
Strengthening disaster preparedness and health security in Niger state, Nigeria through a WHO STAR-based multi-hazard risk assessment

Received: 8 October 2025

Accepted: 30 December 2025

Published online: 16 January 2026

Cite this article as: Awoyale O.D., Jimoh A., Dede A. *et al.* Strengthening disaster preparedness and health security in Niger state, Nigeria through a WHO STAR-based multi-hazard risk assessment. *Sci Rep* (2025). <https://doi.org/10.1038/s41598-025-34702-z>

Oladayo David Awoyale, Akolade Jimoh, Anne Dede, Catherine Nabiem Akpen, Abiodun Ogunniyi, Dennis Paul Dogo, Patrick B. Gimba, Idris Ibrahim, Rauf Rauf, Arab Mustafa, Grace Erekosima, Nimatullah Ibrahim, Sunday Atobatele, Sidney Sampson & Hilary I. Okagbue

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Strengthening Disaster Preparedness and Health Security in Niger State, Nigeria through a WHO STAR-Based Multi-Hazard Risk Assessment

Oladayo David Awoyale^{1 *}, Akolade Jimoh¹, Anne Dede¹, Catherine Nabiem Akpen², Abiodun Ogunniyi³, Dennis Paul Dogo³, Patrick B. Gimba⁴, Idris Ibrahim⁴, Rauf Rauf², Arab Mustafa¹, Grace Erekosima¹, Nimatullah Ibrahim¹, Sunday Atobatele¹, Sidney Sampson¹, Hilary I. Okagbue^{2, 5 #}

¹Sydani Initiative for International Development, Sydani Group, Abuja, Nigeria

²Sydani Institute for Research and Innovation, Sydani Group, Abuja, Nigeria

³Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria

⁴Ministry of Secondary and Tertiary Health, Minna, Niger State, Nigeria

⁵Department of Mathematics, Covenant University, Ota, Nigeria

*Corresponding Author 1: oladayo.awoyale@sydani.org

#Corresponding Author 2: tobyhilly@yahoo.com

Abstract

22 Niger State in central Nigeria faces a range of natural, biological, and security
23 hazards. To inform preparedness and health security planning, a multi-hazard
24 risk assessment was conducted using WHO's Strategic Tool for Assessing Risks
25 (STAR), this is one of the first applications of WHO STAR at a state level in
26 Nigeria. A cross-sectional study was conducted using the WHO STAR.
27 Stakeholders involved identified hazards across natural, biological,
28 technological, and societal domains through review of surveillance, disaster, and
29 meteorological data. Hazards were scored for likelihood, impact, vulnerability,
30 and coping capacity, with composite risk indices used to rank and categorize
31 them. Priority hazards were further analysed for seasonality and geographic

32 distribution, and findings validated through consensus. Eighteen major hazards
33 were identified, spanning biological, environmental, and societal. Seven hazards
34 emerged as very high risk, notably flooding, banditry/kidnapping. Six were high
35 risk (e.g. fire outbreaks), four moderate (e.g. acute flaccid paralysis), and one low
36 risk (diphtheria). Six hazards showed clear seasonal patterns. Priority hazards
37 were further examined for geographic distribution and validated through
38 consensus. The STAR assessment produced an evidence-based risk profile
39 highlighting flooding, banditry/kidnapping, boat mishaps, cholera, and
40 rain/windstorms as the most critical hazards. Actionable recommendations were
41 developed to support preparedness, mitigation, and response efforts across
42 sectors. The findings offer a structured basis for strengthening disaster risk
43 governance and can inform the development and implementation of Niger state's
44 emergency preparedness plans.

45 **Keywords:** Disaster risk reduction, preparedness, hazards, WHO STAR, Niger
46 state.

47

48 **Introduction**

49 Disaster risk reduction (DRR) is a key component of sustainable development and
50 global health security, which seeks to reduce the negative impacts of hazards on
51 people, infrastructure, and economies [1]. Global frameworks, such as the Sendai
52 Framework for Disaster Risk Reduction 2015-2030, highlight four priorities:
53 understanding disaster risk, strengthening disaster risk governance, investing in
54 disaster risk reduction for resilience, and enhancing disaster preparedness for
55 effective response and “build back better” in recovery, rehabilitation, and
56 reconstruction [2]. These priorities are interrelated, and their success depends
57 on governments and communities' abilities to identify and address the core
58 causes of vulnerability while increasing resilience across sectors [1]. In low- and
59 middle-income countries (LMICs), disasters frequently worsen already existing
60 socioeconomic inequities, impair health systems, and disrupt livelihoods [3]. The
61 impacts of these disasters are made worse by weak infrastructure, insufficient
62 early warning systems, and insufficient inter-sectoral coordination [4]. As a
63 result, the capacity to undertake thorough multi-hazard risk assessments, which
64 incorporate several hazard categories and their interconnections, is crucial for
65 decreasing disaster-related losses [5].

66 Nigeria presents a multifaceted hazard landscape that includes climate,
67 environmental, biological, and human-caused threats. Environmental risks such
68 as flooding, drought, erosion, and windstorms interact with biological risks such
69 as Lassa fever, cholera, and cerebrospinal meningitis (CSM), creating
70 multilayered risks [6]. Niger State, in Nigeria's North Central region, is
71 particularly vulnerable due to its wide river systems, agricultural economy, and
72 different biological zones [7]. The Niger and Kaduna rivers, as well as other
73 tributaries, increase flood risk, especially during the peak rainy season [8]. Rain-
74 fed agriculture leaves the local economy extremely vulnerable to seasonal
75 variation and major weather disasters [9]. Furthermore, the state's porous
76 security environment exacerbates displacement, reduces agricultural output, and
77 impedes disaster response efforts [10]. Despite this vulnerability, existing DRR
78 programs in the state have frequently been hazard-specific, missing the
79 comprehensive viewpoint required for holistic preparedness.

80 A comprehensive multi-hazard risk assessment framework is required for
81 identifying priority risks, mapping their spatial and temporal patterns, and
82 efficiently allocating resources [11]. Traditional risk assessments in Nigeria have
83 frequently concentrated on single hazards, ignoring the cumulative and
84 cascading consequences that result when numerous hazards occur concurrently
85 or sequentially [12]. For example, severe rains may cause floods, facilitating
86 cholera outbreaks while also hindering access to hospitals and markets [13]. The
87 World Health Organization's Strategic Tool for Assessing Risks (WHO STAR)
88 offers a structured approach for integrating hazard identification, likelihood
89 estimation, impact assessment, and capacity evaluation into a unified procedure.
90 STAR stresses inclusivity, multi-sectoral collaboration, and evidence-based
91 prioritizing, making it well-suited for subnational contexts with varying hazard
92 profiles. It has been used in both high- and low-resource contexts to aid in
93 planning for epidemics, natural disasters, and complex situations [14].

94 Despite Niger State's exposure to a variety of risks, no previously published study
95 has used the STAR methodology to create an integrated risk assessment for the
96 state. Previous studies have focused on epidemiological surveillance for certain
97 diseases [15, 16] or environmental hazard mapping in flood-prone areas [8, 17].
98 These walled approaches impede decision-makers' ability to plan for concurrent
99 risks or coordinate responses across sectors. Furthermore, the absence of a
100 unified, evidence-based hazard prioritization process impedes resource

101 allocation and undermines resilience-building. By applying the STAR tool, this
102 study seeks to fill that gap, providing a replicable model for other Nigerian states
103 and similar contexts. The assessment engages stakeholders from multiple
104 ministries, departments, and agencies (MDAs) in Niger state, alongside technical
105 partners, thereby fostering inter-sectoral ownership of both the process and its
106 outputs.

107 The overall aim of this study was to improve disaster risk management in Niger
108 state using the WHO STAR tool, hence increasing preparedness, resilience, and
109 evidence-based decision-making. Specific objectives were to:

- 110 1. Conduct a full multi-hazard risk assessment in Niger state, Nigeria, using the
111 WHO STAR tool to identify potential hazards and vulnerabilities.
- 112 2. Prioritize hazards based on their likelihood and impact to guide resource
113 allocation and planning.
- 114 3. Provide recommendations to support preparedness planning based on
115 prioritized hazards.

116 **Methods**

117 ***Study Design***

118 This study employed a cross-sectional design using the World Health
119 Organization (WHO) Strategic Tool for Assessing Risks (STAR) to identify,
120 analyse, and prioritize hazards across biological and non-biological domains. The
121 STAR tool is a standardized framework designed to help identify, analyse, and
122 prioritize multi-hazard risks [14]. The tool uses both quantitative and qualitative
123 methodologies to assess hazards based on their chance of occurrence, possible
124 impact, susceptibility of impacted populations, and institutions' ability to cope
125 and respond. The assessment was carried out throughout a five-day workshop in
126 Minna, Niger State, from May 13 to 17, 2025, organized by Sydani group in
127 partnership with Nigeria Centre for Disease Control and Prevention (NCDC) with
128 technical support from the Niger state Ministry of Health and the Niger state
129 Emergency Management Agency.

130 ***Description of the WHO STAR And its Components***

131 The World Health Organization's (WHO) Strategic Tool for Assessing Risks
132 (STAR) is a comprehensive risk assessment system that helps identify, analyse,

133 and prioritize potential hazards and risks. The tool offers a systematic and
134 standardized risk assessment approach, allowing for the development of
135 evidence-based risk reduction and management solutions.

136 The study used the WHO STAR to conduct a complete multi-hazard risk
137 assessment in Niger State, Nigeria. The tool was used to help identify, analyse,
138 and prioritize potential hazards and risks in the state. The WHO STAR consists of
139 several key components including:

140 1. Hazard Identification: Participants listed potential hazards likely to trigger a
141 state-level response across four domains: natural, biological, technological, and
142 societal. These hazards were identified by stakeholders, literature review,
143 available data, and expert opinions.

144 2. Risk Analysis: A standardized matrix was used to assess the likelihood and
145 potential impact of identified hazards using historical occurrence, predictive
146 data, and expert judgment.

147 3. Risk Prioritization: The study team selected detected hazards based on
148 likelihood, potential impact for public health, infrastructure, economy, and
149 environment, to focus on the most critical ones.

150 4. Capacity Assessment: Policy, institutional, and technical risk management
151 capacities were evaluated to identify gaps.

152 5. Risk Management Options: Risk management options were identified and
153 assessed, including preventive, preparedness, response, and recovery measures.
154 The acquired data were analysed and interpreted using the WHO STAR tool's
155 standard framework. The risk assessment results were utilized to help develop
156 suggestions for risk reduction and management measures in Niger State.

157 The detailed methodological workflow is presented in **Figure 1**.

158 ***The STAR Methodology***

159 The STAR methodology guides countries and subnational levels through a
160 structured process for understanding and prioritizing public health risks. The tool
161 relies on multi sectoral expertise, facilitated discussions, and a standardized
162 scoring criteria. The steps summarize how the methodology works, aligned with
163 the six steps of carrying out a strategic risk assessment.

164 *Step One: Identification of the Hazards*

165 The first step is to identify the hazards that may affect or have affected the
 166 country/state. During the workshop, participants validated and refined the list of
 167 hazards by drawing on their knowledge of past events, sector-specific
 168 information, and data available. This helps ensure that all relevant hazards
 169 (natural, biological, technological, and societal) are included before scoring
 170 begins.

171 *Step Two: Evaluation of Likelihood*

172 Once the hazards have been identified and confirmed, stakeholders worked in
 173 small groups to score how likely each of the mentioned hazards occur. The
 174 scoring is guided by predefined criteria in the STAR tool, supported by historical
 175 data, routine surveillance, and expert judgement. Group discussions help ensure
 176 that likelihood scores reflect shared understanding rather than individual
 177 opinions (**Table 1**).

178 **Table 1: Overview of likelihood assessment categories in the STAR**
 179 **approach**

Level	Description
Almost certain	It is likely that the hazard will occur in the next 12 months in most circumstances (e.g., probability of 95% or more).
Very likely	It is likely that the hazard will occur in the next 12 months in most circumstances (e.g., a probability of between 70% and 94%).
Likely	The hazard could occur in the next 12 months some of the time (e.g., a probability of between 30% and 69%).
Unlikely	The hazard could occur in the next 12 months some of the time (e.g., a probability of between 5% and 29%).
Very unlikely	The hazard could occur in the next 12 months under exceptional circumstances (e.g., a probability of less than 5%).

181 *Step Three: Determination of the Impact*

182 After scoring the likelihood, participants then assessed the potential impact
 183 associated with each hazard. This includes considering population exposure,
 184 health system capacity, infrastructure, social conditions, and the ability of
 185 services to cope if the hazard occurs. Severity, vulnerability, and coping ability
 186 are factors which are evaluated independently, and the findings are then used to
 187 determine the hazard's projected impact. The vulnerability criteria in the STAR
 188 worksheets structure these discussions, and groups assign scores based on
 189 consensus. After the severity, vulnerability and coping capacity scores are
 190 determined, the tool automatically calculates the impact score using the formula:

191
$$\text{Impact Score} = \frac{\text{Severity} + \text{vulnerability} + \text{coping capacity}}{3}$$

192 The impact scoring criteria in the STAR methodology is presented in **Table 2**.

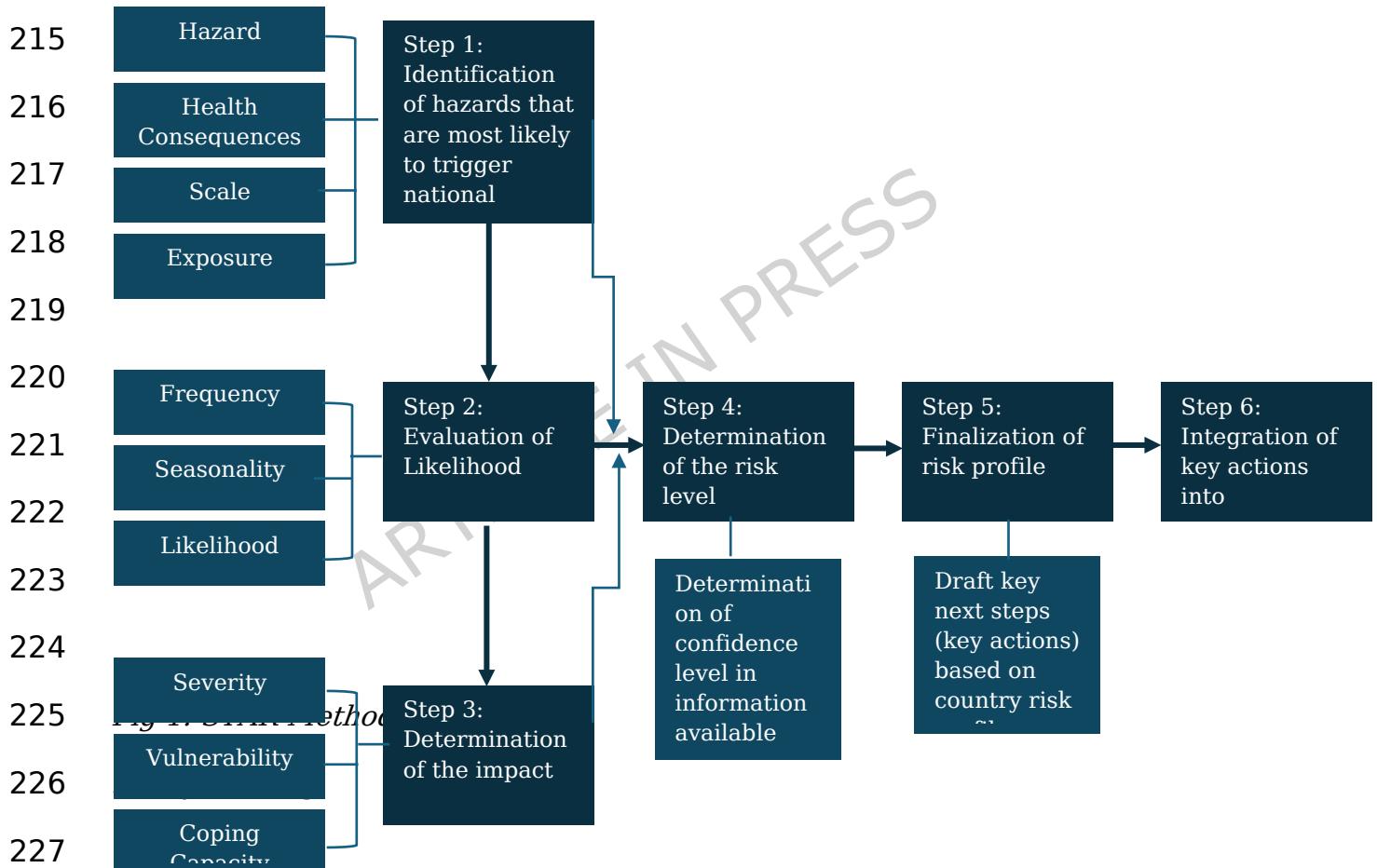
193 **Table 2: Impact Scoring Criteria in the STAR methodology**

Score	Impact Score
1	Negligible
2	Minor
3	Moderate
4	Severe
5	Critical

194

195 *Step Four: Determination of the Risk Level*

196 The likelihood and impact scores are entered into the STAR tool (a digital
 197 software), which automatically calculates risk levels. This generates a clear risk
 198 matrix showing which hazards fall into very high, high, medium, or low
 199 categories. The tool also produces visual outputs such as charts and diagrams
 200 that help participants interpret the results.


201 *Step Five: Finalization of the Risk Profile*

202 The scoring outputs are reviewed with participants to confirm accuracy. Any
 203 inconsistencies or unclear scores are revisited through discussions. This
 204 validation step ensures that the final risk profile truly reflects the collective
 205 judgement of the subject matter expert stakeholders. The finalized profile
 206 provides a structured picture of priority hazards and the factors driving their risk
 207 levels.

208 *Step Six: Integration of Key Actions into Plans and Operations*

209 The final step involves using the prioritized hazards to guide preparedness and
 210 planning. Participants identify the actions that need to be integrated into
 211 emergency plans, sectoral strategies, and routine operations. This helps
 212 governments and partners align resources, strengthen systems, and address the
 213 risks that pose the greatest threat to the population.

214

228

229 *Fig 1: STAR Methodology Steps*

230

231 **Study Setting**

232 Niger State, located in north-central Nigeria, is the country's largest state by
233 landmass (76,363 km²) and has a population of over six million people scattered
234 throughout 25 Local Government Areas [18]. Its terrain contains significant
235 rivers such as Niger and Kaduna, which makes it prone to flooding, while its
236 agrarian economy is heavily reliant on rainfall, making it subject to droughts and
237 climate variability. Furthermore, recurring insecurity (banditry and kidnapping)
238 and illness outbreaks (cholera, Lassa fever, and meningitis) heighten the state's
239 risk profile [19].

240 The STAR assessment followed a structured timeline with a pre workshop
241 engagement two months before workshop. This involved advocacy visits to key
242 ministries and agencies, initial stakeholder identification, and planning meetings.
243 Identification of eligible institutions, confirmation of representatives, and
244 development of a sector balanced participant list was done one month to the
245 workshop. The workshop was held over a 5-day period from 13th to 17th of
246 May, 2025.

247 *Stakeholder mapping*

248 Stakeholders were purposively selected by the research team using the WHO
249 STAR methodology to ensure broad representations from sectors relevant to
250 disaster risk management [14]. Stakeholders were selected from 38 Ministries,
251 Departments, and Agencies (MDAs) within Niger state, complemented by
252 national level experts from the Nigeria Centre for Disease Control (NCDC),
253 development partners, civil society organizations, and technical experts.
254 Selection criteria included institutional mandates and operational experience in
255 disaster risk management, health, environment, or security; at least three years
256 of operational or technical experience; direct involvement in emergency
257 response, surveillance or risk management, and ability to provide sector specific
258 perspectives during the assessment. In total the workshop had over 50
259 participants which included experts from the following organizations:

266 Security and law enforcement: Police, Civil Defence Corps

267 Infrastructure and planning: Ministry of Works, Urban Development

268 Authorities

269 Civil society organizations and community-based groups

270 See **Supplementary Material 1** for details. This multidisciplinary composition

271 ensured coverage of all major hazard domains.

272 **Workshop preparation and training of Participants**

273 Before the workshop, pre-workshop advocacy visits and planning meetings were

274 held with the Niger State Ministry of Secondary and Tertiary Health, Niger State

275 Ministry of Primary Health Care, Ministry of Environment, the Nigeria Centre for

276 Disease Control and Prevention (NCDC), and partners such as WHO and UNICEF.

277 These discussions ensured political support, established goals, and aligned

278 expectations.

279 Before data collection, participants got training on the STAR approach. The

280 training lasted half a day and included presentations on hazard typologies, the

281 STAR assessment process, and rating criteria for likelihood, impact,

282 susceptibility, and coping capacity. Practical activities and moderated group

283 discussions were utilized to increase familiarity with the tool and ensure uniform

284 application of scoring standards. The training was facilitated by technical officers

285 from Sydani Group and the NCDC who had previous experience applying STAR

286 at other subnationals. The training ensured that participants had a shared

287 understanding of the assessment framework and scoring expectations.

288

289 **Data collection procedures**

290 The assessment combined primary and secondary data sources.

291 *Primary data source*

292 A structured plenary and breakout group discussion was held with stakeholders

293 to identify and characterize hazards. Participants were grouped into three

294 groups, depending on the sectoral mandates (such as health, environment, and

295 security). Technical facilitators from Sydani group and NCDC provided expert

296 guidance on hazard classification and scoring.

297 During hazard identification, participants listed hazards likely to trigger a state
298 level response based on past experiences and available evidence. Facilitators
299 guided discussions to ensure clarity and confirm alignment with STAR definitions.
300 The groups rated the likelihood of each based on historical occurrence, frequency
301 patterns, and available surveillance or disaster records. Next, they scored impact
302 severity using STAR criteria that consider consequences for health, essential
303 services, infrastructure, and economy. After likelihood and impact scoring,
304 participants assessed vulnerability which reflects the degree to which
305 populations or systems can be harmed. Finally, coping capacity was scored by
306 evaluating existing preparedness measures, emergency response structures, and
307 institutional capabilities.

308 All scoring activities were moderated to ensure consistency and adherence to
309 STAR guidelines. After group scoring, the facilitators used iterative review and
310 voting to create consensus on hazards rankings and criteria. Results were
311 reviewed in plenary to reach an agreement. Discrepancies were resolved through
312 further discussion and reference to documented evidence.

313 *Secondary data source*

314 Secondary data provided context and supported evidence for scoring. A review
315 of relevant studies, academic literature, and official data on risks in Niger state
316 was conducted by a team of public health analysts, epidemiologists, and
317 environmental specialists who were part of the workshop participants. The
318 review covered the period from 2020 to 2024 and included national surveillance
319 data, state disaster records, meteorological reports, and peer reviewed
320 publications. Analysing this historical disaster data from state emergency
321 records, disease surveillance systems, and meteorological agencies helped
322 determine hazard frequency and seasonality. These secondary data were
323 obtained from the following sources;

- 324 □ Historical disaster records from NSEMA, NEMA, and the Niger state
325 ministry of health
- 326 □ Surveillance data from the Nigeria Centre for Disease Control (NCDC)
- 327 □ Meteorological data from the Nigerian Meteorological Agency (NiMET)
- 328 □ Published literature on disaster risk and resilience in Nigeria
- 329 □ UN, WHO, and IFRC reports on hazards and emergencies in Nigeria and
330 West Africa

331 The review team searched online databases such as PubMed, Google Scholar
332 using keywords related to flooding, cholera, drought, insecurity, and multi-hazard
333 risk.

334 ***Hazard Identification***

335 Participants brainstormed and reviewed documents to create an initial list of
336 hazards relevant to Niger State. The hazards were grouped into four STAR
337 domains:

338 □ Natural hazards (e.g., floods, drought, rainstorms, lightning).

339 □ Biological hazards (e.g., cholera, Lassa fever, meningitis, measles, Acute
340 flaccid paralysis).

341 □ Technological hazards (e.g., industrial accidents, road traffic crashes, boat
342 mishaps).

343 □ Societal/security hazards (e.g., armed banditry, kidnapping, communal
344 conflict).

345 A total of 18 hazards were identified for further analysis.

346 Each hazard was assessed along four dimensions;

347 1. Likelihood of occurrence: Probability that the hazard will occur in the future,
348 based on historical trends, surveillance data, and expert opinion. This was scored
349 on a 5-point scale (1=very unlikely, 5=very likely).

350 2. Impact severity: Potential consequences on health, livelihoods, infrastructure,
351 and governance. This was scored on a 5-point scale (1=negligible, 5=br/>352 catastrophic)

353 3. Vulnerability: Degree to which populations, systems, and sectors are
354 susceptible to harm, considering socio-economic conditions, environmental
355 exposure, and resilience factors. This was scored qualitatively and ranked.

356 4. Coping Capacity: The ability of state institutions, communities, and systems to
357 prevent, prepare for, and respond to the hazard. This was scored qualitatively
358 and ranked.

359 Scores for likelihood and impact were multiplied to generate a risk index for each
360 hazard. Hazards were then categorized into four priority categories: *very high*
361 *risk, high risk, moderate risk, and low risk.*

362 After individual scoring, facilitated plenary discussions were held to reach an
363 agreement. Hazards were put on a likelihood-impact matrix to help visualize
364 priority hazards. Vulnerability and coping capacity were then used to
365 contextualize the rankings. Hazards classified as very high risk were those with
366 both high probability and severe potential consequences, compounded by high
367 susceptibility and inadequate coping capacity.

368 To enhance operational relevance, hazards were further analysed for:

369 Seasonality: Participants mapped hazard occurrence against the calendar year,
370 producing a seasonal hazard calendar (e.g., flooding in July-September, cholera
371 peaks during the rainy season, meningitis in the dry season).

372 Geographic Distribution: Hazards were mapped by Local Government Areas
373 (LGAs), highlighting hotspots such as riverine LGAs (flooding, boat mishaps) and
374 northern LGAs (banditry).

375 The distribution and analysis of hazards in the evaluation were based on data at
376 the Local Government Area level, while the overall prioritizing was based on the
377 risk profile at the state level.

378 Draft findings were presented to stakeholders for validation, and discrepancies
379 were resolved through consensus, ensuring that the final prioritization reflected
380 both evidence and collective expertise.

381 ***Validation of Results***

382 At the end of the workshop, preliminary hazard rankings were presented to all
383 participants for review. Stakeholders confirmed that the results aligned with
384 available evidence and field realities, this served as a form of participant checking
385 and strengthened the validity of the assessment.

386 ***Data Analysis***

387 Microsoft Excel was used for data management and calculation of risk scores;
388 likelihood and impact scores were multiplied to create composite risk scores.
389 Descriptive statistics summarized hazard distribution, number of affected Local
390 Government Areas, and seasonal patterns. Seasonal calendars and risk matrices
391 were generated using STAR templates. In addition, qualitative notes from
392 discussions were thematically analyzed to provide context for hazard

393 classification, vulnerability patterns, and coping capacity. Results were
394 synthesized to produce an integrated risk profile for Niger state.

395 ***Quality Assurance***

396 Quality assurance measures included cross verification of data entries, facilitator
397 oversight during scoring sessions, alignment with STAR guidelines [14], and
398 assignment of confidence ratings for each hazard. To improve reliability, each
399 hazard scoring exercise was conducted in facilitated groups and validated during
400 plenary sessions. Facilitators cross-checked data entries against documented
401 evidence, and discrepancies were resolved through consensus. Confidence levels
402 for each hazard score were assigned (good, satisfactory, unsatisfactory) based on
403 data availability and quality.

404

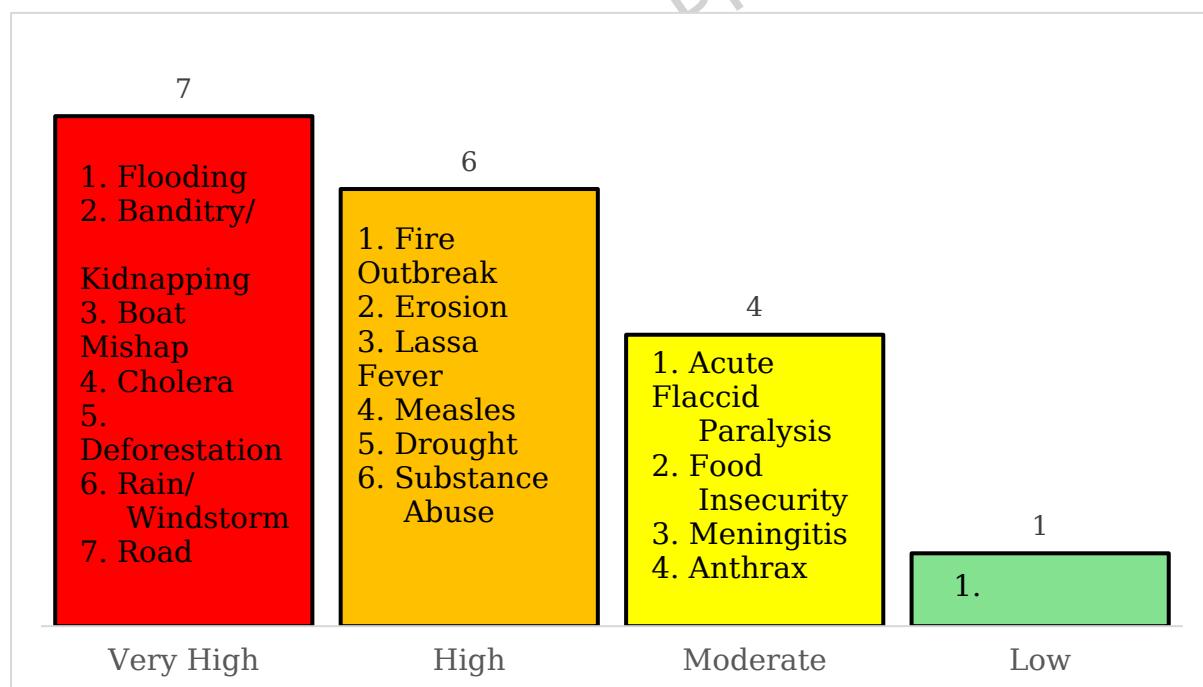
405

406

407

408 **Results**

409 ***Overview of Identified Hazards***


410 The multi-hazard risk assessment conducted in Niger State identified 18 hazards
411 across biological, environmental, technological, and security. These hazards were
412 selected following multi sectoral consultations, review of surveillance and
413 disaster records, and group consensus during the STAR workshop. These hazards
414 were carefully categorized using the WHO STAR technique based on their chance
415 of occurrence, impact, potential, and coping capacity. The study presented a
416 holistic view of hazards affecting the state and their distribution across different
417 local government areas (LGAs).

418 Available surveillance, meteorological, and disaster management reports
419 provided additional context for several of the priority hazards identified. Flooding
420 has consistently been one of the most widespread hazard in Niger state, affecting
421 an estimated 15 to 19 LGAs annually over the last five years, particularly those
422 along the Niger and Kaduna river. Cholera outbreaks have been recorded in at
423 least 8 to 12 LGAs each year, with seasonal peaks during the rainy season when
424 contamination of water is most pronounced. Security-related hazards, especially

425 banditry and kidnapping continue to drive significant population displacement,
 426 with several thousand persons affected annually, mainly in the northern LGAs
 427 that share borders with Kaduna, Zamfara, and Kebbi states. These descriptive
 428 patterns align with stakeholders assessments during the STAR workshop and
 429 helped inform the final prioritization of hazards.

430 ***Risk Classification of Hazards***

431 Using the STAR thresholds, hazards were classified into four risk categories.
 432 Seven hazards were classified as very high risk, six as high risk, four as moderate
 433 risk, and one as low risk. Flooding, banditry/kidnapping, boat disasters,
 434 cholera/acute watery diarrhoea, road traffic accidents, deforestation, and
 435 rain/windstorms were all considered very high risk. High-risk hazards included
 436 fires, Lassa fever, measles, drought, substance abuse, and erosion. Acute flaccid
 437 paralysis, meningitis, food insecurity, and anthrax were all classified as moderate
 438 risks, while diphtheria was considered a low risk. **Figure 2** shows the risk levels
 439 of the hazards identified. These hazards had a combination of high likelihood,
 440 severe impact, and limited coping capacity.

441

442 Fig 2: Risk Level of Hazard in Niger State, 2025

443

444 ***Geographic Distribution of Hazards***

445 The assessment also revealed significant regional groupings, which frequently
 446 aligned with natural factors, socioeconomic patterns, and security dynamics.
 447 Flooding affected 19 LGAs, primarily along the Niger and Kaduna rivers,
 448 including Agaie, Bida, Lapai, Lavun, and Mokwa. During the rainy season, these
 449 areas experience recurring flooding, affecting agriculture and settlements.
 450 Banditry/kidnapping was concentrated in nine LGAs (Borgu, Mariga, Mashegu,
 451 Rafi, Shiroro, Wushishi, Kontagora, Muya, and Paikoro), mostly in the north and
 452 northwest due to forested terrain and limited law enforcement presence. Boat
 453 mishaps were concentrated in six LGAs (Agwara, Borgu, Katcha, Mokwa, Shiroro,
 454 and Wushishi). Cholera outbreaks occurred in both urban and rural LGAs,
 455 indicating insufficient WASH infrastructure, while Gurara, Kontagora, Magama,
 456 Mokwa, Shiroro, and Wushishi experienced the most severe drought due to rain-
 457 fed agriculture and little irrigation infrastructure. (**Table 3**).

458
 459
 460
 461
 462
 463

464 *Table 3: Geographical areas affected by hazards in Niger State, 2025*

Hazard Category	Hazard	Risk Level	Affected Areas (LGAs)
Biological	Cholera/Acute Watery Diarrhea	Very High	Agaie, Agwara, Bida, Bosso, Chanchaga, Edati, Gurara, Katcha, Kontagora, Lapai, Lavun, Magama, Mariga, Mashegu, Mokwa, Muya, Paikoro, Rafi, Rijau, Shiroro, Suleja, Tafa, Wushishi
	Lassa Fever	High	Bida, Suleja, Tafa
	Measles	High	Agaie, Agwara, Bida, Bosso, Chanchaga, Edati, Gbako, Gurara, Katcha, Kontagora, Lapai, Lavun, Magama, Mariga, Mashegu, Mokwa, Muya, Paikoro, Rafi, Rijau, Shiroro, Suleja, Tafa, Wushishi
	Meningitis	Moderate	Bida, Bosso, Chanchaga, Edati, Gbako, Gurara, Katcha, Kontagora, Lavun, Magama, Mokwa, Paikoro, Rijau, Suleja, Tafa
	Diphtheria	Low	Bida, Kontagora, Suleja, Tafa, Mariga

	Acute Paralysis	Flaccid	Moderate	Agaie, Agwara, Bida, Bosso, Chanchaga, Edati, Gbako, Gurara, Katcha, Kontagora, Lapai, Lavun, Magama, Mariga, Mashegu, Mokwa, Muya, Paikoro, Rafi, Rijau, Shiroro, Suleja, Tafa, Wushishi
Environmental	Flooding	Very High		Agaie, Bida, Borgu, Bosso, Chanchaga, Edati, Gbako, Katcha, Kontagora, Lapai, Lavun, Mariga, Mashegu, Mokwa, Rafi, Rijau, Shiroro, Suleja, Wushishi
	Drought	High		Gurara, Mokwa, Shiroro, Kontagora, Magama, Wushishi
	Erosion	High		Agaie, Bosso, Chanchaga, Katcha, Kontagora, Lapai, Mashegu, Mokwa, Tafa
	Rain/Windstorm	Very High		Agaie, Agwara, Bosso, Chanchaga, Gbako, Kontagora, Lapai, Lavun, Mariga, Mashegu, Mokwa, Paikoro, Rijau, Shiroro, Suleja, Wushishi
Security/ Societal	Banditry/Kidnapping	Very High		Borgu, Kontagora, Mariga, Mashegu, Muya, Paikoro, Rafi, Shiroro, Wushishi
	Substance Abuse	High		Chanchaga, Kontagora, Suleja, Mariga
Technological	Road Traffic Accidents	Very High		Agaie, Bida, Bosso, Chanchaga, Gurara, Kontagora, Lapai, Mokwa, Suleja
	Fire Outbreaks	High		Agaie, Bida, Borgu, Bosso, Chanchaga, Kontagora, Lapai, Mokwa, Rafi, Shiroro, Suleja
	Boat Mishaps	Very High		Agwara, Borgu, Katcha, Mokwa, Shiroro, Wushishi
Others	Deforestation	Very High		Edati, Lapai, Lavun, Mokwa, Wushishi
	Food Insecurity	Moderate		Agaie, Agwara, Bosso, Lavun, Magama, Rafi, Shiroro
	Anthrax	Moderate		Suleja

465

466 ***Seasonal Patterns of Hazards***

467 Seasonality analysis represented in **figure 3** revealed that certain hazards show
 468 predictable patterns; Flooding occurs between July and October, with start in
 469 June, and this is as a result of the high rainfall occurring in these months. Peak
 470 flooding months have the highest number of boat mishaps due to increased river
 471 traffic and hazardous navigation conditions. Cholera epidemics typically occur
 472 during the rainy season, peaking between June and September, and are generally
 473 linked to flooding caused by contaminated water, while droughts peak between
 474 June and November in years with delayed or unpredictable rainfall, affecting crop
 475 production and livestock productivity. For Rain/windstorms, they are more
 476 common in transitional months (May-June, September-October). Biological
 477 hazards such as measles cases occur during the dry season (December-March),
 478 when mobility increases and vaccine coverage gaps become more visible. These

479 seasonal variations were consistently highlighted during stakeholder discussions
 480 and aligned with historical surveillance and meteorological data. The seasonality
 481 of these hazards highlights opportunities for anticipatory action, such as pre-
 482 positioning supplies, scaling up public health messaging, and reinforcing early
 483 warning systems.

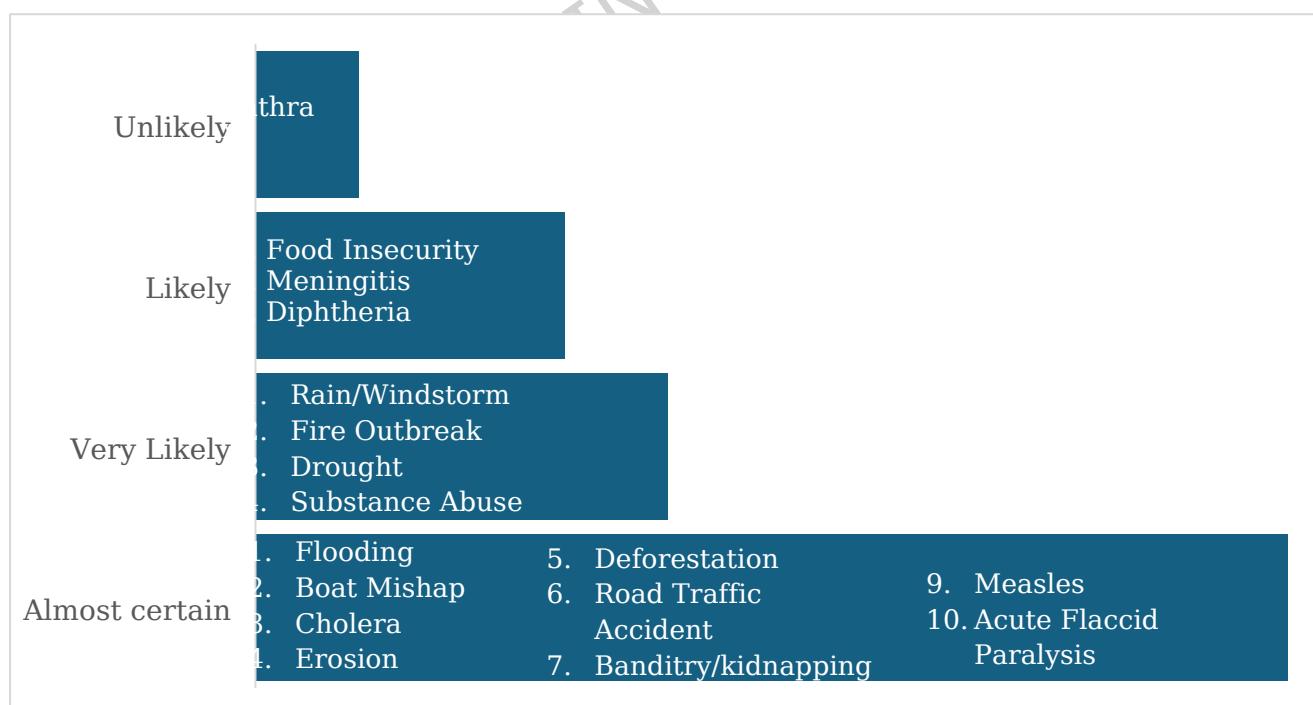
Key														
Seasonality		Not Seasonal	Lowest	Moderate	High	Peak								
SN	Specific Hazard	Risk Level	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	Flooding	Very High												
2	Banditry/Kidnapping	Very High												
3	Boat Mishap	Very High												
4	Cholera	Very High												
5	Deforestation	Very High												
6	Rain/wind Storm	Very High												
7	Road Traffic Accident	Very High												
8	Fire Outbreak	High												
9	Erosion	High												
10	Lassa Fever	High												
11	Measles	High												
12	Drought	High												
13	Substance Abuse	High												
14	Acute Flaccid Paralysis	Moderate												
15	Food Insecurity	Moderate												
16	Cerebrospinal Meningitis	Moderate												
17	Anthrax	Moderate												
18	Diphtheria	Low												

484

485 Fig 3: Niger State Hazards Risk Calendar, 2025 (generated by WHO STAR)

486

487 **Likelihood and Impact Scoring**


488 Impact and likelihood scores (**Figures 4 and 5**) varied across hazards. Flooding,
 489 banditry/kidnapping, cholera, and boat accidents had the highest likelihood
 490 scores, reflecting their frequent recurrence in the state. Flooding had significant
 491 repercussions, including loss of life, population displacement, and infrastructure
 492 destruction. Impact scores were highest for security threats, cholera, and boat
 493 mishaps due to their documented consequences on health, infrastructure,
 494 displacement, and essential services. These patterns are illustrated in the STAR

495 likelihood and impact matrix (**Figure 6**). Environmental hazards such as
 496 deforestation and erosion have long-term repercussions, leading to vulnerability
 497 rather than urgent emergencies.

498

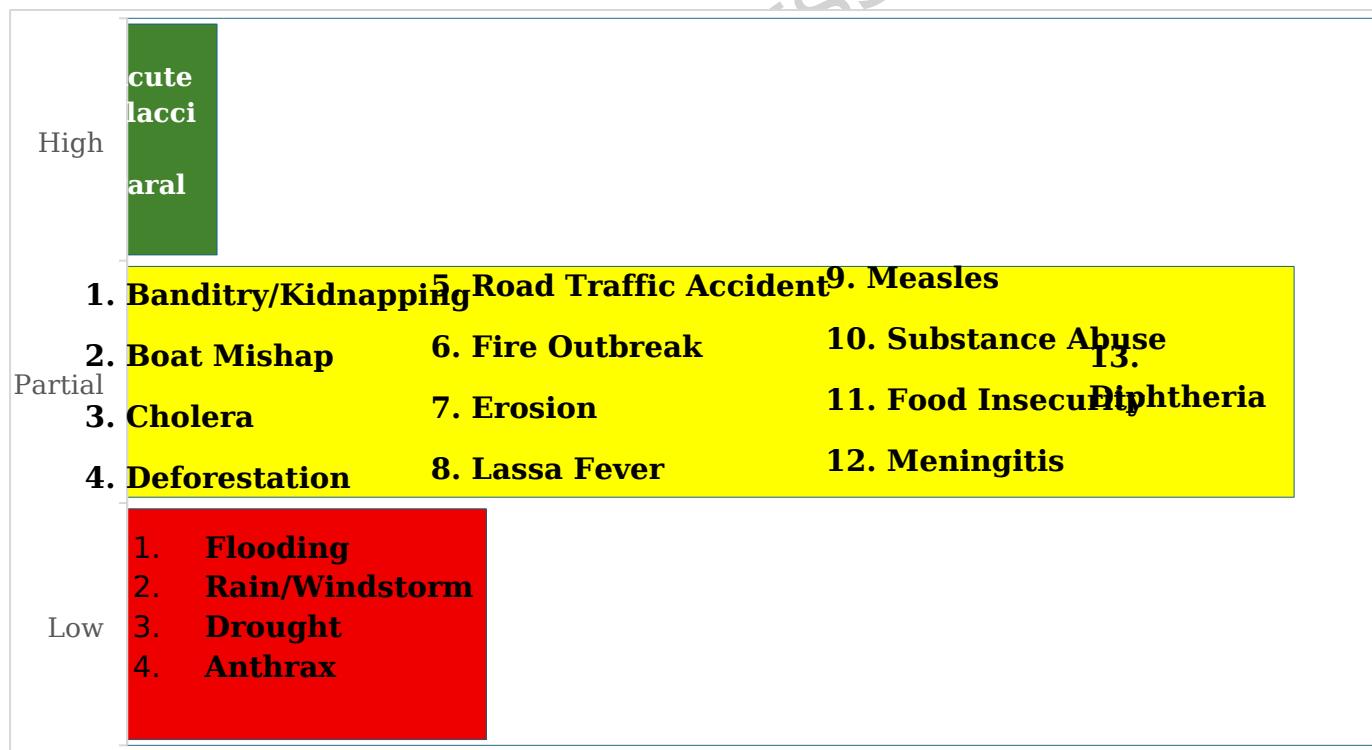
499 *Figure 1: Impact of Hazards in Niger State. 2025*

500

501 *Figure 2: Likelihood of occurrence of hazards in Niger State. 2025*

Key		Very Low	Low	Moderate	High	Very High
Impact		NIGER STATE RISK MATRIX				
Risk Level	Impact	Critical	Severe	Moderate	Minor	Negligible
					Rain/windstorm	Flooding
					Fire Outbreak	1.Banditry/Kidnapping 2.Boat Mishap 3.Cholera 4.Deforestation 5.Road Traffic Accident
				1.Food Insecurity 2.Cerebrospinal Meningitis	1.Drought 2.Substance Abuse	1.Erosion 2.Lassa Fever 3.Measles
				Diphtheria		Acute Flaccid Paralysis
502	Likelihood	Very Unlikely >	Unlikely >>	Likely >>>	Very Likely >>>>	Almost Certain >>>>>

503 *Figure 6: Risk Matrix of Hazards in Niger State. 2025 (generated by WHO STAR)*

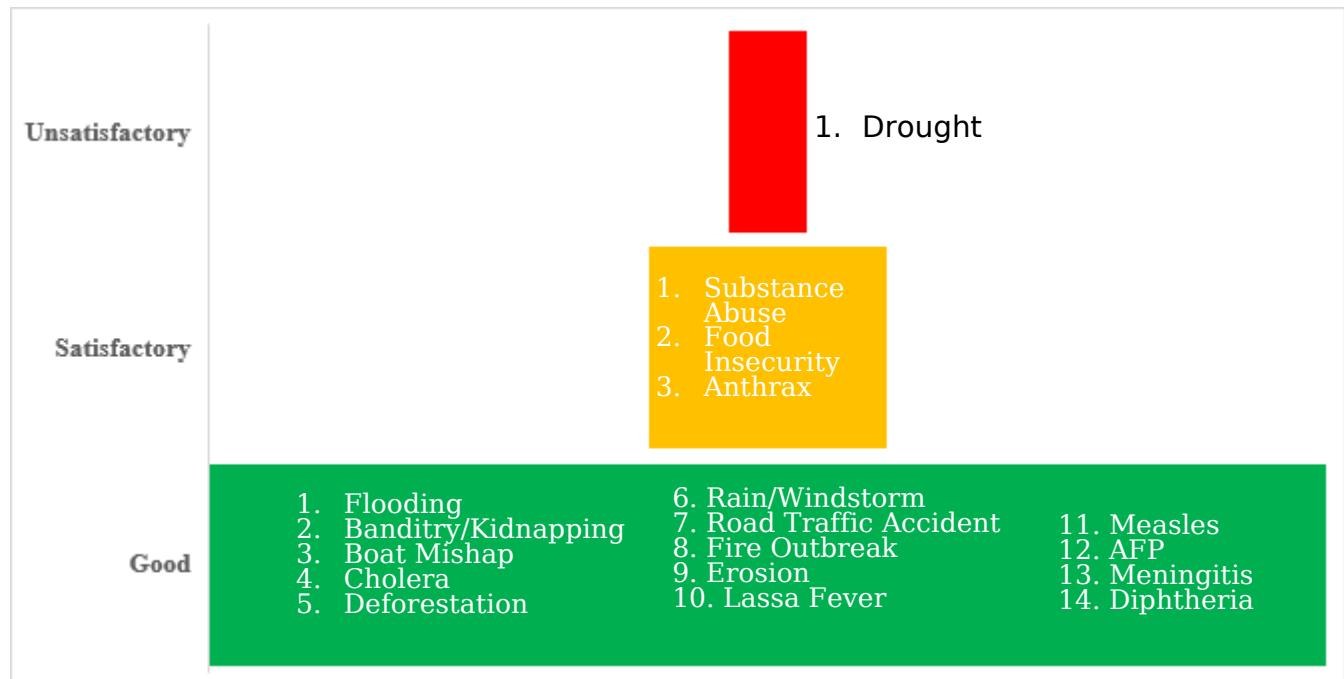

504

505 ***Vulnerability and Coping Capacity***

506 Vulnerability Patterns showed that rural and riverine areas were more vulnerable
 507 due to limited access to functional health services, poor road and transportation
 508 infrastructure, which causes delays in emergency response, strong reliance on
 509 climate-sensitive livelihoods, low literacy, and risk knowledge in some
 510 communities, which hinders preparedness efforts. Social vulnerability was
 511 worsened in conflict-affected LGAs, where insecurity restricted humanitarian
 512 access and displaced communities from arable land.

513 Coping capacity was also assessed to understand how communities cope with
 514 some of these hazards (**Figure 7**), it was rated low or partial for eleven of the
 515 eighteen hazards. Coping ability was limited for flooding, drought, and
 516 rain/windstorm due to under-resourced WASH services, inadequate drainage
 517 infrastructure, and gaps in emergency services. Fire outbreaks, erosion and

518 others have low reaction capability due to limited scale and coordination.
 519 However, established polio surveillance systems and vaccine efforts resulted in
 520 high capacity for acute flaccid paralysis. In most cases, institutional readiness
 521 was hindered by fragmented planning, inadequate inter-agency cooperation, and
 522 reliance on external donor support for response activities. High coping capacity
 523 means that although all coping mechanisms necessary for the hazard are present,
 524 they have never been evaluated in a simulated exercise or under real-world stress
 525 conditions, a moderate/partial coping capacity means there are some coping
 526 mechanisms that are necessary for the hazard, but their functioning and
 527 sustainability have not been guaranteed, for example, by being incorporated into
 528 the national health sector plan's operating plan with a reliable source of finance,
 529 and finally a low coping capacity means that human, material, strategic, and
 530 financial core coping capacities needed for the hazard are still at the
 531 developmental stage.
 532 Certain attributes have been attained and others have begun to be implemented.


533

534 *Figure 3: Coping capacity of Niger State to hazards. 2025*

535

536 **Confidence Ratings**

537 Confidence ratings for each hazards assessment ranged from good to
 538 unsatisfactory (figure 8). Data confidence ratings were generally high for hazards
 539 with established surveillance and reporting systems (e.g., cholera, AFP, and
 540 measles). However, hazards with limited documentation were rated as
 541 satisfactory, and drought confidence was low, owing to irregular meteorological
 542 records and inadequate integration of agricultural produce data into risk
 543 monitoring. These ratings are presented in **Figure 8**.

544

545 *Fig 8: Confidence Level of Data Source*

546

547 **Summary of Priority Hazards**

548 The combined analysis identified seven very high-risk hazards represented in
 549 **Supplementary Material 2** requiring urgent and ongoing preparedness efforts.
 550 These hazards were consistently supported by historical data, expert judgement,
 551 and geographical and seasonal patterns. Combining likelihood, impact,
 552 susceptibility, and coping capacity ratings, the following top five risks emerged
 553 as priority risks in Niger state: Flooding, banditry/kidnapping, boat mishaps,
 554 cholera/acute watery diarrhea, and rain/windstorms. These hazards not only had
 555 the highest overall risk, but they also showed cascading effects, with the ability
 556 to cause additional hazards and worsen disasters.

557 Finally, some cross-cutting findings were evident, for example, flooding
558 precipitated cholera outbreaks, drought leading to food insecurity, and insecurity
559 causing disease outbreak responses. Seasonal regularity of hazards presents
560 opportunities for early warning and proactive preparedness. It was also noticed
561 that community-level resilience remains underdeveloped, with most
562 preparedness actions occurring at the institutional level rather than at the
563 household level, and limited integration of health, environmental, and security
564 data into a single decision-making framework, resulting in sectoral silos.

565 **Discussion**

566 This study employed the WHO Strategic Tool for Assessing Risks (STAR) to
567 conduct the first comprehensive, state-level multi-hazard risk assessment in
568 Nigeria. A total of 18 hazards were identified, with seven categorized as
569 extremely high risk and six as high risk. Flooding, cholera, banditry/kidnapping,
570 road traffic accidents, and boat accidents ranked as the most dangerous hazards
571 to public health and safety. Several risks, including flooding, cholera, boat
572 accidents, and drought, exhibited strong seasonal patterns related to rainfall and
573 river dynamics. The geographic distribution showed two LGAs of concern,
574 riverine LGAs, which were particularly prone to flooding and boat accidents, and
575 northern LGAs, where insecurity from banditry and kidnapping was
576 concentrated.

577 Rural, riverine, and conflict-affected LGAs were the most vulnerable, with
578 inadequate coping capacity for environmental and security hazards. These
579 findings contribute to the study's goal of developing an actionable, evidence-
580 based risk profile that can guide Niger State's readiness, mitigation, and
581 response efforts.

582 The prevalence of floods in Niger State is consistent with patterns recorded in
583 other studies. Previous studies [20, 21, 22] have consistently identified floods as
584 an annual hazard with serious repercussions for agriculture, livelihoods, and
585 infrastructure. Floods frequently result in secondary health crises, most notably
586 cholera outbreaks, which have been observed in various communities in Niger
587 state [15, 23]. Our data support this link while also placing cholera in a larger
588 multi-hazard framework, emphasizing the importance of coordinated WASH and
589 flood management methods. The high ranking of insecurity, particularly banditry
590 and kidnapping, reflects national trends. According to reports from the United
591 Nations Development Programme (UNDP, 2023) and the Office for the
592 Coordination of Humanitarian Affairs (OCHA, 2023), rural violence is growing in
593 north-central Nigeria, undermining disaster preparedness and limiting
594 humanitarian access [24, 25]. Unlike most previous DRR evaluations, our study
595 formally incorporated insecurity into hazard prioritization, advancing the
596 discipline by illustrating how war and disaster risk are deeply intertwined.
597 Seasonal trends for cholera, boat mishaps, and drought are comparable with
598 epidemiological and meteorological literature from Nigeria and West Africa [26,
599 27]. Linking these seasonal peaks to individual LGAs gives operationally relevant

600 data for early warning and preparedness. In addition, the discovery of insufficient
601 coping capacity, particularly for drought and flooding, is consistent with findings
602 from the United Nations Office for Disaster Risk Reduction (2019), which
603 highlight inadequate contingency planning, poor inter-agency coordination, and
604 underfunded infrastructure in resource-limited settings [28].

605 The high-risk hazards found in Niger State are caused by a mix of environmental,
606 social, and structural factors. The state's geology, characterized by rivers and
607 floodplains, makes flooding unavoidable after heavy rains, and climate change
608 has increased rainfall variability, resulting in more frequent and severe floods
609 [29]. Urban flooding is worsened by inadequate drainage and waste
610 management, and cholera is fuelled by inadequate WASH facilities, unclean
611 water, and overcrowded living situations, especially in peri-urban areas [30,31].
612 Insecurity stems from larger national and regional crises such as porous borders,
613 inadequate law enforcement, the proliferation of firearms, and pervasive poverty,
614 all of which contribute to youth engagement in crime. This has caused
615 displacement, reduced access to healthcare, and disrupted agriculture [32]. Poor
616 infrastructure, ineffective traffic enforcement, and a lack of trauma treatment
617 capacity all contribute to road traffic accidents. These drivers demonstrate how
618 interrelated vulnerabilities form an ecosystem of overlapping risks that
619 overwhelm coping capacity.

620 Even though this assessment was carried out in a subnational level in Nigeria,
621 the findings are applicable outside the country and add to the larger international
622 conversations on multi-hazard risk assessment [33,34]. Flooding, drought,
623 cholera, and security-related displacement are among the key hazards found in
624 Niger state that are also acknowledged as serious risks in other low- and middle-
625 income countries in Africa, Asia, and Latin America [35,36,37,38,39]. These
626 risks are a reflection of global trends brought about by socio-economic
627 weaknesses, population expansion, climate change, and weak health systems.
628 Additionally, other countries looking to adapt global risk assessment techniques
629 can gain important insights from the subnational application of the WHO STAR
630 methodology in Nigeria. Many nations face comparable challenges related to
631 limited data availability, reliance on expert consensus, and multisectoral
632 coordination, making the lessons from this study relevant to similar contexts
633 worldwide [40]. By documenting how STAR was implemented in a low-resource
634 setting and demonstrating its potential to inform preparedness planning, this

635 study adds to emerging international evidence on practical approaches for
636 evaluating and prioritizing public health risks in vulnerable regions.

637 These findings have significant implications for policy, health systems, and
638 disaster preparedness. First, STAR-based prioritizing enables Niger State to shift
639 from reactive crisis management to evidence-based resource allocation, with a
640 focus on the hazards most likely to cause severe harm. Second, the obvious
641 seasonal patterns allow for proactive action, such as strengthening flood
642 defences before the rainy season, increasing WASH interventions ahead of the
643 cholera season, and maintaining boat safety precautions during peak travel
644 months. Third, by considering insecurity in hazard prioritization, this study
645 illustrates the importance of integrating disaster risk reduction and security
646 planning, encouraging collaboration among health agencies, emergency
647 management, and security forces. Fourth, the vulnerability of rural and riverine
648 populations need locally tailored, context-specific interventions: flood-prone
649 LGAs may require early warning systems and boat safety programs, whereas
650 drought-prone LGAs may benefit from climate-smart agriculture and water
651 storage systems. Finally, the assessment's participatory, multi-sectoral nature
652 demonstrates that collaborative planning is viable and might be institutionalized
653 as a permanent state-level disaster risk reduction platform.

654

655

656 **Strengths and Limitations**

657 A major strength of this study is its use of a standardized global tool, the WHO
658 STAR, at the subnational level, exhibiting methodological rigor while adjusting to
659 local realities. The participation of over 50 stakeholders from 38 departments and
660 organizations meant that the findings were founded on diverse expertise,
661 fostering consensus and local ownership. The process also revealed seasonal
662 hazard calendars and regional risk mapping, which are advances that improve
663 operational preparation. Furthermore, by combining health, security, and
664 environmental concerns into a single framework, the study produced a
665 comprehensive perspective rarely seen in Nigerian disaster risk reduction
666 literature.

667 Despite its strengths, the study has certain limitations that should be considered
668 when interpreting the findings. First, the use of a cross-sectional design means

669 that the analysis reflects hazard patterns at a single point in time, therefore, it
670 only offers a snapshot of hazard patterns. Hazards may fluctuate as a result of
671 climate change, insecurity, or population changes. Data gaps further reduce
672 precision for threats, including drought, substance addiction, food shortages,
673 emerging hazards, and evolving security dynamics may not be fully captured.
674 Second, the scoring process was mainly based on stakeholder perspectives,
675 which, while systematic, introduces subjectivity, even though confidence levels
676 were recorded to limit this, but bias is still possible. Hazards that are most
677 familiar, better documented, or frequently encountered may receive higher
678 attention than slow onset or chronic hazards with limited visibility. Third, the
679 assessment did not include a formal statistical test of scoring consistency.
680 Although extensive facilitation and consensus building were used to strengthen
681 objectivity, quantitative consistency metrics were not calculated. Finally, while
682 the findings are particularly relevant to Niger State, they may not be
683 generalizable without modification to other Nigerian states.

684

685 **Directions for Future Research**

686 Future research should conduct a longitudinal multi-hazard monitoring to detect
687 trends and shifts in hazard profiles over time and expand similar STAR-based
688 assessments to other Nigerian states to allow comparative risk profiling and
689 resource allocation at the national level.

690

691 **Conclusion**

692 In conclusion, this study highlighted flooding, cholera, banditry, road traffic
693 accidents, and boat mishaps as Niger State's greatest hazards to public health
694 and safety. It is the first time the WHO STAR technique has been applied at the
695 subnational level in Nigeria, demonstrating the feasibility of risk-informed state
696 planning. The implications are immediate and clear: improve early warning
697 systems, combine health and security measures, invest in WASH and resilient
698 infrastructure, and prepare clinical services for seasonal surges. Policymakers
699 should incorporate STAR outcomes into Niger State's emergency preparedness
700 and response strategies, as well as integrate them with national frameworks and
701 the Sendai Framework for Disaster Risk Reduction. Furthermore, repeating the
702 study every 3-5 years will aid in tracking emerging hazards, while expanding the

703 approach to other states can support a national hazard prioritization plan. This
704 will improve Nigeria's health security, increase resilience to climate and conflict
705 risks, and ultimately save lives and livelihoods.

706

707 **Recommendations**

708 Based on the findings of our study, we propose the following recommendations
709 for Niger state MDAs:

710 Niger State Ministry of Health

- 711 1. Strengthen early warning systems and rapid response teams for cholera,
712 Lassa fever, and other epidemic-prone diseases
- 713 2. Improve WASH services to reduce waterborne disease outbreaks
- 714 3. Expand routine and supplemental immunization campaigns for measles,
715 meningitis, and diphtheria
- 716 4. Improve emergency medical services and trauma care facilities for road
717 traffic accidents and boat mishaps

718 Ministry of Environment

- 719 1. Construct and rehabilitate drainage systems in flood-prone communities
- 720 2. Promote climate-resilient agriculture and drought mitigation strategies
- 721 3. Establish and enforce environmental protection measures to reduce
722 deforestation and erosion

723 Ministry of Agriculture

- 724 1. Scale up community-level food security programs to reduce the impact of
725 drought and floods on livelihoods
- 726 2. Strengthen animal health surveillance to monitor and prevent zoonotic
727 diseases such as anthrax

728 Ministry of Education

- 729 1. Integrate disaster risk reduction education into school curricula
- 730 2. Build community capacity for first response and self-protection in flood and
731 conflict-prone areas
- 732 3. Conduct community sensitization campaigns on safe water use, hygiene,
733 and emergency preparedness

734

735 **Abbreviations**

736 AFENET - African Field Epidemiology Network

737 AFP - Acute Flaccid Paralysis

738 CSM - Cerebrospinal Meningitis

739 DRR - Disaster Risk Reduction

740 FRSC - Federal Road Safety Corps

741 IFRC - International Federation of Red Cross and Red Crescent Societies

742 LGAs - Local Government Areas

743 LMICs - Low and Middle Income Countries

744 MDAs - Ministries, Departments, and Agencies

745 NCDC - Nigeria Centre for Disease Control

746 NEMA - National Emergency Management Agency in Nigeria

747 NiMET - Nigerian Meteorological Agency

748 NSEMA - Niger State Emergency Management Agency

749 OCHA - Office for the Coordination of Humanitarian Affairs

750 STAR - Strategic Tool for Assessing Risk

751 UNDP - United Nations Development Programme

752 UNICEF - United Nations Children's Fund

753 UN - United Nations

754 WASH - Water, Sanitation, and Hygiene

755 WHO - World Health Organization

756 **Availability of Data and Materials**

757 Data used will be available through the corresponding author upon reasonable
758 request.

759 **Acknowledgements**

760 We sincerely appreciate the staff and management of the Niger State Ministry of
761 Secondary and Tertiary Health, as well as the Nigeria Centre for Disease Control
762 and Prevention (NCDC), for providing a supportive environment during the data
763 collection phase of this study. Also, USCDC is appreciated for their guidance and
764 supportive guidance.

765

766 **Funding**

767 Sydani Group paid the publication fees.

768

769 **Ethical Approval**

770 Ethical approval was obtained from the Niger State Ministry of Secondary and
771 Tertiary Health with approval number: ERC PAN/2025/06/46. The study protocol
772 conformed to the ethical guidelines of the Declaration of Helsinki (eight revision).
773 In addition, the methodology aligns with the approved protocol.

774 **Human ethics and consent to participate declarations**

775 All participants provided informed consent before participation in discussions
776 and data provision. No individual-level health data were collected.

777 **Author Contributions**

778 O.D.A., A.J., S.A., A.D and S.S conceived the study. O.D.A., A.J., A.D., A.M., G.E.,
779 C.N.A., N.I., A.O., D.P.D., P.B.G., and I.I designed the data collection plan, trained
780 the stakeholders on the WHO STAR, collected and analysed the data. O.D.A
781 developed the methodology, C.N.A developed the first draft. H.I.O., R.R. and
782 O.D.A reviewed the first draft. All authors contributed to revising the manuscript
783 and approving the final draft.

784 **Competing Interests**

785 The authors declare no competing interests

786 **Clinical Trial**

787 Not Applicable.

788 **References**

789 1. UNDRR (2019), Global Assessment Report on Disaster Risk Reduction,
790 Geneva, Switzerland, United Nations Office for Disaster Risk Reduction
791 (UNDRR).

792 2. Mizutori, M. Reflections on the Sendai framework for disaster risk
793 reduction: Five years since its adoption. *International Journal of Disaster*
794 *Risk Science*. 2020 Apr;11(2):147-51.

795 3. Nashwan, A.J., Ahmed, S.H., Shaikh, T.G., Waseem, S. Impact of natural
796 disasters on health disparities in low-to middle-income countries. *Discover*
797 *Health Systems*. 2023 Sep 4;2(1):23.

798 4. Ifrc OR. *World Disasters Report 2020*. IFRC Geneva, Switzerland. (2020).

799 5. Hochrainer-Stigler, S., Troglić, R.Š., Reiter, K., Ward, P.J., de Ruiter,
800 M.C., Duncan, M.J., Torresan, S., Ciurean, R., Mysiak, J., Stuparu, D.,
801 Gottardo, S. Toward a framework for systemic multi-hazard and multi-risk
802 assessment and management. *IScience*. 2023 May 19;26(5).

803 6. Raimi, M.O., Vivien, O.T., Oluwatoyin, O.A. Creating the healthiest nation:
804 Climate change and environmental health impacts in Nigeria: A narrative
805 review. Morufu Olalekan Raimi, Tonye Vivien Odubo & Adedoyin
806 Oluwatoyin Omidiji (2021) Creating the Healthiest Nation: Climate Change
807 and Environmental Health Impacts in Nigeria: A Narrative Review.
808 Scholink Sustainability in Environment. ISSN. 2021 Feb 9.

809 7. Ideki, O., Weli, V.E. Assessment of drought vulnerability and occurrence
810 zones in north central Nigeria. *Atmospheric and Climate Sciences*. 2019
811 Jun 17;9(03):298.

812 8. Umar, N., Gray, A. Flooding in Nigeria: a review of its occurrence and
813 impacts and approaches to modelling flood data. *International Journal of*
814 *Environmental Studies*. 2023 May 4;80(3):540-61.

815 9. Izuogu, C.U., Oparaojiaku, J.O., Njoku, L.C., Olaolu, M.O., Ekweanya, N.M.,
816 Amah, O.D., Ebenehi, O. Rural-Farmers' Response to Climate Change in
817 Nigeria—A Review. *Energy Transition, Climate Action and Sustainable*
818 *Agriculture: Perspectives and Strategies for Africa*. 2025 Apr 20:527-44.

819 10. Mohammed, U., Umar, I.S., Olaleye, R.S., Pelemo, J.J., Ahmad, B.S., Umar,
820 A. Effects of banditry on income and livelihoods of yam marketers in
821 Shiroro local government area of Niger state, Nigeria. *Journal of*
822 *Agriculture and Food Sciences*. 2021 Jul 20;19(1):163-78.

823 11. Stalhandske, Z., Steinmann, C.B., Meiler, S., Sauer, I.J., Vogt, T., Bresch,
824 D.N., Kropf, C.M. Global multi-hazard risk assessment in a changing
825 climate. *Scientific Reports*. 2024 Mar 11;14(1):5875.

826 12. Mashi, S.A., Oghenejabor, O.D., Inkani, A.I. Disaster risks and
827 management policies and practices in Nigeria: A critical appraisal of the
828 National Emergency Management Agency Act. *International journal of*
829 *disaster risk reduction*. 2019 Feb 1;33:253-65.

830 13. Acosta-España, J.D., Romero-Alvarez, D., Luna, C., Rodriguez-Morales, A.J.
831 Infectious disease outbreaks in the wake of natural flood disasters: Global
832 patterns and local implications. *Le Infezioni in Medicina*. 2024 Dec
833 1;32(4):451.

834 14. World Health Organization. Strategic toolkit for assessing risks (STAR): a
835 comprehensive toolkit for all-hazards health emergency risk assessment.
836 World Health Organization; 2021 Nov 17.

837 15. Adabara, E.F., Sadauki, A.H., Usman, A.B., Nweke, H., Ogunbode, O.,
838 Gimba, P., Hassan, M., Egwuenu, A., Abdullahi, Y.Y., Erojikwe, O., Balogun,
839 M.S. Cholera outbreak in Niger State Nigeria, May to August 2021: An
840 unmatched case-control study. *Journal of Interventional Epidemiology and*
841 *Public Health*. 2024 Aug 20;7(38).

842 16. Elimian, K., Yennan, S., Musah, A., Cheshi, I.D., King, C., Dunkwu, L.,
843 Mohammed, A.L., Ekeng, E., Akande, O.W., Ayres, S., Gandi, B.
844 Epidemiology, diagnostics and factors associated with mortality during a
845 cholera epidemic in Nigeria, October 2020–October 2021: a retrospective
846 analysis of national surveillance data. *BMJ open*. 2022 Sep
847 1;12(9):e063703.

848 17. Gambo Madaki, S. A Comparative Assessment of Flood Hazard
849 Susceptibility Modeling in Niger State, North-Central Nigeria. *Cross-*
850 *Cultural Perspectives on Climate Change Adaptation: Adapting to Flood*
851 *Risk* 2024 Sep 28 (pp. 119-132). Cham: Springer International Publishing.

852 18. Adenle, A.A., Boillat, S., Speranza, C.I. Key dimensions of land users'
853 perceptions of land degradation and sustainable land management in
854 Niger State, Nigeria. *Environmental challenges*. 2022 Aug 1;8:100544.

855 19. Ojo, J.S., Oyewole, S., Aina, F. Forces of terror: Armed banditry and
856 insecurity in North-west Nigeria. *Democracy and Security*. 2023 Oct
857 2;19(4):319-46.

858 20.Balgah, R.A., Ngwa, K.A., Buchenrieder, G.R., Kimengsi, J.N. Impacts of
859 floods on agriculture-dependent livelihoods in Sub-saharan Africa: an
860 assessment from multiple geo-ecological zones. *Land*. 2023 Jan
861 26;12(2):334.

862 21.Echendu, A.J. Flooding, food security and the sustainable development
863 goals in Nigeria: An assemblage and systems thinking approach. *Social*
864 *Sciences*. 2022 Feb 7;11(2):59.

865 22.Okon, E.M., Falana, B.M., Solaja, S.O., Yakubu, S.O., Alabi, O.O., Okikiola,
866 B.T., Awe, T.E., Adesina, B.T., Tokula, B.E., Kipchumba, A.K., Edeme, A.B.
867 Systematic review of climate change impact research in Nigeria:
868 implication for sustainable development. *Heliyon*. 2021 Sep 1;7(9).

869 23.Elimian, K.O., Musah, A., Mezue, S., Oyebanji, O., Yennan, S., Jinadu, A.,
870 Williams, N., Ogunleye, A., Fall, I.S., Yao, M., Eteng, W.E. Descriptive
871 epidemiology of cholera outbreak in Nigeria, January–November, 2018:
872 implications for the global roadmap strategy. *BMC public health*. 2019 Sep
873 13;19(1):1264.

874 24.Yunusa, E., Owoyemi, J.O. Rural Development And Resource-Based
875 Conflict In North-Central Nigeria: Escalation, Consequences And
876 Management.

877 25.Babajide, F., Olaogun, M., Oluwadele, L., Ijeoma, J., Idoko, S. The State Of
878 Internally Displaced Persons (IDPS) In Nigeria And Implications To
879 National Security: Northwest And North Central In Focus. *IOSR Journal of*
880 *Humanities and Social Science*. 2024;29(1):1-.

881 26.Charnley, G.E., Kelman, I., Murray, K.A. Drought-related cholera outbreaks
882 in Africa and the implications for climate change: a narrative review.
883 *Pathogens and global health*. 2022 Jan 2;116(1):3-12.

884 27.Akingbola, A., Abiodun, A., Ojo, O., Jessica, O.U., Alao, U.H., Owolabi, A.O.,
885 Chuku, J. Cholera Outbreak in Nigeria: History, Review of Socioeconomic
886 and Meteorological Drivers, Diagnostic Challenges, and Artificial
887 Intelligence Integration. *Global Health, Epidemiology and Genomics*.
888 2025;2025(1):8898076.

889 28.McGlade, J., Bankoff, G., Abrahams, J., Cooper-Knock, S.J., Cotecchia, F.,
890 Desanker, P., Erian, W., Gencer, E., Gibson, L., Girgin, S., Hirsch, F. Global
891 assessment report on disaster risk reduction 2019. *UN Office for Disaster*
892 *Risk Reduction*; 2019 May 13.

893 29. Sanusi, U., Odiji, C.A., Nwadike, B.K., Hamza, D.D., Baba, S.T., Salis, S.K.
894 Flood Vulnerability Analysis in the Down Stream of Shiroro Dam and
895 Environs. *Water and Environmental Sustainability*. 2023 Dec 25;3(4):41-9.

896 30. Onwunta, I.E., Ozota, G.O., Eze, C.A., Obilom, I.F., Okoli, O.C., Azih, C.N.,
897 Okoye, C.O., Agbo, E.L. Recurrent cholera outbreaks in Nigeria: A review
898 of the underlying factors and redress. *Decoding infection and*
899 *Transmission*. 2025 Jan 1;3:100042.

900 31. Amisu, B.O., Okesanya, O.J., Adigun, O.A., Manirambona, E., Ukoaka, B.M.,
901 Lawal, O.A., Idris, N.B., Olaleke, N.O., Okon, I.I., Ogaya, J.B., Prisno III,
902 D.E. Cholera resurgence in Africa: assessing progress, challenges, and
903 public health response towards the 2030 global elimination target. *Le*
904 *infezioni in medicina*. 2024 Jun 1;32(2):148.

905 32. Obah-Akpowoghaha, N.G., Ojakorotu, V., Tarro, M.L. Porous Borders and
906 the Challenge of National Integration in Africa: A Reflection of Ghana,
907 Republic of Benin and Nigeria. *Journal of African Foreign Affairs*. 2020 Dec
908 1;7(3).

909 33. Trogrlić, R.Š., Reiter, K., Ciurean, R.L., Gottardo, S., Torresan, S., Daloz,
910 A.S., Ma, L., Fumero, N.P., Tatman, S., Hochrainer-Stigler, S., de Ruiter,
911 M.C. Challenges in assessing and managing multi-hazard risks: A
912 European stakeholders perspective. *Environmental Science & Policy*. 2024
913 Jul 1;157:103774.

914 34. Stalhandske, Z., Steinmann, C.B., Meiler, S., Sauer, I.J., Vogt, T., Bresch,
915 D.N., Kropf, C.M. Global multi-hazard risk assessment in a changing
916 climate. *Scientific Reports*. 2024 Mar 11;14(1):5875.

917 35. Charnley, G.E., Kelman, I., Murray, K.A. Drought-related cholera outbreaks
918 in Africa and the implications for climate change: a narrative review.
919 *Pathogens and global health*. 2022 Jan 2;116(1):3-12.

920 36. Wang, P., Asare, E.O., Pitzer, V.E., Dubrow, R., Chen, K. Floods and
921 diarrhea risk in young children in low-and middle-income countries. *JAMA*
922 *pediatrics*. 2023 Nov 1;177(11):1206-14.

923 37. Balikuddembe, J.K., Reinhardt, J.D., Zeng, W., Tola, H., Di, B. Public health
924 priorities for Sino-Africa cooperation in Eastern Africa in context of
925 flooding and malaria burden in Children: a tridecadal retrospective
926 analysis. *BMC public health*. 2023 Jul 11;23(1):1331.

927 38. Suhr, F., Steinert, J.I. Epidemiology of floods in sub-Saharan Africa: a
928 systematic review of health outcomes. *BMC public health.* 2022 Feb
929 10;22(1):268.

930 39. Acosta-España, J.D., Romero-Alvarez, D., Luna, C., Rodriguez-Morales, A.J.
931 Infectious disease outbreaks in the wake of natural flood disasters: Global
932 patterns and local implications. *Le Infezioni in Medicina.* 2024 Dec
933 1;32(4):451.

934 40. Sanga, V.T., Karimuribo, E.D., Hoza, A.S. One Health in practice: Benefits
935 and challenges of multisectoral coordination and collaboration in
936 managing public health risks: A meta-analysis. *International Journal of One
937 Health.* 2024;10(1):26-36.

ARTICLE IN PRESS