
The expanding H5N1 avian influenza panzootic causes high mortality of skuas in Antarctica

Received: 3 June 2025

Accepted: 30 December 2025

Published online: 14 January 2026

Cite this article as: Iervolino M., Günther A., Begeman L. *et al.* The expanding H5N1 avian influenza panzootic causes high mortality of skuas in Antarctica. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-025-34736-3>

Matteo Iervolino, Anne Günther, Lineke Begeman, Begoña Aguado, Theo M. Bestebroer, Beatriz Bellido-Martin, Adam Coerper, M. Valentina Fornillo, Bruno Fusaro, Andrés E. Ibañez, Lonneke Leijten, Simeon Lisovski, Mariané B. Mañez, Alice Reade, Peter Run, Florencia Soto, Ben Wallis, Meagan Dewar, Antonio Alcamí, Martin Beer, Ralph E. T. Vanstreels & Thijs Kuiken

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **The expanding H5N1 avian influenza panzootic causes high mortality of skuas
2 in Antarctica**

3 Matteo Iervolino^{1†}, Anne Günther^{2†}, Lineke Begeman¹, Begoña Aguado³, Theo M. Bestebroer¹,
4 Beatriz Bellido-Martin¹, Adam Coerper⁴, M. Valentina Fornillo⁵, Bruno Fusaro⁶, Andrés E.
5 Ibañez⁷, Lonneke Leijten¹, Simeon Lisovski⁸, Mariané B. Mañez⁵, Alice Reade⁴, Peter van Run¹,
6 Florencia Soto⁹, Ben Wallis⁴, Meagan Dewar¹⁰, Antonio Alcamí³, Martin Beer², Ralph E.T.
7 Vanstreels^{11‡} and Thijs Kuiken^{1‡*}

8
9 ¹Department of Viroscience, Erasmus University Medical Center; Rotterdam, the Netherlands.

10 ²Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for
11 Animal Health; Greifswald-Insel Riems, Germany.

12 ³Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas
13 (CSIC) and Universidad Autónoma de Madrid (UAM); Madrid, Spain.

14 ⁴Ocean Expeditions Support Vessel S/V Australis; Sydney, New South Wales, Australia.

15 ⁵Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CONICET – Universidad
16 Nacional de La Plata; La Plata, Argentina.

17 ⁶Departamento de Ecofisiología y Ecotoxicología, Instituto Antártico Argentino; San Martín,
18 Buenos Aires, Argentina.

19 ⁷Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET); La Plata,
20 Argentina.

21 ⁸Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research; Potsdam, Germany.

22 ⁹Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET); Puerto Madryn,
23 Argentina.

24 ¹⁰Future Regions Research Centre, Federation University Australia; Berwick, Victoria, Australia.

25 ¹¹Karen C. Drayer Wildlife Health Center, One Health Institute, School of Veterinary Medicine,
26 University of California, Davis; Davis, CA, USA.

27
28 *Corresponding author. Email: t.kuiken@erasmusmc.nl

29
30 †These authors contributed equally to this work as first authors.

31 ‡These authors contributed equally to this work as last authors.

32

33 **Abstract**

34 High pathogenicity avian influenza virus H5N1 subtype (H5N1 HPAIV), clade
35 2.3.4.4b, is expanding its host and geographical range, and invaded Antarctica
36 in 2023. Although mortality in Antarctic wildlife from H5N1 HPAIV has been
37 suspected, mainly based on virological analysis of swabs collected from dead
38 animals, it has not been unequivocally diagnosed. Here we show that H5N1
39 HPAIV caused high mortality in a breeding colony of skuas at one of ten sites
40 in Antarctica we visited in March 2024. By combined virological,
41 bacteriological and pathological analyses, we found that H5N1 HPAIV caused
42 multi-organ necrosis and rapid death in skuas, but not in other species
43 examined. Taken together with recent data, skuas in Antarctica are at risk of
44 continued mortality from H5N1 HPAIV infection, threatening their already
45 small populations. Conversely, because of their wide distribution and

46 ecological relevance, skuas may play a substantial role in the spread of the
47 virus across Antarctica. Transdisciplinary surveillance is needed in coming
48 years to monitor the impact of this poultry-origin disease on Antarctica's
49 unique wildlife.

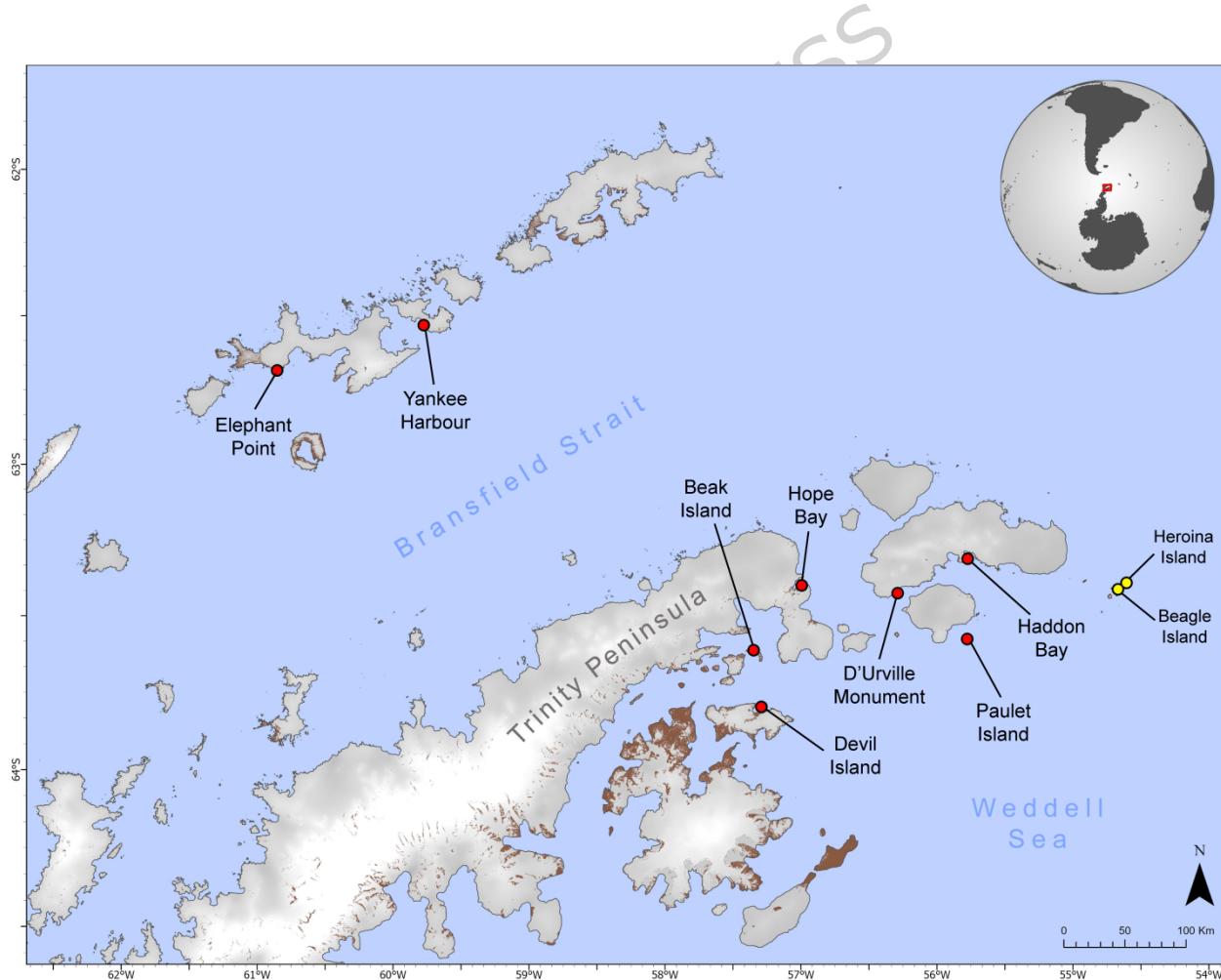
50

51 **Introduction**

52 The incursion of A/goose/Guangdong/1/96 (Gs/Gd) lineage high pathogenicity avian influenza
53 (HPAI) virus (HPAIV) of the subtype H5N1 clade 2.3.4.4b into Antarctica is a potential threat to
54 the millions of wild birds and mammals living there. This is exemplified by the incursion of H5N1
55 HPAIV into South America in 2022-2023, where it is estimated to have killed at least 667,000
56 wild birds of 83 species and 53,000 wild mammals of 11 species ^{1,2}. There is also a real risk that
57 the mortality of Antarctic wildlife from this virus will go unnoticed or underreported. Such
58 documentation is critical to support the need for transformative change to protect wildlife
59 populations worldwide from HPAI and other anthropogenic diseases originating from ever-
60 increasing livestock populations ^{3,4}.

61 The effects of H5N1 HPAIV infection on wildlife range from no clinical signs to death ⁵. This
62 means that infected wild animals can both act as vectors of the virus, possibly carrying it thousands
63 of kilometers during long-distance migration in a staggered manner ⁶, and as its victims, suffering
64 severe die-offs ⁷. It also means that detection of HPAIV in a dead wild animal needs to be
65 complemented by pathological demonstration of virus-associated lesions to confirm that HPAI
66 virus infection was the cause of death. Additionally, these investigations are enhanced by testing
67 apparently healthy individuals in wildlife populations.

68 The presence of H5N1 HPAIV of clade 2.3.4.4b in Antarctica was first recorded in January 2024
69 in a kelp gull (*Larus dominicanus*) on Livingston Island (South Shetland Islands), adjacent to the
70 Antarctic Peninsula ^{8,9}. The virus may have spread to Antarctica directly from the southern tip of
71 South America ⁸, or it may have used Subantarctic islands as stepping stones ¹⁰. Seabirds and
72 marine mammals are known to migrate between these locations during their annual cycle and may
73 have carried the virus with them ^{11,12}.


74 Two closely related seabird species that are known to be susceptible to H5N1 HPAIV infection in
75 the southern hemisphere are brown skuas (*Stercorarius antarcticus*) and south polar skuas
76 (*Stercorarius maccormicki*) ^{10,13}. While brown skuas, with a global population of about 7000 pairs,
77 exhibit a circumpolar breeding and non-breeding distribution across the southern hemisphere ¹⁴⁻
78 ¹⁶, south polar skuas, with a global population of 5000 to 7000 pairs, breed around the coast of
79 Antarctica ^{14,17}, but exhibit a trans-equatorial non-breeding distribution on the North Pacific and
80 North Atlantic Oceans ^{18,19}. In some locations, these species breed in sympatry, and hybridization
81 occurs ¹⁵. Both species were among the first to be found infected with H5N1 HPAIV in
82 Subantarctic South Georgia in late 2023 as well as Antarctica in early 2024 ^{10,13,20,21}. Although
83 H5N1 HPAIV was detected in association with morbidity and mortality in both brown and south
84 polar skuas, no pathological analyses have been presented to confirm HPAI as the cause of death.

85 Besides HPAI, avian cholera (also known as pasteurellosis), repeatedly reported to cause avian
86 mortality in this region, needs to be considered in the differential diagnosis of unusual mortality
87 of wild birds in the Subantarctic and Antarctic regions ²²⁻²⁶. *Pasteurella multocida*, the causative

88 agent of avian cholera, typically causes epizootics in wetlands or breeding colony sites with high
 89 densities of birds, including seabirds²⁷.

90 Little is known about the spread of H5N1 HPAIV within and among species of wild seabirds and
 91 mammals in Antarctica, about the character and severity of disease, and the levels of mortality in
 92 affected populations. Therefore, we set up the HPAI Australis Expedition to investigate the
 93 introduction and spread of H5N1 HPAIV across the Antarctic Peninsula and its impact on local
 94 wildlife²⁰. Between 17 and 28 March 2024, at the end of the austral summer, when the breeding
 95 season of skuas (October-December), gentoo penguins (*Pygoscelis papua*; November-December)
 96 and Adélie penguins (*Pygoscelis adeliae*; October-February)²⁸ had already concluded, we
 97 conducted epidemiological surveys in wildlife at 10 locations at the South Shetland Islands,
 98 Weddell Sea and Trinity Peninsula for wildlife morbidity and mortality, performed autopsies and
 99 collected postmortem tissue samples and environmental samples for virological, bacteriological,
 100 and pathological analyses. Here, we report our findings of H5N1 HPAIV detection in skuas at
 101 three locations (Hope/Esperanza Bay, Devil Island, Beak Island) at the Trinity Peninsula and
 102 Weddell Sea region, and confirmation of HPAI as the probable cause of a mass die-off of south
 103 polar skuas at one of those locations (Beak Island). Additionally, we present results from avian
 104 cholera, environmental samples and other species from which samples were collected.

105

Figure 1. Map of the HPAI Australis Expedition, indicating investigated sites. Results from Heroina Island and Beagle Island (yellow) will be shown in a separate publication. The map was created using ArcGIS Pro 3.1.2 (ESRI, Redlands, California) based on shapefiles made publicly available by the British Antarctic Survey (BAS) via the UK Polar Data Centre (<https://data.bas.ac.uk/>)

106 **Results**

107 ***Overview of skua mortality during the HPAI Australis Expedition***

108 During our expedition (Fig. 1), we found evidence of skua mortality at six sites (Hope Bay, Devil
109 Island, Beak Island, Heroina Island, Beagle Island and Paulet Island), four of which are presented
110 here (results for Heroina and Beagle Island will be shown in a separate publication) (Fig. 2, Table
111 1).

112 At Hope Bay, 16 non-breeding brown skuas and 3 non-breeding south polar skuas were previously
113 found dead between February 5th and March 9th, 2024, through routine surveillance conducted by
114 the Argentine National Antarctic Program, and stored under rocks to prevent scavenging. At the
115 time of our visit, we could retrieve 6 of these dead adult skuas (1 south polar, 2 brown, 3
116 unidentified). Additionally, about 60 live skuas (apparently healthy) were present at the time of
117 our visit. We autopsied two skuas and diagnosed avian cholera as the probable cause of death
118 (SK01, SK06), although in one (SK01) a fungal infection probably contributed to death. We
119 detected moderate to high levels of *P. multocida* in the brains of four additional dead skuas (SK02
120 to SK05). Two of these also had low (SK03) to moderate (SK02) levels of H5N1 HPAIV RNA in
121 the brains (Table 2), so the confidence level for the avian cholera diagnosis was scored as
122 “medium” (Supplementary table 10).

123 At Devil Island, we found a dead juvenile skua (unidentified species; SK07), and diagnosed HPAI
124 as its probable cause of death. An additional 15 apparently healthy live skuas were present at the
125 time of our visit.

126 We visited Beak Island because we considered its topography to provide a likely breeding habitat
127 for skuas. There, we found 46 dead skuas (18 south polar, 28 unidentified species; 26 adult, 19
128 juvenile, 1 undetermined age class). Additionally, about 100 apparently healthy live skuas were
129 also present at the time of our visit; these were occasionally seen inspecting or scavenging on skua
130 carcasses, in addition to agonistic interactions with other live skuas and kelp gulls. We autopsied
131 five of the dead skuas (SK08 to SK12) and diagnosed HPAI as the most probable cause of death.
132 We detected moderate (SK15) or high levels (SK13, SK14, SK16, SK17) of H5 HPAIV in the
133 brains of five additional dead skuas, supporting HPAI as cause of death.

134 At Paulet Island, we found three dead skuas (unidentified species; SK29 to SK31) and we
135 determined that the possible causes of death were avian cholera in two of them (SK29, SK31), and
136 either fungal disease or avian cholera in the third (SK30). About 30 apparently healthy live skuas
137 were present at the time of our visit.

ARTICLE IN PRESS

Table 1. Overview of diagnostic criteria for high pathogenicity avian influenza (HPAI), avian cholera, and fungal infection as proposed causes of death of 20 skuas found dead. The confidence level of the diagnosis applies to all diagnoses within the same animal.

Location	Individual	Species	Age class	State of autolysis	Nutrition al condition	HPAI		Avian cholera		Fungal disease		Diagnosis	
						Brain H5N1 HPAIV RNA	Viral histo	Brain P.m. DNA	P.m. histo	Fungus histo	Diseases at death in order of severity	Confidence level	
Hope Bay	SK01	BR SK	Ad	Moderate	M	-	-	+++	+	+	1. Fungal disease 2. Avian cholera 1. Avian cholera 2. HPAI	High	
	SK02	BR SK	Ad	Advanced	P	++	na	++	na	na	1. Avian cholera 2. HPAI 3. Starvation	Medium	
	SK03	SP SK	Ad	Advanced	VP	+	na	+++	na	na	1. Avian cholera 2. HPAI 3. Starvation	Medium	
	SK04	UN SK	Ad	Advanced	VP	-	na	++	na	na	1. Avian cholera 2. Starvation	Medium	
	SK05	UN SK	Ad	Advanced	P	-	na	++	na	na	1. Avian cholera	Medium	
	SK06	UN SK	Ad	Moderate	M	-	-	+++	+	-	1. Avian cholera	High	
Devil Is.	SK07	UN SK	Juv	Minimal	G	+++	+	-	-	-	1. HPAI	High	
Beak Is.	SK08	SP SK	Ad	Moderate	VP	+++	+	-	-	+	1. HPAI 2. Fungal disease 3. Starvation 1. HPAI 2. Starvation	High	
	SK09	UN SK	Juv	Mild	VP	+++	+	-	-	-	1. HPAI 2. Starvation	High	
	SK10	UN SK	Juv	Mild	G	+++	+	-	-	-	1. HPAI	High	
	SK11	UN SK	Juv	Mild	G	+++	+	-	-	-	1. HPAI	High	
	SK12	UN SK	Juv	Mild	G	+++	+	-	-	-	1. HPAI	High	
	SK13	UN SK	nd	nd	nd	+++	na	-	na	na	1. HPAI	Medium	
	SK14	UN SK	nd	nd	nd	+++	na	-	na	na	1. HPAI	Medium	
	SK15	UN SK	nd	nd	nd	++	na	-	na	na	1. HPAI	Medium	
	SK16	UN SK	nd	nd	nd	+++	na	-	na	na	1. HPAI	Medium	
	SK17	UN SK	nd	nd	nd	+++	na	-	na	na	1. HPAI	Medium	
Paulet Is.	SK29	UN SK	Ad	Moderate	nd	-	-	+++	+	-	1. Avian cholera	High	
	SK30	UN SK	Ad	Moderate	P	(+)	-	++	+*	+	1. Fungal disease 2. Avian cholera	High	
	SK31	UN SK	Ad	Moderate	na	-	-	+++	na†	-	1. Avian cholera	Medium	

Species: BR SK: brown skua, SP SK: south polar skua, UN SK: unidentified skua.

Age class: Ad: adult, Juv: juvenile

Nutritional condition: VP, very poor; P, poor; M, moderate; G, good

nd: not determined

na: not applicable (not sampled)

Brain H5N1 HPAIV RNA: Result of HPAI virus M1 RT-qPCR expressed as 40 – Cq, with following categories: -, not detected; +, 1 to 10; ++, 11 to 20; +++, 21 to 30, (+) not detected in this study, however low levels of HPAIV RNA had been detected in a brain swab in earlier testing^{20,29}, and no avian influenza-associated disease was detected.

Viral histo: HPAI virus NP antigen expression and associated lesions present (+) or absent (-) in tissues.□

Brain P.m. DNA: Result of *Pasteurella multocida kmt1* qPCR expressed as 40 – Cq, with following categories: -, no *P. multocida* DNA detected; +, 1 to 7; ++, 8 to 14; +++, 15 to 21.□

P.m. histo: Aggregates of *P. multocida* and associated lesions characteristic for avian cholera present (+) or absent (-) in tissues.□

Fungus histo: Fungal hyphae and associated lesions characteristic for fungal disease present (+) or absent (-) in tissues.□

* As liver was not sampled for this skua, it is not possible to detect if *P. multocida* is associated with lesions there. Abundant bacteria with a morphology that is consistent with *Pasteurella* spp are present within blood vessels in the lungs.□

† As liver was not sampled for this skua, it is not possible to detect if *P. multocida* is associated with lesions there. The lungs were in an advanced state of autolysis and showed a mixture of bacterial growth and therefore it was not possible to determine if *P. multocida* was present.

ARTICLE IN PRESS

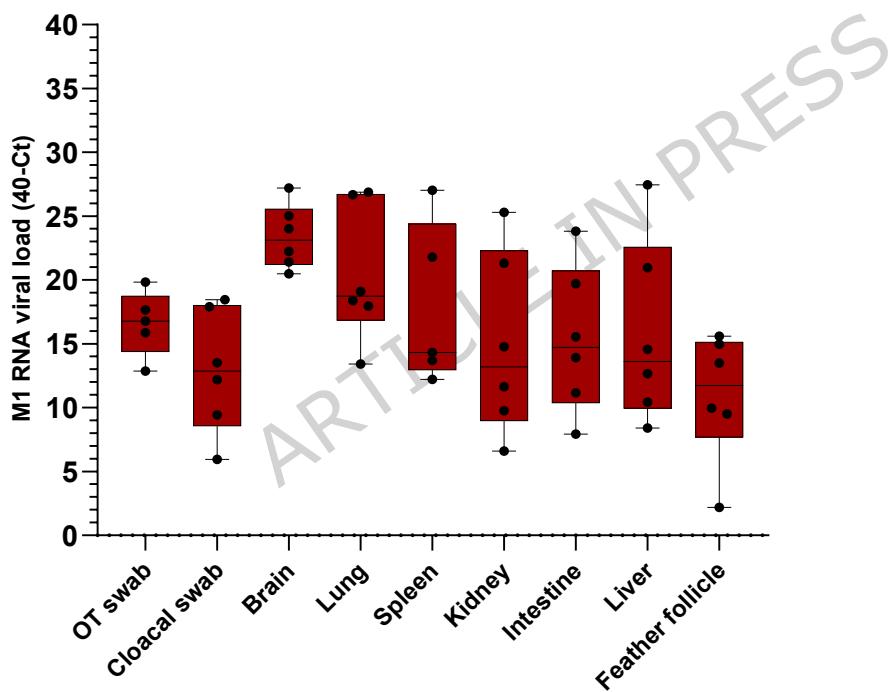
138 ***Macroscopic findings in skuas found dead***

139 Some of the skuas that were found dead had abnormal postures, possibly related to HPAI:
140 opisthotonus (backward arching of head, neck, and spine; 15/37), torticollis (twisting of the neck;
141 8/37) and/or wings spread (32/37; Supplementary Table 1, Supplementary Fig. 1). Out of 6 dead
142 skuas (1 from Devil Island, 5 from Beak Island) diagnosed with HPAI as a probable or possible
143 cause of death, one had opisthotonus (SK07), one had torticollis (SK08), and four had wings spread
144 (SK08 to SK11). However, out of two dead skuas from Paulet Island (SK29 and SK30) diagnosed
145 with avian cholera as a probable or possible cause of death, SK30 had opisthotonus and both had
146 wings spread, indicating that these abnormal postures are not restricted to death from HPAI. The
147 postures of the dead skuas from Hope Bay were not recorded as the carcasses had been previously
148 manipulated to avoid scavenging by healthy skuas.

149 None of the 11 skuas examined had significant macroscopic lesions, with three exceptions. One
150 skua diagnosed with HPAI as probable cause of death (SK07) had diffusely dark red and wet lungs
151 (pulmonary edema) (Supplementary Fig. 1C). Two skuas diagnosed with fungal disease as
152 probable or possible cause of death (SK01, SK08) had multiple characteristic white, dull, firm,
153 well demarcated foci (3 to 30 mm in diameter) on tracheal mucosa, lungs and heart. The nutritional
154 conditions of the autopsied skuas ranged from very poor to good, and were not correlated with the
155 diagnoses of HPAI, avian cholera, or fungal disease as causes of death (Table 1). All the autopsied
156 skuas had empty stomachs, suggesting they had not fed recently before death or had regurgitated
157 their last meal.

158 Nine dead skuas were immediately tested on-site for the presence of influenza A virus by use of a
159 rapid antigen test on swabs from different tissues (Supplementary Table 1). Out of 5 skuas that
160 were subsequently H5 HPAIV-negative by RT-qPCR (Table 1; SK01, SK06, SK29 to SK31), 4
161 tested negative by rapid antigen test (SK01, SK06, SK29 and SK30) and for 1 the test result was
162 uncertain (SK31). Out of 4 skuas that were subsequently H5N1 HPAIV-positive by RT-qPCR
163 (SK02, SK07, SK09 and SK10; Table 1), 1 tested positive by rapid antigen test (SK07), 1 tested
164 negative (SK02) and for 2 the test results were uncertain (SK09 and SK10).

Figure 2. Dead skuas on Beak Island being examined by two expedition members. The animals were moved from their original positions and lined up, as shown in the photo, for external examination and triage for autopsy. The people depicted in the photograph are co-authors of this manuscript and have consented to including their images.


165 *Virological and bacteriological analyses of swabs and tissues and serological analyses from*
166 *skuas found dead*

167 Influenza A virus RNA was detected by RT-qPCR from swabs and tissues of sampled skuas. H5N1
168 HPAIV RNA was detected in swabs and tissues of 13 of 20 dead skuas tested, based on the
169 combination of positive M1, H5, and HPAI RT-qPCRs for each tissue or swab. N1 RT-qPCR was
170 additionally performed on a subset of samples to confirm the subtype (Table 2, Supplementary
171 Table 2). RNA loads ($40 - Cq$) of the GAPDH housekeeping gene ranged between 11.7 and 25.0
172 (19.6 ± 3.3 on average), indicating an overall good RNA preservation in the carcass samples
173 (Supplementary Table 9). To confirm the presence of the multi-basic cleavage site (MBCS), a
174 region of the hemagglutinin gene was sequenced from at least one sample from each H5N1
175 HPAIV-positive skua (Supplementary Table 2). Samples from all positive skuas were confirmed
176 to have the same MBCS (PLREKRRKR/GLF). For each of the 13 skuas that tested positive, all
177 sampled tissues and swabs tested positive by the four RT-qPCRs - indicating systemic H5N1
178 HPAIV infection - except for the tracheal swab of one dead skua (SK08). The highest viral RNA
179 loads were consistently measured in the brain, except for one skua (SK12), in which the liver had
180 the highest viral RNA load. Average viral RNA loads (expressed as $40 - Cq$) were several units
181 higher in the brain (21.4 ± 5.7) than in tracheal swabs (16.3 ± 2.9) and oropharyngeal swabs (11.1)

182 ± 6.3). The dead skuas sampled at Hope Bay had viral RNA loads in the brain (5.6 and 18.6) that
 183 were substantially lower than the dead skuas sampled at Devil Island and Beak Island (23.1 ± 3.3
 184 on average). Overall, the highest viral loads in skuas that were diagnosed with HPAI as a possible
 185 cause of death (SK07 to SK12) were found in the brain (23.4 ± 2.5 on average) (Fig. 3).

186 No antibodies against H5 influenza A viruses or nucleoprotein (NP) were detected by competitive
 187 ELISA in body fluid samples collected from two skuas (SK07 and SK12), both of which were
 188 diagnosed with HPAI as probable cause of death.

189 To determine whether or not avian cholera contributed to mortality, all the skuas were tested for
 190 the presence of *P. multocida* DNA (*kmt1* gene) by qPCR. *P. multocida* DNA was detected in swabs
 191 and tissues from all dead skuas in Hope Bay and Paulet Island (Table 2). The qPCR amplicon
 192 sequencing revealed up to 100% identity with *P. multocida* strains via BLASTn search. The *P.*
 193 *multocida* bacterial DNA load ($40 - Cq$) differed substantially between skuas, ranging from 8.2 to
 194 18.5 in the brain. In contrast, none of the tested organs or swabs from any of the skuas from Beak
 195 Island or Devil Island tested positive for *P. multocida* DNA by qPCR (Table 2).

Figure 3. Influenza A RNA viral loads in different organs of skuas. Boxplot of the relative expression of M1 viral RNA loads ($40 - Cq$) in different organs and tissue swabs (OT swab: oropharyngeal or tracheal swab) of skuas diagnosed with HPAI as cause of death and tested positive for M1, H5, N1 and HPAI RT-qPCRs (SK07-12). Each black dot represents a single detection.

Table 2. H5N1 HPAIV viral loads (40-Cq, *M1* gene) and *P. multocida* (PM) bacterial loads (40-Cq, *kmt1* gene) in swabs and tissues of skuas found dead. Spleen, kidney and feather follicle were not tested for the presence of *P. multocida* DNA. The IDs from onboard testing are indicated to compare with previous results ^{20,29}.

Location	Individual	ID onboard test (40)	Tracheal swab		Oropharyngeal swab		Cloacal swab		Brain		Lung		Intestine		Liver		Spleen	Kidney	Feather follicle
			HPAIV	PM	HPAIV	PM	HPAIV	PM	HPAIV	PM	HPAIV	PM	HPAIV	PM	HPAIV	HPAIV	HPAIV	HPAIV	
Hope Bay	SK01	Skua_1_Hope	na	na	nd	17.2	nd	16.8	nd	15.8	nd	18.5	nd	18.9	nd	4.1	nd	nd	nd
	SK02	Skua_2_Hope	na	na	10.6	4.1	7.4	9.9	18.6	9.7	na	na	na	na	na	na	na	na	
	SK03	Skua_3_Hope	na	na	5.2	13.2	0.2	15.4	5.6	16.0	na	na	na	na	na	na	na	na	
	SK04	Skua_4_Hope	na	na	nd	8.5	nd	4.9	nd	8.2	na	na	na	na	na	na	na	na	
	SK05	Skua_5_Hope	na	na	nd	14.0	nd	14.2	nd	12.4	na	na	na	na	na	na	na	na	
	SK06	Skua_6_Hope	na	na	nd	14.5	nd	16.1	nd	18.0	nd	19.9	nd	18.7	nd	22.3	nd	nd	nd
Devil Is.	SK07	Skua_1_Devil	na	na	17.7	nd	17.9	nd	27.2	nd	26.7	nd	19.7	nd	21.0	nd	21.8	21.3	13.5
Beak Is.	SK08	Skua_1_Beak	nd	nd	na	na	6.0	nd	20.5	nd	13.4	nd	7.9	nd	8.4	nd	na	6.6	2.2
	SK09	Skua_2_Beak	15.9	nd	na	na	12.2	nd	22.2	nd	18.4	nd	11.2	nd	14.6	nd	14.3	9.8	15.0
	SK10	Skua_3_Beak	16.8	nd	na	na	13.5	nd	21.4	nd	19.1	nd	15.5	nd	12.7	nd	13.7	14.8	9.5
	SK11	Skua_4_Beak	12.9	nd	na	na	9.4	nd	24.0	nd	18.0	nd	13.9	nd	10.4	nd	12.2	11.6	10.0
	SK12	Skua_5_Beak	19.8	nd	na	na	18.5	nd	25.0	nd	26.9	nd	23.8	nd	27.5	nd	27.0	25.3	15.6
	SK13	Skua_6_Beak	na	na	na	na	na	nd	28.0	nd	na	nd	na	nd	na	nd	na	na	na
	SK14	Skua_7_Beak	na	na	na	na	na	nd	21.7	nd	na	nd	na	nd	na	nd	na	na	na
	SK15	Skua_8_Beak	na	na	na	na	na	nd	16.3	nd	na	nd	na	nd	na	nd	na	na	na
	SK16	Skua_9_Beak	na	na	na	na	na	nd	22.2	nd	na	nd	na	nd	na	nd	na	na	na
	SK17	Skua_10_Beak	na	na	na	na	na	nd	25.0	nd	na	nd	na	nd	na	nd	na	na	na

Paulet Is.	SK29	Skua_1_Paul et	na	na	na	na	nd	na	nd	18.5	nd	21.2	na	na	na	na	na	na
	SK30	Skua_2_Paul et	na	na	na	na	nd	na	nd	8.9	nd	18.6	na	na	na	na	na	na
	SK31	Skua_3_Paul et	na	na	na	na	nd	na	nd	15.1	nd	15.7	na	na	na	na	na	na

nd: not detected

na: not applicable (not sampled)

ARTICLE IN PRESS

196 ***Histopathology of tissues from skuas found dead***

197 *Virus antigen expression in H5 HPAIV RNA-positive skua carcasses*

198 Influenza A virus NP antigen was detected by immunohistochemistry (IHC) in all (n=6) H5N1
 199 HPAIV RNA-positive skua carcasses (Supplementary Table 3). Brain was the organ that most
 200 consistently expressed virus antigen (5/6 skuas). Other tissues in which virus antigen expression
 201 was detected in parenchymal cells were lung, pancreas, thyroid, adrenal, preen gland and gonad
 202 (testicle) (Fig. 4, Supplementary Fig. 2). One bird (SK12) had abundant virus antigen expression
 203 in endothelial cells in every tissue examined. Virus antigen was rarely detected in parenchymal
 204 cells of kidneys (1/5), and not in those of livers (0/6), or in hearts (0/6) (Supplementary Table 3).

205 In the brain, virus antigen was detected in cerebrum, cerebellum and brainstem in a pattern that
 206 was seemingly random and differed per bird. Virus antigen also was detected in peripheral ganglia
 207 of one bird (Supplementary Fig. 2). The cells that expressed virus antigen in the nervous tissues
 208 were both neurons and glial cells, based on morphology and their location relative to other cells.
 209 In one bird (SK07), a large stretch of ependymal cells and the underlying neuropil also expressed
 210 virus antigen, suggesting entry via the cerebrospinal fluid (Supplementary Fig. 2). By *in situ*
 211 hybridization (ISH), we detected influenza A virus RNA in the brain section of a skua (SK11) that
 212 was virus antigen negative by IHC (Supplementary Text 1, Supplementary Fig. 4).

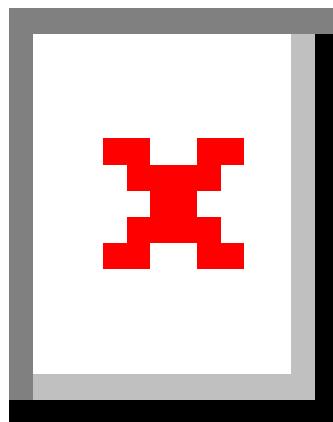
213 In the lung (2/6), virus antigen was detected in air capillaries. Because of their close alignment, it
 214 was not possible to determine whether endothelial cells and/or epithelial cells of the air capillaries
 215 expressed virus antigen. Virus antigen distribution was multifocal to coalescing and involved 90
 216 to 100% of the air capillaries per lung section.□□

217 In other tissues, the cell types expressing virus antigen were exocrine glandular epithelial cells in
 218 pancreas (Fig. 4) and epithelial cells of the preen gland, sperm producing cells (spermatogonia) of
 219 inactive testis, epithelial cells in thyroid gland (Supplementary Fig. 2) and in adrenal gland. In
 220 most tissues, virus antigen was mostly expressed by clusters of tens of cells.

221 All five skuas that tested negative for H5N1 HPAIV RNA by RT-qPCR (Table 2) and of which
 222 tissues were sampled for histopathology (Hope Bay – SK01 and SK06; Paulet Island – SK29 to
 223 31) were also negative for influenza A virus antigen expression.

224 *Co-localization of virus antigen expression and histological lesions*□

225 Histological lesions were attributed to H5N1 HPAIV infection based on their co-localization with
 226 virus antigen expression (co-localization was assessed on a serial H&E slide; Fig. 4,
 227 Supplementary Fig. 2, Supplementary Table 4). Virus antigen expression in the lungs co-localized
 228 with diffuse distension of blood vessels with erythrocytes (SK07 and SK12; Supplementary Fig.
 229 3) and flooding of approximately 10 to 30% of the lumina of all parabronchi and infundibula with
 230 eosinophilic homogenous material (edema) and fibrillary eosinophilic material (fibrin) (SK07
 231 only). Virus antigen expression in the brain co-localized with neuronal necrosis and presence of a
 232 few heterophils around larger foci of necrosis (Fig. 4). Virus antigen expression in the pancreas
 233 co-localized with necrosis of exocrine glandular epithelial cell necrosis with mild heterophil
 234 infiltration around larger foci. In both testicle and thyroid gland, it was co-localized with few
 235 degenerate and necrotic cells (Supplementary Fig. 2).


236 *Microscopic findings associated with avian cholera*

237 All five skuas that tested negative for influenza virus RNA by RT-qPCR, tested positive for *P.*
 238 *multocida* DNA by qPCR (Table 2). Three (SK01, SK06, SK29) of the five skuas had histological

239 lesions in the liver suggestive of *P. multocida* infection (Supplementary Fig. 5, Supplementary
 240 Table 4); liver was not sampled in the other two. These lesions were characterized by the presence
 241 of randomly distributed, large aggregates of uniformly shaped coccoid bacteria in the liver, in some
 242 aggregates co-localized with heterophils and necrotic hepatocytes (SK06 and SK29). In addition,
 243 large aggregates of coccoid bacteria, consistent with *P. multocida*, and confirmed by ISH
 244 (Supplementary Text 2), were also present in the blood vessels of other organs sampled in all five
 245 birds that tested positive by qPCR (Supplementary Fig. 5).

246 *Microscopic findings associated with fungal infection*

247 Histological evidence of fungal infection was present in three skuas (SK01, SK08, SK30) in
 248 variable combinations of tissues: trachea, lung, air sac, heart (table S4). Fungal infection was
 249 characterized by abundant presence of fungal hyphae (3-6 μm thick, septate, with regular
 250 dichotomous branching, consistent with *Aspergillus fumigatus*)^{30,31} (Supplementary Fig. 6). The
 251 presence of fungal hyphae was particularly extensive in the lung. Fungal hyphae were co-localized
 252 with necrosis and infiltration with heterophils, macrophages and admixed with fibrin and
 253 extravasated erythrocytes.

Figure 4. Serial sections of hematoxylin and eosin staining (H&E) and influenza IHC in tissues of skuas found dead. Brain and pancreas belong to SK07, air sac belongs to SK09. Cells positive for virus antigen by immunohistochemistry (IHC) stain red in the nucleus and cytoplasm. Brain and pancreas: the center of the H&E picture contains necrotic debris (loss of architecture, hypereosinophilia, karyorrhexis and pyknosis) close to neuronal cells and exocrine pancreatic cells that express virus antigen (visible in IHC). Air sac: virus-antigen-positive cells largely have their normal morphology, with no associated lesions.

254

255 ***Virological and bacteriological analyses of environmental fecal swabs from live skuas and***
256 ***bacteriological analysis of environmental matrix samples***257 None of the environmental fecal swabs collected from live skuas at the sites where dead skuas
258 were found tested positive for H5N1 HPAIV RNA: Beak Island (0/42 fecal swabs), Hope Bay
259 (0/20), Devil Island (0/11), Paulet Island (0/11). For Beak Island, considering that there were
260 approximately 100 live skuas at the time of our visit, it is possible to state that our sample size was
261 sufficient to conclude with 90% confidence that the prevalence of HPAIV in the feces of the live
262 skuas was lower than 5% (assuming test sensitivity of 90% and random sampling) (Supplementary
263 Table 5). None of the 12 environmental fecal swabs collected from skuas at any of the other sites
264 (Elephant Point, D'Urville Monument, Haddon Bay, Yankee Harbour) tested positive for influenza
265 A virus; however, the sample size of environmental fecal swabs from skuas at these locations was
266 lower and does not allow for a statement on the prevalence of the virus (Supplementary Table 5).267 None of the environmental matrix samples – air (n=4), water (n=10) or soil (n=4) - from Hope
268 Bay, Beak Island or Paulet Island tested positive for *P. multocida* DNA by qPCR, despite the
269 presence of *P. multocida*-positive dead skuas at Hope Bay and Paulet Island.

270

271 ***Overview of mortality and diagnostic findings in species beyond skuas***272 During our expedition, we also found and autopsied carcasses of gentoo penguins, Adélie penguins
273 and Antarctic fur seals (*Arctocephalus gazella*) (Table 3). Although we detected low levels of
274 H5N1 HPAIV RNA in some of the tissue samples from penguins, our investigations supported
275 other possible causes of death than HPAI (Table 3). Additionally, we collected brain samples from
276 one snowy sheathbill (*Chionis albus*) and five southern elephant seals (*Mirounga leonina*), but we
277 did not find any evidence of HPAIV infection (Table 3). These carcasses were in variable states
278 of autolysis and decomposition (also based on GAPDH RT-qPCR data; Supplementary Table 9)
279 ranging from freshly deceased carcasses to skeletal remains with dried-out fragments of brain
280 tissue.281 H5N1 HPAIV RNA was detected by RT-qPCR in 5 of 25 Adélie penguins from Devil Island and
282 1 of 7 gentoo penguins from D'Urville Monument (Supplementary Table 6). 4 of the 5 positive
283 Adélie penguins were confirmed to have a MBCS (PLREKRRKR/GLF). Overall, viral RNA loads
284 in these penguins were lower than in skuas and not detected in all the tissues and swabs. On
285 average, the highest viral RNA load in H5 HPAIV-positive Adélie penguins was detected in the
286 oropharyngeal swabs (10.1 ± 2.1), but comparable results were also found in the brain (9.4 ± 3.2).
287 The positive gentoo penguin showed the highest viral RNA load in the brain (11.8) (Supplementary
288 Table 6). We also detected influenza A viral RNA in tissues and swabs of additional Adélie (n=1,
289 Paulet Island) and gentoo penguins (n=4, D'Urville Monument), but these samples were negative
290 in the H5 and/or HPAI RT-qPCRs (Supplementary Table 7). No antibodies against H5 influenza
291 A viruses or NP were detected by competitive ELISA in a body fluid sample collected from one
292 gentoo penguin from D'Urville Monument (GEPE09).293 Virus antigen expression was not detected in any of the penguin carcasses that were positive for
294 H5 HPAIV RNA. Rare cells in the brain tissues of two Adélie penguins (AP01 and AP02) were
295 positive by ISH (Supplementary Table 8). By histopathological examination, no other clear cause
296 of death was detected for any of these six penguins, which fits with their probable cause of death

297 based on macroscopic examination being either starvation (3/6), egg retention (1/6), or trauma
298 (1/6) (Table 3). For 1/6 penguins (AP06), neither macroscopic assessment was conducted nor
299 histological samples collected.

300 Nearly all 370 environmental fecal swabs collected from species other than skuas tested negative
301 for influenza A virus RNA (Supplementary Table 5). The exceptions were two environmental fecal
302 swabs collected from apparently healthy individuals: one, which tested positive for H5N1 HPAIV
303 RNA, from a southern giant petrel (*Macronectes giganteus*) at Yankee Harbour, and the other one,
304 which could not be subtyped or pathotyped due to its low viral load, from a gentoo penguin at
305 D'Urville Monument.

ARTICLE IN PRESS

Table 3. Overview of diagnoses in gentoo penguins (GP), Adélie penguins (AP), snowy sheathbills (SB), southern elephant seals (ES) and Antarctic fur seals (FS) found dead. All animals tested negative for *P. multocida* DNA by qPCR in all organs.

Location	Individual	Age class	State of autolysis	Sex	Nutritional condition	HPAI		Observations		Diagnosis	
						Brain viral RNA	Viral histo	Macroscopic	Microscopic	Diseases at death in order of severity	Confidence level
Elephant Point	GP01-03	Juv, Ad	Minimal*	nd	P	-	na	Starvation	na	Unknown	Inconclusive
	GP04	Juv	Advanced	nd	nd	-	na	Unknown	na	Unknown	Inconclusive
	GP06	Ad	Minimal*	nd	G	-	na	Unknown	na	Unknown	Inconclusive
	ES01-05	Juv	Advanced	nd	nd	-	na	Unknown	na	Unknown	Inconclusive
	FS01	Ad	Advanced	nd	nd	-	na	Unknown	na	Unknown	Inconclusive
Devil Is.	AP01-02	Ch, Juv	Moderate/Advanced	M	VP	+	-†	Starvation	nad	1. Starvation 2. HPAI	Medium
	AP03	Juv		nd	VP	-‡	-	Starvation	nad	1. Starvation 2. HPAI	Medium
	AP04	Ad	Advanced	F	G	++	-	Egg retention	nad	1. Egg retention 2. HPAI	Medium
	AP05	Ch	Moderate	M	VP	-	na	Starvation	nad	Starvation	Medium
	AP06	nd	nd	nd	nd	+	na	Unknown	na	Unknown	Inconclusive
	AP07-25	nd	nd	nd	nd	-	na	Unknown	na	Unknown	Inconclusive
D'Urville Monument	GP08-09	Ch, Juv	Minimal	F	VP	-	na	Starvation	nad	Starvation	High
	GP10	Ad	Minimal	M	G	++	-	Predation, HPAI	Mild histiocytic thyroiditis; nad	1. Predation 2. HPAI	High
	GP11	Juv	Minimal*	M	VP	-	na	Starvation	nad	Starvation	High
	GP12	nd	nd	nd	nd	-	na	nd	na	Unknown	Inconclusive
	GP14	Ch	Minimal	nd	nd	-	na	Unknown	nad	Unknown	Inconclusive
	GP15, AP26	Juv	Minimal/Moderate	nd	VP	-	na	Starvation	nad	Starvation	High
	SB01	nd		nd	nd	-	na	nd	na	Unknown	Inconclusive
Haddon Bay	FS02	nd	Advanced	nd	nd	-	na	nd	na	Unknown	Inconclusive
Paulet Is.	AP60-61, AP63-64, AP67-68	Ch	Advanced	nd	nd	-	na	nd	na	Unknown	Inconclusive
	AP62	Juv	Moderate	nd	VP	-	na	Starvation	nad	Starvation	Medium
	AP65	Juv	Advanced	nd	nd	-	na	nd	na	Unknown	Inconclusive
	AP66	Juv	Moderate	nd	VP	-	na	Starvation	nad	Starvation	Medium
Yankee Harbour	GP16-19, GP21-22	Ad	Minimal*	nd	nd	-	na	Predation	nad	Predation	Medium
	GP20	Ad	Advanced*	nd	nd	-	na	Unknown	na	Unknown	Inconclusive
	FS06	Juv	Minimal*	M	Mo	-	na	Pneumonia¶	Bacterial pneumonia#	Bacterial infection	High

Age class: Ch: chick, Juv: juvenile, Ad: adult

Sex: M: male, F: female

Decomposition state: VP: very poor, P: poor, Mo: moderate, G: good

nd: not determined

na: not applicable (not sampled)

nad: no abnormalities detected

* Scavenged or predated

† Tissues were negative for virus antigen by IHC, and lesions were not detectable. For these cases, ISH was performed on the brain tissue, and few cells were positive.

‡ Animal positive for HPAI viral RNA but not in the brain.

¶ Severe chronic embolic pyogranulomatous pneumonia.

Severe chronic embolic pyogranulomatous pneumonia with intralesional bacteria

306 **Discussion**

307 In our survey of sites at the South Shetland Islands and Trinity Peninsula in March 2024 ²⁰, we
 308 diagnosed HPAI as the probable cause of an unusual mortality event involving at least 10 of 46 skuas
 309 found dead at the time of our visit at Beak Island. Evidence supporting this diagnosis included relevant
 310 macroscopic observations, high loads of H5N1 HPAIV RNA, virus antigen expression and typical
 311 lesions in the brains and other organs of skuas found dead, combined with lack of evidence of other
 312 potential causes of death. These results establish HPAI as a significant cause of mortality of skuas in
 313 the Antarctic Peninsula and Weddell Sea region of Antarctica.

314 Skuas in Antarctica may be both victims and potential vectors of H5 HPAIV, as indicated previously
 315 for wild birds in Europe ^{32,33} and North America ³⁴.

316 As victims, the 46 skua deaths at Beak Island attributed to HPAI are undoubtedly far fewer than the
 317 actual number of skua deaths from HPAI there during the 2023-2024 breeding season, because of the
 318 dead skuas we missed, those that already had been scavenged by the time of our survey or died outside
 319 the colony site ^{35,36}. In addition, the skua deaths that may have occurred at other unsurveyed sites of
 320 the Antarctic Peninsula were missed.

321 Comparison of the virus distribution, viral loads, and associated pathological changes in the tissues
 322 of these south polar skuas and brown skuas and those in the tissue of great skuas (*Stercorarius skua*)
 323 with HPAI are informative. In skuas from both hemispheres, neurological clinical signs were
 324 associated with HPAIV infections, resulting in (per)acute death of affected individuals ^{10,37}. Despite
 325 a limited sample size for postmortem examination, we confirmed systemic HPAIV infections,
 326 including a particular tropism for the brain, which suggests that sampling this organ is the most
 327 efficient way to detect HPAIV in this species, but also the lungs, based on high viral RNA loads and
 328 virus antigen expression. Thus, neurological clinical signs could have occurred before the onset of
 329 death, although we did not observe any apparently sick birds alive during our expedition. In this
 330 context, body posture appeared to be a limited indicator of HPAI, as in one case (Paulet Island) the
 331 skua was more likely to have died of avian cholera. Virus distribution and associated pathological
 332 changes in tissues appeared to be more severe and widespread in great skuas ³⁷, suggesting south
 333 polar and brown skuas may have an even faster fatal outcome from the disease than great skuas.

334 Local transmission of HPAIV among skuas at Beak Island was likely due to contact with other
 335 infected skuas. Our results of virological analysis of skua carcasses support different routes of
 336 transmission. Local transmission among skuas may have occurred via intra-species scavenging or
 337 cannibalism (based on multiple virus-positive organs that are typically eaten, as well as our
 338 observations of skuas scavenging skua carcasses on Beak Island), via contact with contaminated feces
 339 (based on viral RNA-positive cloacal swabs) or via contact with contaminated respiratory secretions
 340 (based on viral RNA-positive oropharyngeal or tracheal swabs). The freshwater lakes on Beak Island
 341 may have been a fomite for HPAIV transmission of skuas bathing together. In a HPAI-associated
 342 unusual mortality event of great skuas on Foula (Shetland Isles), the rapid spread of HPAIV among
 343 great skuas was considered to have been facilitated by their habit to bathe and socialize at freshwater
 344 lochs and pools, where close conspecific interactions occurred ³⁸. Alternatively, the higher density of
 345 carcasses near freshwater lakes on Beak Island could be related to agonal processes rather than
 346 transmission dynamics. Transmission of HPAIV may have been enhanced because of the low ambient
 347 temperatures, which ranged between -15 and $+5^{\circ}\text{C}$ at the sampling locations during our expedition.
 348 It is known that persistence of virus infectivity in infected carcasses ³⁹ and contaminated water ^{40,41} is
 349 higher at lower temperatures.

350 As potential vectors, the results of our study do not provide strong evidence either for or against skuas
351 as long-distance vectors of H5N1 HPAIV. Whereas some skuas seem to die acutely upon infection,
352 we did not follow these infected individuals over time. Therefore, we cannot estimate whether, for
353 example, they can act as vectors of HPAIV in the early stages of infection. Also, we do not know
354 whether other skuas may be infected without showing clinical signs, as occurs in some duck species
355 ⁴². The unusual mortality event of skuas from HPAI in the Weddell Sea area may have started with
356 introduction of H5N1 HPAIV from elsewhere by an infected skua. This fits with the facts that HPAIV
357 had been detected in skuas on the South Shetland Islands and in other parts of the Antarctic Peninsula
358 in February 2024 ¹³, and we did not observe mortality of other species at Beak Island. Additionally,
359 this is consistent with the more recent detections of H5N1 HPAIV in skuas on both the east and west
360 coasts of the Antarctic Peninsula, South Georgia, the South Shetland, Falkland, Marion, Crozet and
361 Kerguelen Islands (<https://scar.org/library-data/avian-flu>). At Hope Bay, breeding brown skuas
362 arrived earlier in the 2023-2024 season than the non-breeding population, which displayed a peak
363 between mid-January and early February, and which was the only population affected by HPAI
364 (Instituto Antártico Argentino, unpublished data). This would also suggest a possible introduction of
365 H5N1 HPAIV in the Antarctic Peninsula by non-breeding skuas migrating from locations where the
366 virus was already established (e.g. South Georgia and South Shetland Islands). The preferential brown
367 skuas migration for the southwest Atlantic sector of the Southern Ocean and the Patagonian shelf ¹⁶
368 also supports this hypothesis. Alternatively, the unusual mortality event may have started with the
369 introduction by an (undetected) infected bird of another species or marine mammal, with subsequent
370 spillover into skuas ^{8,10}.

371 The results of virological analysis of environmental fecal samples suggested lack of HPAIV
372 circulation in apparently healthy birds at the times of our visits except for a single environmental fecal
373 swab of a southern giant petrel (out of 13 environmental fecal swabs collected from this species). The
374 failure to detect HPAIV RNA in environmental fecal swabs of apparently healthy birds contrasts with
375 successful detection in samples of birds found dead, particularly in skuas on Beak Island. This is in
376 agreement with previous studies showing that the usefulness of avian fecal samples for HPAI
377 monitoring programs in wild bird populations is limited ⁴³⁻⁴⁵. In this case, elaborate and adapted
378 protocols are required and recommended for subsequent analyses to allow identification of nucleic
379 acids in feces ^{43,46,47}, e.g. including additional clean-up steps to remove possibly high levels of
380 inhibitors that potentially interfere with downstream analyses or carrying an internal control to track
381 likely inhibited samples. Alternatively, and in agreement with the low viral loads from cloacal swabs,
382 these results suggest low HPAIV shedding into feces, which would influence transmission, spread
383 and environmental persistence of the virus. Thus, avian influenza surveillance by fecal sampling,
384 although easy to perform and reliable for LPAIVs detection ^{45,48}, clearly needs careful consideration
385 for HPAIV in the Antarctic context, considering its apparently low reliability to detect HPAIV
386 circulation.

387 We diagnosed avian cholera rather than HPAI as possible cause of death of skuas at Hope Bay.
388 Evidence supporting this diagnosis includes high loads of *P. multocida* in multiple tissues (indicating
389 systemic bacterial spread), multifocal coccoid bacterial aggregates in the liver colocalized with
390 necrosis and inflammation (indicating severe acute disease from *P. multocida* infection), and no
391 detectable H5N1 HPAIV RNA in tissues or swabs. Previously, avian cholera had been diagnosed by
392 bacteriological and pathological analyses in brown and south polar skuas found dead in Hope Bay in
393 the breeding seasons of 1999-2000 and 2000-2001 ²³. These results underline the importance of

394 considering multiple possible causes when investigating unusual mortality events in skuas or other
395 wildlife species, even in the presence of HPAI outbreaks.

396 Although we found evidence of H5N1 HPAIV infection in both dead Adélie penguins at Devil Island
397 and a dead gentoo penguin at D'Urville Monument, we diagnosed other probable causes of death,
398 mainly starvation. HPAI was ruled out as cause of death based on the low viral RNA levels by RT-
399 qPCR in tissues and lack of virus antigen expression by IHC and associated lesions by histopathology
400 in the same tissues. There also were two dead skuas at Hope Bay in which tissues low to medium
401 levels of H5N1 HPAIV were detected by RT-qPCR, but they possibly or likely died from avian
402 cholera. These results fit with the broad range of disease outcomes in multiple wild bird species
403 infected with HPAIV, from subclinical infection to acute death ^{5,42,49}. Therefore, the detection of
404 H5N1 HPAIV RNA by itself in the avian brain does not necessarily mean that HPAIV infection was
405 the cause of death. However, the lack of clinical signs would represent a concern for viral persistence
406 in animal populations and potential spread to susceptible species.

407 Whereas not investigated in this study, speculation on how the virus is transmitted between skuas and
408 other species is relevant for the epidemiology of H5N1 HPAIV in this setting. Both brown and south
409 polar skuas are opportunistic scavengers and predators of other birds. However, considering their
410 dietary and behavioral differences ^{15,17,50,51}, brown skuas are expected to have more and closer
411 contacts with penguins, and might be more likely to be involved in virus transmission to and from
412 penguins than south polar skuas. However, longitudinal studies throughout the breeding season and
413 phylogenetic analyses of the viral isolates would be needed to assess this.

414 We conclude from the detection of H5N1 HPAIV in five species (brown skua, south polar skua,
415 gentoo penguin, Adélie penguin, southern giant petrel) at four sites at a geographical distance of up
416 to 50 km from each other in our study, together with the detection in other parts of the Antarctic
417 Peninsula by us and others ^{8,13,20}, that H5N1 HPAIV already was widespread in the northern part of
418 the Antarctic Peninsula in March 2024, just two months after its first detection in Antarctica ⁸. We
419 also conclude that H5N1 HPAIV has the potential to cause marked mortality in south polar and brown
420 skuas of the Antarctic Peninsula, up to levels that can potentially cause declines in these small
421 populations. In 1984, it was estimated that there were only 650 breeding pairs of south polar skuas
422 and 150 breeding pairs of brown skuas in the Antarctic Peninsula, out of global populations of 5000
423 to 8000 breeding pairs of south polar skuas and 7000 breeding pairs of brown skuas ⁵². We are not
424 aware of more recent estimates for the investigated sites, with the exception of Hope Bay. At Hope
425 Bay, the brown skua breeding and non-breeding populations were overall increased between 2014
426 and 2023, and remained stable between the breeding seasons 2022-2023 and 2024-2025 (39-43 nests
427 and 75-90 individuals, respectively; Ibañez et al., unpublished data); hence, the mortality at Hope Bay
428 (primarily due to avian cholera) would represent roughly 20% of the local non-breeding population.

429 Whereas we previously showed that H5N1 HPAIV RNA was detected in the brain of one of three
430 skuas from Paulet Island (SK30) ^{20,29}, we could not confirm this result hereby. One possible
431 explanation is that since the RNA viral load was low, and given the focal nature of HPAI lesions in
432 the brain ⁵³ (as we also showed in the skuas we sampled), one sample might have included a cluster
433 of HPAIV-positive cells, while another one did not. Despite the presence or absence of viral RNA,
434 we diagnosed this animal with a cause of death other than HPAI.

435 The specific implication of demonstrating that south polar and brown skuas are victims of H5N1
 436 HPAIV infection is that these two species are probably at risk of continued high mortality in coming
 437 years, especially if the virus is circulating early in the breeding season. The presence of H5 HPAIV
 438 in Antarctica in the 2024/2025 breeding season was demonstrated by its detection in 11 dead skuas
 439 sampled at different locations of the Antarctic Peninsula⁵⁴. This mortality will potentially result in
 440 declines of their already small populations, both on the Antarctic Peninsula and elsewhere in their
 441 ranges. For comparison, the number of apparently occupied territories of great skuas on Foula
 442 (Shetland, UK), the world's largest breeding colony of this species, was estimated to have declined
 443 by about 60-70% due to HPAI³⁸. Similar estimates have also been made for the whole UK⁵⁵. To be
 444 able to assess the effects of HPAI on their populations, it is important to closely monitor as many as
 445 possible breeding sites of these species for morbidity and mortality from HPAI. A related priority
 446 action is to perform regular population censuses of brown skuas and south polar skuas as frequently
 447 as possible in coming years.

448 The specific implication of evidence for south polar and brown skuas as potential vectors of HPAIV
 449 is that they may play a substantial role in further spread of the virus. Breeding colonies of brown
 450 skuas are distributed across the Subantarctic region, while those of south polar skuas are distributed
 451 along the whole coast of the Antarctic continent¹⁴⁻¹⁹. Therefore, they could play a role in spreading
 452 HPAIV widely, despite their small numbers. However, relatively little is known about movements of
 453 skuas between breeding colonies. To better assess their potential roles as vectors, it is important to
 454 learn more about their movement ecology, for example, by attaching miniature data loggers to
 455 breeding and non-breeding birds to be able to follow their movements through the environment⁵⁶⁻⁵⁸,
 456 as well as sampling apparently healthy skuas⁵⁹ and performing phylogenetic analysis with host,
 457 subtype and region discrete trait mappings⁶. Additionally, longitudinal studies conducted throughout
 458 the breeding season could provide valuable insights into the relevant reservoirs of infection and
 459 transmission pathways in the Antarctic context.

460 The general implication of H5N1 HPAIV being so widespread across the Antarctic Peninsula in
 461 several species in the summer of 2023/2024 is that it has gained a foothold in Antarctica and may not
 462 only persist but also spread across the continent in coming years. Based on the history of H5N1
 463 HPAIV in European wildlife in recent years, where the unusual mortality events occurred in different
 464 species from one year to the next⁶⁰ (EFSA reports 2020 to 2024, from:
 465 <https://www.efsa.europa.eu/en/topics/topic/avian-influenza>), it may be expected that additional
 466 species will undergo unusual mortality events from HPAI in Antarctica in the future. Therefore, close
 467 avian influenza surveillance by transdisciplinary teams will be needed across Antarctica to be able to
 468 record not only virus spread but also diagnose unusual mortality events from HPAI. Such surveillance
 469 should include serological screening for both HPAIVs and LPAIVs to understand the role of different
 470 species for virus persistence in the Antarctic and be performed according to agreed biosafety
 471 guidelines. To be confident that unusual mortality events are caused by HPAI and not by avian cholera
 472 or other mortality factors, adequate diagnostic expertise is required. Just as important as recording
 473 virus spread and associated mortality, the population sizes of affected species need to be counted in
 474 coming years to be able to assess the impact of the virus on wildlife population sizes. This is all the
 475 more important for Antarctic wildlife, which is threatened by multiple factors such as global warming,
 476 increased scientific activities and infrastructure, increased tourist numbers, invasion of non-native
 477 species, overfishing, and pollution⁶¹. These avian influenza surveillance and population impact

478 studies fit in a global exercise to assess the impact of this poultry-origin disease on worldwide wildlife
 479 populations, and to provide a well-documented basis to take action to prevent future spillover of
 480 anthropogenic diseases from livestock to wildlife⁴.

481 **Materials and Methods**

482 Field work: observations and sample collection

483
 484 All the samples described in this study have been collected between March 17th and March 28th,
 485 2024, at the following sites:

486

- 487 « Yankee Harbour, Greenwich Island (62°31'55"S, 59°46'32"W)
- 488 « Elephant Point, Livingston Island (62°41'21"S, 60°51'58"W)
- 489 « Hope Bay, Trinity Peninsula (63°24'16"S, 56°59'49"W)
- 490 « Haddon Bay, Joinville Island (63°18'41"S, 55°46'28"W)
- 491 « D'Urville Monument, Joinville Island (63°25'36"S, 56°17'13"W)
- 492 « Paulet Island (63°34'31"S, 55°46'30"W)
- 493 « Beak Island (63°36'49"S, 57°20'50"W)
- 494 « Devil Island (63°47'50"S, 57°17'29"W)

495

496 The selection of locations we visited was based on sites with a diverse range of wildlife species,
 497 especially skua, and previously reported observations of morbidity and mortality. A scouting team
 498 was responsible for surveying the territory, recording the number of animals present and observing
 499 clinical signs of HPAI in wildlife. The resulting live animal count data do not intend to cover
 500 respective population dimensions, but convey the scenario present at the moment of our visit.

501 Environmental fecal swab samples were collected from apparently healthy individuals that had been
 502 directly observed to defecate, or based on their appearance and on the fact that the feces were freshly
 503 collected from areas where skuas (and no other species) were present minutes earlier, by swabbing
 504 the fresh dropping off the substrate, and placing it into 1.5 mL NucleoProtect VET buffer (Macherey-
 505 Nagel). Autopsies on a subset of dead animals were performed on site, and samples for virological
 506 analyses were collected and stored in 1 mL DNA/RNA Shield (Zymo). Samples for histopathological
 507 analyses were also collected and stored in 10% neutral buffered formalin.

508 Air was collected by filtration through nanofiber filters and filters introduced in 2 mL CLB as
 509 described previously⁶². Likewise, water and soil samples (environmental matrix samples) were mixed
 510 with 0.5 mL Cell Lysis Buffer (CLD; Promega).

511 All the samples were stored refrigerated at 4°C until the end of the expedition.

512 The temperature conditions at the sampling locations were variable and ranged between -15 and
 513 +5°C.

514 Immediate on-site testing for the detection of influenza A virus antigen with the FASTest® AIV Ag
 515 test kit (MEGACOR Veterinary Diagnostics, Germany) was conducted for a subset of avian
 516 carcasses. Single or multi-organ swabs (table S1) were utilized according to the manufacturer's
 517 instructions; nevertheless, the suboptimal environmental conditions (e.g. low ambient temperature)
 518 might have impaired the kit functionality and caused uncertain results in some cases. □

519 All the operations described above were performed with adequate personal protective equipment
 520 (PPE), including N95 face mask, goggles/eyewear, coveralls, and gloves
 521 (<https://scar.org/~documents/science-4/life-sciences/ag-daw/updated-predictions-and-recommendations-for-highly-pathogenic-avian-influenza-in-antarctica-v7?layout=default>). Since all

523 samples were stored in infectious agent-inactivating buffers, no BSL3 regulations were required after
 524 sample collection.

525 The activities undertaken during this expedition were in agreement with the permit “Meagan Dewar
 526 – Avian Influenza research (2023-24 season)” granted to Meagan Dewar by the Australian
 527 Government, Department of Climate Change, Energy, the Environment and Water – Australian
 528 Antarctic Division (AAD).

529 We applied levels of confidence for our disease diagnoses because we investigated carcasses of free-
 530 ranging animals found dead for which we have no disease history knowledge. Additionally, not all
 531 carcasses could be investigated with the same tests, either because of lack of time, or because the state
 532 of decomposition or scavenging hampered taking a full set of samples. We distinguished three
 533 confidence levels: high, medium, inconclusive (Supplementary Table 10). The assigning of these
 534 categories was based on i) the samples available for testing, ii) the level of matching of the different
 535 test results, and iii) the result of a host housekeeping gene (GAPDH) as internal control for RNA
 536 preservation in the carcass. We assigned a category to each autopsied individual for which we made
 537 disease diagnosis. GAPDH RNA was detected in all our carcass samples and therefore negative viral
 538 and bacterial genes qPCR results were taken into account.

539
 540 Laboratory analyses: carcass samples

541
 542 *Nucleic acid extraction*

543 □

544 All samples were stored at -70°C. Tissue samples were homogenized prior to virological and
 545 bacteriological screenings. RNA was extracted for virological analyses using the High Pure RNA
 546 Isolation Kit (Roche) according to the manufacturer’s instructions. For bacteriological analyses, 200
 547 µL of tissue swab or environmental sample supernatant (air, soil, water) and 100 µL of tissue
 548 homogenate were mixed with 600 µL of MagNA Pure External Lysis Buffer (Roche) and PBS up to
 549 1 mL. 20 µL of phocine distemper virus (PDV) extraction control was added to each sample⁶³. Total
 550 nucleic acids were extracted using MagNA Pure 96 System (Roche). □

551
 552 *M1, H5, N1 and HPAI real time RT-PCR* □

553
 554 The presence of influenza A virus and H5 hemagglutinin (HA) RNA in the samples was determined
 555 by duplex RT-qPCR as described previously⁶⁴. The neuraminidase 1 (N1) subtype was determined
 556 by RT-qPCR as described previously⁶⁵ on a subset of samples.

557 The presence of a MBCS in the HA sequence was first determined by RT-qPCR. A partial sequence
 558 from segment 4 (HA) was amplified using optimized primers and probes⁶⁶ for the detection of HPAI
 559 H5 viruses (FW: CCTTGCCTGGCTCAG, RV: ATCAACCATTCCCTGCCA, probe1: FAM-
 560 AGAAGAAARAGAGGGCTGTTGGGGCT-BHQ-1, probe2: FAM-
 561 AGAAGAAARAGAGGCCTGTTGGGGCT-BHQ-1). RT-qPCR mix included 20 µL containing 5
 562 µL of RNA, 500 nM of each primer, 250 nM of each probe, 5 µL 4x TaqMan™ Fast Virus 1-Step
 563 Master Mix (Applied Biosystems) and nuclease-free water to a final volume of 20 µL. The
 564 amplification protocol was 5 min 50°C, 20 s 95°C, 45x (3 s 95°C, 20 s 56°C, 31 s 60°C). Fit point
 565 analysis was used to determine the Cq values. Negative and positive controls were included. Samples
 566 with Cq>40 were considered negative. The following categories were established based on the M1
 567 viral RNA load (40 – Cq): 0, negative (-); 1 to 10, low (+); 11 to 20, moderate (++) ; 21 to 40, high
 568 (+++). □

569

570 *MBCS sequencing* □
571

572 To further confirm the presence of a MBCS, the segment region including the MBCS was amplified
573 by RT-PCR and sequenced. cDNA was first synthesized using 80 nM of non-segment-specific H5N1
574 primer (AGCRAAACAGCAGG), 2 µL dNTPs 10 mM, 20 U RNase inhibitor and 11.5 µL RNA. This
575 mix was incubated for 5 min at 65°C and then placed on ice for denaturation of RNA secondary
576 structures. 20 U RNase inhibitor, 1x Superscript IV buffer, 1 µL DTT 0.1 M, 200 U Superscript IV
577 Reverse Transcriptase (Invitrogen) were added to the mix in a final volume of 25 µL. cDNA synthesis
578 was performed with the following parameters: 5 min 25°C, 15 min 50°C, 10 min 80°C. A segment
579 region of 310 bp including the MBCS was amplified using specific primers (J3 and B2a) as described
580 previously⁶⁷. The reaction mix consisted of 5 µL cDNA, 200 nM of each primer, 5 µL GeneAmp
581 10X Gold Buffer, 5 µL MgCl₂ 25 mM, 5 U AmpliTaq Gold DNA Polymerase (Applied Biosystems),
582 1 µL dNTPs 10 mM and nuclease-free water in a final volume of 50 µL. The RT-PCR amplification
583 was performed with the following parameters: 6 min 95°C, 40x (20 s 95°C, 30 s 50°C, 1 min 72°C),
584 6 min 72°C. After separation on a 2% agarose gel electrophoresis, bands corresponding to the
585 cleavage site amplicon were purified with MiniElute Gel Extraction Kit (Qiagen) according to the
586 manufacturer's instructions. The amplicon was then prepared for Sanger sequencing. 2 µL of DNA
587 were amplified using 600 nM of the same primers specific for the cleavage site, 0.5 µL BigDye 5X
588 Sequencing Buffer, 0.5 µL BigDye™ Terminator v3.1 (Applied Biosystems) and water to a final
589 volume of 10 µL. The amplification parameters were the following: 10 s 96°C, 30 s 45°C, 30x (4 min
590 60°C). The amplification products were then purified on a Sephadex plate PERFORMA V3
591 (EdgeBio). Sequencing was performed in a 3500xL genetic analyser (Applied Biosystems).
592 Sequences were analysed using BioEdit or SnapGene. A reference sequence was submitted to
593 GenBank (accession number: PV570239). □
594

595 *GAPDH and β-actin real time RT-PCR*
596

597 To estimate the degree of RNA integrity in the carcass samples, ubiquitously expressed host gene
598 RNAs were amplified by RT-qPCR. From bird samples, GAPDH RNA was amplified using specific
599 primers and probe designed based on Adélie penguin GAPDH gene (Gene ID: 103921100) (FW:
600 CAACCCCCAATGTCTCTGTT, RV: TATATGCCAGGATGCCCTTC, probe: FAM-
601 AAGGCTGCTGCTGATGGGCC). From seal samples, β-actin RNA was amplified using in-house
602 designed primers cross-reactive with seals (FW: GGCATCCATGAAACTACCTT, RV:
603 AGCACTGTGTTGGCATAGAG, probe: FAM-ATCATGAAGTGTGACGTTGACATC). The 20
604 µL RT-qPCR mix included 5 µL of extracted RNA, 20 µM of each primer, 10 µM of probe, 5 µL 4x
605 TaqMan™ Fast Virus 1-Step Master Mix (Applied Biosystems) and nuclease-free water to a final
606 volume of 20 µL. The amplification protocol included 5 min 50°C, 20 s 95°C, 45x (3 s 95°C, 31 s
607 60°C). Fit point analysis was used to determine the Cq values. Samples with Cq>40 were considered
608 negative. □
609

610 *Pasteurella multocida kmt1 real time PCR* □
611

612 The presence of *P. multocida* in the samples was determined by qPCR. A partial sequence of the *kmt1*
613 gene, which is conserved among all *P. multocida* strains, was targeted using primers as previously
614 described⁶⁸. The qPCR mix included 5 µL of extracted DNA, 20 µM of each primer, 10 µM of probe,
615 5 µL 4x TaqMan™ Fast Virus 1-Step Master Mix (Applied Biosystems) and nuclease-free water to a
616 final volume of 20 µL. The amplification protocol was 20 s 95°C, 45x (15 s 95°C, 20 s 53°C, 31 s

617 60°C). □ Fit point analysis was used to determine the Cq values. Negative and positive controls were
 618 included. Samples with Cq>40 were considered negative.

619 To further confirm the presence of the *P. multocida kmt1* gene, a subset of samples from different
 620 locations were used to amplify and sequence the same amplicon (211 bp) of the qPCR reaction. The
 621 PCR mix consisted of 5 µL input DNA, 200 nM of each primer, 1 µL SuperScript III RT/Platinum
 622 Taq Mix (Invitrogen), 25 µL 2X Reaction Mix and nuclease-free water to a final volume of 50 µL.
 623 The amplification protocol was 6 min 95°C, 40x (20 sec 95°C, 30 sec 53°C, 60 sec 72°C), 6 min
 624 72°C. The PCR product isolation and sequencing steps were the same as described above. The
 625 sequences were analyzed using BLASTn against the NCBI GenBank database to identify closely
 626 related sequences. The following categories were established based on the *kmt1* DNA load (40 – Cq):
 627 0, negative (-); 1 to 7, low (+); 8 to 14, moderate (++) ; 15 to 40, high (+++). □
 628

629 *Serology* □
 630

631 When available, fluid from the celomic cavity of carcasses selected for autopsies was collected with
 632 a disposable pipette and processed as described previously⁶⁹. This fluid is referred to as “body fluid”
 633 throughout the text. The supernatant was tested for the detection of antibodies against influenza A
 634 viral nucleoprotein (NP) and H5 hemagglutinin (HA) using ID Screen Influenza A Antibody
 635 Competition Multi-species and ID Screen Influenza H5 Antibody Competition 3.0 Multi-species
 636 (IDvet, Innovative Diagnostics), according to the manufacturer’s instructions.
 637

638 *Immunohistochemistry (IHC), in situ hybridization (ISH) and histopathology*
 639

640 IHC for the NP antigen of influenza A virus was performed as described previously⁷⁰. ISH for the
 641 NP segment of influenza A virus was performed as described previously⁷¹. ISH for *Pasteurella*
 642 *multocida* was performed with the same protocol described previously⁷¹, but using the RNAscope
 643 probe B-P.multocida-Pm1-dnaA (Catalog #1267471-C1; BioTechne). The UBC positive control
 644 probe worked for the species for which ISH was performed (Adélie penguin, south polar skua, brown
 645 skua). 3 µm formalin-fixed paraffin-embedded tissue sections were deparaffinized using xylene,
 646 rehydrated using graded ethanol, stained with hematoxylin (Klinipath) and eosin (QPath; H&E), and
 647 assessed by use of a light microscope by a qualified veterinary pathologist for any histopathological
 648 changes.
 649

650 Laboratory analyses: environmental fecal samples
 651

652 *RNA extraction* □
 653

654 All samples were stored at -70°C. 250 µL of original (first step) or 1:4 diluted (second step)
 655 supernatant was treated with Proteinase K for 20min at RT and spun down at 13,000 rpm for 1 min.
 656 A pre-clean up by incubation with □TRIzol™ LS reagent (Thermo Fisher Scientific, Waltham, MA,
 657 USA) and chloroform and RNA extraction was performed as described before⁷². A heterologous
 658 RNA (IC2) was added during the extraction process in 1:10 ratio to the later on elution volume of
 659 110 µL as internal control. □
 660

661 *Real time RT-PCR* □ □
 662

663 The extracted RNA was used as input for a duplex RT-qPCR screening, targeting IAV M1-gene and
 664 the EGFP-control gene of IC2 as described previously³³. Positive IAV samples were tested to

665 determine subtype and pathotype. The German National Reference Laboratory for avian influenza
 666 RT-qPCR approach has been used for confirmation/exclusion of NP-, H5-, N1- and HPAIV H5-
 667 specific targets⁷³. Samples without a clear IC2 signal ($Cq > 34$) have been considered as inhibited and
 668 thus not evaluable. Those inhibited samples underwent a second round of previously described clean-
 669 up, RNA extraction and RT-qPCR screening, but with a 1:4 diluted original sample material in PBS.
 670 If in this second round a sample did not reveal an IC2 signal, it remained not evaluable.

References

- 671 1. Leguia, M. *et al.* Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. *Nat Commun* **14**, 5489 (2023).
- 673 2. Kuiken, T. *et al.* Emergence, spread, and impact of high pathogenicity avian influenza H5 in wild birds and
 674 mammals of South America and Antarctica, October 2022 to March 2024. Preprint at
 675 <https://doi.org/10.32942/X2P35R> (2025).
- 676 3. Gilbert, M., Xiao, X. & Robinson, T. P. Intensifying poultry production systems and the emergence of avian
 677 influenza in China: a ‘One Health/Ecohealth’ epitome. *Arch Public Health* **75**, 48 (2017).
- 678 4. Kuiken, T. & Cromie, R. Protect wildlife from livestock diseases. *Science* **378**, 5–5 (2022).
- 679 5. Reperant, L. A., Osterhaus, A. D. M. E. & Kuiken, T. Influenza Virus Infections. in *Infectious Diseases of Wild
 680 Mammals and Birds in Europe* (eds Gavier-Widén, D., Duff, J. P. & Meredith, A.) 37–58 (Wiley, 2012).
 681 doi:10.1002/9781118342442.ch2.
- 682 6. The Global Consortium for H5N8 and Related Influenza Viruses. Role for migratory wild birds in the global
 683 spread of avian influenza H5N8. *Science* **354**, 213–217 (2016).
- 684 7. Lane, J. V. *et al.* High pathogenicity avian influenza (H5N1) in Northern Gannets (*Morus bassanus*): Global
 685 spread, clinical signs and demographic consequences. *Ibis* **166**, 633–650 (2024).
- 686 8. Ogrzewalska, M. *et al.* High Pathogenicity Avian Influenza Virus (HPAIV) H5N1 clade 2.3.4.4b recovered from a
 687 kelp gull (*Larus dominicanus*) in the South Shetland Islands, Antarctica. Preprint at
 688 <https://doi.org/10.1101/2024.12.29.630510> (2024).
- 689 9. Lisovski, S. *et al.* Unexpected Delayed Incursion of Highly Pathogenic Avian Influenza H5N1 (Clade 2.3.4.4b)
 690 Into the Antarctic Region. *Influenza Resp Viruses* **18**, e70010 (2024).
- 691 10. Banyard, A. C. *et al.* Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic
 692 Region. *Nat Commun* **15**, 7433 (2024).

693 11. De Seixas, M. M. M. *et al.* H6N8 avian influenza virus in Antarctic seabirds demonstrates connectivity between
694 South America and Antarctica. *Transbounding Emerging Dis* **69**, (2022).

695 12. Hurt, A. C. *et al.* Evidence for the Introduction, Reassortment, and Persistence of Diverse Influenza A Viruses in
696 Antarctica. *J Virol* **90**, 9674–9682 (2016).

697 13. Bennett-Laso, B. *et al.* Confirmation of highly pathogenic avian influenza H5N1 in skuas, Antarctica 2024. *Front.*
698 *Vet. Sci.* **11**, 1423404 (2024).

699 14. Olsen, K. M. & Larsson, H. *Skuas and Jaegers: A Guide to the Skuas and Jaegers of the World*. (Pica Press,
700 Sussex [England], 1997).

701 15. Furness, R. W., Boesman, P. F. D. & Garcia, E. Brown Skua (*Stercorarius antarcticus*). in *Birds of the World* (eds
702 Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S.) (Cornell Lab of Ornithology, 2020).
703 doi:10.2173/bow.brnsku3.01.

704 16. Mills, W. F. *et al.* Migration strategies of skuas in the southwest Atlantic Ocean revealed by stable isotopes. *Mar.*
705 *Biol* **171**, 27 (2024).

706 17. Furness, R. W., Boesman, P. F. D. & Garcia, E. South Polar Skua (*Stercorarius maccormicki*). in *Birds of the*
707 *World* (eds Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S.) (Cornell Lab of Ornithology,
708 2020). doi:10.2173/bow.sopsku1.01.

709 18. Kopp, M. *et al.* South polar skuas from a single breeding population overwinter in different oceans though show
710 similar migration patterns. *Mar. Ecol. Prog. Ser.* **435**, 263–267 (2011).

711 19. Graña Grilli, M. & Cherel, Y. Skuas (*Stercorarius* spp.) moult body feathers during both the breeding and
712 inter-breed periods: implications for stable isotope investigations in seabirds. *Ibis* **159**, 266–271 (2017).

713 20. Aguado, B. *et al.* Searching for high pathogenicity avian influenza virus in Antarctica. *Nat Microbiol* **9**, 3081–3083
714 (2024).

715 21. Bennison, A. *et al.* A case study of highly pathogenic avian influenza (HPAI) H5N1 at Bird Island, South Georgia:
716 the first documented outbreak in the subantarctic region. *Bird Study* 1–12 (2024)
717 doi:10.1080/00063657.2024.2396563.

718 22. De Lisle, G. W., Stanislawek, W. L. & Moors, P. J. *Pasteurella multocida* Infections in Rockhopper Penguins
719 (*Eudyptes chrysocome*) from Campbell Island, New Zealand. *Journal of Wildlife Diseases* **26**, 283–285 (1990).

720 23. Leotta, G. A., Chinen, I., Vigo, G. B., Pecoraro, M. & Rivas, M. Outbreaks of avian cholera in Hope Bay,
721 Antarctica. *Journal of Wildlife Diseases* **42**, 259–270 (2006).

722 24. Cooper, J. *et al.* Disease outbreaks among penguins at sub-Antarctic Marion Island: a conservation concern.
723 *Marine Ornithology* 193–196 (2009).

724 25. Jaeger, A. *et al.* Avian cholera outbreaks threaten seabird species on Amsterdam Island. *PLoS ONE* **13**, e0197291
725 (2018).

726 26. Barbosa, A. *et al.* Antarctic Wildlife Diseases. <https://doi.org/10.18124/D4CC7V> (2015) doi:10.18124/D4CC7V.

727 27. Samuel, M. D., Botzler, R. G. & Wobeser, G. A. Avian Cholera. in *Infectious Diseases of Wild Birds* (eds Thomas,
728 N. J., Hunter, D. B. & Atkinson, C. T.) 239–269 (Wiley, 2007). doi:10.1002/9780470344668.ch12.

729 28. Shirihai, H. *A Complete Guide to Antarctic Wildlife: The Birds and Marine Mammals of the Antarctic Continent
730 and the Southern Ocean.* (Bloomsbury, London, UK, 2019).

731 29. Aguado, B. *et al.* Detection of high pathogenicity avian influenza virus in Antarctica during the International HPAI
732 Australis Expedition 2024. DIGITAL.CSIC <https://doi.org/10.20350/DIGITALCSIC/16596> (2024).

733 30. Arné, P., Risco-Castillo, V., Jouvion, G., Le Barzic, C. & Guillot, J. Aspergillosis in Wild Birds. *JoF* **7**, 241
734 (2021).

735 31. *Infectious Diseases of Wild Birds.* (Blackwell Pub, Ames, Iowa, 2007).

736 32. Kleyheeg, E. *et al.* Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak,
737 the Netherlands. *Emerg. Infect. Dis.* **23**, 2050–2054 (2017).

738 33. Günther, A. *et al.* Avian raptors are indicator species and victims of high pathogenicity avian influenza virus
739 HPAIV H5N1 (clade 2.3.4.4b) in Germany. *Sci Rep* **14**, 28779 (2024).

740 34. Giacinti, J. A. *et al.* Avian influenza viruses in wild birds in Canada following incursions of highly pathogenic
741 H5N1 virus from Eurasia in 2021–2022. *mBio* **15**, e03203-23 (2024).

742 35. Bollinger, T. K. *et al.* *Ecology and Management of Avian Botulism on the Canadian Prairies.*
743 https://www.phjv.ca/wp-content/uploads/2017/10/BotulismReport_FINAL_FullReport_Aug2011.pdf (2011).

744 36. Wobeser, G. A. *Investigation and Management of Disease in Wild Animals.* (Springer, New York, NY, 1994).

745 37. Banyard, A. C. *et al.* Detection of Highly Pathogenic Avian Influenza Virus H5N1 Clade 2.3.4.4b in Great Skuas:
746 A Species of Conservation Concern in Great Britain. *Viruses* **14**, 212 (2022).

747 38. Camphuysen, C., Gear, S. & Furness, R. Avian influenza leads to mass mortality of adult Great Skuas in Foula in
748 summer 2022. *42*, 312–323 (2022).

749 39. Yamamoto, Y., Nakamura, K. & Mase, M. Survival of Highly Pathogenic Avian Influenza H5N1 Virus in Tissues
750 Derived from Experimentally Infected Chickens. *Appl Environ Microbiol* **83**, (2017).

751 40. Ramey, A. M. *et al.* Evidence for interannual persistence of infectious influenza A viruses in Alaska wetlands.
752 *Science of The Total Environment* **803**, 150078 (2022).

753 41. Perlas, A. *et al.* Persistence of low pathogenic avian influenza virus in artificial streams mimicking natural
754 conditions of waterfowl habitats in the Mediterranean climate. *Science of The Total Environment* **863**, 160902
755 (2023).

756 42. Keawcharoen, J. *et al.* Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1).
757 *Emerg. Infect. Dis.* **14**, 600–607 (2008).

758 43. Ahrens, A. K. *et al.* Investigating Environmental Matrices for Use in Avian Influenza Virus Surveillance—Surface
759 Water, Sediments, and Avian Fecal Samples. *Microbiol Spectr* **11**, e02664-22 (2023).

760 44. Pannwitz, G., Wolf, C. & Harder, T. Active Surveillance for Avian Influenza Virus Infection in Wild Birds by
761 Analysis of Avian Fecal Samples from the Environment. *Journal of Wildlife Diseases* **45**, 512–518 (2009).

762 45. Bárbara, A. *et al.* Avian Influenza Virus Surveillance in South-Central Spain Using Fecal Samples of Aquatic
763 Birds Foraging at Landfills. *Front. Vet. Sci.* **4**, 178 (2017).

764 46. Eriksson, P., Mourkas, E., González-Acuna, D., Olsen, B. & Ellström, P. Evaluation and optimization of microbial
765 DNA extraction from fecal samples of wild Antarctic bird species. *Infection Ecology & Epidemiology* **7**, 1386536
766 (2017).

767 47. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-
768 chloroform extraction. *Analytical Biochemistry* **162**, 156–159 (1987).

769 48. Stallknecht, D. E. *et al.* Detection of avian influenza viruses from shorebirds: evaluation of surveillance and testing
770 approaches. *Journal of Wildlife Diseases* **48**, 382–393 (2012).

771 49. Pantin-Jackwood, M. J. & Swayne, D. E. Pathogenesis and pathobiology of avian influenza virus infection in birds.
772 *Rev Sci Tech* **28**, 113–136 (2009).

773 50. Trivelpiece, W. & Volkman, N. J. Feeding strategies of sympatric South Polar Catharacta maccormicki and Brown
774 Skua C. lonnbergi. *Ibis* **124**, 50–54 (1982).

775 51. Graña Grilli, M., Di Virgilio, A., Alarcón, P. & Cherel, Y. Apparent mismatch between stable isotopes and
776 foraging habitat suggests high secondary ingestion of Antarctic krill in brown skuas. *Mar. Ecol. Prog. Ser.* **708**,
777 163–176 (2023).

778 52. Furness, R. W. *The Skuas*. (T & AD Poyser, Calton, 1987).

779 53. Bröjer, C. *et al.* Characterization of Encephalitis in Wild Birds Naturally Infected by Highly Pathogenic Avian
780 Influenza H5N1. *Avian Diseases* **56**, 144–152 (2012).

781 54. León, F. *et al.* Skuas mortalities linked to positives HPAIV A/H5 beyond Polar Antarctic Circle. Preprint at
782 <https://doi.org/10.1101/2025.03.02.640960> (2025).

783 55. Tremlett, C. J., Cleasby, I. R., Bolton, M. & Wilson, L. J. Declines in UK breeding populations of seabird species
784 of conservation concern following the outbreak of high pathogenicity avian influenza (HPAI) in 2021–2022. *Bird
785 Study* 1–18 (2025) doi:10.1080/00063657.2024.2438641.

786 56. Phillips, R. *et al.* Movements, winter distribution and activity patterns of Falkland and brown skuas: insights from
787 loggers and isotopes. *Mar. Ecol. Prog. Ser.* **345**, 281–291 (2007).

788 57. Weimerskirch, H. *et al.* Population-specific wintering distributions of adult south polar skuas over three oceans.
789 *Mar. Ecol. Prog. Ser.* **538**, 229–237 (2015).

790 58. Lamb, J. *et al.* Hanging out at the club: Breeding status and territoriality affect individual space use, multi-species
791 overlap and pathogen transmission risk at a seabird colony. *Functional Ecology* **37**, 576–590 (2023).

792 59. Verhagen, J. H., Fouchier, R. A. M. & Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic
793 Bird Interface in Europe: Future Directions for Research and Surveillance. *Viruses* **13**, 212 (2021).

794 60. Bellido-Martín, B. *et al.* Evolution, spread and impact of highly pathogenic H5 avian influenza A viruses. *Nat Rev
795 Microbiol* <https://doi.org/10.1038/s41579-025-01189-4> (2025) doi:10.1038/s41579-025-01189-4.

796 61. Lee, J. R. *et al.* Threat management priorities for conserving Antarctic biodiversity. *PLoS Biol* **20**, e3001921
797 (2022).

798 62. Hernaez, B. *et al.* Monitoring monkeypox virus in saliva and air samples in Spain: a cross-sectional study. *The
799 Lancet Microbe* **4**, e21–e28 (2023).

800 63. Hoek, R. A. S. *et al.* Incidence of viral respiratory pathogens causing exacerbations in adult cystic fibrosis patients.
801 *Scandinavian Journal of Infectious Diseases* **45**, 65–69 (2013).

802 64. Chestakova, I. V. *et al.* High number of HPAI H5 virus infections and antibodies in wild carnivores in the
803 Netherlands, 2020–2022. *Emerging Microbes & Infections* **12**, 2270068 (2023).

804 65. Hoffmann, B., Hoffmann, D., Henritzi, D., Beer, M. & Harder, T. C. Riems influenza a typing array (RITA): An
805 RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. *Sci Rep* **6**, (2016).

806 66. James, J. *et al.* Rapid and sensitive detection of high pathogenicity Eurasian clade 2.3.4.4b avian influenza viruses
807 in wild birds and poultry. *Journal of Virological Methods* **301**, 114454 (2022).

808 67. Slomka, M. J. *et al.* Identification of Sensitive and Specific Avian Influenza Polymerase Chain Reaction Methods
809 Through Blind Ring Trials Organized in the European Union. *Avian Diseases* **51**, 227–234 (2007).

810 68. Nefedchenko, A. V. *et al.* Detection and genotyping *Pasteurella multocida* of five capsular groups in real time
811 polymerase chain reaction. *S-h. biol.* **52**, 401–408 (2017).

812 69. Tryland, M., Handeland, K., Bratberg, A.-M., Solbakk, I.-T. & Oksanen, A. Persistence of antibodies in blood and
813 body fluids in decaying fox carcasses, as exemplified by antibodies against *Microsporum canis*. *Acta Vet Scand* **48**,
814 (2006).

815 70. Bauer, L. *et al.* The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells. *Life*
816 *Sci. Alliance* **6**, e202201837 (2023).

817 71. De Bruin, A. C. M. *et al.* Species-specific emergence of H7 highly pathogenic avian influenza virus is driven by
818 intrahost selection differences between chickens and ducks. *PLoS Pathog* **20**, e1011942 (2024).

819 72. Santos, P. D. *et al.* An advanced sequence clustering and designation workflow reveals the enzootic maintenance of
820 a dominant West Nile virus subclade in Germany. *Virus Evolution* **9**, vead013 (2023).

821 73. Hassan, K. E. *et al.* Improved Subtyping of Avian Influenza Viruses Using an RT-qPCR-Based Low Density
822 Array: ‘Riems Influenza a Typing Array’, Version 2 (RITA-2). *Viruses* **14**, 415 (2022).

Acknowledgments

We thank Ron Fouchier for support in setting up the molecular analyses, Timm Harder and Sanne Thewessen for optimizing the HPAI RT-qPCR protocol, Anne van der Linden for support with the serological analyses, Dirk Höper, Patrick Zitzow, Lukas Wessler and Kristin Trippler for support with the analyses of environmental fecal samples, Jurriaan de Steenwinkel for providing a *P. multocida* positive control, Micaela Carrillo, Diego Torres and Nadia Haidr for field monitoring of the breeding population of skuas at Esperanza/Hope Bay.

Funding

The HPAI Australis Expedition was funded by the International Association of Antarctica Tour Operators (IAATO) and Ocean Expeditions. MI, AG, LB, TMB, BBM, LL, PvR, MB, TK were funded by the European Union under grant agreement 101084171 (Kappa-Flu). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or REA. Neither the European Union nor the granting authority can be held responsible for them. The participation of BA and AA to the expedition was funded by Consejo Superior de

Investigaciones Científicas (CSIC) under grant agreement 202320E224 and CSIC PTI Salud Global (Next Generation EU).

Author contributions

Conceptualization: MI, AG, LB, BA, FS, MD, AA, MB, RETV, TK

Methodology: MI, AG, LB, TMB, BBM, LL, PvR

Investigation: MI, AG, LB, BA, MVF, BF, AEI, MBM, SL, FS, MD, AA, RETV, TK

Visualization: MI, AG, LB, RETV, TK

Writing – original draft: MI, AG, LB, RETV, TK

Writing – review & editing: all authors

Competing interests

Authors declare that they have no competing interests.

Data availability

A reference sequence including the multi-basic cleavage site (MBCS), generated in this study, is available in GenBank under accession number PV570239.