen. TeraGen must write data to the storage media;
thus, it does not benefit from an in-memory processing mechanism. Therefore, as the data size increases, their
performance gap also increases. Table S26 and Table S27 demonstrate this. For example, performance gap
between SSD and microSD increases from 1.02x (1 GB) to 3.01x (32 GB) under Hadoop TeraGen.

TeraSort: Hadoop TeraSort sorts the data created by TeraGen. Mappers read input data blocks and convert
them into key-value pairs (intermediate data). During the shuffle and sort phase, the data are sorted by keys.
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Datasize | 1GB |2GB |4GB |8GB | 16 GB | 32 GB
Hadoop | 1.6 3 9.2 24.1 |55.5 134.3
Spark 1.4 2.8 4.9 9.4 17.6 344

Table 13. Intermediate data volume (GB) generated during the Hadoop and Spark TeraSort benchmarks on
RPi 5B cluster.
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Fig. 7. Execution time for the Hadoop and Spark TeraSort benchmarks with a 16GB data size on the RPi 5B
cluster.

Finally, reducers generate the sorted final output. Spark reads the data in RDD form, redistributes the data into
a new number of partitions, and sorts it by keys in each partition.

Table 13 presents the intermediate volume of data for Hadoop and Spark TeraSort. Similar to WordCount, a
significant amount of intermediate data was observed. Notably, Hadoop generated 4.2 intermediate data for
input data. TeraSort generated more intermediate data than WordCount. In Fig. 6, Hadoop TeraSort intermediate
data were transferred to the nodes designated as reducers with a high network consumption. In contrast, the
intermediate data for Spark TeraSort were continuously transferred between nodes after reading data.

Figure 7 presents the total execution time for Hadoop and Spark TeraSort. Tables S28 and S29 provide
detailed TeraSort experimental results across different configurations. The performance discrepancy is most
significant between the microSD and NVMe SSD in TeraSort compared with other benchmarks, as shown by
the difference in I/O wait in Fig. 8. For instance, Spark TeraSort has a 2.59 x performance gap on a single node
with 32 GB. In contrast, Spark WordCount has only a 1.1 x performance gap because TeraSort generates more
intermediate data and has the same output data size as the input data size. Thus, TeraSort writes an even larger
volume of data to storage than WordCount, accounting for the differences.
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Datasize | 1GB |2GB |4GB [8GB |16GB |32GB
Hadoop |329.7 | 3289 |324.5 | 304.5 | 2929 |275.3
Spark 147.5 | 323.6 | 2635 | 340.1 | 514.6 |265.8
Table 14. Intermediate data volume (MB) generated under the Hadoop and Spark Grep benchmarks on RPi
5B cluster.
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Fig. 9. Network consumption for each node under Grep benchmark on an RPi 5B cluster with four worker
nodes.

Grep

The Grep benchmark evaluates the performance of determining regular expressions or string patterns in
extensive data. Hadoop Grep reads the input files and searches each line for the specified pattern during the map
phase. The matched lines are transformed into intermediate data as key-value pairs. These intermediate data
are passed to the reducer and stored in the final output file. Spark Grep reads the input file to create an RDD.
Then, the filter operation checks each line for the specified pattern and filters out only matching lines. Finally,
the results are saved to a file.

In Table 14, only the filtered data are written as intermediate data. Thus, the volume of intermediate data
is minimal, meaning the amount of data transferred over the network is also small; hence, the duration of
communication between nodes is relatively short (Fig. 9). Consequently, Grep is less affected by storage
performance than WordCount or TeraSort.

Figure 10 illustrates the total execution time of the Hadoop and Spark Grep benchmarks. Interestingly,
performance gap between the SSD and microSD in Spark is greater than that in Hadoop. The final results
of Hadoop Grep correspond to the number of matching lines, whereas Spark Grep stores the content of the
matching lines as the final results. Thus, the performance difference is 1.16 x (in Hadoop) and 2.27 x on a single
node with 16 GB of data.
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Fig. 10. Execution time for the Hadoop and Spark Grep benchmarks with a 16GB data size on the RPi 5B
cluster.

Platform Intermediate data
Hadoop (100 maps 10K samples) | 115.4
Spark (10K samples) 19.7

Table 15. Intermediate data volume (MB) generated for the Hadoop and Spark Pi computation benchmarks
on RPi 5B cluster.

Tables S30 and S31 present the Grep benchmark results for Hadoop and Spark. The performance gap between
the SSD and microSD decreases as the node count increases because the data volume each node processes is
gradually reduced. For a small data size (i.e., 1 or 2 GB), the performance does not improve as the number of
nodes increases in Spark because the network data transfer time is required. Even before the SSD is not fully
utilized, search processing with a small data size quickly completes.

Pi computation

The Pi computation benchmark measures the performance of calculating Pi (7) on a distributed system. This
benchmark typically applies probabilistic algorithms, such as the Monte Carlo method, to estimate the value
of Pi. The benchmark focuses on pure computational performance rather than data input and output, which is
well-suited for testing the CPU capabilities of a system. Hadoop and Spark employ the Monte Carlo method to
estimate the Pi value. The Monte Carlo method generates many random samples and applies a statistical analysis
to approximate the complex mathematical problem.

The Pi computation sets up a circle inscribed within a square and generates numerous random points in the
square. These 2points have (x, y) coordinates, each chosen randomly in the square bounds. The equation for a
circle, 2% + y° < r2, is checked to determine each point (x, y) exists inside the circle. Finally, the number of
points inside the circle and the total number of points are counted, and these values are used to estimate Pi.
Hadoop and Spark generate the assigned points in the map phase and determine whether the points are inside
the circle. In the reduce phase, Hadoop and Spark aggregate the number of points calculated by each mapper or
partition to estimate Pi. Table 15 and Fig. 11 reveal that the Pi computation has a high computational workload;
thus, minimal intermediate data are generated, and very few data are transferred between nodes.

In Tables 16 and 17, for the Pi computation benchmark, we employed 100 maps that each use 10,000 samples
per map for Hadoop and 10,000 samples for Spark. Figure 12 shows the Pi benchmark results for Hadoop
and Spark on the RPi 5B cluster. This benchmark is totally CPU-intensive; hence, there is little difference in
performance for each storage media, less than 1.06 x. As the number of nodes increases, the performance also
improves accordingly due to the total CPU count increment.

TestDFSIO
The benchmark TestDFSIO evaluates the I/O performance of the HDFS, primarily testing read and write
operations. The TestDFSIO write operation creates files of a given size and writes data to the HDFS. Users can
specify the file size and count. The benchmark measures the performance of writing data to the file system by
creating the specified number of files. The TestDFSIO read operation reads the data from the files stored in the
HDEFS. The operation measures the read performance when the files are distributed across multiple nodes.

This benchmark is performed on the RPi 5B cluster with eight nodes, using 10 files. File sizes vary from 1 to
32 GB. Three primary performance metrics, throughput, average I/O rate, and execution time, are measured to
evaluate the cluster I/O performance. If the throughput is lower than the average I/O rate, it indicates that the
overhead, such as the network and CPU, affects the overall benchmark execution process.
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Fig. 11. Data throughput received by each node when running the Pi computation benchmark on an RPi 5B
cluster with 4 worker nodes.

Configurations Storage media | 1 node | 2 nodes | 4 nodes | 8 nodes
microSD 249 132 78 50
SSD 246 131 76 49

100 maps 10K samples

Table 16. Hadoop Pi computation benchmark results (seconds) on the RPi 5B cluster.

Configurations | Storage media | 1 node | 2 nodes | 4 nodes | 8 nodes
microSD 318 169 101 74
SSD 303 168 97 70

10K Samples

Table 17. Spark Pi computation benchmark results (seconds) on the RPi 5B cluster.
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Fig. 12. Execution time for the Hadoop and Spark Pi computation benchmarks on the RPi 5B cluster.

Tables 18 and 19 present TestDFSIO performance results of Hadoop and Spark. As the data size increases,
the performance gap (i.e., the execution time difference) between the microSD and NVMe SSD also increases
by an average of up to 2x at 32 GB. Regarding the relationship between the throughput and average 1/O rate,
Hadoop and Spark displayed similar values for writes. This means that no bottlenecks occur in the cluster when
writing data. For reads, the throughput and average I/O values were similar under the microSD, whereas the
performance gap noticeably increased to 2.38x for Hadoop and 2 x for Spark under the NVMe SSD with a data
size of 32 GB. This result indicates that other performance bottlenecks exist in the cluster. For networks, none of
the benchmarks used even one-tenth of the 1 Gbps network bandwidth.

However, for all benchmarks, the microSD exhibited a very high I/O wait percentage, whereas the NVMe
SSD had a very low I/O wait (e.g., see Fig. 8). Hence, the SSD was fully used by the CPU, indicating that the
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Throughput Avg. 1/0O rate Execution time
Operation | Data size | microSD | SSD | microSD | SSD microSD | SSD
1GB 29.74 49.29 | 32.87 6191 |77.82 60.65
2GB 26.04 37.97 | 27.03 59.44 | 124.27 113.84
4GB 24.89 37.37 | 25.14 55.64 |212.75 167.58
Read 8 GB 21.19 33.36 | 21.66 89.68 | 494.36 419.4
16 GB 24.58 48.18 | 24.81 115.16 | 773.14 589.92
32GB 23.1 38.74 | 23.13 92.23 1,537.96 | 1,212.82
1GB 7.16 11.81 | 7.18 12.06 | 178.48 131.6
2GB 7.49 12.01 | 7.96 12.45 |363.94 241.76
Write 4GB 7.29 10.37 | 7.58 10.59 | 734.5 478.73
8 GB 6.6 12.08 | 6.78 12.14 | 1,440.29 | 771.72
16 GB 6.86 11.77 | 7.25 12.08 |3,048.15 |1,656.88
32GB 7.34 11.94 | 8.96 12.08 |6,283.87 | 3,093.66

Table 18. Hadoop TestDFSIO benchmark results on eight nodes in the RPi 5B cluster, including the
throughput (MB/s), average I/O rate (MB/s), and execution time (seconds).

Throughput Avg. I/O rate Execution time
Operation | Data size | microSD | SSD microSD | SSD microSD | SSD
1GB 56.02 60.14 | 70.92 116.92 | 46.8 45.28
2GB 42.01 9496 | 43.92 239.97 | 78.95 65.95
4GB 36.09 125.52 | 37.66 274.1 149.39 95.38
Read 8 GB 32 79.97 | 32.51 208.22 | 305.6 221.79
16 GB 2991 158.03 | 30.2 301.07 | 601.2 260.59
32GB 28.51 161.64 | 29.36 322.84 | 1,341.77 | 607.53
1GB 10.16 13.05 |10.7 13.38 | 132.12 100.83
2GB 9.74 1293 9.9 1296 |259.5 177.49
Write 4GB 8.99 12.97 [9.09 13.01 |501.17 343.48
8 GB 8.87 11.96 |891 11.97 | 994.33 712.62
16 GB 8.71 11.85 |8.76 11.86 |2,053.88 | 1,424.45
32GB 9.41 11.76 | 11.25 11.76 |5,490.01 |2,832.31

Table 19. Spark TestDFSIO results on the 8 nodes RPi 5B cluster, consisting of throughput (MB/s), average
I/O rate (MB/s), and execution time (seconds) values.

difference between throughput and average I/O rate is caused by the CPU. Therefore, when adopting a fast
SSD as the storage media, better CPU performance accelerates big data processing further. Section Discussion
discusses overclocking the CPU in more detail.

Raspberry Pi 4B Cluster vs. 5B Cluster

The individual performance of the RPi 4B and 5B was evaluated in Section Individual Raspberry Pi performance.
This section explores how individual node performance influences cluster performance. An RPi 4B cluster of five
nodes (one master and four worker nodes) was built with the same settings as in the RPi 5B cluster. The microSD
(Samsung PRO Plus) was adopted as the storage media because RPi 4B initially provided only a microSD slot.
For a fair evaluation, we employed a newly upgraded RPi 4B with more memory (8 GB) and a more powerful
CPU (1.8 GHz) than the originally released RPi 4B with up to 4 GB of RAM and a 1.5 GHz CPU.

Tables S32 and S33 list the results of the WordCount benchmark on the RPi 4B and 5B clusters. The
performance gap between the RPi 4B and 5B clusters ranges from 2.2 x to 3.86x under Hadoop, and from 1.85x
to 2.33x under Spark. Each cluster-level performance gap noticeably increases, considering that the individual
CPU performance difference corresponds to an average of 1.74x because the CPU performance significantly
influences overall storage I/O performance as well as computing capability (Table 6).

Figure 13 indicates the total execution time of the RPi 4B and 5B clusters under Hadoop and Spark
WordCount. As the node count increases, the performance gap between the RPi 4B and 5B clusters widens
under Hadoop compared to Spark because Hadoop WordCount generates more I/O operations, implying that
the storage performance is more crucial to Hadoop.

RPi 5B cluster vs. Desktop computer
This section compares the RPi 5B cluster to a desktop computer in terms of big data processing performance
and power efficiency. Table 20 lists the specifications of the desktop computer, a modern (not old) and powerful
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Fig. 13. Execution time for the Hadoop and Spark WordCount benchmarks with a 16GB data size on the RPi
4B and RPi 5B Clusters.

Desktop computer RPi5B

Intel i5-14500 ARM Cortex-A76
CPU

@ 4.5 GHz (14 cores) @ 2.4 GHz (4 cores)
Hyper threading | 8 out of 14 cores No support
RAM 32 GB DDR5 8 GB LPDDR4X
Ethernet RTL8125 2.5 GbE 1 GbE RJ45 Jack
S . SK Hynix GOLD P31 500 GB M.2 SSD (PCle

torage media

3.0 x 4)

PCle PCle 4.0 (16 GT/s) X 4 | PCle 3.0 (8 GT/s) x 1

Table 20. Specifications of the desktop computer and RPi 5B.
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Fig. 14. Execution time for the Hadoop and Spark benchmarks with 32 GB of data on single-node, eight-node
RPi 5B clusters, and a desktop computer.

computer at a current price point of about $1,000. Unlike RPi 5B, which uses a single lane of the PCle interface,
this computer provides four PCle lanes. Thus, this computer demonstrates unparalleled I/O performance with
an average of 3.52x faster sequential reads and 3.35x faster sequential writes with a 16 MB record size (Table
S34).

Figure 14 depicts the performance of the Hadoop and Spark benchmarks with 32 GB of data on a singe
node RPi 5B, eight-node RPi 5B cluster, and a desktop computer. Under the Hadoop benchmark, the desktop
computer tends to perform better under I/O-intensive workloads because it vastly benefits from the exceptional
SSD 1/O performance due to the four PCle lanes. For instance, the computer performed an average of
1.37x (WordCount), 1.06 X (TeraGen), and 1.36x (TeraSort) better than the RPi 5B cluster. In contrast, the RPi
5B cluster performed better under CPU-intensive workloads by taking advantage of a higher CPU core count (32
cores in the cluster): 1.37x (Grep) and 1.04x (Pi). In Spark, the RPi 5B cluster can benefit from the abundant
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Platform | Cluster WordCount | TeraGen | TeraSort | Grep | Pi
Desktop 112.7 120 110.8 120 100
Hadoop
8 X RPi5B | 64.52 62.5 80 76.33 | 76.2
Desktop 112.3 143.9 109.8 85.5 | 84.7
Spark
8 X RPi5B | 69.93 64.2 84.75 51.81 | 76.75

Table 21. Total power consumption (watts) on eight-node RPi 5B cluster and a desktop PC for each
benchmark.

Record | Read | Write | Read Write
Storage media PCle | size (seq.) | (seq.) | (rand.) | (rand.)

4 KB 154.97 | 112.47 | 64.18 141.00
2.0 512 KB | 426.60 | 399.35 | 405.31 |402.73
16 MB | 446.50 | 417.15 | 447.39 | 413.44
4KB 202.23 | 133.73 | 69.45 174.00
3.0 512KB | 797.46 | 742.19 | 717.90 | 751.40
16 MB | 869.47 | 814.13 | 872.12 | 801.67

SK Hynix GOLD P31

Table 22. SSD I/O performance (MB/s) comparison for PCIe 2.0 and 3.0 on RPi 5B.

memory space (64 GB of RAM) of the cluster in addition to the total CPU core count. Thus, Spark performed
more competitively, comparable to the latest powerful computer. If the next generation RPi has a more improved
I/O performance by increasing the PCle lane count or upgrading the PCle version, this eight-node SBC cluster
is expected to defeat this single desktop computer under every workload.

Power consumption was also measured for the five benchmarks (Table 21). The eight-node RPi 5B cluster
consumed an average of 1.52x and 1.71 x less power under Hadoop and Spark, respectively, than the desktop
computer. Table S35 shows the results of performance per watt for each benchmark between the desktop
computer and the RPi 5B cluster. Performance was derived from the throughput per second based on size and
execution time. Performance per watt was calculated as follows:

Size (GB)/Execution time (s)
Power Consumption (W)

Performance per watt =

For the performance per watt, the cluster achieved up to 2.52 x better power efficiency than the desktop computer.

Discussion
This section discusses various challenges affecting RPi 5B performance. Further, this section offers suggestions
and insight into the potential performance of future RPi models.

PCle Version: 2.0 vs. 3.0
Initially, RPi 5B supported PCle 2.0 by default. Though PCle 3.0 is not officially certified by the RPi Foundation,
it is easily enabled with boot configuration settings by adding dtparam=nvme to /boot/firmware/config.txt to
enable the PCle interface, and adding dtparam=pciexI_gen=3 below it to switch the default from PCle 2.0 to
3.0. To investigate the effect of PCle versions, storage performance was measured using iozone. Theoretically,
PCle 2.0 and 3.0 provide a bandwidth of 5 GT/s (500 MB/s) and 8 GT/s (about 985 MB/s) per lane, respectively.
Table 22 presents the sequential read performance of the NVMe SSD at 446.5 MB/s (PCle 2.0) and 869.47
MB/s (PCle 3.0), respectively. Considering the internal protocol overhead of the SSD, each performance appears
very reasonable. However, Hadoop TeraSort (1.01x) and Spark TeraSort (1.06x) benchmarks did not display
a noticeable performance discrepancy between PCle 2.0 and 3.0, considering 1.95x performance difference,
primarily due to the CPU bottleneck of RPi. For verification, the CPU usage of Hadoop TeraSort was measured
and reached nearly 100%. This suggests that a future RPi with a more powerful CPU would be able to utilize
powerful storage media fully, such as the NVMe SSD. Section CPU Overclocking addresses this problem by
overclocking the CPU of RPi 5B.

TRIM command
For each identical experiment, a difference in performance of up to 3x was observed. This problem originates
from the characteristics of the NAND flash memory-based SSD. Unlike HDDs, SSDs cannot directly overwrite
data®®3. A garbage collection process is required to reclaim invalid (i.e., garbage) data blocks, leading to
additional read and write operations and degrading performance significantly'*32,

Even if the data are deleted from the file system, the SSD does not recognize that the data were deleted. The
OS provides a special mechanism, called a trim command, for SSDs to resolve this problem. The trim command
informs the SSD that the data blocks were deleted from the system, allowing the SSD to be aware of unnecessary
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Threads | 1 2 4 8 16
2.4 GHz | 24,699.51 | 49,408.40 | 98,699.69 | 98,741.23 | 98,690.85
3.0 GHz | 30,920.29 | 61,652.75 | 122,976.61 | 123,040.20 | 123,274.62

Table 23. CPU performance (events per second) at 2.4 and 3.0 GHz on RPi 5B.
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Fig. 15. Results of CPU temperature changes in idle and stress modes at 2.4 and 3.0 GHz.

(i.e., deleted) blocks in advance to improve performance. In Ubuntu 23.10, the fstrim command is set to be called
once a week by default.

Tables 11 and 13 in Section Raspberry Pi cluster performance present the characteristics of the WordCount
and TeraSort workloads, generating numerous intermediate data exceeding 100 GB for the 32 GB of input data.
Intermediate data are deleted after the corresponding job completes, generating a significant volume of garbage
data in the SSD for each experiment. Thus, the SSD triggers an expensive garbage collection operation when the
SSD reaches a predefined threshold. Therefore, the trim command, such as fstrim in Linux, must be executed for
each benchmark with the SSD storage media to ensure that the SSD remains in an optimal state. Otherwise, the
SSD may perform inconsistently in each benchmark execution.

CPU overclocking

The CPU of RPi 5 can be overclocked from 2.4 to 3.0 GHz by adding arm_freq=3000 and over_voltage_
delta=50000 to /boot/firmware/config.txt. However, not all RPi 5B models can be successfully overclocked. Based
on our experiments, only four out of nine overclocked RPi 5B models were operated correctly; the others failed
to boot because of the silicon lottery?>.

The overclocked CPU performance was measured using sysbench, and finding an average improvement of
1.25x (Table 23). The CPU temperature is also crucial for a stable CPU performance. The RPi 5B model requires
an active cooling system, such as a cooling fan. A 400% CPU load was assigned for 1 hour (stress ~cpu 4 -timeout
3600), and the temperature change was monitored. Figure 15 presents the CPU temperature over time. At idle,
the temperature remained around an average of 47.87°C. At 2.4 GHz, the temperature increased to an average of
58.43°C degrees, and at 3.0 GHz, it averaged 72.9°C (Fig. 15).

In Table S36, all benchmarks performed better at 3.0 GHz. However, as illustrated in Fig. 16, the NVMe
SSD performance improved more than that of the microSD by an average of up to 1.11x. As mentioned in
Section PCle Version: 2.0 vs. 3.0, the NVMe SSD was not fully utilized due to the CPU performance bottleneck.
The overclocked CPU can provide improved CPU capabilities so that it can better employ the powerful NVMe
SSD. Consequently, both the Hadoop and Spark benchmarks benefit from improved CPU performance. In
contrast, a slow storage media, such as microSD, benefits less from this overclocked CPU because a significantly
longer CPU I/O wait time is a primary performance bottleneck, originating from the lower I/O performance of
the microSD card (Fig. 8).

Power Supply
We neglect the importance of the power supply; however, a sufficient power supply is essential. The RPi
Foundation sells a dedicated power supply (27 W) for the RPi 5B. To investigate the influence of various power
supplies, three typical power supplies (12.5, 15, and 27 W) were connected to a single RPi 5B. Using the 12.5 W
power supply, the RPi 5B shut down while processing big data. The 15 W power supply successfully ran each
benchmark, and each benchmark with a 3.0 GHz CPU clock performed noticeably lower than those using 2.4
GHz (Fig. 17). Moreover, all benchmarks with a 15 W power supply did not perform as well as those with a 27
W power supply, especially for all Hadoop benchmarks (Table S37).

To solve this problem, we investigated each CPU clock over time for each power supply. Figure 18 illustrates
a CPU clock speed under the Hadoop TeraSort benchmark. Very unstable (i.e., fluctuating) CPU clock speeds
were observed under the 15 W power supply because of the power shortage for the overclocked CPU (Fig. 18-
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(a)), degrading performance. Conversely, the 27 W power supply provides sufficient power to the CPU so that
the CPU clocks are very stable over time at full speed (Fig. 18-(b)).

Massive dataset and parallel processing

This section explores the possibility of using RPi 5B clusters to process terabyte-scale big data. To verify this
possibility, two extensive data sizes (1 and 2 TB) were employed, and three benchmarks (WordCount, TeraSort,
and Grep) were evaluated on the RPi 5B cluster. For 1 TB processing, WordCount took 8,662 seconds, TeraSort
took 5,311 seconds, and Grep took 773 seconds. For 2 TB processing, Grep took 1,582 seconds. However,
WordCount and TeraSort failed to complete because of the insufficient total storage space (4 TB) in the cluster,
not because of any computational capability problem. Both WordCount and TeraSort produce a significant
volume of intermediate data, whereas Grep generates fewer intermediate data. Thus, if more storage space were
provided to the RPi 5B cluster, WordCount and TeraSort benchmarks would successfully finish, with an expected
2x longer execution time similar to the Grep benchmark.

Under the real-world big data processing environment, multiple job application processing is crucial. To
evaluate the current processing capabilities of the RPi 5B cluster, we ran four Spark benchmarks (i.e., WordCount,
TeraSort, Grep, and Pi) simultaneously with a data size of 4 GB. The cluster successfully finished all jobs, taking
134 seconds. For a more objective comparison, the same four benchmarks were executed sequentially, taking 254
seconds. Parallel processing achieved an average of 1.9 faster execution time.

In summary, if more RPi 5B nodes were added to the cluster, it would allow a much larger dataset and more
concurrent applications to be processed successfully, verifying the scalability and practicability of the RPi 5B
cluster for terabyte-scale big data processing.

Conclusion

This paper extensively examined the possibilities of SBCs for real-world big data processing by adopting the
most powerful, latest generation RPi 5B. The RPi 5B model is the first generation of RPi to provide a PCle
interface that enables powerful modern storage media, such as the NVMe SSD, to directly connect to the SBC
node via an external HAT board. Thus, the I/O performance of the storage media in RPi 5B has dramatically
improved compared to the fastest microSD card, by an average of 9.88x for sequential reads and 15.6x for
sequential writes. Further, the importance of the PCle interface lies in the potential for expansion, including a
faster network card or more powerful GPU installation. The CPU computational capability of RPi 5B has also
noticeably improved by an average of up to 2.03x at the cost of 1.4X more power consumption compared to
RPi 4B.

We built an RPi 5B cluster with one master node and eight worker nodes and evaluated six representative
Hadoop and Spark benchmarks (WordCount, TeraGen, TeraSort, Grep, Pi computation, and TestDFSIO) to
assess the cluster performance. A faster storage device, such as the NVMe SSD, was employed to evaluate the
storage media performance influence on the SBC Hadoop cluster, improving the overall cluster performance by
up to 3.43 x compared to the current fastest microSD card. The latest RPi 5B cluster performed up to 3.86 x faster
than the RPi 4B cluster under the Hadoop benchmarks. The performance gap at the cluster-level is noticeably
more significant than that of the CPU, considering that the individual CPU performance gap between RPi 5B
and 4B (with 8 GB of RAM) is an average of 1.74x each because the CPU performance also significantly affects
the overall storage I/O performance and computing capability. The RPi 5B cluster with eight worker nodes
performs comparably to the desktop computer. For instance, the desktop computer tends to perform better under
I/O-intensive workloads due to the 4x higher throughput of the NVMe SSD. In contrast, the RPi 5B cluster
performed better under CPU-intensive workloads by utilizing more CPU cores. Regarding the performance-
per-watt, the power efficiency of the cluster was up to 2.52x better than that of the desktop computer.

In addition, this paper discusses the diverse challenges and makes suggestions. The I/O bottleneck problem of
the RPi was finally resolved using the PCle interface of RPi 5B. However, based on this study, although the CPU
of RPi 5B was upgraded noticeably (2.03x faster than the previous RPis), the CPU performance has become
a bottleneck to exploiting the high performance storage media (i.e., NVMe SSD) fully. The CPU overclocking
experiments verified this limitation. We also found that a sufficient power supply in the RPi is essential for stable,
full-speed performance, preventing CPU clock fluctuations. Finally, the RPi 5B Hadoop cluster demonstrated
its practicality in real-world big data fields by effectively and efficiently processing terabytes of data. The data
size is no longer a limitation because RPi 5B exhibited very stable performance without system hangs, unlike the
previous generations.

In summary, the PCle interface of the RPi 5B is exceptionally beneficial. Previous generation RPis had critical
limits for real-world big data processing, primarily due to the storage I/O bottleneck or insufficient memory
space. Other I/O interfaces, such as microSD card slots or USB ports, cannot provide sufficient I/O throughput to
accommodate massive volumes of data appropriately. The RPi 5B model also meets another critical requirement
for cluster—scalability. The RPi 5B Hadoop cluster effectively expanded the processing capabilities in terms of
computing and storage as the RPi 5B node count increased (i.e., scale-out). Significant advancements combined
with the powerful RPi 5B and a fast PCle-based SSD offer ’real’ possibilities in small, terabyte-scale big data
processing fields.

Despite the considerable improvements, several limitations emerged under I/O-intensive workloads. To
process larger volumes of data more quickly, the following aspects need to be improved. First, CPU performance
and core count need to be increased. Switching the storage media from microSD to SSD resolved the previous
I/0 bottleneck, but under I/O-intensive workloads the CPU itself started to act as the bottleneck. Second, the
SSD is not being utilized to its full potential. If a higher PCle version were adopted or additional lanes were
provided, it would be possible to extract even more performance from the storage device. Third, memory
capacity is a limiting factor. In this experiment, an RPi 5B with 8 GB of memory was used. In Spark, increasing
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data volume can lead to a higher rate of disk swapping when memory is insufficient. A larger memory capacity
would likely yield better Spark benchmark results. Through this experiment, we found that SBCs still have
significant potential for further advancement in the field of big data processing.

Data availability
The datasets generated and/or analyzed during the current study are available in the Harvard Dataverse reposi-
tory, https://doi.org/10.7910/DVN/HG7NV7.
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