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The rapid expansion of edge-cloud infrastructures and latency-sensitive Internet of Things (IoT) 
applications has intensified the challenge of intelligent task offloading in dynamic and resource-
constrained environments. This paper presents an Adaptive and Intelligent Customized Deep 
Q-Network (AICDQN), a novel reinforcement learning-based framework for real-time, priority-aware 
task scheduling in mobile edge computing systems. The proposed model formulates task offloading 
as a Markov Decision Process (MDP) and integrates a hybrid Gated Recurrent Unit-Long Short-Term 
Memory (GRU-LSTM) load prediction module to forecast workload fluctuations and task urgency 
trends. This foresight enables a Dynamic Dueling Double Deep Q-Network (D4QN) agent to make 
informed offloading decisions across local, edge, and cloud tiers. The system models compute nodes 
using priority-aware M/M/1, M/M/c and M/M/∞ queuing systems, enabling delay-sensitive and 
queue-aware decision-making. A dynamic priority scoring function integrates task urgency, deadline 
proximity, and node-level queue saturation, ensuring real-time tasks are prioritized effectively. 
Furthermore, an energy-aware scheduling policy proactively transitions underutilized servers into low-
power states without compromising performance. Extensive simulations demonstrate that AICDQN 
achieves up to 33.39% reduction in delay, 57.74% improvement in energy efficiency, and 81.25% 
reduction in task drop rate compared with existing offloading algorithms, including Deep Deterministic 
Policy Gradient (DDPG), Distributed Dynamic Task Offloading (DDTO-DRL), Potential Game based 
Offloading Algorithm (PGOA), and the User-Level Online Offloading Framework (ULOOF). These results 
validate AICDQN as a scalable and adaptive solution for next-generation edge-cloud systems requiring 
efficient, intelligent, and energy-constrained task offloading.

Keywords  Edge-cloud computing, Task offloading, Deep reinforcement learning (DRL), GRU-LSTM 
prediction, Queue-aware scheduling, Energy-efficient resource management

The rapid proliferation of intelligent and latency-sensitive applications, such as augmented reality, autonomous 
vehicles, and real-time video analytics, has imposed stringent computational and latency requirements on 
mobile and IoT devices. These devices, often constrained by limited battery life, processing power, and memory, 
are unable to meet the real-time processing demands of modern workloads1. Although cloud servers offer strong 
computing capabilities, task offloading to the cloud incurs high transmission overhead and delays, especially 
under bandwidth constraints or network fluctuations, making cloud-only models unsuitable for real-time, 
delay-sensitive applications2.

To bridge this capability gap, Mobile Edge Computing (MEC) and edge-cloud collaborative architectures 
have emerged as promising paradigms that bring computational resources closer to the data source. By enabling 
computational offload of user equipment (UE) to nearby edge servers or remote cloud infrastructures, these 
architectures help reduce application latency and improve energy efficiency3. As illustrated in Fig. 1, this 
hierarchical architecture comprises three layers: the device layer, which includes user endpoints and IoT sensors; 
the edge layer, which handles local processing, caching and response; and the cloud layer, which is responsible 
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for large-scale data analytics and storage. This structure supports distributed intelligence, allowing efficient and 
scalable computation throughout the network4.

Despite these advantages, task offloading in heterogeneous edge-cloud environments remains challenging 
due to dynamically changing workload patterns, network uncertainties, resource scarcity at the edge, and the 
diverse priority needs of tasks. Inefficient or static task allocation strategies can cause resource underutilization, 
increased latency, and higher energy consumption5. Moreover, unpredictable task arrivals and limited 
computational resources may lead to queue buildup, task failure, or deadline violations-especially for edge 
servers operating under constrained conditions6.

In addition to these challenges, existing studies such as7,8 consider simplified MEC settings where non-
divisible tasks are processed without incorporating realistic queueing behavior at edge nodes. These approaches 
assume that each task must be processed within a single time slot, overlooking the fact that task execution 
frequently spans multiple slots due to varying load levels. Consequently, task delay can be significantly affected 
by previously queued jobs, especially in high traffic conditions. Furthermore, while7,8 primarily addresses 
delay-tolerant workloads, modern real-time applications require strict deadline guaranties, making such 
simplifications unsuitable for practical latency-critical MEC deployments. Another largely overlooked but 
critical aspect is priority sensitivity. In real-world scenarios, tasks exhibit varying urgency: real-time applications 
(e.g., emergency alerts, healthcare monitoring) demand strict deadlines, while delay-tolerant tasks (e.g., backups, 
updates) can tolerate longer wait times. Conventional resource allocation mechanisms and heuristic-based 
offloading approaches treat all tasks equally or apply static policies, resulting in degraded QoS for high-priority 
workloads under peak demand9.

These challenges require intelligent and adaptive task scheduling frameworks capable of responding to 
dynamic environmental changes while minimizing latency and energy consumption. In this context, DRL has 
gained significant attention for its ability to learn optimal offloading policies through continuous interaction 
with the environment10,11. Among DRL techniques, the Double Deep Q-Network (DDQN) provides superior 
training stability by separating action selection from value evaluation, thus reducing the overestimation bias 
present in conventional DQN frameworks12.Furthermore, the Dueling Double Deep Q-Network (D3QN) 
introduces a separate advantage stream to evaluate the relative importance of actions, improving convergence 
efficiency and robustness of decision in dynamic environments13. However, many existing DRL-based solutions 
still lack integrated workload prediction, queue-aware decision-making, and energy-constrained optimization, 
limiting their deployment in real-time operational environments.

To address these limitations, we propose AICDQN (Adaptive and Intelligent Customized Deep Q-Network), 
a unified DRL-based framework for proactive, priority-aware, and energy-efficient task offloading in hierarchical 
edge-cloud systems. AICDQN employs a Dynamic Dueling Double Deep Q-Network (D4QN) to stabilize value 
estimation and enable robust learning under varying network conditions. A hybrid GRU–LSTM module forecasts 
the future system load, enabling anticipatory scheduling and queue regulation. Task offloading decisions are 
modeled as an MDP using M/M/1 queues for local devices, M/M/c for edge servers, and M/M/∞ for cloud 
computing to balance delay, energy consumption, and priority fulfillment. Additionally, an energy-aware policy 
regulates server activity for power savings without compromising Quality of Service (QoS).

Fig. 1.  Edge-Cloud computing model.
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The primary contributions are summarized as follows.

•	 Priority-aware task offloading in heterogeneous edge-cloud environments: We formulate a realistic mul-
ti-tier MEC offloading model incorporating heterogeneous queueing delay, task urgency levels, and deadline 
constraints to jointly minimize latency, energy usage, and task drop rate.

•	 AICDQN-based intelligent decision-making: A customized D4QN agent enhanced with GRU-LSTM work-
load prediction enables stable, foresight-driven, and resource-aware scheduling decisions based on local sys-
tem observations such as task size, queue state, and predicted load.

•	 Queue-aware MDP with energy constraints: We model system dynamics using queue theory and propose an 
energy-aware server state control strategy to activate, idle, or sleep servers according to forecasted workload.

•	 Extensive simulation and comparative evaluation: Evaluating AICDQN against existing benchmark algo-
rithms based on average task delay, task drop ratio, and energy consumption under varying workload con-
ditions.

The subsequent sections of this paper are structured as follows. Section “Related works” provides a comprehensive 
review of related work in task offloading and deep reinforcement learning based scheduling within edge-
cloud environments. Section  “System architecture and proposed methodology” presents the overall system 
architecture, including the task model, queuing theory formulations, and resource characterization across 
computational tiers. Section  “Problem formulation” presents the formal problem formulation, detailing the 
hybrid GRU-LSTM-based workload predictor and the Markov Decision Process representation of the offloading 
strategy. Section  “Proposed AICDQN framework” describes the proposed AICDQN learning framework, 
including the network architecture, energy-aware task scheduler, and the training workflow. Section “Simulation 
and performance evaluation” outlines the experimental setup, including the simulation environment, evaluation 
metrics, and benchmark algorithms. This section also provides a comparative performance analysis, showing the 
improvements in delay, energy consumption, task completion ratio, and system stability achieved by AICDQN. 
Finally, section  “Conclusion and future work” concludes the paper, summarizing key contributions and 
suggesting future enhancements including multi-agent cooperation and transfer learning for further scalability.

Related works
Task offloading and intelligent scheduling in edge-cloud environments have become vital for achieving low-
latency, energy-efficient computing in modern IoT systems. The distributed and heterogeneous nature of these 
systems, coupled with dynamic task arrivals and limited processing capacity, presents a significant challenge for 
conventional static or heuristic-based offloading schemes. Traditional rule-based or queue-threshold approaches 
often lack adaptability to workload fluctuations, leading to resource underutilization or task failures. Recent 
research has explored DRL for adaptive task scheduling; however, many models lack predictive capability and 
fail to incorporate queue-aware or urgency-based task prioritization. Furthermore, energy efficiency remains 
underexplored in these DRL-based solutions. This work addresses these gaps by introducing AICDQN, an 
intelligent and predictive framework that integrates GRU-LSTM-based workload forecasting, real-time priority 
scoring, and energy-aware offloading decisions using a D3QN architecture, optimized for edge-cloud systems 
under uncertainty.

This section surveys key approaches in task scheduling, multi-objective optimization, machine learning-
based algorithms, and task offloading strategies, emphasizing their contributions and limitations in the context 
of AICDQN. Classical optimization and evolutionary approaches remain relevant in cloud and large-scale 
scheduling. For example, genetic-algorithm (GA) based schedulers have been applied to jointly reduce makespan 
and energy consumption, showing good performance on small to medium-scale cloud workloads but suffering 
from high computational overhead while scaling3. Supervised learning has also been used to predict edge load 
and trigger offloading to cloud resources, improving latency by avoiding overloads on edge nodes, yet such 
methods depend heavily on the availability of accurate and up-to-date training data and struggle under rapidly 
changing conditions14.

A large body of recent work focuses on (Reinforcement Learning) RL and DRL to provide automated, adaptive 
offloading policies. Several algorithmic contributions propose RL variants tailored to MEC orchestration: 
an reinforcement-learning-based state-action-reward-state-action (RL-SARSA) scheme tackles resource 
management in multi-access MEC networks with the goal of minimizing combined energy and delay costs15; 
collaborative DRL approaches target heterogeneous edge environments to improve offloading efficiency16; 
enhanced DQN methods with modified replay mechanisms have been proposed for more effective resource 
allocation in IoT-edge systems17; Monte Carlo tree search (MCTS)-based frameworks (e.g., iRAF) have been 
used to autonomously learn service allocation under delay-sensitive demands18; and orchestrated DRL solutions 
optimize device-edge-cloud allocations to reduce system energy19. Complementary research has explored 
different families of DRL techniques. Discrete-action models, such as DQN, have been employed to address joint 
task offloading and resource allocation problems, whereas continuous-action approaches, exemplified by the 
DDPG, have been investigated to optimize power control and offloading strategies in multi-user environments20. 
Collectively, these works demonstrate the potential of DRL’s, but often assume simplified traffic models and do 
not always incorporate queue-aware state features or explicit urgency scoring into the decision process.

Accurate modeling of task arrivals and queueing behavior is central to meaningful performance assessment 
and to state design for learning agents. Traditional analytical models represent mobile devices as M/M/1 queues, 
fog servers as M/M/c systems, and cloud datacenters as M/M/∞ queues to analyze latency, energy, and cost 
under Poisson arrivals34,35. In particular, studies of MEC-enabled vehicular networks illustrate how buffering 
and sequential service lead to non-negligible queueing delays that cannot be ignored when evaluating offloading 
strategies36. Because Poisson assumptions may fail to capture correlated or bursty arrivals observed in practice, 
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researchers have extended arrival models to Markovian Arrival Processes (MAP) and Marked MAP (MMAP) 
formulations to account for correlation and categorization of tasks37,38. These modeling efforts indicate that 
arrival correlation and queue saturation significantly influence delay and energy metrics and therefore should 
inform the design of RL state representations and reward functions.

Despite these advances in algorithmic and modeling, several persistent gaps remain. First, many DRL-based 
proposals rely on stationarity assumptions or single-type user models, limiting adaptability to heterogeneous 
and time-varying workloads. Second, while energy-aware methods exist, few approaches jointly optimize 
energy, latency, and queueing constraints at scale; achieving this balance in real time is still challenging. Third, 
simplified traffic models (e.g., Poisson) can lead to biased policy learning under correlated traffic, and RL agents 
trained under such assumptions may perform poorly in practice. Finally, training and retraining DRL agents 
can be data-intensive and compute-intensive, creating practical deployment barriers. These limitations motivate 
a combined solution that (i) anticipates correlated arrivals, (ii) encodes queueing and urgency into state and 
reward design, (iii) stabilizes learning under large action/state spaces, and (iv) enforces energy constraints 
during decision making.

The proposed AICDQN framework directly addresses these gaps. It augments the RL state with short-term 
load forecasts produced by a GRU-LSTM predictor to capture correlated and bursty arrivals, integrates queue-
aware features and adaptive dynamic priority score ψi(t) that captures deadline proximity and node saturation, 
employs a dynamic Dueling Double DQN architecture to reduce Q-value bias and improve convergence, and 
implements an energy-aware scheduler with action masking to enforce runtime energy constraints. By explicitly 
combining predictive modeling, queue-aware state design, priority evaluation, and energy constraints within 
a single DRL pipeline, AICDQN aims to provide adaptive, scalable, and energy-efficient offloading policies 
suitable for heterogeneous multi-tier IoT-edge-cloud systems. Table 1 summarizes the strengths and limitations 
of existing approaches.

System architecture and proposed methodology
To enable intelligent and energy-efficient task offloading in dynamic edge-cloud environments, we propose 
a comprehensive system model comprising four key components: system architecture, task model, queueing 
behavior, and energy model. This integrated structure captures the complex dynamics of task execution and 
offloading decisions across distributed and heterogeneous computing resources.

The proposed system architecture of the AICDQN framework (Fig. 2) is enhanced from39 and integrates 
GRU-LSTM-based workload prediction with dynamic priority scoring to proactively estimate the system 
load and assess task urgency. using these predictive insights, the D4QN agent makes real-time, context-aware 
offloading decisions, dynamically selecting the most suitable computation layer-local device (HW), edge 
server (ES), or cloud-based on the current system state. By combining queue-aware scheduling, proactive load 
forecasting, and feedback-driven task allocation, the framework minimizes task delay, reduces the drop ratio, 
and achieves balanced resource utilization across tiers. Furthermore, energy efficiency is enhanced through 
selective server activation guided by workload forecasts and by adopting offloading strategies that lower energy 
consumption without compromising service quality. Together, these mechanisms operate in synergy to improve 
resource utilization, maintain quality QoS for high-priority tasks, and ensure scalable and sustainable operation 
in modern edge-cloud computing environments.

System architecture
The proposed AICDQN framework enables intelligent and priority-aware task offloading in a heterogeneous 
hierarchical computing environment comprising IoT devices, edge servers, and cloud infrastructure. Using 
predictive deep reinforcement learning, the system dynamically adapts to fluctuating workloads, varying task 
urgencies, and changing network conditions. Its primary objectives are to minimize average task delay and 
energy consumption, ensure timely execution of delay-sensitive tasks, and achieve adaptive load balancing 
across local, edge, and cloud resources.

Architectural overview
The AICDQN framework comprises five integrated modules that form a decision making pipeline, as illustrated 
in Fig. 3.

•	 IoT layer: task generator and dynamic priority evaluator—Handles task arrivals and assigns urgency-based 
priority scores.

•	 System state encoder and representation layer—Integrates predicted load, resource availability, and task 
priority into the state vector.

•	 GRU-LSTM-based load predictor—Forecasts future workloads from past queue statistics.
•	 Dynamic dueling double deep Q-network (AICDQN agent)—An enhanced reinforcement learning model 

that extends the standard D3QN by incorporating dynamic, context and priority-aware decision making, 
allowing the learning of optimal offloading and scheduling policies under delay-energy-priority trade-offs.

•	 Energy-constrained task scheduler—Executes final scheduling/offloading decisions while managing active, 
idle, and sleep states of resources.

The overall architecture, as shown in Fig. 3, illustrates the interaction among the five functional modules. In the 
IoT devices layer, tasks are generated and prioritized based on urgency through the Adaptive Dynamic Priority 
Evaluator. These tasks, together with queue states, are processed by the System State Encoder, where expedited 
load buffers and available resources are consolidated into a state vector. Historical workload information and 
past queue lengths are then passed to the Prediction Module, where the GRU-LSTM forecaster anticipates future 
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arrivals. This predicted load, along with the encoded system state, is used by the AICDQN agent, which leverages 
a Dynamic Dueling Double Deep Q-Network. Unlike conventional D3QN , this dynamic variant incorporates 
adaptive state representations and priority-aware decomposition to derive more responsive offloading and 
scheduling decisions.

The Execution Layer distributes tasks hierarchically across local hardware, edge servers, or cloud resources, 
while the Energy-Aware Scheduler ensures efficient power utilization by dynamically switching resources 
between active, idle, and sleep states. Execution feedback loops continuously refine decision-making, achieving 
predictive, adaptive, and energy-efficient task scheduling across the IoT-Edge-Cloud continuum.

Author Objective Approach Environment Limitations

Yiyi Zhang, et al.21
Improve energy 
efficiency and 
reduce packet loss

MEC-enabled 
blockchain 
framework with 
MIITD and 
MAHTRPO

Wireless edge 
environment

Complex setup,
 high overhead, 
limited generalization

R. Singh et al.2
Optimize computation
 offloading and resource
 management for IoT
 applications

Hybrid deep 
reinforcement 
learning framework
 with actor-critic 
based optimization

Dynamic IoT-MEC
 environment

High training 
complexity, requires 
large-scale datasets
 for generalization

K. Zhu, et al.22
Minimize task delay, 
energy use, and 
task drop

Energy-efficient 
Advantage Actor-
Critic model with 
LSTM integration

Task scheduling 
environment without 
mobility

No mobility support, 
ignores task 
dependencies

T. H. Nguyen et al.23

Enhance task 
scheduling and 
offloading efficiency 
in MEC-enabled IoT

Deep reinforcement
 learning framework 
integrating DQN with
 resource-aware 
scheduling

Dynamic MEC-IoT 
environment

High computational 
cost, limited 
scalability to large-
scale heterogeneous
 systems

P. Li, et al.24

Optimize scheduling 
and power allocation 
for better 
performance

Multi-agent PPO-
based joint 
scheduling and 
power allocation 
strategy

Edge computing with
 energy-latency 
trade-off

No task dependency
 handling

Shuran Sheng et al.25
Optimize task 
execution order and 
resource allocation

Policy-based 
reinforcement 
algorithm

Dynamic 
environment

Lacks inter-server 
collaboration

K. Rajammal and M. Chinnadurai26

Adaptive load 
balancing to reduce 
latency, energy, and
 response time

TGNN for prediction
 + SNN for adaptive 
scheduling with RL
 tuning

Cloud computing with
 heterogeneous and
 dynamic workloads

High complexity,
 limited scalability; 
needs fog/edge 
integration

Cristina Morariu et al.27
Predictive task 
scheduling and 
resource allocation

Long Short-Term 
Memory (LSTM) 
model

Dynamic 
environment

Heavily reliant on 
real-time data 
processing

Prasanta Kumar Bal et al.28
Enhance resource
 allocation, security,
 and scheduling

Hybrid Cat Swarm 
Optimization and 
DNN-based Group 
Optimizer

Dynamic 
environment

Limited real-world 
cloud applicability

Y. Liu et al.29

Energy-efficient 
scheduling with 
deadline guarantees 
in heterogeneous 
multicore edge 
processors

Task prioritization, 
core-aware mapping,
 predictive DVFS

Tested on ODROID-
XU4, Jetson Nano, 
Intel NUC

Non-preemptive, 
simplified 
dependencies, DVFS
 overhead, limited
 adaptability

Media Ali Ibrahim et al.30
Optimize task 
scheduling under
 multiple objectives

Multi-objective Deep
 Reinforcement 
Learning (MODRL)

Dynamic 
environment

Evaluated only in 
controlled simulation

Amine Chraibi et al.31 Minimize makespan
 and power consumption

Dynamic multi-
objective DRL-based
 scheduler

Dynamic 
environment

Evaluated only in 
simulation

Nan et al.3
Minimize energy 
consumption via 
fitness modeling

Genetic Algorithm Static and dynamic
 environment

Real-world 
deployment 
challenges

Dai Y. et al.19
Reduce energy 
consumption using
 adaptive models

Deep Reinforcement
 Learning (DRL)

Dynamic 
environment

Limited scalability 
consideration

Piyush Gupta et al.32
Reduce latency and
 improve task 
efficiency

CNN-based 
workload prediction
 model

Static and dynamic 
environment

Resource capacity 
constraints

Liu C. et al.33
Optimize 
collaborative edge 
computing

Multi-agent DRL 
framework

Static and dynamic 
environment

Deployment 
complexity in real-
world setups

Table 1.  Summary of strengths and limitations of existing approaches.
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This integrated design provides the conceptual foundation for the AICDQN framework. The next section 
formally introduces the Task Model, which mathematically defines task arrival patterns, deadlines, computation 
requirements, and queue dynamics to support the subsequent problem formulation.

Task model
Mobile devices continuously generate tasks with varying urgency levels, arrival rates, and execution deadlines. 
Time is considered in discrete slots of fixed duration δ, and tasks arrive dynamically at the beginning of each 
time slot t ∈ T = {0, 1, 2, . . . , T }. Let U = {1, 2, . . . , U} represent the set of mobile users or IoT devices, 
where each user u ∈ U  may generate a computational task τi(t) at time t. Each task τi is defined as a tuple:

	 τi(t) =
(
Si, ρi, Di(t), pi, T arr

i , T deadline
i

)
� (1)

Fig. 3.  AICDQN framework for priority-aware offloading and scheduling.

 

Fig. 2.  System architecture of the proposed AICDQN framework.
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Where:

•	 Si ∈ Φ = {ϕ1, ϕ2, . . . , ϕN } represents the set of task size in bits, where the set Φ denotes the discrete data 
size domain,

•	 ρi: CPU cycles required per bit (processing density),
•	 Di(t) = T deadline

i − T arr
i : Deadline slack in time slots (i.e., available processing window),

•	 pi ∈ {0, 1}: is the urgency level of the task (1 for urgent/real-time, 0 for normal),
•	 T arr

i : Arrival time of the task,
•	 T deadline

i : Hard deadline by which the task must be completed.

The total computational workload of task i in CPU cycles is defined as:

	 Ci = Si · ρi� (2)

where Si denotes the task size and ρi is the required CPU cycles per bit.
Given a computing node r with CPU frequency fr , the execution time is:

	
T r

exec,i = Ci

fr
= Si · ρi

fr
� (3)

To account for real-time execution contexts and system dynamics, an adaptive dynamic priority score ψi(t) is 
computed for each task τi, which combines task urgency, local queue congestion, and static priority level:

	
ψi(t) = ω1 · 1

Di(t)
+ ω2 · Qr(t)

Qmax
r

+ ω3 · pi� (4)

Here, Di(t) denotes the remaining deadline slack as defined in Eq. (1), now contributing directly to the urgency 
component in ψi(t).

Where:

•	 Qr(t): Current queue length at node r ∈ {HW, ES1, ES2, . . . , ESn, Cloud},
•	 Qmax

r : Maximum allowable queue size at node r,
•	 ω1, ω2, ω3: Tunable weights that adjust the influence of deadline urgency, queue load, and static priority.

Here, the term 
Qr(t)
Qmax

r
 represents the normalized congestion level at node r, such that queue saturation directly 

increases the urgency of the task τi. Consequently, the AICDQN agent prioritizes the execution or offloading of 
tasks with higher ψi(t), ensuring responsiveness to the dynamics of the real-time queue.

This dynamic priority score ψi(t) is essential for intelligent scheduling in resource-constrained multi-
tier environments, allowing the framework to reactively prioritize delay-sensitive tasks while maintaining 
system stability. Tasks with high static priority pi = 1, short remaining slack Di(t), or greater ψi(t) values are 
preferentially executed on local devices or edge servers when resources permit. In contrast, less urgent tasks 
can be queued or directed to cloud execution depending on current congestion, predicted delay conditions, and 
communication overhead.

This cohesive prioritization model empowers AICDQN with intelligent situational awareness, ensuring 
timely and efficient task allocation across heterogeneous computing layers.

Queueing models
To capture realistic delays during task processing at different computational tiers (local hardware, edge servers, 
and cloud server), standard queueing theory is adopted. The queueing behavior directly impacts task scheduling 
decisions and is integrated into the AICDQN framework’s state representation.

Local hardware: M/M/1 queue
Each IoT device is modeled as a single-server queue with Poisson arrivals λHW and an exponential service rate 
µHW. The server utilization and queueing metrics are expressed as follows:

	
ρHW = λHW

µHW
< 1� (5)

The expected number of tasks in the queue and the corresponding expected waiting time before a task starts 
execution are given by:

	
LHW

q = ρ2
HW

1 − ρHW
, W HW

q =
LHW

q

λHW
� (6)

These expressions determine whether a task should remain local or be offloaded to avoid excessive queuing 
delays under high congestion.
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Edge servers: M/M/c queue
Edge servers typically consist of multiple parallel processing units, and thus are modeled using the M/M/c queue. 
Let λES be the task arrival rate, µES the service rate per server, and c the number of servers at the edge node.

The system utilization is defined as:

	
ρES = λES

c · µES
, ρES < 1.� (7)

The probability that an incoming task must wait is given by the Erlang-C formula:

	
PW =

(cρES)c

c! (1−ρES)∑c−1
k=0

(cρES)k

k! + (cρES)c

c! (1−ρES)

� (8)

The average queueing delay becomes:

	
W ES

q = PW

cµES − λES
� (9)

This delay term is directly reflected in the MDP reward design to discourage edge overloading.

Cloud delay model
This queueing model helps the AICDQN agent assess congestion and delay at the edge, enabling informed 
offloading decisions when both local and edge resources are saturated. Although the cloud is modeled as a 
M/M/∞ queue with virtually unlimited resources and negligible queuing delay, it introduces significant 
communication latency δCloud, making it less suitable for delay-sensitive tasks. The total cloud processing delay 
is modeled as

	
DCL = LCL

trans + LCL
net + 1

µCL
� (10)

where µCL is the cloud service rate and the end-to-end WAN latency component δCloud = LCL
trans + LCL

net  - 
comprising transmission delay LCL

trans and network propagation delay LCL
net , is explicitly embedded in the reward 

formulation.

Resource model
The system consists of heterogeneous computing tiers including one local hardware device (HW), a 
multi-server edge server, and a remote cloud. The edge tier contains n parallel edge servers denoted as 
ESj ∈ {1, 2, . . . , n}. Each computing node r ∈ {HW, ES1, ES2, . . . , ESn, Cloud} is defined by the 
following resource characteristics that influence offloading and scheduling performance:

•	 CPU frequency fr : Processing speed of node r, measured in cycles per second.
•	 Maximum queue length Qmax: The capacity of the task buffer at node r. If the queue is full, new tasks can be 

rejected or rerouted.
•	 Available energy budget Er : The remaining energy at the node, especially relevant for mobile or edge nodes 

with limited power.
•	 Communication delay δr : Network delay from the task-generating IoT device to node r, incorporating wire-

less transmission, routing, and propagation times.
•	 Execution time T r

exec,i from Eq. (3).

The AICDQN agent uses these parameters to learn optimal task assignment strategies. During each time interval 
t, the agent evaluates the current system load, energy status, communication latency, and queue statistics to 
make intelligent real-time offloading and scheduling decisions. This ensures that both urgent and delay-tolerant 
tasks are handled optimally across heterogeneous resources.

Problem formulation
In this section, we formulate the task offloading and scheduling problem in the proposed AICDQN framework 
as a MDP to enable intelligent decision-making in a multi-tier computing architecture comprising local 
IoT devices, edge servers, and the cloud. The objective is to learn adaptive offloading policies that minimize 
execution delay, reduce energy consumption, and ensure timely processing of high-priority tasks. By modeling 
the environment as an MDP, we capture the spatio-temporal dynamics and heterogeneity of edge-cloud systems, 
allowing the agent to make sequential decisions based on observable system states and learned rewards. The 
subsequent subsections define the MDP components, including state and action spaces, transition dynamics, 
reward formulation, and analytical expressions for delay, energy cost, and priority penalties.

Load Forecaster (GRU-LSTM Module)
To ensure intelligent and proactive task scheduling, it is essential to anticipate future workload fluctuations 
across local, edge, and cloud layers. Static or reactive models fail to adapt to time-varying traffic patterns in IoT 
applications. To address this, we propose a hybrid deep learning model combining GRU and LSTM networks 
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for accurate and robust queue load prediction. Real-time system decisions benefit significantly from foresight 
into upcoming computational and communication loads. Traditional heuristics or moving average techniques 
struggle with bursty, nonlinear, or seasonal traffic typically found in edge-assisted IoT systems. The GRU-
LSTM module, integrated within the proposed AICDQN framework, generates predictive signals that directly 
influence offloading and scheduling behavior, as illustrated in Fig. 4. The GRU-LSTM predictive model enables:

•	 Proactive offloading decisions: Anticipating congestion helps prevent task offloading or local processing 
bottlenecks.

•	 Priority-aware adjustment: Predicted congestion influences dynamic recalibration of task urgency scores.
•	 Energy optimization: Load-aware decisions help conserve battery by avoiding unnecessary offloading.

Forecasting objective
To proactively estimate the incoming workload and avoid bottlenecks, the load forecaster predicts future queue 
dynamics.

Input: Time-series window {Qt−k, . . . , Qt} , Output: Predicted arrival rate λ̂t+1

Hybrid GRU-LSTM architecture
The GRU-LSTM architecture is designed to capture both short-term fluctuations and long-term dependencies 
in task arrival sequences. The model receives a sequence of observed task arrival rates or queue lengths and 
produces a prediction for the next time step:

	 ht = LSTM(GRU(Qt, ht−1)) ⇒ λ̂t+1 = σ(Woht + bo)� (11)

Where:

•	 λ̂t+1: Predicted arrival rate at time t + 1,
•	 Qt: Observed task arrival or queue length at time t,
•	 ht: Hidden state representing the learned load and dynamics of the system,
•	 Wo, bo: Trainable parameters of the output layer,
•	 σ(·): Activation function (typically sigmoid or ReLU).

Motivation and role in AICDQN framework
The predicted task arrival rate λ̂t+1 provides crucial insight into the upcoming system state, allowing the 
AICDQN agent to dynamically adjust its offload and scheduling strategies. Instead of reacting to congestion, 
the agent can proactively:

•	 Redirect tasks before overloads occur,
•	 Select energy-efficient computation nodes,
•	 Prevent task drops due to deadline violations.

As shown in Fig. 4, the forecasted workload is fused with real-time system state inputs-such as task size, edge 
resource status, energy levels, and task priorities-and passed through fully connected layers for feature extraction. 
The architecture employs a D4QN , where the Q-value is calculated using both the value and advantage streams. 
The Double DQN mechanism further stabilizes learning by decoupling target value estimation. This joint 
architecture enables adaptive and intelligent task offloading decisions that are both priority-aware and energy-
aware.

Fig. 4.  The GRU-LSTM architecture predictive model.
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Training and optimization
The model is trained using the Mean Squared Error (MSE) loss between predicted and actual arrival rates:

	
LMSE = 1

N

N∑
t=1

(
λ̂t+1 − λt+1

)2
� (12)

The optimizer (e.g., Adam) minimizes this loss over historical data collected from task generation patterns in 
the system.

Markov Decision Process (MDP) representation
The edge-cloud task offloading environment is modeled as a Markov Decision Process M = (S, A, P, R, γ), where 
S denotes the state space, A the action space, P the transition probability distribution, R the reward function, 
and γ ∈ [0, 1) the discount factor for future rewards. The agent interacts with the environment in discrete time 
steps to learn an optimal policy π : S → A, aiming to maximize the expected cumulative reward by mapping 
observed states to optimal actions.

State space S
At each time step t, the AICDQN agent observes a multidimensional system state St ∈ S, capturing the 
operational context between local devices, heterogeneous edge servers, and cloud resources. The enhanced state 
vector is defined as:

	
St =

[
QHW

t , Q
ESj

t , QCloud
t , RHW

t , R
ESj

t , RCloud
t , Er

t , λ̂t+1, ψi(t)
]

� (13)

Here, QHW
t , Q

ESj

t , QCloud
t  and RHW

t , R
ESj

t , RCloud
t  represent the queue lengths and available computational 

resources on the local device (HW), each edge server ESj ∈ {1, 2, . . . , n}, and the cloud, respectively. The 
predicted workload λ̂t+1 from the GRU-LSTM model enables proactive congestion mitigation, while the 
dynamic priority score ψi(t) incorporates deadline urgency and queue saturation to emphasize real-time 
task handling. The remaining energy state Er

t  supports energy-aware scheduling. This comprehensive state 
representation ensures full visibility into system dynamics, enabling intelligent, latency-aware, and resource-
efficient decision making in the MEC environment.

Action space A
The agent selects an action At ∈ A to determine the execution location of an incoming task:

	 A = {Execute at HW, Offload to ES1, . . . , Offload to ESn, Offload to Cloud}� (14)

•	 Execute at HW: Minimum network delay but constrained computation and battery capacity,
•	 Offload to ESj : j = 1, 2, . . . , n; balanced transmission delay with heterogeneous edge resource capabilities,
•	 Offload to Cloud: Highest communication delay due to WAN propagation but abundant processing capabil-

ity.

This enhancement improves resource selection clarity in multi-edge environments and remains fully consistent 
with the state representation in Eq. (13), where queue and resource statuses are tracked individually for HW, 
each ESj , and the cloud server.

Transition dynamics P
The system evolves stochastically due to dynamic task arrivals, queueing behavior, wireless channel variability, 
and energy fluctuations. The next state is determined by:

	 St+1 = f(St, At, τi)� (15)

Since explicitly modeling state transition probabilities is computationally intractable in such a complex and 
highly non-stationary MEC environment, a model-free reinforcement learning approach is adopted. Thus, 
AICDQN learns optimal policies through continuous interaction and reward feedback rather than requiring 
prior knowledge of the transition model.

Reward function R
In reinforcement learning-driven task offloading systems, the reward function serves as the primary mechanism 
by which the agent evaluates the quality of its actions over time. In the proposed AICDQN framework, the 
reward is formulated to reflect three critical objectives of edge-cloud task management: (i) minimizing execution 
delay, (ii) reducing energy consumption, and (iii) preserving task-level QoS by meeting the deadlines of high-
priority tasks.

The delay term Dt captures both communication and computation latency, which is crucial in latency-
sensitive edge applications such as real-time monitoring, autonomous control, and industrial automation. The 
energy term Et penalizes actions that unnecessarily burden power-constrained IoT devices or result in excessive 
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transmission overhead. Meanwhile, the priority penalty term Pt introduces urgency-awareness by assigning 
additional cost to decisions that cause deadline misses for critical tasks.

To maintain adaptive decision-making in dynamic environments, AICDQN introduces time-varying weights 
αt, βt, γt that adjust based on current performance feedback. These weights enable the agent to learn context-
sensitive priorities, such as giving greater emphasis on minimizing delay during peak load periods or prioritizing 
energy savings when battery levels are low. This adaptive formulation transforms the static reward model into a 
dynamic reward-shaping mechanism, improving learning convergence and generalization across heterogeneous 
conditions.

To guide agent learning, we define a scalar reward function that penalizes system inefficiencies.

	 Rt = −αtDt − βtEt − γtPt� (16)

Where:

•	 Dt: Total task delay (including queuing, transmission, and execution),
•	 Et: Combined energy consumption for data transmission and computation,
•	 Pt: Priority penalty incurred for violating the urgency of high-priority tasks (e.g., due to deadline violations 

or task drops),
•	 αt, βt, γt: Tunable weight parameters (Eqs. 17–19) used to control the influence of delay, energy, and priority 

penalty in the learning process.

The weights of the reward function in AICDQN are dynamically adjusted at each time step based on real-
time performance feedback to reflect the relative importance of delay, energy, and priority violations.

Adaptive delay weight

	
αt = α0 ·

(
1 + Dt − Dtarget

Dtarget

)
� (17)

The delay weight αt increases when the observed task delay Dt exceeds the acceptable delay threshold Dtarget, 
guiding the agent to take more delay-sensitive actions during congestion.

Adaptive energy weight

	
βt = β0 ·

(
1 + Et − Etarget

Etarget

)
� (18)

The energy weight βt is elevated when current energy consumption Et exceeds the desired energy threshold 
Etarget, encouraging energy-efficient offloading behavior.

Adaptive priority penalty weight

	
γt = γ0 ·

(
1 + Pt

Pmax

)
� (19)

γt increases proportionally to the urgency penalty Pt, reinforcing the importance of meeting the deadlines for 
high-priority tasks, especially when violations occur frequently. This dynamic adjustment enables the AICDQN 
agent to remain sensitive to workload spikes and critical task demands while optimizing resource utilization and 
responsiveness.

Energy cost formulations Et
The energy consumption for executing a task τi depends on the selected processing tier. When a task is computed 
locally, energy is consumed for CPU execution. In contrast, offloading incurs wireless transmission and reception 
energy at the device but no local processing energy. Accordingly, the energy cost at time t is expressed as:

•	 Local execution (HW tier):

	 EHW
t = Pcpu · T HW

exec,i� (20)

•	 Offloading to Edge or Cloud:

	 Eoff
t = Ptx · Ttx(t) + Prx · Tack(t)� (21)

where Pcpu, Ptx, and Prx denote the CPU, transmission, and reception power, respectively; T HW
exec,i is the local 

execution time, and Ttx(t) and Tack(t) represent the packet transmission and acknowledgment durations. 
When the AICDQN agent selects an offloading action (At = 1 or At = 2), the device consumes only wireless 
communication energy, while task execution energy is entirely handled by the edge or cloud infrastructure.

Priority penalty function Pt
Penalty is applied when urgent tasks miss deadlines or are dropped:

Scientific Reports |         (2026) 16:5456 11| https://doi.org/10.1038/s41598-025-34765-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Pt =

{
δ, if urgent task is delayed or dropped
0, otherwise � (22)

Here, δ is a large penalty constant.

Cost model and objective
The reward signal is directly shaped from the cost function Ct, which captures the joint effect of delay, energy 
usage, and urgency for each task. By minimizing the discounted sum of these per-task costs over time, the 
AICDQN agent learns optimal long-term scheduling behavior that balances responsiveness, efficiency, and 
deadline sensitivity across local, edge, and cloud computing layers.

We define the instantaneous task cost as:

	 Ct = αtDt + βtEt + γtPt� (23)

where:

•	 αt: emphasizes delay when congestion increases,
•	 βt: emphasizes energy when the device battery is low,
•	 γt: emphasizes urgency when task-drop likelihood increases.
•	 Dt, Et, and Pt follow the definitions provided earlier in Eq. (15).

The task scheduling objective is then formulated as minimizing the expected cumulative discounted cost:

	
min

π
Eπ

[
∞∑

t=0

γtCt

]
� (24)

where γ ∈ (0, 1) is the discount factor ensuring future tasks contribute less than immediate ones.
Subject to:

	 Qr(t) ≤ Qmax
r , ∀r � (25)

	 Dqueue
i + Dtrans

i + Dexec
i ≤ Di � (26)

	 Er(t) ≤ Emax
r � (27)

	 At is feasible for the selected resource r � (28)

	 activer(t) ∈ {0, 1} � (29)

Reinforcement learning reformulation
Using the cost structure in Eq. (23), the reward is defined as:

	 Rt = −Ct� (30)

Thus, maximizing the reward is equivalent to minimizing long-term system cost. The optimal policy is defined 
as:

	
π∗ = arg max

π
Eπ

[
∞∑

t=0

γtRt

]
� (31)

This ensures that the AICDQN agent learns a stable and adaptive strategy capable of prioritizing real-time tasks, 
reducing energy consumption, and preventing queue saturation under dynamic workload fluctuations.

The AICDQN system is designed to minimize end-to-end task delay, reduce average energy consumption 
without violating task deadlines, maximize the success rate of urgent tasks through dynamic priority handling, 
and ensure balanced workload distribution across local devices, edge servers, and the cloud. At each decision 
epoch t, the system observes the current state St, integrates GRU-LSTM-based predictions of future load, 
computes the task priority score ψi(t), and selects an energy-feasible action At through the Dueling Double 
DQN agent. This unified architecture empowers AICDQN to adapt effectively to real-time system dynamics and 
learn long-term optimal task offloading policies.

Proposed AICDQN framework
Building upon the formal MDP formulation and component-level modeling, this section presents the complete 
integration of the Adaptive and Intelligent Customized Deep Q-Network (AICDQN) framework, as illustrated in 
Fig. 5. This framework refines and extends the design presented in40. AICDQN is designed to enable intelligent, 
real-time, and energy-aware task offloading decisions in a multi-tier computing architecture comprising 
local IoT devices, edge servers, and cloud resources. The framework integrates predictive modeling, dynamic 
prioritization, and deep reinforcement learning with a dueling double DQN to optimize performance under 
dynamic workload and energy constraints. The following subsections detail the functional assembly of the core 
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modules, focusing on how they interact to enable dynamic and intelligent scheduling under varying system 
dynamics.

Algorithm 1.  Dynamic dueling double DQN-based offloading and scheduling (AICDQN).

Fig. 5.  AICDQN model.
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System state encoder
As previously defined in the MDP formulation (Eq. 13), the system state St is a unified representation 
incorporating: (i) queue lengths at all computing layers, (ii) available compute and energy resources, (iii) 
predicted workload, and (iv) Specific urgency of the task represented by the dynamic priority score ψi(t). To 
interface with the AICDQN agent, this canonical state is transformed into an encoded feature vector S̃t that 
preserves the same informational content while ensuring numerical stability and compatibility with neural 
network processing.

State representation
The encoded state used as input to the learning agent is derived directly from the canonical St of Eq. (13) by 
rearranging and normalizing its elements:

	
S̃t =

[
ψi(t), QHW

t , QES1
t , . . . , QESn

t , QCL
t , Eavail

t , λ̂t+1

]
� (32)

Where, Eavail
t : Local energy available obtained from Er

t  in Eq. (13). This representation maintains seamless 
consistency with the MDP state while structuring features for efficient feature extraction and network learning.

Normalization and preprocessing
All input features are normalized using min-max scaling to facilitate training convergence and stability. Each 
element in S̃t is normalized to [0, 1] using min-max scaling:

	
S̃t = St − Smin

Smax − Smin
� (33)

where Smin and Smax denote the minimum and maximum admissible limits of each feature. This preprocessing 
ensures balanced feature contributions, improves convergence speed, and enhances the stability of the D4QN 
training process.

Dynamic dueling double DQN agent (D4QN)
The proposed AICDQN agent adopts a Dynamic Dueling Double Deep Q-Network, which extends the 
conventional D3QN by incorporating dynamic task urgency and workload prediction into the advantage 
estimation process. This enhancement allows the learning agent to adapt its decisions to real-time variations 
in queue congestion and QoS requirements, making it more suitable for highly dynamic MEC environments 
compared to static D3QN and other RL baselines. The end-to-end decision workflow of the proposed D4QN-
based AICDQN system is illustrated in Fig. 6.

The encoded system state S̃t, enriched with dynamic features such as task urgency, load forecasts, and energy 
availability, is processed by the D4QN agent. This architecture improves learning adaptability under fluctuating 
workloads by decomposing the Q-value into two components: a context-aware state-value function V (S̃t, Ct) 
and a task-aware advantage function A(S̃t, At, ψt), where Ct denotes environmental context (e.g., queue status, 
resource availability) and ψt indicates task-level dynamics such as urgency and deadline slack.The complete 
Q-value is expressed as:

	
Q(S̃t, At) = V (S̃t, Ct) +

(
A(S̃t, At, ψt) − 1

|A|
∑

a′

A(S̃t, a′, ψt)

)
� (34)

This dueling architecture enables a more accurate estimation of state values, even when actions differ minimally, 
while the double Q-learning mechanism mitigates overestimation bias by separating action selection and 
evaluation. Action selection follows a masked ϵ-greedy exploration strategy:

	
at =

{
random(A), with probability ϵt

arg max
a∈A

Q(S̃t, a; θ), otherwise � (35)

where ϵt gradually decays to balance exploration and exploitation over time.
Algorithm  1 presents the proposed Dynamic Dueling Double DQN-Based Offloading and Scheduling 

(AICDQN) framework. The algorithm operates on the canonical MDP state St defined in Eq. (13), which 
embeds queue status, resource availability, predicted arrival rate, energy profile, and task urgency. Before 
making decisions, this state is rearranged and feature-normalized in the encoded form S̃t following Eqs. (32, 
33), ensuring stable learning dynamics.

At each decision step, the GRU-LSTM module predicts future task arrivals to capture temporal correlations in 
workload variation. The encoded state is partitioned into queue-related features, a context vector Ct containing 
resource availability and predicted load, and the dynamic priority score ψt, allowing both congestion-awareness 
and QoS differentiation.

The AICDQN agent selects actions through a masked ϵ-greedy strategy, where the action feasibility mask 
prevents selection of energy-violating offloading choices. Interaction with the environment provides delay- and 
energy-aware rewards, which are stored in a replay buffer for minibatch learning. Double Q-learning mitigates 
Q-value overestimation, while the dueling network architecture separates state-value and action-advantage 
estimations, allowing the agent to distinguish between inherently beneficial states and urgency-driven action 
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preferences. Target network updates and exploration decay progressively stabilize the learning process, ensuring 
convergence toward an optimal policy that yields predictive, energy-efficient, and priority-aware task offloading 
decisions in multi-tier edge-cloud environments.

Energy-aware task scheduler
Once an action is selected, the Energy-Aware Task Scheduler verifies its feasibility by considering the remaining 
battery budget and the power consumption of the selected execution destination. If a task is predicted to violate 

Fig. 6.  Edge-cloud computing model.
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energy thresholds or face resource saturation, the scheduler may defer or locally buffer tasks to prevent battery 
drain while still preserving priority ordering. Thus, the scheduling policy dynamically prioritizes high-urgency 
tasks under constrained energy availability.

Energy models
A hardware and location-based energy model is integrated to quantify the execution cost of each task τi based 
on its selected offload path:

Local Execution (HW):

	 EHW
i = κ · f2 · ρi · Si� (36)

Edge Execution (ES):

	 EES
i = P HW

tx · Ttrans + P ES
cpu · T ES

exec� (37)

Cloud Execution (CL):

	 ECL
i = P HW

tx · Tuplink + Pnet · Tnet + P CL
cpu · T CL

exec� (38)

Here, the model parameters include CPU frequency f, switching capacitance κ, transmission power P HW
tx , 

network power Pnet, and associated execution and transmission times.

Energy-constrained policy masking:
To avoid energy-inefficient decisions, the AICDQN agent applies a binary feasibility mask during action 
selection:

	
Mt(a) =

{ 1, if Et(a) ≤ Ethresh
0, otherwise � (39)

This mask is applied during exploration and policy evaluation to ensure that the selected actions comply with 
the energy constraints at the device level.

Learning workflow and convergence
The AICDQN agent is trained using an episodic reinforcement learning framework, in which it interacts with a 
dynamic edge-cloud environment to learn optimal task offloading strategies. In each episode, the agent observes 
the current canonical system state St (Eq.  13), encodes and normalizes it into S̃t (Eqs.  32, 33), selects an 
offloading action based on the D4QN policy, receives a reward, and updates its Q-values accordingly. The reward 
function penalizes undesirable behaviors such as excessive task delay, high energy consumption, and dropped or 
violated high-priority tasks, thus guiding the agent toward latency-aware, energy-efficient, and priority-sensitive 
policies.

The training loop can be summarized as: 

	1.	 Observe the current canonical system state St and construct its encoded form S̃t.
	2.	 Forecast the upcoming workload λ̂t+1 using the GRU-LSTM module and update the dynamic task urgency 

score ψi(t).
	3.	 Select an offloading action At using a masked, priority-aware ϵ-greedy strategy based on Q(S̃t, a; θ).
	4.	 Execute At in the environment, obtain the immediate reward Rt, and observe the next canonical state St+1.
	5.	 Encode and normalize St+1 to obtain S̃t+1.
	6.	 Store the transition tuple (S̃t, At, Rt, S̃t+1) in the replay buffer B and periodically update the network pa-

rameters θ via minibatch training.

To stabilize training and avoid divergence, AICDQN incorporates two standard deep Q-learning components:
Replay buffer: A memory module that stores past experience tuples (S̃t, At, Rt, S̃t+1). By sampling training 

data randomly from B, temporal correlations are reduced, leading to improved sample efficiency and better 
generalization.

Target network: A separate Q-network with parameters θ− is maintained and updated periodically to follow 
the online network parameters θ. The target network is used to compute a stable temporal-difference (TD) target:

	
yt = Rt + γ Q

(
S̃t+1, arg max

a′
Q(S̃t+1, a′; θ); θ−

)
� (40)

where γ ∈ [0, 1) is the discount factor that regulates long-term reward sensitivity, and t denotes the real 
environment timestep during interaction.

Experience replay and minibatch training: At each update step, a minibatch of size B is sampled from 
B, indexed by j ∈ {1, . . . , B}. Unlike the temporal index t, which reflects the sequential evolution of the 
environment, the index j denotes randomly sampled past transitions, thereby breaking temporal correlations. 
The mean squared TD loss for training the online Q-network is:
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L(θ) = 1

B

B∑
j=1

(
yj − Q(S̃j , Aj ; θ)

)2
� (41)

To further improve learning responsiveness and stability in highly dynamic environments, AICDQN incorporates 
adaptive parameter mechanisms. The exploration rate ϵt decays with time, allowing extensive exploration during 
the early training stages and more focused exploitation as learning progresses. The learning rate ηt can also 
be decayed gradually to ensure smoother convergence and prevent overshooting. Additionally, the reward 
weights (αt, βt, γt)-which respectively penalize delay, energy consumption, and dropped urgent tasks-are 
dynamically adjusted based on deviation from desired thresholds (e.g., target delay, energy budget, or drop 
ratio). This adaptive feedback mechanism keeps the agent sensitive to task criticality and system performance 
while accelerating convergence in variable edge-cloud conditions.

Convergence and policy quality: Convergence is monitored through episode-level performance indicators 
such as average task delay, average energy consumption, and task drop ratio, as well as cumulative episode 
reward. Under standard conditions of bounded rewards, adequate exploration, and decaying learning rates, the 
learned policy empirically converges to a stable solution that maximizes the expected long-term return:

	
π∗ = arg max

π
Eπ

[
∞∑

t=0

γtRt

]
� (42)

By jointly integrating predictive task modeling, queue-aware state encoding, dynamic dueling Double DQN 
updates, replay-buffer-based minibatch training, and adaptive parameter feedback, the AICDQN framework 
promotes robust learning behavior and produces intelligent, scalable, and context-aware task offloading 
decisions in heterogeneous edge–cloud environments.

Simulation and performance evaluation
This section rigorously evaluates the effectiveness of the proposed AICDQN framework under diverse 
operational scenarios using a realistic MEC environment. The simulation investigates the impact of AICDQN 
on task delay, energy efficiency, task drop ratio, and real-time task satisfaction compared to several state-of-the-
art baseline algorithms.

Simulation setup
The simulation is conducted using a Python-based environment that integrates SimPy for discrete-event 
modeling, PyTorch for implementing the Dynamic Dueling Double DQN core of the AICDQN agent, and 
auxiliary libraries such as NumPy and Pandas for workload modeling and performance evaluation. The system 
emulates a three-tier hierarchical edge-cloud computing architecture consisting of 50 mobile devices, 5 edge 
servers, and a centralized cloud server.

Each mobile device generates computational tasks based on a Poisson arrival model, with urgency and 
resource requirements varying dynamically over time. These devices periodically transmit system state features, 
including current queue lengths, urgency scores, energy availability, and GRU-LSTM-based arrival forecasts, to 
the AICDQN agent. The agent processes this global state representation and executes a customized D4QN policy 
to determine delay-aware and priority-sensitive offloading actions across local, edge, and cloud layers.

The second tier, consisting of edge servers, provides low-latency processing with moderate resources and 
serves as the preferred execution target. The cloud server forms the third tier with significantly higher capacity 
but at the expense of higher transmission and propagation delay, making it suitable for overflow or low-urgency 
tasks. This three-tier structure allows the AICDQN agent to intelligently balance execution delay, energy 
consumption, and deadline violations.

The neural network model is trained using a batch size of 16, a learning rate of 0.001, and a discount factor 
of 0.9. An RMSProp optimizer is employed, and the ϵ-greedy exploration rate decays gradually from 1 to 0.01, 
allowing efficient exploitation of the learned policies while retaining sufficient exploration. A replay buffer 
facilitates decorrelated minibatch updates, and a target network updated every 50 steps ensures training stability. 
All methods are trained and evaluated under identical stationary conditions, where the transition and cost 
functions remain time-invariant, ensuring a fair comparison across baselines. The training spans 1000 episodes, 
each with 100 time slots, providing sufficient interaction with the dynamic environment for stable convergence. 

Parameter Value

Task arrival probability 0.3 per time slot

Task size (du) 2.0 – 5.0 Mbits

Processing density (cu) 0.297 Gcycles/Mbit

Task deadline 10 time slots

Task priority levels Real-time / Best-effort

Table 2.  Task and scheduling parameters.
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The parameters used in the simulation-including task generation settings, hardware and network configurations, 
and learning hyperparameters-are detailed in Tables 2, 3, and 4, respectively13.

Task and scheduling parameters

Hardware and network configuration

Learning and algorithm settings
Each device uses a Dueling Double DQN agent, updated with feedback from its closest edge server. The state 
includes the predicted queue load (via GRU-LSTM), task priority, and available resources.

Evaluation metrics
We assess performance based on the following metrics:

•	 Average task execution delay: Time from task arrival to completion. 

	
D̄ = 1

N

N∑
i=1

(
T i

exec + T i
queue + T i

tx
)

� (43)

 where T i
exec is the execution time, T i

queue is the queueing delay, and T i
tx is the transmission delay for the task i.

•	 Task drop ratio: The task drop ratio Rdrop represents the percentage of tasks that fail to meet their deadlines: 

	
Rdrop = Ndrop

Ntotal
× 100%� (44)

 Where:
	– Ndrop is the number of tasks dropped due to deadline violations,
	– Ntotal is the total number of tasks generated.

•	 Average energy consumption: The average energy consumption per successfully completed task is denoted 
by Ē: 

Parameter Value

Discount factor (γ) 0.9

Energy coefficient (κ) 10−28

Learning rate 0.001

Batch size 16

Optimizer RMSProp

Exploration rate (ϵ) 1 → 0.01 (decay)

Replay buffer Per-device

Episodes 1000

Time slots per episode 100

Table 4.  Learning and algorithm hyperparameters.

 

Parameter Value

Number of devices 50

Number of edge servers 5

Number of cloud server 1

Device CPU frequency 2.5 GHz

Edge server CPU Frequency 41.8 GHz

Cloud server CPU Frequency 100 GHz

Edge RTT (Round-Trip Time) 10–20 ms

Cloud RTT 200–300 ms

Transmission rate 14 Mbps

Bandwidth 20 MHz

Table 3.  Hardware and network configuration.
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Ē = 1

Nsucc

Nsucc∑
i=1

Ei� (45)

 Where:
	– Nsucc is the number of tasks completed successfully ,
	– Ei is the energy consumed for the task i, calculated based on the offloading location (local, edge, or cloud).

Compared algorithms
We compare AICDQN with the following baselines:

•	 DDTO-DRL 13: DDTO-DRL integrates GRU-based workload forecasting with centralized Q-network train-
ing to support delay-sensitive task offloading across edge clients, but lacks adaptive reward tuning, continuous 
action support, and real-time priority awareness.

•	 IDDPG 41: IDDPG extends the classical DDPG for continuous task offloading decisions in MEC environ-
ments with improved stability through dual-critic learning, but lacks native support for task urgency and 
suffers from sensitivity to hyper parameters and sparse reward conditions.

•	 PGOA 7: Employs game-theoretic utility negotiation among distributed agents to reach an offloading consen-
sus, but coordination overhead and limited adaptability hinder its performance in real-time edge scenarios.

•	 ULOOF 8: Relies on historical server utility patterns to guide offloading decisions, reducing responsiveness to 
real-time load fluctuations, and degrades performance in highly dynamic mobile edge networks.

•	 DRL-DQN 42: A conventional Deep Q-Network that learns offloading policies based on observed rewards 
but lacks predictive foresight and task priority handling, making it less effective in rapidly changing environ-
ments.

Results and analysis
Convergence behavior
The convergence behavior of a reinforcement learning algorithm is a key indicator of its learning efficiency 
and long-term stability. In this study, the learning dynamics of the proposed AICDQN framework is evaluated 
against those of the traditional DQN baseline. The AICDQN agent is trained online, continuously updating its 
policy using real-time feedback from the edge-cloud environment. To capture its adaptability and robustness, 
we analyze convergence trends under different neural network hyperparameters across 1,000 training episodes, 
where each episode consists of multiple dynamic task arrivals.

Figure 7 presents the discounted cumulative cost per episode, where the x-axis indicates the training episode 
and the y-axis reflects the total cost incurred within each episode. In all settings, AICDQN consistently converges 
faster and reaches a lower cost level than the DQN baseline. This improvement stems from its dynamic priority-

Fig. 7.  Convergence of AICDQN vs DQN baselines under different training conditions.
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aware advantage learning and workload prediction capability within the D4QN architecture. Specifically, in 
Fig.  7a, we examine the effect of the learning rate on the convergence speed. A learning rate of (1 × 10−3) 
offers the most balanced trade-off, allowing rapid cost reduction while preserving training stability. In contrast, 
a lower learning rate (for example, 1 × 10−4) results in slow convergence, while a higher learning rate (for 
example, 1 × 10−1) leads to unstable learning dynamics and divergence, ultimately increasing the cumulative 
cost beyond that of the baseline DQN. These observations validate the need for adaptive learning rate control, 
which is a key feature embedded in the AICDQN model.

Figure 7b illustrates the impact of varying batch sizes on the convergence behavior of AICDQN. As the batch 
size increases from 2 to 8, the convergence speed improves significantly without sacrificing learning accuracy. 
However, larger batch sizes (for example 32) yield only marginal benefits while incurring higher computational 
and memory overhead. Therefore, a moderate batch size of 8 offers an effective trade-off between convergence 
efficiency and resource consumption, aligning with the lightweight and scalable learning requirements of edge 
computing systems.

Figure  7c compares different optimizers in terms of cumulative cost. Optimizers are algorithms used to 
adjust the weights of a neural network during training by minimizing the loss function, thereby influencing 
both the speed and stability of convergence. Among the tested methods, Gradient Descent (GD), RMSProp, 
and Adam, the Adam optimizer consistently achieves the lowest cumulative cost and exhibits faster and more 
stable convergence. This result emphasizes the critical role of the optimizer choice in stabilizing the estimate of 
the value function within the Dueling Double DQN architecture. Using Adam, AICDQN ensures robust and 
responsive policy learning, which is essential in highly dynamic and delay-sensitive edge-cloud scenarios.

Finally, Fig. 7d analyzes the effect of parameter update frequency. Interestingly, reducing the update frequency 
from every time slot to once every 100 slots has only a minor influence on overall learning performance. 
This resilience is attributed to the experience replay buffer, which enables the agent to benefit from historical 
transitions rather than relying solely on immediate feedback. As a result, communication overhead between 
mobile devices and edge servers is significantly reduced, making AICDQN particularly effective in bandwidth-
constrained environments.

Overall, the convergence analysis confirms that AICDQN not only learns faster than baseline DQN, but also 
remains robust across diverse training configurations. By appropriately tuning hyperparameters such as learning 
rate, batch size, optimizer, and update frequency, AICDQN achieves adaptive, scalable, and resource-efficient 
task scheduling, making it highly suitable for real-time edge-cloud applications.

Performance evaluation under varying number of mobile devices
To evaluate the adaptability and robustness of the proposed AICDQN framework compared to existing scheduling 
methods under varying mobile device densities, the number of mobile clients is scaled from 10 to 150. This setup 
enables a comprehensive evaluation of the task drop ratio, execution delay, and energy consumption as system 
load intensifies.

As illustrated in Fig. 8, the following three key performance metrics are analyzed:
Ratio of dropped tasks: As shown in Fig. 8a, the task drop ratio increases across all algorithms as the number 

of mobile devices grows, reflecting the rising competition for edge–cloud resources. AICDQN consistently 
achieves the lowest average drop ratio of 6.65%, thanks to its predictive offloading and queue-aware decision-
making. Compared to DDPG and PGOA, AICDQN reduces the drop ratio by 79.8% and 79.7%, respectively. 
Against ULOOF and DDTO-DRL, it offers improvements of 79.0% and 62.6%, respectively. Even against DRL, 
a learning-based method, AICDQN shows a 48.0% improvement, highlighting its superior adaptability in 
overload conditions.

Average delay analysis: Delay results are illustrated in Fig. 8b. As mobile density increases, average task delay 
rises due to increased queuing and contention. AICDQN achieves the lowest average delay of 0.536 seconds, 
leveraging foresight-driven scheduling and dynamic priority scoring. Compared to PGOA and ULOOF, 
AICDQN reduces delay by 24.2% and 22.2%, respectively. Compared to other RL-based models, delay is reduced 
by 14.3% over DDPG, 10.4% over DRL, and 7.7% over DDTO-DRL, confirming its efficiency in latency-sensitive 
edge computing.

Average energy consumption: Energy consumption trends are presented in Fig. 8c. As the device count 
increases, energy usage rises across all schemes due to higher task arrivals and offloading activity. AICDQN 
maintains the lowest average energy usage of 0.01043 units, due to its integrated energy-aware task scheduling. 
This represents a 18.6% reduction in PGOA, 15.3% in ULOOF, 13.2% in DRL, and 5.4% over DDPG. Even 
compared to highly optimized DDTO-DRL, AICDQN achieves a 0.94% improvement, showcasing its meticulous 
balance between performance and energy efficiency.

This comprehensive evaluation demonstrates that the proposed AICDQN framework exceeds heuristic and 
deep reinforcement learning-based baselines under increasing mobile device load. As summarized in Table 5, 
by integrating GRU-LSTM-based load forecasting, dynamic task prioritization, and Dueling Double Deep 
Q-Network learning, AICDQN significantly reduces task drops, shortens execution delay, and lowers energy 
consumption, making it exceptionally well-suited for dynamic, dense IoT-edge environments.

Varying task arrival rates
In mobile edge computing, fluctuating task arrival probabilities significantly impact system performance, 
especially in terms of task drops, latency, and energy usage. As illustrated in Fig. 9 and summarized in Table 6, 
the proposed AICDQN (Adaptive and Intelligent Deep Q-Network) model is evaluated against state-of-the-art 
methods such as PGOA, ULOOF, DRL, DDPG, and DDTO-DRL. Below is a detailed theoretical comparison of 
AICDQN’s improvement over these methods.
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Dropped task ratio analysis: The Dropped Task Ratio is a critical metric indicating how well an algorithm 
manages task load and prevents system overload. As shown in Fig. 9a , the proposed AICDQN demonstrates 
a significant advantage over all baseline algorithms in reducing dropped tasks across all arrival probabilities. 
Specifically, AICDQN achieves an average 72.21% improvement over PGOA, which exhibits the highest 
drop rates due to its limited adaptability to dynamic traffic. Compared to ULOOF, the drop ratio reduction is 
67.52%, showcasing AICDQN’s better queue-aware scheduling and prioritization. Similarly, compared to the 
reinforcement-based DRL method, AICDQN achieves a 54.89% improvement, reflecting its superior reward 
design and convergence behavior. Even with more advanced models such as DDPG and DDTO-DRL, AICDQN 
outperforms them by 60.31% and 57.31% respectively. These improvements underscore AICDQN’s robust 
learning capability to intelligently offload and schedule tasks in real-time, even under highly dynamic arrival 
conditions.

Average delay analysis: Delay trends under different arrival probabilities are depicted in Figure 9b, where 
AICDQN consistently achieves the lowest latency compared to all baseline models, underscoring its suitability 
for delay-sensitive edge computing scenarios. Specifically, it reduces the delay by 18.75% compared to PGOA, 
which lacks adaptive decision-making and often overloads a subset of nodes. AICDQN also outperforms ULOOF 
by 13.76%, and DRL by 9.72%, indicating its more refined policy learning and better state-space awareness. The 
improvement over DDPG stands at 9.72%, while over DDTO-DRL it achieves 5.28% delay reduction. These 
results stem from AICDQN’s ability to anticipate system bottlenecks and schedule latency-sensitive tasks to edge 
resources with the lowest estimated delay. Its adaptive and intelligent design ensures that task prioritization and 
placement decisions consistently favor low-latency paths, contributing to an overall faster execution time across 
varying traffic intensities.

Average energy consumption analysis: As shown in Figure 9c, AICDQN records the lowest average energy 
consumption across all load conditions, consistently surpassing both heuristic and reinforcement learning-
based baselines. Compared to PGOA, AICDQN reduces energy consumption by 57.74%, a significant savings 

Metric (%) PGOA ULOOF DRL DDPG DDTO-DRL

Dropped tasks 79.68 79.03 48.00 79.83 62.65

Average delay 24.18 22.17 10.42 14.27 7.69

Energy consumption 18.60 15.32 13.22 5.41 0.94

Table 5.  AICDQN improvement over baseline algorithms (Metric %).

 

Fig. 8.  Performance evaluation under varying number of mobile devices.
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that reflects its ability to avoid unnecessary computation and redundant offloading. Against ULOOF, the 
improvement is 55.02%, and against DRL, AICDQN saves 52.74% energy, thanks to its energy-aware reward 
design that actively penalizes power-intensive actions. Even when benchmarked against advanced deep 
reinforcement learning algorithms, AICDQN maintains its edge, showing a 6.67% improvement over DDPG, 
and a 4.27% reduction compared to DDTO-DRL. These gains demonstrate how AICDQN effectively learns to 
utilize idle server states and reduce execution overhead, ensuring energy-efficient scheduling even under high 
system loads and fluctuating task arrival rates.

Performance evaluation under varying task deadlines
Performance evaluation under varying task deadlines is a critical component of any task scheduling strategy 
in edge-cloud environments. As shown in Fig. 10 and summarized in Table 7, it ensures that the system can 
effectively adapt to real-time constraints, prioritize critical tasks, and make intelligent offloading decisions. By 
incorporating this evaluation, frameworks like AICDQN can demonstrate not only theoretical soundness but 
also practical applicability in latency-sensitive and resource-constrained edge environments.

Dropped task ratio analysis: Figure 10a shows that, under stricter task deadlines, AICDQN achieves the 
lowest drop ratio, resulting in significant improvements compared to all baseline approaches. In particular, 
AICDQN achieves an impressive 81.25% improvement over PGOA, which struggles with adaptive deadline 
handling. Similarly, ULOOF is outperformed by 70.83%, reflecting AICDQN’s superior ability to manage task 
queues and prioritize urgent deadlines. Although traditional DRL provides moderate deadline awareness, 
AICDQN still reduces dropped tasks by 19.17%, indicating more robust real-time adaptability. More advanced 
learning models such as DDPG and DDTO-DRL are also outpaced by 59.63% and 25.05% respectively, showing 
that AICDQN’s integration of deadline-awareness into its reward shaping and task mapping decisions leads to a 
highly reliable task completion strategy.

Metric (%) PGOA ULOOF DRL DDPG DDTO-DRL

Dropped tasks 72.21 67.52 54.89 60.31 57.31

Average delay 18.75 13.76 9.72 9.72 5.28

Energy consumption 57.74 55.02 52.74 6.67 4.27

Table 6.  AICDQN improvement over baseline algorithms under varying task arrival rates (Metric %).

 

Fig. 9.  Performance evaluation under varying number task arrival rate.
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Average delay analysis: As illustrated in Fig. 10b, AICDQN consistently achieves the lowest average delay 
across varying deadline constraints, clearly outperforming conventional models. It shows a 31.35% improvement 
over PGOA, which lacks intelligent deadline-based resource allocation. Similarly, AICDQN outperforms 
ULOOF by 25.56%, highlighting the benefits of its adaptive delay-sensitive offloading mechanism. Compared to 
DDPG, AICDQN achieves the highest improvement in delay-34.32%, showcasing its effective temporal policy 
learning. Interestingly, AICDQN also shows a 20.44% advantage over DDTO-DRL, which incorporates deadline 
tolerance, but lacks dynamic attention to critical latency thresholds. However, compared to DRL, AICDQN 
experiences a 2.44% decrease in delay performance. This slight deviation may result from DRL’s shorter delay in 
specific deadline conditions, though at the cost of higher task drop ratios or energy inefficiency. Nevertheless, 
AICDQN maintains an optimal trade-off between delay, success rate, and energy.

Energy consumption analysis: Figure  10c highlights AICDQN’s clear advantage in minimizing energy 
consumption under strict deadline constraints, reinforcing its efficiency over competing methods. Reduces 
average energy consumption by 21.97% compared to PGOA, which performs redundant offloading due to 
its reactive policies. The model also shows a 14.17% improvement over ULOOF, and 14.88% over DDPG, 
highlighting how AICDQN intelligently leverages energy-aware decisions without compromising task urgency. 
Additionally, AICDQN exceeds both DRL and DDTO-DRL with a 6.36% improvement each, illustrating its 
refined trade-off between execution urgency and resource conservation. These gains stem from AICDQN’s 
adaptive control over resource utilization and its ability to put idle nodes into energy-saving modes when not 
required, thereby maintaining sustainability under real-time deadline variations.

Discussion and insight
In dynamic and resource-constrained edge computing environments, the proposed AICDQN framework 
introduces a novel, multidimensional task scheduling strategy tailored for real-time, latency-sensitive 
applications. At its core, AICDQN integrates hybrid GRU-LSTM-based load forecasting to anticipate future 

Metric (%) PGOA ULOOF DRL DDPG DDTO-DRL

Dropped tasks 81.25 70.83 19.17 59.63 25.05

Average delay 33.39 27.77 3.00 36.27 22.80

Energy consumption 21.97 14.17 6.36 14.88 6.36

Table 7.  AICDQN Improvement Over Baseline Algorithms under Varying Deadlines (Metric %).

 

Fig. 10.  Performance Evaluation under Varying Task Deadlines.
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workload trends, enabling proactive task allocation before congestion arises. Coupled with this, a dynamic 
priority-aware scheduling mechanism evaluates task urgency, deadline proximity, and queue status, ensuring 
that critical tasks are processed with minimal delay.

The strength of AICDQN’s lies in its queue-aware MDP formulation, which models computing resources 
at multiple tiers to capture realistic stochastic behavior. Specifically, local devices are represented as M/M/1 
systems, edge servers as M/M/c systems, and the cloud as M/M/∞ system to reflect its virtually unlimited 
processing capacity with negligible queuing delay. This hierarchical modeling enables the agent to make 
latency-sensitive, resource-aware, and energy-conscious offloading decisions. To further optimize decision-
making under dynamic workloads, the framework employs an enhanced Dueling Double DQN architecture. 
By decoupling state and advantage functions, this approach stabilizes the learning process and mitigates 
Q-value overestimation, a common pitfall in reinforcement learning–based scheduling. Moreover, AICDQN 
incorporates an energy-aware multi-tier offloading strategy that intelligently balances task distribution across 
local, edge, and cloud resources. Energy efficiency is achieved by exploiting dynamic low-power state transitions, 
ensuring minimal consumption when nodes are idle.

Empirical evaluations show that AICDQN substantially outperforms baseline methods under various 
operating conditions, including varying task arrival rates, deadlines, and mobile device counts. Under varying 
task arrival probabilities, AICDQN achieves a reduction of up to 72.21% in dropped tasks, an improvement of 
18.75% in average delay and a savings of 57.74% in energy, with the largest gains observed against PGOA. In 
deadline-sensitive experiments, AICDQN attains up to 81.25% fewer dropped tasks compared to PGOA, 36.27% 
reduced average delay compared to DDPG, and 21.97% lower energy consumption compared to PGOA. With 
increasing numbers of mobile devices, AICDQN maintains strong robustness, reducing dropped tasks by up to 
79.83% compared to DDPG, lowering the average delay by 24.18% compared to PGOA, and achieving energy 
savings of up to 18.60% compared to PGOA. Improvements are consistently the largest compared to heuristic 
baselines such as PGOA and ULOOF, while gains against advanced RL-based methods including DRL, DDPG, 
and DDTO-DRL are more moderate, particularly in energy efficiency.

Overall, the results highlight that AICDQN effectively balances task success, delay, and energy consumption, 
while demonstrating strong scalability under higher device loads. They further affirm its ability to adaptively 
manage edge-cloud task scheduling, offering a resilient combination of responsiveness, efficiency, and 
reliability. With its modular, foresight-driven design and reinforcement learning backbone, AICDQN emerges 
as a compelling solution for intelligent edge computing applications such as smart cities, industrial IoT, and 
autonomous systems.

Conclusion and future work
This study presented AICDQN, an Adaptive and Intelligent customized Deep Q-Network framework designed 
for priority-driven, energy-efficient task offloading in dynamic edge-cloud environments. The framework 
holistically addresses the challenges of latency, task drop ratio, and energy trade-offs in mobile edge computing 
by integrating several key innovations. First, a hybrid GRU-LSTM-based load forecasting module was developed 
to capture temporal variations in task arrivals, enabling anticipatory decision-making by the agent. Second, 
AICDQN employs a dynamic priority-aware scheduling mechanism that considers urgency, deadline proximity, 
and queue status, ensuring that critical and real-time tasks are serviced promptly. Furthermore, edge and cloud 
resources are modeled through a queue-aware Markov Decision Process based on M/M/1, M/M/c, and 
M/M/∞ systems, which capture the stochastic dynamics of local devices, parallel edge servers, and virtually 
unlimited cloud resources. To enhance stability and mitigate Q-value overestimation, the framework employs 
an enhanced Dueling Double DQN for robust learning under dynamic workloads. Finally, the agent is guided 
by an energy-aware multi-tier offloading strategy that intelligently distributes tasks across local, edge, and cloud 
resources, while conserving energy through adaptive idle-state transitions. Collectively, these innovations enable 
AICDQN to provide scalable, intelligent, and energy-efficient task scheduling in highly variable edge-cloud 
environments.

Extensive simulations conducted under diverse conditions, including varying task arrival probabilities, 
device densities, and deadlines, demonstrate that AICDQN consistently outperforms heuristic baselines such 
as PGOA and ULOOF, while also achieving competitive results against advanced RL methods including DRL, 
DDPG, and DDTO-DRL across all scenarios. For instance, in scalability tests with increasing mobile devices, 
AICDQN outperforms heuristic baselines by reducing dropped tasks by over 79%, lowering the average delay 
by more than 22%, and cutting energy consumption by up to 18%. Compared with advanced RL methods, it 
achieves 48-80% fewer dropped tasks, 7-14% lower delays, and up to 13% energy savings, with only a marginal 
advantage over DDTO-DRL. Overall, AICDQN delivers the best balance of reliability, responsiveness, and 
energy efficiency, clearly exceeding heuristic baselines while remaining highly competitive with state-of-the-art 
RL approaches. In future work, we aim to extend AICDQN to multi-agent federated DRL architectures to enable 
cooperative offloading among distributed edge nodes without central coordination. We also plan to integrate 
online continual learning to adapt to long-term traffic shifts and preemptive task migration strategies to improve 
resiliency under volatile network and computation conditions. Finally, incorporating security-aware decision-
making and privacy-preserving reinforcement learning can make AICDQN applicable to sensitive domains such 
as smart healthcare and industrial automation.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request
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