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Abstract

Hyperspectral images (HSIs) are renowned for their rich spatial and spec-
tral information, which is crucial for accurate classification. The acquisition of
discriminative spectral-spatial features plays a pivotal role in determining classi-
fication results. While convolutional neural networks (CNNs) have demonstrated
remarkable performance in HSI classification, increasing network depth can lead
to performance degradation. Furthermore, their fixed scale and limited receptive
field restrict the ability to capture long-range dependencies, hindering effec-
tive feature learning and, consequently, affecting the generalization capability
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of the framework. This paper presents a novel HSIs classification framework,
MTSA-Net, which integrates a multiscale transformer with a spatial attention
mechanism, resulting in a more robust, flexible, and high-performing approach.
Initially, the proposed framework utilizes 3-D and 2-D convolution layers, fol-
lowed by spatial attention to prioritize and focus on the most critical spatial
features. These enhanced features are then passed through multiscale transformer
encoders to capture local and global representations, effectively modeling long-
range dependencies. Finally, a feature fusion module combines features extracted
at varying scales, leading to a more robust and comprehensive feature representa-
tion for final classification. Extensive experiments on five widely used benchmark
HSIs datasets demonstrate that the proposed MTSA-Net method outperforms
state-of-the-art approaches, particularly with limited training samples. The over-
all accuracies of 98.84%, 98.77%, 99.80%, 97.84%, and 95.87% are achieved on
the Indian Pines, Pavia University, Salinas Valley, Houston-13, and Houston-
18 datasets, respectively. The source code for this work will be accessible at
https://github.com/irfan01000 for reproducibility.

Keywords: Hyperspectral image classification, convolutional neural networks
(CNNs), spatial attention, multiscale transformers, spectral-spatial features.

1 Introduction

Recent advancements in hyperspectral imaging technology have enabled the feasible
capture and analysis of the light spectrum reflected or emitted by objects and scenes.
This technique entails the acquisition of numerous closely spaced wavelength bands,
encompassing a wide electromagnetic radiation spectrum from ultraviolet to long-wave
infrared [1]. The resultant information, termed a hyperspectral image (HSI), holds
the potential for identifying and quantifying materials within a scene and detect-
ing nuanced alterations in the environment. Hyperspectral images are represented
as three-dimensional (3D) data, combining one-dimensional spectral features with
two-dimensional (2D) spatial information [2]. These spectral attributes signify nar-
row spectral bands replete with informative content about land cover [3], while the
spatial component adeptly captures the arrangement of land covers. In the realm of
HSI classification, both spectral signatures and spatial data emerge as dominant fea-
tures, furnishing valuable cues that contribute to precise outcomes [4]. Hyperspectral
imaging finds diverse applications, including mineral exploration [5], agriculture [6],
military purposes [7], urban planning [8], environmental monitoring [9] and forestry
management [10]. In order to harness the full potential of hyperspectral imaging
data, researchers have investigated various data processing methods, including denois-
ing [11], unmixing [12, 13], image fusion [14], target detection [15], and classification
[16, 17]. Among these methods, the classification of land-cover information has gar-
nered considerable interest. In hyperspectral imaging, the abundance of spectral
information at hand has prompted researchers to delve into a spectrum of conven-
tional machine-learning techniques to harness its potential for classification purposes.
These methods encompass a diverse range of approaches, each tailored to extract
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valuable insights from the multi-dimensional HSI data. Among these approaches, the
k-nearest neighbour [18] technique leverages proximity-based relationships within the
data space to make accurate predictions. Support vector machine (SVM) [19] stands
out for its ability to construct effective decision boundaries by mapping the data into
higher-dimensional spaces. Logistic regression [20] seeks to model the probabilities of
class memberships, while extreme learning machine [21] employs a single hidden layer
neural network to discern intricate patterns within the data. Meanwhile, random for-
est [22] capitalises on an ensemble of decision trees to enhance the predictive accuracy.
Principal component analysis (PCA) [23] excels in dimensionality reduction, offering a
compressed representation of the original data by capturing the most informative spec-
tral signatures. Decision trees [24] guide classification based on a hierarchical structure
of conditions, enabling a comprehensive exploration of data space.

Recently, there has been a surge in the popularity of deep learning approaches
due to their ability to autonomously acquire adaptable and resilient features from
training data, surpassing conventional techniques [25, 26]. This impressive achieve-
ment has been evident in diverse research fields, such as natural language processing
[27] and computer vision [28], where deep learning methods have showcased remark-
able achievements. Numerous deep learning techniques, which effectively capture both
spectral and spatial details, have been utilized for HSI classification tasks [29]. In
[30], a Convolutional Neural Network (CNN) was harnessed to extract spatial char-
acteristics. These spatial features were then combined with spectral features acquired
through balanced local discriminant embedding, forming a comprehensive framework
for HSI classification. This approach highlights the effectiveness of CNNs in captur-
ing essential information from both spectral and spatial domains, thereby enhancing
the accuracy of HSI classification. In [31], an innovative feature extraction technique
based on CNNs was introduced. This method effectively learned discriminative repre-
sentations from pairs of pixels and incorporated a voting mechanism to enhance the
smoothness of final classification maps.

To strengthen the acquisition of spectral-spatial features, several CNN-based
approaches have been introduced, encompassing 1D, 2D, and 3D CNNs [32]. In [33],
the author presented a CNN-based approach for HSI classification. This approach
involved extracting spatial features using a 2D-CNN technique, which leveraged the
initial principal component channels of the original HSI. Utilizing 2D-CNN for HSI
analysis offers notable benefits, including the capability to efficiently extract features
from the raw input images. This method has confirmed its promising performance
across diverse fields such as image processing and computer vision, including tasks like
object detection and image classification. In this context, [34] introduced an advanced
contextual CNN method for the prediction of pixel labels. This method harnessed
localized spectral-spatial features, with spectral and spatial attributes being captured
from multi-scale filters through the application of a 2D CNN. These extracted fea-
tures were then integrated to generate a unified feature map. Nevertheless, the use
of 2D CNN-based approaches faced challenges in effectively leveraging both spectral
and spatial data simultaneously. This led to the potential loss of information during
the process of feature learning [35]. As an alternative, another technique [36] pro-
posed a novel hybrid architecture comprising layers of both 1D and 2D CNN. This
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architecture was specifically designed to separately acquire spectral and spatial infor-
mation. Through this innovative approach, the aim was to prevail over the limitations
associated with the concurrent utilization of spectral and spatial attributes.

To overcome the constraints posed by 2D CNN-based networks, the adoption of
3D CNN approaches was embraced to directly obtain spatial-spectral features from
HSI. In this regard, investigations carried out in [37–39] proposed techniques based on
3D CNNs for HSI classification. These methodologies aimed to extract comprehensive
spectral and spatial features from HSI data, yielding notable enhancements in classi-
fication performance. The significance of the spatial properties of ground objects lies
in their capacity to offer insights into the structure and contextual position. Objects
close to each other often share the same class. The integration of spatial features in
the classification process enhances the capacity to capture these associations, ulti-
mately leading to improved classification accuracy. Furthermore, the potential of 3D
CNNs was utilized in [40], where they directly extracted deep spectral–spatial fea-
tures from raw hyperspectral images and exhibited prominent results. Similarly, in
[41], an extended investigation was conducted on 3D CNNs for spectral–spatial clas-
sification, utilizing input cubes with reduced spatial dimensions from HSIs. These
models were designed to generate thematic maps by directly processing raw HSIs.
Despite the achievements of CNN-based methods in extracting spatial and spectral
information, they possess specific constraints. One of these constraints relates to their
challenge in extracting sequential features, particularly middle and long-range spectral
correlations. In addition, their ability to extract local attributes is hampered by the
fixed dimensions of the receptive field, which may not be sufficient to comprehensively
capture complex details and localized fluctuations within the data.

In recent years, the Transformer architecture has quickly emerged as a formidable
foundation for image-related tasks in the domain of computer vision, primarily due to
its exceptional capabilities in modeling and processing visual data [42–44]. In [45], the
author presented the diverse applications of Vision Transformers in medical computer
vision. These applications span a wide range, including disease classification from med-
ical images, segmentation of anatomical structures, image registration, detection of
lesions in specific regions, image captioning, report generation, and image reconstruc-
tion. These versatile applications significantly contribute to medical diagnosis and
enhance the overall treatment process. Furthermore, in [46], the author proposed an
innovative backbone network called SpectralFormer to effectively capture local spectral
sequence information from neighbouring bands of HSIs, resulting in group-wise spec-
tral embeddings. To avoid the loss of vital information during the propagation of data
across layers, they proposed a cross-layer skip connection. This connection adaptively
merges memory-like components from surface-level to comprehensive layers, learning
to combine subtle residuals across the layers. A hybrid CNN and vision transformer
approach for anomaly detection is suggested [47]. This approach combined spatial and
temporal information in two steps: an efficient CNN extracted spatial features, which
were then processed by a transformer-based model to capture long-range temporal rela-
tionships among complicated events. The model incorporated temporal self-attention
to effectively learn spatial-temporal features and identify anomalies. To utilize spectral
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and spatial features a novel approach was presented in [48] named Spectral-Spatial Fea-
ture Tokenization Transformer, comprising of 3D and 2D convolution layers, to obtain
low-level features from the data. A Gaussian-weighted feature tokenizer was deployed
to transform these extracted features and fed them into a transformer encoder module
for further feature representation and learning. Finally, the linear layer was used for
classification. A similar approach, morphological transformer (morphFormer) [49], has
been adopted to incorporate a trainable spectral and spatial morphological network,
employing spectral and spatial morphological convolution operations along with the
attention mechanism. In [50], a novel framework was proposed for HSI classification.
Initially, HSIs were transformed into sequences. Simultaneously, spatial information
was incorporated by adding a learned positional embedding. Subsequently, a conven-
tional transformer encoder was utilized to acquire feature representations. Finally,
these multilevel features were processed by decoders to produce classification results.
Another similar approach was presented in [51], where the author introduced two
branches for extracting pixel-wise multiscale features. Subsequently, a multiscale Spec-
tral Embedding Module was developed to boost the portrayal of local details among
adjacent spectral bands. Furthermore, leveraging the cross-attention operation, a sin-
gle token in each branch acts as a query, facilitating the swapping of information with
other modules. In [52], the author proposed a Multi-Attention and Transformer Net-
work (MATNet) that captured spatial-spectral features by utilizing spatial attention
(SA) and channel attention (CA), followed by tokenizer and transformer module to
perform deep semantic feature extraction. Finally, the Lpoly loss function is employed.

The current literature indicates that CNNs are proficient at capturing local
spectral-spatial information but encounter difficulties when dealing with comprehen-
sive spectral-spatial features. In contrast, transformers have demonstrated exceptional
proficiency in understanding complex relationships among long-range features. Con-
sequently, in HSI classification the integration of these two architectural approaches
has the capability to elevate spectral-spatial feature learning by effectively addressing
both local and global relationships. On the other hand, multiscale HSI classification
models have made significant progress, but several issues persist. Conventional CNN-
based multiscale approaches, while adept at extracting contextual information across
various scales, are constrained by fixed receptive fields that hinder their ability to
capture long-range spectral relationships. Additionally, these methods often rely on
deeper networks to expand the receptive field, which can result in overfitting, loss of
detailed information, and higher computational demands.

To tackle these challenges, we propose MTSA-Net, a novel multiscale transformer
framework with spatial attention for HSI classification. The model begins with a
3D convolution layer to extract shallow spectral–spatial features, followed by a 2D
convolution layer and a spatial attention module. This design reduces feature redun-
dancy, mitigates inaccuracies that often arise in deeper networks, and emphasizes
the most discriminative spatial features, thereby alleviating the limited spatial res-
olution of HSIs. The refined feature vectors are then processed by multiple parallel
transformer encoder branches with varying hidden dimensions, enabling simultaneous
modeling of fine-grained local details, intermediate relationships, and global repre-
sentations. Finally, a multiscale feature fusion module integrates the outputs from
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different branches to balance feature representation across scales and enhance robust-
ness. By combining spatial attention with hidden-dimension diversity, MTSA-Net
addresses the shortcomings of existing multiscale models and achieves superior clas-
sification performance. The primary contributions of this paper can be outlined as
follows:

1. This study introduces a straightforward CNN architecture augmented with a spa-
tial attention mechanism to extract spectral and spatial features by focusing on
crucial areas and eliminating redundant information. The spatial attention module
generates a spatial attention map by exploiting the spatial interconnections among
features.

2. A multiscale transformer encoder is proposed to capture local and global rep-
resentations, effectively modeling long-range dependencies. This is followed by
the feature fusion module that enriches the feature representation by leveraging
multiscale information and effectively mitigating the issue of imbalanced feature
representation.

3. The generalization capability and effectiveness of the proposed MTSA-Net model
have been validated through extensive experiments conducted on five benchmark
HSI datasets, demonstrating superior performance compared to state-of-the-art
approaches.

The remainder of this work is summarized as follows. Related works to HSI are
reviewed in Section 2. The section 3 elaborates on the proposed methodology. Section
4 illustrates the HSI datasets, experimental settings, and offers an in-depth analysis of
classification results and ablation studies. Finally, conclusions are provided in Section
5.

2 Related Work

2.1 CNN-based HSI classification frameworks

The task of HSI classification involves assigning a land-cover label to each individual
pixel, which has garnered substantial interest in recent times [53]. CNN has gained
widespread popularity for its ability to extract comprehensive spectral-spatial features
while retaining important spatial structure information. Initially, in [54], the author
proposed CNN in HSI classification, using CNN layers to extract spectral features. To
learn spectral-spatial features, numerous variations of CNNs, including 1D-CNN, 2D-
CNN, and 3D-CNN, have been developed [32]. In [33], a 2D CNN is presented for HSI
classification, providing significant advantages, such as the rapid extraction of features
from the original input images. This methodology entails the extraction of spatial
characteristics. Based on 2D CNN, a spectral-spatial feature extraction architecture
was proposed in [30]. However, these models faced limitations in adequately capturing
spectral features due to their relatively simple architectural design.

To enhance the exploitation of the spatial and spectral interaction in HSI classifi-
cation, 3D CNNs were employed. However, 3D CNNs require greater computational
resources compared to their 2D counterparts; their capability to learn spatial-spectral
features preserves the inherent relationship between spatial and spectral information
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without degradation. In [40], a 3D CNN was employed to directly and efficiently learn
spectral-spatial features from the original HSI, showcasing promising outcomes in
terms of classification performance. Similarly, a 3D CNN model has been introduced
that leverages both spatial and spectral features to enhance the performance of HSI
classification [55]. The HSI cube is initially subdivided into slightly overlapping 3D
patches. These patches are then subjected to processing, resulting in the generation of
3D feature maps. A novel approach [4], referred to as HybridSN, has been introduced,
which combines both 3D and 2D CNNs. HybridSN employs larger spatial dimensions
while working with smaller spectral bands. It employs three 3D convolution layers ini-
tially to collect spatial-spectral attributes, followed by immediate enhancement using
2D convolution to focus on spatial features. Impressively, the integration of hybrid
CNNs leads to a model with reduced complexity when compared to using 3D CNN
as the sole component. Furthermore, [56] presented an approach to HSI classifica-
tion utilizing a multiscale self-looping CNN. These networks incorporate self-looping
blocks, where each layer serves as both the input and output for every other layer,
effectively establishing a looping structure within the network. The network’s loopy
connections, which maximizes information flow, result in extracting high-level features.
For instance, in [57], the contextual feature was extracted from the HSI at different
scales using multiscale convolution. Octave 3D CNN was then utilized to minimize
spatial redundancy and expand the receptive field. To investigate and enhance the
discerning features, the approach included the utilization of a channel attention mod-
ule and a spatial attention module. These modules were incorporated to improve the
feature maps and ultimately enhance the classification results. Similarly, a composite
neighbour-aware convolutional metric network (CNCMN) was proposed in [58], which
intends to learn the representation of each target batch-wise from its composite neigh-
bours (Euclidean and non-Euclidean neighbours). A composite convolution (CoConv)
combines traditional image convolution with graph convolution to perform versatile
operations on these composite neighbors, allowing for the extraction of adaptively
fused features from them. CNN-based techniques have demonstrated their capacity
to efficiently extract both spatial and contextual information from HSI. However,
CNNs have limitations, including fixed receptive fields, loss of fine-grained details
through downsampling, high data requirements, computational demands, and limited
contextual understanding. In addition, CNNs face challenges in capturing long-term
dependencies and handling sequential attributes. Conversely, transformer architecture
based on self-attention mechanisms grasps intricate dependencies in sequential data
and has achieved great success in the field of NLP [59].

2.2 Attention-based methods

The attention mechanism, initially motivated by the human visual system’s ability to
discern salient regions within images to facilitate classification, has gained significant
interest in the realm of remote sensing [60]. Numerous attention-based mechanisms
have demonstrated significant effectiveness in HSI classification. In [61], a dual atten-
tion mechanism was proposed in a two-stage process. In the initial stage, it learns
features from the overall region and condenses them into a compact set using second-
order attention pooling. In the subsequent stage, it intelligently chooses and disperses
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presents preprocessing. The uppermost centre part shows the spectral-spatial feature
extraction with spatial attention. The bottom row shows the multiscale transformer
at the right and the classification map at the bottom left

.

features to each specific location through another attention mechanism. In addition,
the authors in [62] sequentially calculate attention maps along with two different
dimensions: channels and spatial. These attention maps are subsequently multiplied
by the input feature map to achieve adaptive feature refinement. Similarly, an efficient
channel attention (ECA) model was suggested in [63], demonstrating that maintain-
ing suitable cross-channel interaction can both enhance performance and substantially
reduce model complexity. In [64], a gating mechanism is used to dynamically recali-
brate spectral bands. It accomplishes this by selectively amplifying informative bands
while downplaying less important ones.

Recently, the self-attention mechanism has emerged as a pivotal tool for modelling
extensive, long-range dependencies in various machine learning and natural language
processing domains. Unlike CNN models with rigid, local receptive fields, self-attention
empowers each element or token within a sequence to dynamically weigh its rele-
vance to all other elements in the sequence. This dynamic weighting enables the model
to effectively capture intricate long-distance relationships, transcending the limita-
tions of fixed positional dependencies. For instance, modern state-of-the-art vision
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transformer framework [65], employs the self-attention mechanism to comprehensively
model sequences and adeptly learn extensive long-range dependencies.

Furthermore, a hybrid approach incorporating both CNN and Transformer net-
works [48] was proposed to effectively calculate spectral-spatial and semantic features
for HSI classification. In [66], Swin Transformer was presented, which calculates
representations through a shifted window strategy. This approach allows for effi-
cient processing of visual data with diverse scales and higher resolutions. Adopting
this strategy effectively addresses the challenges presented by scale and resolution
disparities, rendering it well-suited for HSI classification.

3 Proposed Methodology

The main components encompass a 3D convolution layer, a 2D convolution layer and
spatial attention (SA). In addition, a multiscale transformer encoder is introduced,
incorporating a feature fusion module followed by a softmax function. The proposed
structure is presented in Figure 1, and its detailed explanation can be found in the
following sections.

Fig. 2: The structure of the spatial attention mechanism

3.1 Preprocessing

The original HSI data I ∈ Rh×w×n, where h×w denotes the spatial dimension and n
represents useful spectral information. The HSI n bands contain valuable spectral data
but also introduce substantial computational demands due to their high dimensional-
ity. To address this, we apply Principal Component Analysis (PCA) to the HSI data
I. This operation decreases the spectral dimension from n to b while preserving the
spatial dimension. By doing so, we mitigate spectral band redundancy and alleviate
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the computational load. After PCA, the transformed hyperspectral data is denoted as
P ∈ Rh×w×b, with b representing reduced spectral dimension. The size of each patch
is Q ∈ Rs×s×b, where s× s shows the patch size and the label assigned to each patch
corresponds to the label of its center pixel. While extracting the patch around a unique
pixel, the boundary pixels are not accessible. To address this issue, a padding opera-
tion of s−1

2 is applied to these pixels. After removing unlabeled pixels, the remaining
data are partitioned into training sets and test sets. Each 3D patch of size s× s× b
is input to the 3D convolution layer for the extraction of spectral-spatial features.

Fig. 3: The structure of (a) Transformer Encoder, (b) Multihead self-attention and
(c) self-attention.

3.2 CNN for Feature Learning

CNNs demonstrate superior achievements in HSI classification owing to their capabil-
ity to autonomously extract contextual features. CNNs have been previously validated
for their effectiveness in obtaining high-level features, irrespective of the data source
modality. We have developed a straightforward CNN-based feature extractor with the
specific aim of efficiently capturing local semantic details from HSI. In the proposed
network architecture, after each convolutional layer, there is a sequence of operations
that includes batch normalization (BN) and rectified linear unit (ReLU) activation.

Our proposed MTSA-Net leverages the sequential layer of Conv3D and Conv2D
to extract resilient and distinctive features from HSIs. In the 3D convolutional layer,
the computed output value at a given spatial location (x, y, z) for the jth feature map
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within the ith layer is depicted as follows:

v
(x,y,z)
i,j = Φ

(∑
k

Li−1∑
l=0

Mi−1∑
m=0

Ni−1∑
n=0

w
(l′,m′,n′)
i,j,k v

(x+l′,y+m′,z+n′)
i−1,k + bi,j

)
(1)

where k is labeled as a feature map in the (i − 1)th layer. The variables Li, Mi,

and Ni denote the height, width, and channel of a 3-D convolution kernel. w l′,m′,n′

i,j,k is
the parameter weight of (l′,m′, n′) and bi,j is the bias.

Similarly, for the 2D convolution layer, its mathematical representation can be
stated as follows

v
(x,y)
i,j = Φ

(∑
k

Li−1∑
l=0

Mi−1∑
m=0

w
(l′,m′)
i,j,k v

(x+l′,y+m′)
i−1,k + bi,j

)
(2)

The initial HSI data is organized into subcubes, each having dimensions of
(13 × 13 × b). These subcubes are then transformed into a format of (1 × 13 × 13 × b)
and employed as input for a Conv3D layer with a kernel size of (3 × 3 × 3). Follow-
ing the application of 3D convolution, the resulting output possesses dimensions of
(8 × 11 × 11 × (b− 2)), where 8 represents the number of channels generated by the
convolution operation and (b − 2) is the spectral bands. The output shape result-
ing from the 3D convolution undergoes rearrangement and is then fed into the 2D
convolution layer, resulting in dimensions of (64 × 9 × 9).

3.3 Spatial Attention

Recently, attention mechanisms have been extensively used in HSI classification. The
attention mechanism pertains to the selective emphasis on certain information while
ignoring irrelevant information. In HSI classification, it is consistently observed that
spatial information holds greater importance than spectral information [67].

Similarly, in [68] only spatial attention was utilized to focus on spatial features and
maximize the diversity of features. HSI encompasses rich spectral bands that are read-
ily captured. However, they often suffer from limited spatial resolution. Consequently,
our proposed model utilizes spatial attention mechanisms to enhance distinctive fea-
tures, addressing this inherent spatial limitation. The structure of the spatial attention
mechanism is visualized in Figure 2.

Initially, this stage processes the input features through individual average pooling
and maximum pooling operations. Subsequently, it combines the resulting feature sets
and ultimately generates spatial attention feature maps through a convolutional layer.
The spatial attention is expressed as follows:

SA(F) = σ
(
f7x7 ([Avg-Pool(F); Max-Pool(F)])

)
(3)

ACCEPTED MANUSCRIPTARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

SA(F) = σ
(
f7x7 ([Favg;Fmax])

)
∗ F (4)

where σ depicts the sigmoid function, [Favg;Fmax] concatenates two feature maps and
f7x7 denotes the convolution operation. * represents the element-wise product.

3.4 Transformer Encoder (TE)

The structure of the transformer encoder is depicted in Figure 3. The transformer
encoder is employed to acquire global information and comprises two normalization
layers (LN), a multihead self-attention module (MSA), and a multilayer perceptron
(MLP). Residual skip connections are incorporated prior to the MSA block and the
MLP layer. Layer Normalization is incorporated to address the challenge of gradi-
ent vanishing and to strengthen the model’s capacity for feature representation. The
effectiveness of the transformer architecture stems primarily from its core MSA block.
Within this block, the utilization of a self-attention mechanism, as depicted in Figure
3(c), adeptly captures the interrelationships among feature sequences. The matrices
Q (query), K (key), and V (value) are employed during the computation procedure.
The attention score is obtained by taking the dot product between Q and K, and the
weight of this score is determined by applying the softmax function.

In summary, self-attention is expressed as follows:

SA = Atten(Q,K,V) = softmax

(
QKT

√
dK

)
V (5)

where dk is the dimension of K.
Furthermore, MSA concatenates the output obtained from multiple SAs, as shown

in Figure 3 (b).

MHSA(Q,K,V) = Concat(SA1,SA2, . . . ,SAn)W (6)

where n denotes the head number and W represents the learned parameter.
Subsequently, the weight matrix acquired from the preceding step is fed into the

MLP layer, which comprises of two fully connected layers. A nonlinear activation
function called Gaussian Error Linear Unit (GELU) is placed between these two layers.
GELU introduces non-linearity into the model expressed as follows,

GELU(x) = xΦx =
1

2
x

(
1 + tanh

(√
2

π

(
x + 0.044715 · x3

)))
(7)

where Φ(x) is the cumulative distribution of a Gaussian distribution.
The proposed multiscale representation learning is realized through multiple par-

allel transformer encoder branches, each processing the same tokenized input but with
distinct MLP hidden dimensions in their feed-forward networks. This design enables
each branch to emphasize features at different representational scales: smaller hid-
den dimensions capture fine-grained local patterns, while larger hidden dimensions
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model broader contextual dependencies. Unlike conventional multiscale strategies that
rely on varying patch sizes or spatial resolutions, our approach achieves multiscale
diversity solely through hidden-dimension variation, thereby avoiding additional pre-
processing or resolution changes. In the proposed design, we employ three parallel
branches with hidden dimensions of 128, 256, and 512, respectively. These values were
selected based on both design intuition and empirical validation: the smaller hidden
size (128) emphasizes fine-grained local cues, the intermediate size (256) balances local
and global features, and the larger size (512) captures rich contextual dependencies.
This hierarchical setup ensures complementary feature extraction across scales, leading
to improved classification accuracy and generalization.

3.5 Multiscale Feature Fusion

In the final stage, multiple feature matrices are produced through transformer encoders
operating at different scales. Multiscale feature fusion is achieved using multiple paral-
lel Transformer branches, each configured with distinct MLP hidden dimensions while
sharing the same input resolution and tokenization. Each branch captures features at
a different representational scale, enabling the model to extract both local and global
contextual information. Feature matrices obtained from different scales enhance the
proposed model’s capability to learn diverse patterns and details in the data, yielding
improved performance and generalization. These feature matrices are then integrated
and passed through a linear layer in order to compute the probabilities associated
with each class, as determined by the softmax function. The category of the sample
corresponds to the label with the highest probability value. Since cross-entropy (CE)
is more effective in handling multi-categorization tasks, it has been deployed as the
loss function in the proposed MTSA-Net. This loss function evaluates the discrepan-
cies between the predicted class and the target class for each pixel; the mathematical
formula is given below:

Loss = − 1

S

S∑
s=1

L∑
l=1

Ys
l log ˆ(Y)

s

l ) (8)

where L represnts the number of classes and Ys
l and Ŷs

l are true and corresponding
predicted labels, respectively. S indicates the number of samples.

3.6 Implementation

Algorithm 1 outlines the procedural steps of the proposed model structure.

4 Experiment and analysis

In this section, five HSI datasets are evaluated using overall accuracy (OA), average
accuracy (AA), and Kappa coefficient (K). Subsequently, the detailed experimental
configuration is presented, where we quantitatively and visually compare the proposed
method with alternative approaches based on CNNs and Transformers. The impact
of varying patch sizes, as well as the influence of diverse training sample ratios on
model performance, has been investigated. Additionally, the optimal choice for the
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Algorithm 1 MTSA-Net

Input: HSI data I is input.
Output: Classification results.
Preprocessing: Set batch size to 128, patchsize, s = 13; PCAbands, b = 30; training
sample ratio %, optimizer Adam (lr: η = 0.001), epochs number e to 100
Iterate:

1. Apply a 3D convolutional layer to generate 3D feature maps.
2. Utilize a 2D convolutional layer along with spatial attention to produce 2D feature

maps.
3. Concatenate the class tokens.
4. Embed position information.
5. Perform TE module.
6. Perform the multiscale feature fusion operation.
7. Input the initial classification token into the final linear layer.
8. Apply the softmax function to predict the class.

end for: Apply the trained model to the test dataset for prediction.

Table 1: Detail of IP dataset with numbers of training, val-
idation, and test samples.

Class Name Training Validation Testing Total
1 Alfalfa 2 2 42 46
2 Corn-n 71 71 1286 1428
3 Corn-m 42 42 746 830
4 Corn 12 12 213 237
5 Grass-p 24 24 435 483
6 Grass-t 37 37 656 730
7 Grass-p-m 2 2 24 28
8 Hay-wd 18 18 430 478
9 Oats 1 1 18 20
10 Soybean-n 49 49 874 972
11 Soybean-m 123 123 2209 2455
12 Soybean-c 30 30 533 593
13 Wheat 10 10 185 205
14 Wood 63 63 1139 1265
15 Building-g-t-d 19 19 348 386
16 Stones-s-t 5 5 83 93

Total - 509 509 9231 10,249

spectral dimension is determined. Finally, a discussion of the results from the ablation
experiments is provided.

4.1 HSI datasets

Five HSI datasets were employed to analyze the effectiveness of the proposed MTSA-
Net.

The Indian Pines (IP) dataset was gathered over agricultural and forest regions
using the AVIRIS sensor. The data exhibits a comparatively low spatial resolution
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Table 2: Detail of SA dataset with numbers of training, vali-
dation, and test samples.

Class Name Training Validation Testing Total
1 Brocoli-gn-wd-1 60 60 1889 2009
2 Brocoli-gn-wd-2 112 112 3502 3726
3 Fallow 59 59 1858 1976
4 Fallow-rh-pw 42 42 1310 1394
5 Fallow-smoth 80 80 2518 2678
6 Stubble 119 119 3721 3959
7 Celery 107 107 3365 3579
8 Grapes-u 338 338 10595 11,271
9 Soil-vd-dp 186 186 5831 6203
10 Corn-sd-gn-ws 99 99 3080 3278
11 Lettuce-ro-4w 32 32 1004 1068
12 Lettuce-ro-5w 58 58 1811 1927
13 Lettuce-ro-6w 28 28 860 916
14 Lettuce-ro-7w 32 32 1006 1070
15 Vinyard-ud 218 218 6832 7268
16 Vinyard-vl-ts 54 54 1699 1807

Total - 1624 1624 50,881 54,129

of almost 20 m/pixel, a size of 145 × 145 with 10,249 labelled pixels, spanning the
wavelength range 0.4 − 2.5 × 10−6 m. It has 224 spectral bands; after eliminating 24
regions of water absorption, the remaining 200 are used in the experiment. This dataset
is divided into sixteen vegetation classes, where each class has a distinct sample size
of between 20 and 2455. As indicated in Table 1, the total samples for each category
are partitioned into training, validation, and testing sets.

Table 3: Detail of UP dataset with numbers of training,
validation, and test samples.

Class Name Training Validation Testing Total
1 Asphalt 199 199 6233 6631
2 Medows 560 560 17,529 18,649
3 Gravel 63 63 1973 2099
4 Trees 92 92 2880 3064
5 Paintd-m-s 40 40 1265 1345
6 Bare-s 151 151 4727 5029
7 Bitumen 40 40 1250 1330
8 Self-b-b 111 111 3460 3682
9 Shadow 29 29 889 947

Total - 1285 1285 40,206 42,776

The Salinas (SA) dataset was captured by the AVIRIS sensor in the Salinas Valley
and comprises 224 bands. However, 20 bands were discarded from experiments being
noisy, and 204 bands were adopted for assessment. The dataset offers a spatial resolu-
tion of 3.7 m/pixel and a spatial dimension of 512 × 217. It encompasses 16 distinct
land cover classes, including areas of bare soil, vineyard fields, and vegetables. Table
2 presents the distribution of total samples for each class, demonstrating splitting the
data into train, validation, and test sets for the experiments.
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Table 4: Detail of Houston 2013 dataset with numbers of
training, validation, and test samples.

Class Name Training Validation Testing Total
1 Healthy-Grass 63 63 1125 1251
2 Stressed-Grass 63 63 1128 1254
3 Synthetic-Grass 35 35 627 697
4 Tree 62 62 1120 1244
5 Soil 62 62 1118 1242
6 Water 16 16 293 325
7 Residential 64 64 1140 1268
8 Commercial 62 62 1120 1244
9 Roads 63 63 1126 1252
10 Highway 61 61 1105 1227
11 Railway 62 62 1111 1235
12 Parking-1 62 62 1109 1233
13 Parking-2 24 24 421 469
14 Tennis-Court 22 22 384 428
15 Running-Track 33 33 594 660

Total - 754 754 13521 15029

The University of Pavia (UP) dataset was collected over the city of Pavia using
the ROSIS sensor. It offers a higher spatial resolution with 1.3 m/pixel and a spatial
size of 610 × 340. The image consists of 115 channels, of which 12 are discarded from
experimentation for being noisy; the dataset contains 103 spectral bands available for
analysis. It comprises nine distinct land-cover classes, each having a varying number
of samples. Table 3 illustrates the distribution of samples across the different land-
cover categories, and the dataset is split up into training, validation, and test sets
accordingly.

The Houston 2013 (H-13) dataset was gathered using the ITRES CASI-1500 sensor
and covers the University of Houston premises and the neighbouring rural regions. This
dataset has been publicly employed for assessing the effectiveness of HSI classification
methods. This dataset has an image size of 349×1905 pixels and includes 144 spectral
bands. It encompasses 15 challenging distinct classes, making it a valuable resource for
land cover classification studies. The dataset samples have been divided into training,
validation, and test sets, with the allocation details provided in Table 4.

The Houston 2018 (H-18) dataset was initially employed in 2018 IEEE GRSS
Data Fusion competition, it was collected and published by the University of Houston
campus and its neighboring areas. This dataset comprises HSI, multispectral LiDAR,
and very high-resolution RGB images. The HSI dataset was collected by an ITRES
CASI 1500 instrument, acquiring data in 48 bands within the spectral range of 380-
1050 nm, with a resolution of 1 meter. The multispectral data was collected using an
Optech Titan MW (14SEN/CON340), and the RGB data was captured using a VHR
RGB imager (DiMAC ULTRALIGHT) equipped with a 70 mm focal length lens. The
Houston 2018 dataset comprises 601 × 2384 pixels categorized into twenty distinct
classes. Table 5 provides details regarding the number of training, validation, and test
samples for this dataset.
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Table 5: Detail of the Houston 2018 dataset with numbers of
training, validation, and test samples.

Class Name Training Validation Testing Total
1 Healthy-Grass 294 294 9211 9799
2 Stressed-Grass 975 975 30552 32502
3 Synthetic-Grass 21 21 642 684
4 Evergreen-Trees 408 408 12772 13588
5 Deciduous-Trees 152 152 4744 5048
6 Soil 136 136 4244 4516
7 Water 8 8 250 266
8 Residential 1193 1193 37376 39762
9 Commercial 6711 6711 210262 223684
10 Road 1374 1374 43062 45810
11 Side walk 1020 1020 31962 34002
12 Cross walk 46 46 1424 1516
13 Major T-fares 1391 1391 43576 46358
14 Highway 296 296 9257 9849
15 Railway 208 208 6521 6937
16 Paved P-L 344 344 10787 11475
17 Gravel P-L 5 5 139 149
18 Cars 197 197 6184 6578
19 Trains 161 161 5043 5365
20 Seats 205 205 6414 6824

Total - 15141 15141 474422 504712

Table 6: Classification results (%) of various models on the IP dataset.

class 2DCNN 3DCNN HybridSNSSCRN DATN MSDCA SSFTT MACLSTMTSA-
Net

1 21.12 41.46 87.8 94.85 94.80 75.49 86.36 59.09 82.61
2 81.15 90.51 94.39 95.15 96.81 71.23 94.69 94.47 96.54
3 90.98 79.36 96.52 95.87 97.22 80.45 98.85 98.35 98.57
4 70.43 46.01 83.89 98.01 97.51 93.52 88.88 86.67 98.85
5 96.83 95.17 98.16 97.81 98.83 95.53 99.78 97.6 98.23
6 98.19 99.7 99.54 96.77 98.54 86.11 99.42 96.39 98.86
7 92.59 88 92.97 88.89 79.59 99 92.53 88.89 74.20
8 99.99 99.98 99.89 99.98 97.99 98.32 98.25 98.77 100
9 88.21 48.89 86.27 88.85 67.23 87.45 84.21 89.47 77.85
10 86.69 86.06 97.94 98.01 95.45 79.41 96.64 96.75 98.45
11 89.5 97.51 99.5 97.99 98.01 77.50 98.58 96.87 98.85
12 65.53 74.91 94.57 98.15 97.86 75.46 92.53 92.36 98.54
13 99.95 99.46 94.59 99.85 97.15 97.51 100 98.46 97.96
14 99.93 99.74 99.29 98.95 100 94.24 99.91 100 100
15 82.65 84.1 92.35 97.95 98.96 79.61 92.91 92.1 98.53
16 74.45 93.95 97.98 98.55 95.66 100 94.31 92.45 89.55

OA 84.47 91.03 95.62 94.17 94.17 82.54 96.35 94.31 98.84

AA 83.63 82.80 94.72 96.60 94.40 87.60 94.86 92.41 94.22

K 83.55 88.68 95.29 96.45 94.75 81.43 95.98 93.55 97.24
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4.2 Experimental Setting

In this article, three evaluation metrics are utilized to examine the effectiveness of the
proposed MTSA-Net: overall accuracy (OA), average accuracy (AA), and the Kappa
coefficient. The proposed approach is implemented within the Python programming
language, employing the PyTorch framework. All experiments described in this paper
have been executed on a single system equipped with an NVIDIA RTX 3050 GPU
and an 11th Gen Intel(R) Core i7-11800 CPU, which had 16 GB of memory.

Table 7: Classification results (%) of various models on the SA dataset.

class 2D
CNN

3D
CNN

Hybrid
SN

SSCRN DATN MSDCA SSFTT MACLSTMTSA-
Net

1 98.87 99.73 99.45 99.65 98.43 84.19 99.56 98.46 99.82
2 99.49 96.94 98.15 99.95 99.43 98.32 98.21 96.31 100
3 99.54 88.48 99.08 99.86 99.80 95.95 98.78 97.6 100
4 99.22 97.45 99.53 98.88 99.44 96.32 99.52 99.43 99.85
5 97.51 95.91 98.85 99.85 99.11 99.03 99.79 92.28 99.38
6 100 100 98.99 99.25 99.81 95.16 100 95.54 99.76
7 99.86 98.28 99.68 99.85 99.98 88.30 99.94 96.35 99.94
8 91.57 85.64 97.82 99.99 95.23 89.11 99.23 96.11 99.88
9 99.91 98.57 100 99.93 99.91 87.85 100 95.64 100
10 99.23 93.87 98.86 100 95.54 90.45 99.96 100 99.9
11 98.18 90.01 99.23 99.85 98.57 98.23 100 98.49 100
12 99.34 96.61 99.91 99.97 99.81 89.15 98.52 91.32 100
13 99.28 98.56 99.85 99.84 99.35 74.47 99.84 91.22 99.10
14 98.74 94.29 98.56 98.89 99.26 95.89 99.12 97.91 99.88
15 91.82 79.02 95.99 99.07 84.71 99.98 99.95 90.23 99.68
16 99.27 96.69 98.78 98.85 100 99.85 100 99.78 98.99

OA 96.76 96.65 98.84 99.67 98.80 93.55 99.51 96.69 99.80

AA 98.28 94.37 98.92 99.60 98.40 92.64 99.52 96.04 99.64

K 96.39 92.44 97.23 98.71 98.87 89.47 98.55 96.45 99.44

In the experimental configuration, the model operates with a dataset batch size
set at 128, employs a learning rate of 0.001, and optimizes model parameters using
the Adam optimizer. The maximum number of epochs is limited to 100. The dataset
division is as follows: the IP and H-13 datasets are divided with a split ratio of 5% for
training, 5% for validation, and 90% for testing purposes, while the UP, SA, and H-18
datasets are divided with split ratios of 3%, 3%, and 94%, respectively. To ensure a
reliable evaluation, each experiment was conducted ten times with different random
initializations for each model. The average Overall Accuracy (OA) across these runs
was reported to assess performance stability. Classification maps were subsequently
generated based on the aggregated results

4.3 Classification results

The robustness of the MTSA-Net is confirmed by comparing it with eight deep
learning-based methods, including 2D-CNN [69], 3D-CNN [70], HybridSN [4], SSCRN
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Table 8: Classification results (%) of various models on the UP dataset.

class 2D
CNN

3D
CNN

Hybrid
SN

SSCRN DATN MSDCA SSFTT MACLSTMTSA-
Net

1 93.28 93.31 95.51 99.88 95.21 81.54 99.92 97.23 97.31
2 94.93 93.99 99.49 97.55 97.54 93.52 96.33 96.28 99.91
3 75.55 90.19 94.18 98.09 83.63 73.66 97.44 97.18 96.44
4 93.87 91.29 99.55 99.52 95.28 92.22 98.08 97.34 92.32
5 95.51 95.47 96.71 96.07 97.46 97.54 95.87 95.74 97.12
6 70.05 93.85 99.43 96.58 92.22 89.21 95.69 96.38 99.61
7 70.92 81.45 90.11 96.78 90.51 88.20 97.22 95.55 100
8 90.3 92.73 93.11 95.61 92.23 95.54 95.21 99.22 97.44
9 97.89 95.46 95.22 94.37 100 95.35 98.35 98.05 97.41

OA 90.19 92.01 98.16 98.11 96.54 94.88 96.33 98.45 98.77

AA 86.91 91.97 95.92 97.16 94.11 89.22 97.12 96.99 97.55

K 87.52 90.87 96.36 96.35 97.11 96.27 97.89 97.57 98.91

Table 9: Classification results (%) of various models on the H-13 dataset.

class 2D
CNN

3D
CNN

Hybrid
SN

SSCRN DATN MSDCA SSFTT MACLSTMTSA-
Net

1 91.68 95.13 95.78 96.22 93.12 88.54 98.54 97.81 97.56
2 90.11 92.54 94.51 96.01 96.46 92.79 96.31 95.89 96.76
3 80.23 98.21 96.52 98.52 97.53 94.11 97.54 98.11 98.95
4 90.21 91.35 92.01 92.01 90.33 90.36 95.25 94.51 93.38
5 96.41 97.15 97.89 96.21 98.35 98.85 95.14 93.33 98.92
6 89.22 97.63 97.89 98.77 97.75 96.41 96.32 94.15 85.56
7 80.28 80.51 95.14 98.99 95.61 90.32 97.12 95.66 93.56
8 93.89 89.51 96.21 95.23 95.55 88.44 98.51 96.11 91.42
9 99.33 92.32 94.21 98.77 97.41 89.74 97.43 94.82 96.21
10 99.78 95.69 98.86 96.84 96.14 85.26 92.31 97.21 97.22
11 98.18 98.08 93.56 94.68 98.67 98.80 95.65 98.74 99.88
12 96.54 96.39 94.51 95.21 95.36 88.55 95.64 92.37 98.66
13 70.25 85.54 85.14 80.13 84.99 71.88 87.21 90.39 92.01
14 92.36 96.29 94.75 98.51 98.96 94.78 92.32 97.48 98.08
15 94.33 93.97 97.15 89.37 83.55 99.53 94.51 93.97 99.02

OA 93.55 95.21 96.54 96.56 97.11 93.01 97.12 95.55 97.84

AA 90.85 93.35 94.94 94.99 95.12 92.44 95.32 95.37 96.44

K 92.33 94.98 95.28 96.11 96.55 93.89 96.99 95.11 98.47

[3], DATN [71], MSDCA [72], SSFTT [48], MACLST [73]. Additionally, in Table 6 to
10, a comparative evaluation of the proposed model against modern HSI classification
methods is provided, using five well-known datasets.

As evident from the tables, the proposed MTSA-Net model consistently demon-
strates exceptional classification performance across all five datasets while utilizing a
small number of training samples.

Tables 6 to 10 present quantitative classification results, encompassing OA, AA,
and K for each class, acquired by various models on the IP, SA, UP, H-13, and H-18
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Table 10: Classification results (%) of various models on the H-18 dataset.

class 2D
CNN

3D
CNN

Hybrid
SN

SSCRN DATN MSDCA SSFTT MACLSTMTSA-
Net

1 81.25 82.58 86.88 87.12 82.64 86.88 70.11 87.22 89.55
2 90.54 90.04 93.22 94.05 89.45 95.28 93.55 97.11 93.88
3 90.08 88.48 99.08 99.86 98.22 95.23 95.11 97.56 98.88
4 96.33 97.45 99.53 98.88 98.22 95.21 90.19 98.77 99.66
5 98.11 98.76 98.85 99.24 99.35 99.88 88.78 91.28 99.96
6 93.87 99.71 98.99 99.25 98.84 93.44 99.32 88.51 99.55
7 88.11 98.28 99.17 99.53 99.33 88.56 99.13 93.33 99.43
8 90.22 91.22 91.851 94.55 88.64 88.11 92.06 91.11 93.44
9 96.36 98.57 98.01 97.85 97.88 90.52 99.25 94.74 98.11
10 98.77 94.93 98.86 96.54 97.43 76.87 99.96 98.81 86.97
11 90.11 95.85 99.23 95.65 98.02 76.23 80.12 97.45 89.88
12 48.84 49.92 51.69 50.11 50.23 66.22 54.33 56.85 76.82
13 91.71 98.56 99.85 99.84 99.11 74.93 65.01 84.75 90.73
14 98.74 94.29 98.56 98.89 99.11 96.32 99.85 95.45 83.55
15 91.82 79.02 95.99 94.54 84.85 95.87 95.14 80.22 96.68
16 99.27 96.69 98.78 98.85 99.91 99.23 88.98 98.78 89.56
17 85.21 87.77 76.07 74.55 77.56 42.66 70.18 71.25 86.33
18 90.22 83.98 79.94 78.45 75.91 78.02 90.21 90.25 88.90
19 89.78 89.83 87.32 88.98 90.51 89.76 89.92 88.87 93.57
20 88.32 90.89 85.45 85.45 84.43 94.44 88.21 97.25 96.88

OA 92.11 92.06 92.32 93.66 93.32 88.61 92.58 93.55 95.87

AA 89.83 90.34 91.86 91.60 91.46 86.44 87.45 89.98 92.87

K 93.66 92.44 89.58 92.58 92.98 87.55 89.14 92.85 94.83

datasets. The highest notable OA values are achieved on the IP, SA, UP, H-13, and
H-18 datasets, with accuracy rates of 98.84%, 99.80%, 98.77%, 97.84%, and 95.87%,
respectively. It is observed from the results that CNN-based methods such as 2D
CNN, 3D CNN, HybridSN, SSCRN and DATN exhibit exceptional performance. Sub-
optimal results in certain classes can be attributed to the limited number of training
samples available for these specific classes. In addition, attention-based methods with
convolution, such as SSFTT, and MACLST, obtained superior results. However, the
MTSA-Net outperformed all the compared methods, achieving outstanding results in
terms of OA, AA and k. Additionally, the model consistently demonstrates high accu-
racy across all classes, confirming its efficiency and stability, especially in scenarios
with few samples for specific classes.

The classification results of all compared approaches using the IP dataset are
presented in Table 6. Certain classes in the IP dataset comprise a few samples, making
it challenging to extract easily distinguishable features. The performance of existing
methods is compromised due to the inherent difficulty of addressing imbalanced class
challenges. For instance, 2D CNN and 3D CNN produce less than 50% accuracy for
classes 1, 4, and 9. The proposed method surpasses all the compared models, achieving
a remarkable accuracy of more than 80% on classes with limited samples. Specifically,
the proposed method obtained OA of 98.84%, AA of 94.22%, and 97.24% of k.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 4: Classification maps generated by various models on the IP dataset. (a) Ground
truth, (b) 2DCNN, (c) 3DCNN, (d) HybridSN, (e) SSCRN, (f) DATN, (g) MSDCA,
(h) SSFTT, (i) MACLST,(j) MTSA-Net.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5: Classification maps generated by various models on the UP dataset. (a) Ground
truth. (b) 2DCNN. (c) 3DCNN. (d) HybridSN. (e) SSCRN. (f) DATN. (g) MSDCA.
(h) SSFTT. (i) MACLST. (j) MTSA-Net.

The classification outcomes for the SA dataset can be observed from Table 7.
Notably, MSDCA and MACLST exhibited subpar results for classes 12 and 13, while
3D CNN, DATN, and MACLST also delivered less satisfactory results for class 15
in this dataset. SSFTT and SSCRN demonstrated comparable results, outperforming
other methods except the MTSA-Net. Our proposed method achieved an accuracy of
over 99% in each individual class, boasting impressive overall metrics of 99.80% for
OA, 99.64% for AA, and 99.44% for k.

Table 8 presents the OA, AA, k, and class-based accuracies for all models on the
UP dataset. Several modern methods have demonstrated superior performance on
this dataset, primarily owing to their maximum number of training samples. Never-
theless, the challenge in this dataset lies in learning discriminative features, as the
presence of interfering pixels makes this a challenging task. SSCRN and SSFTT out-
performed all other methods in class 3 and class 1, respectively. In addition, the
proposed method demonstrated outstanding performance in class-based accuracies
and attained an impressive overall accuracy of 98.77%.

The classification results for the Houston 2013 dataset can be seen in Table 9.
On this dataset, the 2D CNN and MSDCA methods exhibit poor performance, while
DATN and SSFTT surpass other techniques in terms of overall accuracy. To be more
specific, our proposed method yields favourable classification results in classes 13, 14,
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Fig. 6: Classification maps generated by various models on the SA dataset (a) Ground
truth. (b) 2DCNN. (c) 3DCNN. (d) HybridSN. (e) SSCRN. (f) DATN. (g) MSDCA,
(h) SSFTT. (i) MACLST. (j) MTSA-Net.

and 15, despite the few training samples available for these classes. Table 9 reported
that the proposed MTSA-Net achieved exceptional results of 97.84%, 96.44%, and
98.47% in terms of OA, AA, and k, respectively.

In Table 10, the classification result of various methods on Houston 2018 dataset
is presented, which is relatively low as compared to other datasets. This discrepancy
lies due to the complex nature and identical classes of H-18 dataset. In terms of
overall accuracy, 3D CNN, hybridSN, and SSFTT demonstrate comparable results,
while SSCRN and MACLST exhibit relatively improved performance. However, the
proposed method surpasses its counterparts by achieving the highest overall accuracy
of 95.87%.

4.4 Classification maps

To visualize the classification results more effectively, we display the corresponding
visual classification maps in Figures 4 to 8. These visual representations display false-
color images along with their associated ground-truth maps for the provided five
datasets. From the classification maps, it is clear that our proposed model produces
less noise and is closest to the ground truth. For instance, the proposed approach
effectively discriminates between ground features, preserves the quality of boundary
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(g) (h)

(i) (j)

Fig. 7: Classification maps generated by various models on H-13 dataset. (a) Ground
truth. (b) 2DCNN. (c) 3DCNN. (d) HybridSN. (e) SSCRN. (f) DATN. (g) MSDCA
(h) SSFTT. (i) MACLST. (j) MTSA-Net.

regions, and generates more genuine classification maps. This is achieved by taking
into account both local and global representations.

To complement the classification outcomes, we provide feature intensity heatmaps
generated from MLP blocks with hidden dimensions of 128, 256, and 512 to empiri-
cally demonstrate the multiscale representational strength of the proposed model. As
shown in Figure 9, the 128-dimensional branch primarily focuses on detailed spatial
textures and localized structural patterns, while the 512-dimensional branch encodes
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Fig. 8: Classification maps generated by various models on the H-18 dataset. (a)
Ground truth. (b) 2DCNN. (c) 3DCNN. (d) HybridSN. (e) SSCRN. (f) DATN. (g)
MSDCA. (h) SSFTT. (i) MACLST. (j) MTSA-Net.

broader, global representations across larger areas. The 256-dimensional branch strikes
a balance, capturing both fine local details and overarching global information. These
distinct patterns across different scales confirm that the multiscale MLP modules suc-
cessfully extract hierarchical feature representations, providing clear evidence of their
role in boosting discriminative capability and enhancing classification accuracy.
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Fig. 9: Feature intensity heatmaps obtained from the three transformer branches with
hidden dimensions 128, 256, and 512 on the IP dataset. Brighter regions highlight
areas with stronger feature activations, demonstrating the multiscale representation
capability of the proposed model.

4.5 Ablation studies

In this section, we evaluate the effectiveness of the proposed model by conducting
three crucial experiments: exploring the impact of varying patch sizes, evaluating the
influence of different training sample sizes, and assessing the significance of altering
the number of principal components.

4.5.1 Ablation study of MTSA-Net modules

The performance of the proposed model has been experimentally evaluated to assess
the impact of various component parts of the module. Table 11 and 12 presents the
results from various implementations of the proposed model and comparison of FLOPs
and parameter counts between MTSA-Net and the other baseline methods respec-
tively. To evaluate the efficiency and complexity of the proposed MTSA-Net method,
we assessed several key metrics using an input image size of 1×30×15×15 with a batch
size of 64. These metrics include the number of parameters, Floating Point Operations
(FLOPs), memory size, and inference time on the IP dataset.

The proposed method achieves an overall accuracy (OA) of 98.24%, accompanied
by a marginal increase in FLOPs, while other performance metrics remain largely
consistent with minor variations. In contrast, module lacking multiscale attention
demonstrate a significant decline in OA.

Table 11: Analysis of the Different Module Components in MTSA-Net

Model Parameters (M) FLOPS (M) Size in Memory (MB) Inference Time (ms) OA (%)

CNN+SA 0.53 750 2.32 0.64 80.56
CNN+SA+TE 0.55 845 2.54 2.09 94.54
MTSA-Net 0.59 960 2.78 2.26 98.24
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Table 12: Comparison of FLOPs and parameters
of different methods. OA values are averaged over
10 runs.

Method Params (M) FLOPs (M) OA (%)

2D-CNN 0.42 610 84.47
3D-CNN 0.48 720 91.03
HybridSN 0.51 815 95.62
SSCRN 0.55 850 97.02
DATN 0.58 930 97.45
MSDCA 0.56 860 97.80
SSFTT 0.56 880 96.35
MACLST 0.58 920 98.00
MTSA-Net 0.59 960 98.24

4.5.2 Impact of input patch sizes

The complexity of feature extraction is significantly influenced by the spatial size. A
very small patch size provides limited spatial information, while a larger size encom-
passes numerous pixels with diverse categories and intricate spatial details, potentially
hindering the classification process. Therefore, experiments have been conducted with
various spatial input sizes ranging from 7 to 15, aiming to analyze their impact on the
performance of the proposed MTSA-Net. As depicted in Figure 10, a patch size of 13
persistently outperforms other patch sizes by achieving the utmost overall accuracy
among all datasets. Consequently, based on these results, a patch size of 13 is selected
for further experiments, guaranteeing optimal classification performance.

Fig. 10: Impact of various patch sizes on OA(%) for the IP, UP, SA, H-13, and H-18
datasets.
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Fig. 11: Impact of randomly selected training samples on OA(%) for the IP, UP, SA,
H-13, and H-18 datasets.

Fig. 12: Comparison of OA(%) with different principal components for the IP, UP,
SA, H-13, and H-18 Datasets.

4.5.3 Impact of diverse training data size

To confirm the robustness of the proposed model, various training sample ratios have
been utilized on five datasets, as shown in Figure 11. The training samples with the
ratios of 10%, 5%, 3%, 2%, and 1% of the overall samples are randomly selected. The
proposed model consistently achieves outstanding classification performance across all
sample sizes on the five datasets.

As depicted in Figure 11, an increase in the proportion of training samples con-
tributes to moderate improvement in overall accuracy for each dataset. However, the
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Fig. 13: Accuracy curves (a-d) and loss curves (e-h) for the training and testing sets
of the IP, H-13, SA and UP datasets.
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proposed method demonstrates stability and robustness even with a small proportion
of training samples.

4.5.4 Impact of Principal components

In the proposed model, PCA is employed to minimize the parameters by decreasing
the dimensionality of the original HSI. The experimental analysis demonstrates that
the different numbers of principal components significantly influence the extraction of
spectral-spatial features. The total number of spectral bands preserved by PCA and
its impact on overall accuracy is investigated. Varying numbers of PCA components
(10, 20, 30, 40, and 50) are selected for analysis. The results, illustrated in Figure 12,
indicate that the best classification performance is attained when selecting 30 principal
components in our proposed model. Consequently, in light of these findings, we utilised
30 principal components for our experimentations.

4.5.5 Convergence curve

Figure 13 displays the accuracy and loss curves obtained for each epoch during the
experiments conducted on the five datasets. With only 5% of trained samples from the
IP and H-13 datasets, and 3% of trained samples from the SA, UP, and H-18 datasets,
the accuracy of the proposed model during training and testing shows a consistent
increase as the number of epochs increases. Additionally, the loss curve exhibits a
steady decrease throughout the training and testing process. This indicates that the
model is effectively learning and improving its performance on both training and test
data.

4.5.6 Time cost comparison

To evaluate the inference efficiency of the proposed MTSA-Net, we measured both the
training and testing durations across the benchmark datasets. As observed from the
data in table 13, MTSA-Net attains the fastest training time on the IP dataset (6.8
minutes), outperforming both CNN-based and transformer-based baselines. This con-
firms that the proposed multiscale design achieves superior accuracy without incurring
additional training overhead. Among all the evaluated datasets, Houston 2018 (H-
18) exhibits the longest training time due to its high spatial and spectral complexity.
Compared to the contrast methods, MTSA-Net offers significant advantages in terms
of both efficiency and overall classification accuracy.

5 Conclusion

In this work, a novel framework, MTSA-Net, is introduced for HSI classification,
harnessing the combined strengths of spatial attention and multiscale transform-
ers to effectively utilize the spatial-spectral information in hyperspectral data. The
spatial attention mechanism enhances selective spatial features by considering the
relationships between adjacent pixels, thereby increasing the discriminative power of
the learned representations while suppressing irrelevant information. Followed by a
multiscale transformer module that captures long-range dependencies, enabling the
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Table 13: Time comparison of the proposed MTSA-Net with contrast methods across
benchmark datasets.

IP UP SA H-13 H-18
Methods Train (m) Test (s) Train (m) Test (s) Train (m) Test (s) Train (m) Test (s) Train (m) Test (s)

2D CNN 7.5 4.32 12.5 5.05 15.7 10.21 17.4 11.1 22.59 24.98
3D CNN 9.85 13.4 14.1 22.5 16.5 26.6 18.4 24.52 25.4 21.01
Hybrid SN 14 4.8 20.52 6.6 25.7 9.15 23.11 18.56 25.4 20.55
SSCRN 16.3 14.4 18.45 16.82 23.45 28.02 25.4 20.1 32.5 28.51
DATN 10.12 8.5 14.6 9.5 18.4 12.21 19.4 11.3 25 19.5
MSDCA 11.54 8.9 15.31 18.32 18.01 20.5 20.58 12.8 26.5 9.8
SSFTT 8.9 3.6 13.6 5.9 14.6 9.2 16.8 9.1 20.5 10.5
MACLST 12.4 8.9 16.6 14.2 18.9 16.2 19.5 8.98 22.5 11.5
MTSA-Net 6.8 2.6 16.8 9.0 20.3 11.4 16.5 6.3 21.5 16.2

framework to emphasize more distinguishing features. By adequately leveraging spatial
and spectral information at different scales, the MTSA-Net method achieved excellent
discriminative feature representations. Finally, a multiscale feature fusion approach is
employed to integrate features from various levels, maximizing their contribution to
robust and discriminative feature learning. Experimental results validate that MTSA-
Net achieves the highest classification accuracy compared to state-of-the-art methods
across five challenging benchmark datasets. Moreover, it demonstrates strong robust-
ness even with limited training samples, highlighting its superiority and effectiveness
in HSI classification. The generalization capability of MTSA-Net also makes it suit-
able for extension to other hyperspectral remote sensing datasets. In future work, we
plan to explore more efficient multiscale designs and lightweight transformer mod-
ules to further reduce computational costs without compromising overall performance,
making the framework even more suitable for HSI classification tasks.
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