www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Adaptive and intelligent
customized deep Q-network for
energy-efficient task offloading
in mobile edge computing
environments

J. Anand & B. Karthikeyan™*

The rapid expansion of edge-cloud infrastructures and latency-sensitive Internet of Things (loT)
applications has intensified the challenge of intelligent task offloading in dynamic and resource-
constrained environments. This paper presents an Adaptive and Intelligent Customized Deep
Q-Network (AICDQN), a novel reinforcement learning-based framework for real-time, priority-aware
task scheduling in mobile edge computing systems. The proposed model formulates task offloading

as a Markov Decision Process (MDP) and integrates a hybrid Gated Recurrent Unit-Long Short-Term
Memory (GRU-LSTM) load prediction module to forecast workload fluctuations and task urgency
trends. This foresight enables a Dynamic Dueling Double Deep Q-Network (D*QN) agent to make
informed offloading decisions across local, edge, and cloud tiers. The system models compute nodes
using priority-aware M/M/1, M/M/c and M/M/oo queuing systems, enabling delay-sensitive and
queue-aware decision-making. A dynamic priority scoring function integrates task urgency, deadline
proximity, and node-level queue saturation, ensuring real-time tasks are prioritized effectively.
Furthermore, an energy-aware scheduling policy proactively transitions underutilized servers into low-
power states without compromising performance. Extensive simulations demonstrate that AICDQN
achieves up to 33.39% reduction in delay, 57.74% improvement in energy efficiency, and 81.25%
reduction in task drop rate compared with existing offloading algorithms, including Deep Deterministic
Policy Gradient (DDPG), Distributed Dynamic Task Offloading (DDTO-DRL), Potential Game based
Offloading Algorithm (PGOA), and the User-Level Online Offloading Framework (ULOOF). These results
validate AICDQN as a scalable and adaptive solution for next-generation edge-cloud systems requiring
efficient, intelligent, and energy-constrained task offloading.

Keywords Edge-cloud computing, Task offloading, Deep reinforcement learning (DRL), GRU-LSTM
prediction, Queue-aware scheduling, Energy-efficient resource management

The rapid proliferation of intelligent and latency-sensitive applications, such as augmented reality, autonomous
vehicles, and real-time video analytics, has imposed stringent computational and latency requirements on
mobile and IoT devices. These devices, often constrained by limited battery life, processing power, and memory,
are unable to meet the real-time processing demands of modern workloads'. Although cloud servers offer strong
computing capabilities, task offloading to the cloud incurs high transmission overhead and delays, especially
under bandwidth constraints or network fluctuations, making cloud-only models unsuitable for real-time,
delay-sensitive applications.

To bridge this capability gap, Mobile Edge Computing (MEC) and edge-cloud collaborative architectures
have emerged as promising paradigms that bring computational resources closer to the data source. By enabling
computational offload of user equipment (UE) to nearby edge servers or remote cloud infrastructures, these
architectures help reduce application latency and improve energy efficiency®. As illustrated in Fig. 1, this
hierarchical architecture comprises three layers: the device layer, which includes user endpoints and IoT sensors;
the edge layer, which handles local processing, caching and response; and the cloud layer, which is responsible

School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Naduy, India. *email:
bkarthikeyan@vit.ac.in

Scientific Reports | (2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-34765-y&domain=pdf&date_stamp=2026-2-5

www.nature.com/scientificreports/

/ Cloud datacenter
Cloud Layer y
A R

/—
Edge Edge
S //Server Server \
Edge LayerX “)) //

.......... A \@s

' Smart !
L=

\

'

Smart home

Fig. 1. Edge-Cloud computing model.

for large-scale data analytics and storage. This structure supports distributed intelligence, allowing efficient and
scalable computation throughout the network®.

Despite these advantages, task offloading in heterogeneous edge-cloud environments remains challenging
due to dynamically changing workload patterns, network uncertainties, resource scarcity at the edge, and the
diverse priority needs of tasks. Inefficient or static task allocation strategies can cause resource underutilization,
increased latency, and higher energy consumption®. Moreover, unpredictable task arrivals and limited
computational resources may lead to queue buildup, task failure, or deadline violations-especially for edge
servers operating under constrained conditions®.

In addition to these challenges, existing studies such as”® consider simplified MEC settings where non-
divisible tasks are processed without incorporating realistic queueing behavior at edge nodes. These approaches
assume that each task must be processed within a single time slot, overlooking the fact that task execution
frequently spans multiple slots due to varying load levels. Consequently, task delay can be significantly affected
by previously queued jobs, especially in high traffic conditions. Furthermore, while”® primarily addresses
delay-tolerant workloads, modern real-time applications require strict deadline guaranties, making such
simplifications unsuitable for practical latency-critical MEC deployments. Another largely overlooked but
critical aspect is priority sensitivity. In real-world scenarios, tasks exhibit varying urgency: real-time applications
(e.g., emergency alerts, healthcare monitoring) demand strict deadlines, while delay-tolerant tasks (e.g., backups,
updates) can tolerate longer wait times. Conventional resource allocation mechanisms and heuristic-based
offloading approaches treat all tasks equally or apply static policies, resulting in degraded QoS for high-priority
workloads under peak demand®.

These challenges require intelligent and adaptive task scheduling frameworks capable of responding to
dynamic environmental changes while minimizing latency and energy consumption. In this context, DRL has
gained significant attention for its ability to learn optimal offloading policies through continuous interaction
with the environment!'®!!. Among DRL techniques, the Double Deep Q-Network (DDQN) provides superior
training stability by separating action selection from value evaluation, thus reducing the overestimation bias
present in conventional DQN frameworks'2Furthermore, the Dueling Double Deep Q-Network (D*QN)
introduces a separate advantage stream to evaluate the relative importance of actions, improving convergence
efficiency and robustness of decision in dynamic environments'’. However, many existing DRL-based solutions
still lack integrated workload prediction, queue-aware decision-making, and energy-constrained optimization,
limiting their deployment in real-time operational environments.

To address these limitations, we propose AICDQN (Adaptive and Intelligent Customized Deep Q-Network),
aunified DRL-based framework for proactive, priority-aware, and energy-efficient task offloading in hierarchical
edge-cloud systems. AICDQN employs a Dynamic Dueling Double Deep Q-Network (D*QN) to stabilize value
estimation and enable robust learning under varying network conditions. A hybrid GRU-LSTM module forecasts
the future system load, enabling anticipatory scheduling and queue regulation. Task offloading decisions are
modeled as an MDP using M/M/1 queues for local devices, M/M/c for edge servers, and M /M /oo for cloud
computing to balance delay, energy consumption, and priority fulfillment. Additionally, an energy-aware policy
regulates server activity for power savings without compromising Quality of Service (QoS).

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

The primary contributions are summarized as follows.

« Priority-aware task offloading in heterogeneous edge-cloud environments: We formulate a realistic mul-
ti-tier MEC oftloading model incorporating heterogeneous queueing delay, task urgency levels, and deadline
constraints to jointly minimize latency, energy usage, and task drop rate.

« AICDQN-based intelligent decision-making: A customized D*QN agent enhanced with GRU-LSTM work-
load prediction enables stable, foresight-driven, and resource-aware scheduling decisions based on local sys-
tem observations such as task size, queue state, and predicted load.

« Queue-aware MDP with energy constraints: We model system dynamics using queue theory and propose an
energy-aware server state control strategy to activate, idle, or sleep servers according to forecasted workload.

« Extensive simulation and comparative evaluation: Evaluating AICDQN against existing benchmark algo-
rithms based on average task delay, task drop ratio, and energy consumption under varying workload con-
ditions.

The subsequent sections of this paper are structured as follows. Section “Related works” provides a comprehensive
review of related work in task offloading and deep reinforcement learning based scheduling within edge-
cloud environments. Section “System architecture and proposed methodology” presents the overall system
architecture, including the task model, queuing theory formulations, and resource characterization across
computational tiers. Section “Problem formulation” presents the formal problem formulation, detailing the
hybrid GRU-LSTM-based workload predictor and the Markov Decision Process representation of the offloading
strategy. Section “Proposed AICDQN framework” describes the proposed AICDQN learning framework,
including the network architecture, energy-aware task scheduler, and the training workflow. Section “Simulation
and performance evaluation” outlines the experimental setup, including the simulation environment, evaluation
metrics, and benchmark algorithms. This section also provides a comparative performance analysis, showing the
improvements in delay, energy consumption, task completion ratio, and system stability achieved by AICDQN.
Finally, section “Conclusion and future work” concludes the paper, summarizing key contributions and
suggesting future enhancements including multi-agent cooperation and transfer learning for further scalability.

Related works

Task offloading and intelligent scheduling in edge-cloud environments have become vital for achieving low-
latency, energy-efficient computing in modern IoT systems. The distributed and heterogeneous nature of these
systems, coupled with dynamic task arrivals and limited processing capacity, presents a significant challenge for
conventional static or heuristic-based offloading schemes. Traditional rule-based or queue-threshold approaches
often lack adaptability to workload fluctuations, leading to resource underutilization or task failures. Recent
research has explored DRL for adaptive task scheduling; however, many models lack predictive capability and
fail to incorporate queue-aware or urgency-based task prioritization. Furthermore, energy efficiency remains
underexplored in these DRL-based solutions. This work addresses these gaps by introducing AICDQN, an
intelligent and predictive framework that integrates GRU-LSTM-based workload forecasting, real-time priority
scoring, and energy-aware offloading decisions using a D?*QN architecture, optimized for edge-cloud systems
under uncertainty.

This section surveys key approaches in task scheduling, multi-objective optimization, machine learning-
based algorithms, and task offloading strategies, emphasizing their contributions and limitations in the context
of AICDQN. Classical optimization and evolutionary approaches remain relevant in cloud and large-scale
scheduling. For example, genetic-algorithm (GA) based schedulers have been applied to jointly reduce makespan
and energy consumption, showing good performance on small to medium-scale cloud workloads but suffering
from high computational overhead while scaling’. Supervised learning has also been used to predict edge load
and trigger offloading to cloud resources, improving latency by avoiding overloads on edge nodes, yet such
methods depend heavily on the availability of accurate and up-to-date training data and struggle under rapidly
changing conditions!*.

Alarge body of recent work focuses on (Reinforcement Learning) RL and DRL to provide automated, adaptive
offloading policies. Several algorithmic contributions propose RL variants tailored to MEC orchestration:
an reinforcement-learning-based state-action-reward-state-action (RL-SARSA) scheme tackles resource
management in multi-access MEC networks with the goal of minimizing combined energy and delay costs'>;
collaborative DRL approaches target heterogeneous edge environments to improve offloading efficiency'®;
enhanced DQN methods with modified replay mechanisms have been proposed for more effective resource
allocation in IoT-edge systems!’; Monte Carlo tree search (MCTS)-based frameworks (e.g., iRAF) have been
used to autonomously learn service allocation under delay-sensitive demands'®; and orchestrated DRL solutions
optimize device-edge-cloud allocations to reduce system energy'®. Complementary research has explored
different families of DRL techniques. Discrete-action models, such as DQN, have been employed to address joint
task offloading and resource allocation problems, whereas continuous-action approaches, exemplified by the
DDPG, have been investigated to optimize power control and offloading strategies in multi-user environments?.
Collectively, these works demonstrate the potential of DRLs, but often assume simplified traffic models and do
not always incorporate queue-aware state features or explicit urgency scoring into the decision process.

Accurate modeling of task arrivals and queueing behavior is central to meaningful performance assessment
and to state design for learning agents. Traditional analytical models represent mobile devices as M/M/1 queues,
fog servers as M/M/c systems, and cloud datacenters as M/M/oco queues to analyze latency, energy, and cost
under Poisson arrivals**?°. In particular, studies of MEC-enabled vehicular networks illustrate how buffering
and sequential service lead to non-negligible queueing delays that cannot be ignored when evaluating offloading
strategies®®. Because Poisson assumptions may fail to capture correlated or bursty arrivals observed in practice,

Scientific Reports| (2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

researchers have extended arrival models to Markovian Arrival Processes (MAP) and Marked MAP (MMAP)
formulations to account for correlation and categorization of tasks®”-*. These modeling efforts indicate that
arrival correlation and queue saturation significantly influence delay and energy metrics and therefore should
inform the design of RL state representations and reward functions.

Despite these advances in algorithmic and modeling, several persistent gaps remain. First, many DRL-based
proposals rely on stationarity assumptions or single-type user models, limiting adaptability to heterogeneous
and time-varying workloads. Second, while energy-aware methods exist, few approaches jointly optimize
energy, latency, and queueing constraints at scale; achieving this balance in real time is still challenging. Third,
simplified traffic models (e.g., Poisson) can lead to biased policy learning under correlated traffic, and RL agents
trained under such assumptions may perform poorly in practice. Finally, training and retraining DRL agents
can be data-intensive and compute-intensive, creating practical deployment barriers. These limitations motivate
a combined solution that (i) anticipates correlated arrivals, (ii) encodes queueing and urgency into state and
reward design, (iii) stabilizes learning under large action/state spaces, and (iv) enforces energy constraints
during decision making.

The proposed AICDQN framework directly addresses these gaps. It augments the RL state with short-term
load forecasts produced by a GRU-LSTM predictor to capture correlated and bursty arrivals, integrates queue-
aware features and adaptive dynamic priority score 1;(t) that captures deadline proximity and node saturation,
employs a dynamic Dueling Double DQN architecture to reduce Q-value bias and improve convergence, and
implements an energy-aware scheduler with action masking to enforce runtime energy constraints. By explicitly
combining predictive modeling, queue-aware state design, priority evaluation, and energy constraints within
a single DRL pipeline, AICDQN aims to provide adaptive, scalable, and energy-efficient offloading policies
suitable for heterogeneous multi-tier IoT-edge-cloud systems. Table 1 summarizes the strengths and limitations
of existing approaches.

System architecture and proposed methodology

To enable intelligent and energy-efficient task offloading in dynamic edge-cloud environments, we propose
a comprehensive system model comprising four key components: system architecture, task model, queueing
behavior, and energy model. This integrated structure captures the complex dynamics of task execution and
offloading decisions across distributed and heterogeneous computing resources.

The proposed system architecture of the AICDQN framework (Fig. 2) is enhanced from*® and integrates
GRU-LSTM-based workload prediction with dynamic priority scoring to proactively estimate the system
load and assess task urgency. using these predictive insights, the D*QN agent makes real-time, context-aware
offloading decisions, dynamically selecting the most suitable computation layer-local device (HW), edge
server (ES), or cloud-based on the current system state. By combining queue-aware scheduling, proactive load
forecasting, and feedback-driven task allocation, the framework minimizes task delay, reduces the drop ratio,
and achieves balanced resource utilization across tiers. Furthermore, energy efficiency is enhanced through
selective server activation guided by workload forecasts and by adopting offloading strategies that lower energy
consumption without compromising service quality. Together, these mechanisms operate in synergy to improve
resource utilization, maintain quality QoS for high-priority tasks, and ensure scalable and sustainable operation
in modern edge-cloud computing environments.

System architecture

The proposed AICDQN framework enables intelligent and priority-aware task offloading in a heterogeneous
hierarchical computing environment comprising IoT devices, edge servers, and cloud infrastructure. Using
predictive deep reinforcement learning, the system dynamically adapts to fluctuating workloads, varying task
urgencies, and changing network conditions. Its primary objectives are to minimize average task delay and
energy consumption, ensure timely execution of delay-sensitive tasks, and achieve adaptive load balancing
across local, edge, and cloud resources.

Architectural overview
The AICDQN framework comprises five integrated modules that form a decision making pipeline, as illustrated
in Fig. 3.

« IoT layer: task generator and dynamic priority evaluator—Handles task arrivals and assigns urgency-based
priority scores.

« System state encoder and representation layer—Integrates predicted load, resource availability, and task
priority into the state vector.

« GRU-LSTM-based load predictor—Forecasts future workloads from past queue statistics.

o Dynamic dueling double deep Q-network (AICDQN agent)—An enhanced reinforcement learning model
that extends the standard D?QN by incorporating dynamic, context and priority-aware decision making,
allowing the learning of optimal offloading and scheduling policies under delay-energy-priority trade-offs.

« Energy-constrained task scheduler—Executes final scheduling/offloading decisions while managing active,
idle, and sleep states of resources.

The overall architecture, as shown in Fig. 3, illustrates the interaction among the five functional modules. In the
IoT devices layer, tasks are generated and prioritized based on urgency through the Adaptive Dynamic Priority
Evaluator. These tasks, together with queue states, are processed by the System State Encoder, where expedited
load buffers and available resources are consolidated into a state vector. Historical workload information and
past queue lengths are then passed to the Prediction Module, where the GRU-LSTM forecaster anticipates future

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

R. Singh et al.2

offloading and resource

learning framework

Dynamic IoT-MEC

Author Objective Approach Environment Limitations
MEC-enabled
Improve energy blockchain . Complex setup,
Yiyi Zhang, et al.?! efficiency and framework with xi;ifs;fiﬁe high overhead,
reduce packet loss MIITD and limited generalization
MAHTRPO
- . Hybrid deep . -
Optimize computation reinforcement High training

complexity, requires

management for IoT with actor-critic environment large-scale datasets
applications based optimization for generalization
S Energy-efficient . e
Minimize task delay, Advantage Actor- Task scheduling No mobility support,
K. Zhu, et al.?2 energy use, and Critic mg del with environment without | ignores task
task drop . ; mobility dependencies
LSTM integration

Enhance task

Deep reinforcement
learning framework

High computational
cost, limited

T. H. Nguyen et al.® scheduling and integrating DQN with Dynamic MEC-loT scalability to large-
offloading efficiency resource-aware environment scale heterogeneous
in MEC-enabled IoT . 8
scheduling systems
- . Multi-agent PPO-
O[Zitlmlze SC}ﬁEduhng based joint Edge computing with No task d d
P.Li, etal.®* and power aflocation scheduling and energy-latenc 0 task dependency
> for better § an 8y Y handling
power allocation trade-off
performance strategy
Optimize task Policy-based D . Lacks i
Shuran Sheng et al.>> execution order and reinforcement ynamic acks Inter-server
i environment collaboration
resource allocation algorithm
Adaptiye load TGNN for predigtion Cloud computing with High complexi‘ty,
K. Raiammal and M. Chinnadurai2® balancing to reduce + SNN for adaptive heterogencous and limited scalability;
- 13 . u latency, energy, and scheduling with RL d namgic workloads needs fog/edge
response time tuning 4 integration

Predictive task

Long Short-Term

Heavily reliant on

Static and dynamic

Cristina Morariu et al.?” scheduling and Memory (LSTM) gl}\,/rilfcr:qll;ent real-time data
resource allocation model processing
Hybrid Cat Swarm
Enhance resource Obtimization and D ic Limited real-world
Prasanta Kumar Bal et al.28 allocation, security, pumization an ynami miec real-wor
) DNN-based Group environment cloud applicability
and scheduling Optimizer
Energy-efficient .
scheduling with . Non—Preemp tive,
deadline suarantees Task prioritization, Tested on ODROID- simplified
Y. Liu et al.? in heterogeneous core-aware mapping, | XU4, Jetson Nano, dependencies, DVFS
multicor ege dge predictive DVFS Intel NUC overhead, limited
processors adaptability
Optimize task Multi-objective Deep . .
Media Ali Ibrahim et al.*’ scheduling under Reinforcement gl)":ra;?ll;lem E;Ia]{lrl;ﬁee %(;Tgulﬁ tion
multiple objectives Learning (MODRL)
A Dynamic multi- . .
Amine Chraibi et al.>! Minimize makespan objective DRL-based Dynamic Evaluated only in
and power consumption scheduler environment simulation
Minimize energy Static and dynamic Real-world
Nan et al.? consumption via Genetic Algorithm en 'ronmer}llt deployment
fitness modeling i challenges
. 19 Reduce energy Deep Reinforcement | Dynamic Limited scalability
Dai Y. etal. consumption using L ing (DRL . iderati
adaptive models earning () environment consideration
Reduce latency and CNN-based

Resource capacity

Piyush Gupta et al.*? improve task workload prediction ; -
. environment constraints
efficiency model
. 3 Optimize Multi-agent DRL Static and dynamic Deployn}enF
Liu C. etal. collaborative edge framework environment complexity in real-
computing world setups

Table 1. Summary of strengths and limitations of existing approaches.

arrivals. This predicted load, along with the encoded system state, is used by the AICDQN agent, which leverages
a Dynamic Dueling Double Deep Q-Network. Unlike conventional D’QN , this dynamic variant incorporates
adaptive state representations and priority-aware decomposition to derive more responsive offloading and

scheduling decisions.

The Execution Layer distributes tasks hierarchically across local hardware, edge servers, or cloud resources,
while the Energy-Aware Scheduler ensures efficient power utilization by dynamically switching resources
between active, idle, and sleep states. Execution feedback loops continuously refine decision-making, achieving
predictive, adaptive, and energy-efficient task scheduling across the IoT-Edge-Cloud continuum.

Scientific Reports |

(2026) 16:5456

| https://doi.org/10.1038/s41598-025-34765-y

nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Edge server (ES)
IoT Platform _5
&
g
2
<
& 0o
Smart building 2 g - L GRU-LSTM-based
< 0ol - Load Predictor
[[ro]...[m] R
N S M
—t 1 = ..
s I
Smart devices M . H ,
‘l‘i R : Action Selection(e- ' Data Processing
E P I greedy + Masking) : at Cloud
| 9 y yn v
al A
L Task Scheduling and
Execution Environment 4]
Edge Cloud =}
| Queue Queue | 3
3
g
Performance Metrics 4
- (delay, Task Drop ratio, 35
Y Energy Use) 423

Fig. 2. System architecture of the proposed AICDQN framework.

IoT Devices Layer Prediction Module
" Energy-Aware
: ast
Stagt-#] _Dyoamie | Looc. o | 'GRIELSTM . Scheduler
Priority Score | engths Load Predicitor 5 ' \
i Offloading/ | Active
Execution
J Tasks Dueling DON Decision | 1dl
System State Encoder with Double Q-learing | e
- . Offloading |
Onw: ___,| Expedited Offloading/ / Fee dbaci 5 Sleep ‘
Load Buffer Executloln Decision e

QES[Y ¢
Predicted Execution Layer
Task = [&g | | 4r~=—=momms—smcrememsfsssmcoccmsmccononas N

: State / :
Arrival Rate Vocton >l l :

Predicted i Execution

Local Edge s Local — | Feedback
Hardware | Servers E Rate Ha;;l:)Nvare Epw—{EW i
(HW) Wis| M i () Edge Servers |
' Egw|E Mic|My (E) E

Fig. 3. AICDQN framework for priority-aware offloading and scheduling.

This integrated design provides the conceptual foundation for the AICDQN framework. The next section
formally introduces the Task Model, which mathematically defines task arrival patterns, deadlines, computation
requirements, and queue dynamics to support the subsequent problem formulation.

Task model

Mobile devices continuously generate tasks with varying urgency levels, arrival rates, and execution deadlines.
Time is considered in discrete slots of fixed duration J, and tasks arrive dynamically at the beginning of each
time slot t € T ={0,1,2,...,T}. Let Y = {1,2,...,U} represent the set of mobile users or IoT devices,
where each user u € U may generate a computational task 7;(¢) at time ¢. Each task 7; is defined as a tuple:

Tl(t) _ (Sz, pis Di(t)7pi7 Tiarr’ Tideaclline) (1)

Scientific Reports | (2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Where:

o S; € D ={¢1,¢2,...,0n} represents the set of task size in bits, where the set ® denotes the discrete data
size domain,

o p;: CPU cycles required per bit (processing density),

« Di(t)= Tidead““e — T Deadline slack in time slots (i.e., available processing window),

o p; € {0,1}: is the urgency level of the task (1 for urgent/real-time, 0 for normal),

o TP Arrival time of the task,

o Teadline; Hard deadline by which the task must be completed.

The total computational workload of task ¢ in CPU cycles is defined as:

Ci = Si * P (2)

where S; denotes the task size and p; is the required CPU cycles per bit.
Given a computing node r with CPU frequency f, the execution time is:

r Ci Si-pi

Texec,i - fr - f'r

3)

To account for real-time execution contexts and system dynamics, an adaptive dynamic priority score ;(t) is
computed for each task 7;, which combines task urgency, local queue congestion, and static priority level:

1 Q)

PO = o e e

+ws - pi (4)

Here, D;(t) denotes the remaining deadline slack as defined in Eq. (1), now contributing directly to the urgency
component in); (t).
Where:

e Qr(t): Current queue length at node r € {HW, ES1, ESs, ..., ESy, Cloud},
o Q7™ Maximum allowable queue size at node r,
o w1, w2, ws: Tunable weights that adjust the influence of deadline urgency, queue load, and static priority.

Qr(t)

max

Here, the term

represents the normalized congestion level at node r, such that queue saturation directly

u
increases the urgency of the task 7;. Consequently, the AICDQN agent prioritizes the execution or offloading of
tasks with higher ; (¢), ensuring responsiveness to the dynamics of the real-time queue.

This dynamic priority score 1;(t) is essential for intelligent scheduling in resource-constrained multi-
tier environments, allowing the framework to reactively prioritize delay-sensitive tasks while maintaining
system stability. Tasks with high static priority p; = 1, short remaining slack D;(¢), or greater v;(t) values are
preferentially executed on local devices or edge servers when resources permit. In contrast, less urgent tasks
can be queued or directed to cloud execution depending on current congestion, predicted delay conditions, and
communication overhead.

This cohesive prioritization model empowers AICDQN with intelligent situational awareness, ensuring
timely and efficient task allocation across heterogeneous computing layers.

Queueing models

To capture realistic delays during task processing at different computational tiers (local hardware, edge servers,
and cloud server), standard queueing theory is adopted. The queueing behavior directly impacts task scheduling
decisions and is integrated into the AICDQN frameworks state representation.

Local hardware: M/M/1 queue
Each IoT device is modeled as a single-server queue with Poisson arrivals Amw and an exponential service rate
puaw. The server utilization and queueing metrics are expressed as follows:

A
pHW = MEX <1 (5)

The expected number of tasks in the queue and the corresponding expected waiting time before a task starts
execution are given by:

HW
_ L

(6)

2
[HW _ __PEW WHEW _

/ 1 —puw’ / AHW
These expressions determine whether a task should remain local or be offloaded to avoid excessive queuing
delays under high congestion.

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Edge servers: M/M/c queue

Edge servers typically consist of multiple parallel processing units, and thus are modeled using the M/M/c queue.

Let Ags be the task arrival rate, ugs the service rate per server, and ¢ the number of servers at the edge node.
The system utilization is defined as:

AB

PES = s , pEs < 1. (7)
C- UES

The probability that an incoming task must wait is given by the Erlang-C formula:

|(<CPES)C)
_ c! (1-pgEs
Pw = ST oo 4 (epps)° ®
k=0 k! c!' (1—pgs)
The average queueing delay becomes:
P
wes = W 9)
CUES — AES

This delay term is directly reflected in the MDP reward design to discourage edge overloading.

Cloud delay model

This queueing model helps the AICDQN agent assess congestion and delay at the edge, enabling informed
offloading decisions when both local and edge resources are saturated. Although the cloud is modeled as a
M/M /oo queue with virtually unlimited resources and negligible queuing delay, it introduces significant
communication latency dcioud, making it less suitable for delay-sensitive tasks. The total cloud processing delay
is modeled as

1
D = Lian. + Luzi + (10)
HCL
where pcr is the cloud service rate and the end-to-end WAN latency component dcioud = Lgéns + Lfe% -

comprising transmission delay LSE and network propagation delay LS is explicitly embedded in the reward
formulation.

Resource model

The system consists of heterogeneous computing tiers including one local hardware device (HW), a
multi-server edge server, and a remote cloud. The edge tier contains n parallel edge servers denoted as
ES; €{1,2,...,n}. Each computing node r € {HW, ESy, ES>,...,ESy,Cloud} is defined by the
following resource characteristics that influence offloading and scheduling performance:

o CPU frequency f: Processing speed of node r, measured in cycles per second.

o Maximum queue length Qmaqz: The capacity of the task buffer at node r. If the queue is full, new tasks can be
rejected or rerouted.

o Available energy budget E,: The remaining energy at the node, especially relevant for mobile or edge nodes
with limited power.

o Communication delay ¢,: Network delay from the task-generating IoT device to node r, incorporating wire-
less transmission, routing, and propagation times.

« Execution time T}, ; from Eq. (3).

The AICDQN agent uses these parameters to learn optimal task assignment strategies. During each time interval
t, the agent evaluates the current system load, energy status, communication latency, and queue statistics to
make intelligent real-time offloading and scheduling decisions. This ensures that both urgent and delay-tolerant
tasks are handled optimally across heterogeneous resources.

Problem formulation

In this section, we formulate the task offloading and scheduling problem in the proposed AICDQN framework
as a MDP to enable intelligent decision-making in a multi-tier computing architecture comprising local
IoT devices, edge servers, and the cloud. The objective is to learn adaptive offloading policies that minimize
execution delay, reduce energy consumption, and ensure timely processing of high-priority tasks. By modeling
the environment as an MDP, we capture the spatio-temporal dynamics and heterogeneity of edge-cloud systems,
allowing the agent to make sequential decisions based on observable system states and learned rewards. The
subsequent subsections define the MDP components, including state and action spaces, transition dynamics,
reward formulation, and analytical expressions for delay, energy cost, and priority penalties.

Load Forecaster (GRU-LSTM Module)

To ensure intelligent and proactive task scheduling, it is essential to anticipate future workload fluctuations
across local, edge, and cloud layers. Static or reactive models fail to adapt to time-varying traffic patterns in IoT
applications. To address this, we propose a hybrid deep learning model combining GRU and LSTM networks

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

for accurate and robust queue load prediction. Real-time system decisions benefit significantly from foresight
into upcoming computational and communication loads. Traditional heuristics or moving average techniques
struggle with bursty, nonlinear, or seasonal traffic typically found in edge-assisted IoT systems. The GRU-
LSTM module, integrated within the proposed AICDQN framework, generates predictive signals that directly
influence offloading and scheduling behavior, as illustrated in Fig. 4. The GRU-LSTM predictive model enables:

« Proactive offloading decisions: Anticipating congestion helps prevent task offloading or local processing
bottlenecks.

o Priority-aware adjustment: Predicted congestion influences dynamic recalibration of task urgency scores.

« Energy optimization: Load-aware decisions help conserve battery by avoiding unnecessary offloading.

Forecasting objective
To proactively estimate the incoming workload and avoid bottlenecks, the load forecaster predicts future queue
dynamics. R

Input: Time-series window {Q:—r, . . ., Q¢ } , Output: Predicted arrival rate A\;41

Hybrid GRU-LSTM architecture

The GRU-LSTM architecture is designed to capture both short-term fluctuations and long-term dependencies
in task arrival sequences. The model receives a sequence of observed task arrival rates or queue lengths and
produces a prediction for the next time step:

hi = LSTM(GRU(Q1, hi—1)) = Aep1 = o(Wohe + by) (11)

Where:

. 5\t+1: Predicted arrival rate at time ¢ + 1,

o (:: Observed task arrival or queue length at time ¢,

o hy: Hidden state representing the learned load and dynamics of the system,
o W, b,: Trainable parameters of the output layer,

« 0o(+): Activation function (typically sigmoid or ReLU).

Motivation and role in AICDQN framework

The predicted task arrival rate A;4+1 provides crucial insight into the upcoming system state, allowing the
AICDQN agent to dynamically adjust its offload and scheduling strategies. Instead of reacting to congestion,
the agent can proactively:

« Redirect tasks before overloads occur,
o Select energy-efficient computation nodes,
« Prevent task drops due to deadline violations.

As shown in Fig. 4, the forecasted workload is fused with real-time system state inputs-such as task size, edge
resource status, energy levels, and task priorities-and passed through fully connected layers for feature extraction.
The architecture employs a D*QN , where the Q-value is calculated using both the value and advantage streams.
The Double DQN mechanism further stabilizes learning by decoupling target value estimation. This joint
architecture enables adaptive and intelligent task offloading decisions that are both priority-aware and energy-
aware.

Dynamic Dueling Double DQN

Input Layer GRU-LSTM | Fully Connected Dueling Streams
Forecaster Layers —‘
Ky Advantage |
‘" | GRU Layer |
pl l | ""”””””””'1
D, i . Q-value |
Predicted i :
Pi amival Ly} 905 V(s)A
T. |1]
ar 1 Target network !
Taead Value ;
LSTM Stream
Predicted
arrival rate
Input GRU-LSTM Fully Connected Dueling Streams Output
Layer Forecaster Layers Layer Layer

Fig. 4. The GRU-LSTM architecture predictive model.

Scientific Reports | (2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Training and optimization
The model is trained using the Mean Squared Error (MSE) loss between predicted and actual arrival rates:

N
LvsE = % Z (5\t+1 — At+1)2 (12)
t=1

The optimizer (e.g., Adam) minimizes this loss over historical data collected from task generation patterns in
the system.

Markov Decision Process (MDP) representation

The edge-cloud task offloading environment is modeled as a Markov Decision ProcessM = (S, A, P, R, y), where
S denotes the state space, A the action space, P the transition probability distribution, R the reward function,
and 7y € [0, 1) the discount factor for future rewards. The agent interacts with the environment in discrete time
steps to learn an optimal policy 7 : S — A, aiming to maximize the expected cumulative reward by mapping
observed states to optimal actions.

State space S

At each time step t, the AICDQN agent observes a multidimensional system state S; € S, capturing the
operational context between local devices, heterogeneous edge servers, and cloud resources. The enhanced state
vector is defined as:

ES; ou ES; ou r 3
Sy = |: t}IWa Qt]7 tCl d? RtI{W7 Rt]7 RtCl da Et7)‘t+1a ’l[]z(t) (13)

ES, ES;))
Here, QI Q.77 , Q¢ and RF™ | R, , R{'"? represent the queue lengths and available computational

resources on the local device (HW), each edge server ES; € {1,2,...,n}, and the cloud, respectively. The
predicted workload A¢11 from the GRU-LSTM model enables proactive congestion mitigation, while the
dynamic priority score t;(t) incorporates deadline urgency and queue saturation to emphasize real-time
task handling. The remaining energy state E{ supports energy-aware scheduling. This comprehensive state
representation ensures full visibility into system dynamics, enabling intelligent, latency-aware, and resource-
efficient decision making in the MEC environment.

Action space A
The agent selects an action A; € A to determine the execution location of an incoming task:

A = {Execute at HW, Offload to ES1, ..., Offload to ES,, Offload to Cloud} (14)

« Execute at HW: Minimum network delay but constrained computation and battery capacity,
« Offloadto ES;: j =1,2,...,n;balanced transmission delay with heterogeneous edge resource capabilities,
« Offload to Cloud: Highest communication delay due to WAN propagation but abundant processing capabil-

ity.

This enhancement improves resource selection clarity in multi-edge environments and remains fully consistent
with the state representation in Eq. (13), where queue and resource statuses are tracked individually for HW,
each E'S;, and the cloud server.

Transition dynamics P
The system evolves stochastically due to dynamic task arrivals, queueing behavior, wireless channel variability,
and energy fluctuations. The next state is determined by:

St+1 = f(st,At,Tz‘) (15)

Since explicitly modeling state transition probabilities is computationally intractable in such a complex and
highly non-stationary MEC environment, a model-free reinforcement learning approach is adopted. Thus,
AICDQN learns optimal policies through continuous interaction and reward feedback rather than requiring
prior knowledge of the transition model.

Reward function R
In reinforcement learning-driven task offloading systems, the reward function serves as the primary mechanism
by which the agent evaluates the quality of its actions over time. In the proposed AICDQN framework, the
reward is formulated to reflect three critical objectives of edge-cloud task management: (i) minimizing execution
delay, (ii) reducing energy consumption, and (iii) preserving task-level QoS by meeting the deadlines of high-
priority tasks.

The delay term D; captures both communication and computation latency, which is crucial in latency-
sensitive edge applications such as real-time monitoring, autonomous control, and industrial automation. The
energy term Iy penalizes actions that unnecessarily burden power-constrained IoT devices or result in excessive

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

transmission overhead. Meanwhile, the priority penalty term P; introduces urgency-awareness by assigning
additional cost to decisions that cause deadline misses for critical tasks.

To maintain adaptive decision-making in dynamic environments, AICDQN introduces time-varying weights
o, B, e that adjust based on current performance feedback. These weights enable the agent to learn context-
sensitive priorities, such as giving greater emphasis on minimizing delay during peak load periods or prioritizing
energy savings when battery levels are low. This adaptive formulation transforms the static reward model into a
dynamic reward-shaping mechanism, improving learning convergence and generalization across heterogeneous
conditions.

To guide agent learning, we define a scalar reward function that penalizes system inefficiencies.

R = —au Dy — e By — v Py (16)
Where:

o Dy: Total task delay (including queuing, transmission, and execution),

o E;: Combined energy consumption for data transmission and computation,

o Pi: Priority penalty incurred for violating the urgency of high-priority tasks (e.g., due to deadline violations
or task drops),

o i, Bt,ve: Tunable weight parameters (Eqs. 17-19) used to control the influence of delay, energy, and priority
penalty in the learning process.

The weights of the reward function in AICDQN are dynamically adjusted at each time step based on real-
time performance feedback to reflect the relative importance of delay, energy, and priority violations.
Adaptive delay weight

(17)

ar = g - (1 + Dt - Dtarget)

Dtarget

The delay weight «; increases when the observed task delay D; exceeds the acceptable delay threshold Dyarget,
guiding the agent to take more delay-sensitive actions during congestion.
Adaptive energy weight

(18)

ﬂt _ ﬁ() . <1 + Et - Etarget)

Etarget

The energy weight 3; is elevated when current energy consumption E; exceeds the desired energy threshold
Eltarget, encouraging energy-efficient offloading behavior.
Adaptive priority penalty weight

P,
e (14 222)

v¢ increases proportionally to the urgency penalty P, reinforcing the importance of meeting the deadlines for
high-priority tasks, especially when violations occur frequently. This dynamic adjustment enables the AICDQN
agent to remain sensitive to workload spikes and critical task demands while optimizing resource utilization and
responsiveness.

Energy cost formulations E,

The energy consumption for executing a task 7; depends on the selected processing tier. When a task is computed
locally, energy is consumed for CPU execution. In contrast, offloading incurs wireless transmission and reception
energy at the device but no local processing energy. Accordingly, the energy cost at time ¢ is expressed as:

o Local execution (HW tier):

E{™Y = Popu - Tirees (20)
« Offloading to Edge or Cloud:

EzOff = P, - Ttm(t) + Py - Tack(t) (21)

where Pepy, Pir, and Pr, denote the CPU, transmission, and reception power, respectively; TEZZ‘C/Z is the local
execution time, and T, (¢) and T,k (t) represent the packet transmission and acknowledgment durations.
When the AICDQN agent selects an offloading action (A; = 1 or A; = 2), the device consumes only wireless
communication energy, while task execution energy is entirely handled by the edge or cloud infrastructure.

Priority penalty function P;
Penalty is applied when urgent tasks miss deadlines or are dropped:

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(22)

P — 6, if urgent task is delayed or dropped
t =1 0, otherwise

Here, § is a large penalty constant.

Cost model and objective
The reward signal is directly shaped from the cost function C;, which captures the joint effect of delay, energy
usage, and urgency for each task. By minimizing the discounted sum of these per-task costs over time, the
AICDQN agent learns optimal long-term scheduling behavior that balances responsiveness, efficiency, and
deadline sensitivity across local, edge, and cloud computing layers.

We define the instantaneous task cost as:

Ot = OétDt + ﬂtEt + "YtPt (23)
where:

oy emphasizes delay when congestion increases,

o [3+: emphasizes energy when the device battery is low,

¢ emphasizes urgency when task-drop likelihood increases.

o Dy, By, and P, follow the definitions provided earlier in Eq. (15).

The task scheduling objective is then formulated as minimizing the expected cumulative discounted cost:

min E, [Z ’tht (24)
i t=0
where v € (0, 1) is the discount factor ensuring future tasks contribute less than immediate ones.
Subject to:
Qu(t) < QU™ Wr (25)
D;]’U/S’U/S + D’E'V'ETLS + D,L‘S(L'SC S Dl (26)
E(t) < B (27)
Ay, is feasible for the selected resource r (28)
active,(t) € {0,1} (29)
Reinforcement learning reformulation
Using the cost structure in Eq. (23), the reward is defined as:
Ry = —C4 (30)

Thus, maximizing the reward is equivalent to minimizing long-term system cost. The optimal policy is defined
as:

(31

7 = argmax E, lz ’7th
t=0

This ensures that the AICDQN agent learns a stable and adaptive strategy capable of prioritizing real-time tasks,
reducing energy consumption, and preventing queue saturation under dynamic workload fluctuations.

The AICDQN system is designed to minimize end-to-end task delay, reduce average energy consumption
without violating task deadlines, maximize the success rate of urgent tasks through dynamic priority handling,
and ensure balanced workload distribution across local devices, edge servers, and the cloud. At each decision
epoch ¢, the system observes the current state .S, integrates GRU-LSTM-based predictions of future load,
computes the task priority score ;(¢), and selects an energy-feasible action A; through the Dueling Double
DQN agent. This unified architecture empowers AICDQN to adapt effectively to real-time system dynamics and
learn long-term optimal task offloading policies.

Proposed AICDQN framework

Building upon the formal MDP formulation and component-level modeling, this section presents the complete
integration of the Adaptive and Intelligent Customized Deep Q-Network (AICDQN) framework, as illustrated in
Fig. 5. This framework refines and extends the design presented in*®. AICDQN is designed to enable intelligent,
real-time, and energy-aware task offloading decisions in a multi-tier computing architecture comprising
local IoT devices, edge servers, and cloud resources. The framework integrates predictive modeling, dynamic
prioritization, and deep reinforcement learning with a dueling double DQN to optimize performance under
dynamic workload and energy constraints. The following subsections detail the functional assembly of the core

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Smart Office

PDA

Smart
building

l Reward

| AICDQN

I

! .

\ Dynamic

| Priority Scorer
I +

I

|

2

Environment

Edge Server

o 1IN S

GRU-LSTM
4‘ ! Load Predictor

n

] o
o Tl

Processing queue

Cloud Server

Fig. 5. AICDQN model.

modules, focusing on how they interact to enable dynamic and intelligent scheduling under varying system

dynamics.
1: Purpose: Learn optimal offloading decisions using predictive context and task priority
2: Initialize: Q-network parameters 6, target network 6~ < 6
3: Initialize GRU-LSTM model weights ® for load forecasting
4: Initialize experience replay buffer 2, exploration rate € < 1.0, decay factor §, minimum exploration €pin
5: Define hyperparameters: learning rate 17, discount factor ¥, batch size B, target update interval C
6: for each episode ¢ = 1 to E do
7: Reset environment; obtain initial canonical state Sy as in Eq. (13)
8: Encode and normalize to obtain initial input state So using Eq. (32)-(33)
9: for each time stepr =0to 7 — 1 do

Predict future load: A, .| = GRU-LSTM(Q, 4.;;©;)
Construct context vector: C; = [RHW RES A,]

Form encoded state (before normalization):

5 =10, 0,C]
13: Normalize features to obtain S; using Eq. (28)
14: Choose action A, via (optionally masked) -greedy policy:

random(.7), with probability €
A= argmax Q(S,,a;0), otherwise
acd

15: Execute action A,, receive reward R, and observe new canonical state S;; |
16: Encode and normalize S/_+1 to obtailin §,+1
17: Store experience tuple (S;,A;, Ry, Si+1) in buffer 2
18: Sample a minibatch of size B from %
19: for each (S;,A;,R;,§;:1) in minibatch do
20: Compute target Q-value with Double Q-learning:

yi=R;+ yQ(SH],argma,le(S'Hl ,d;0); 67>

a
21: Use context- and priority-aware dueling decomposition:
~ ~ ~ 1 ~
0(8;,4;:0) =V(S;,C) + (A(S.vaiv vj) - MZA(S]-,L/, ‘I’i))
| =
22: Update online network by minimizing TD loss:
o 2

Z;=(y;—0(5,,A:0))
23 end for
24: Every C steps, update target network: 6~ <— 6
25: Decay exploration: € <— max(€- 8, &nin)
26: end for
27: end for

28: Return: Learned policy 7*(S;) = arg max 0(S:,a;0)
acys

Algorithm 1. Dynamic dueling double DQN-based offloading and scheduling (AICDQN).

Scientific Reports| (2026) 16:5456

| https://doi.org/10.1038/s41598-025-34765-y

nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

System state encoder

As previously defined in the MDP formulation (Eq. 13), the system state S; is a unified representation
incorporating: (i) queue lengths at all computing layers, (ii) available compute and energy resources, (iii)
predicted workload, and (iv) Specific urgency of the task represented by the dynamic priority score ;(t). To
interface with the AICDQN agent, this canonical state is transformed into an encoded feature vector Sy that
preserves the same informational content while ensuring numerical stability and compatibility with neural
network processing.

State representation
The encoded state used as input to the learning agent is derived directly from the canonical S; of Eq. (13) by
rearranging and normalizing its elements:

gt - [wz(t)7 Q{_IW7 tES]) tEsna QtCL7 E?Véiil, Xt+1:| (32)

Where, E&V2: Local energy available obtained from E; in Eq. (13). This representation maintains seamless
consistency with the MDP state while structuring features for efficient feature extraction and network learning.

Normalization and preprocessing
All input features are normalized using min-max scaling to facilitate training convergence and stability. Each
element in \S; is normalized to [0, 1] using min-max scaling:

o St - Smin

St - Smax - Smin (33)

where Smin and Smax denote the minimum and maximum admissible limits of each feature. This preprocessing
ensures balanced feature contributions, improves convergence speed, and enhances the stability of the D*QN
training process.

Dynamic dueling double DQN agent (D*QN)

The proposed AICDQN agent adopts a Dynamic Dueling Double Deep Q-Network, which extends the
conventional D*QN by incorporating dynamic task urgency and workload prediction into the advantage
estimation process. This enhancement allows the learning agent to adapt its decisions to real-time variations
in queue congestion and QoS requirements, making it more suitable for highly dynamic MEC environments
compared to static D?QN and other RL baselines. The end-to-end decision workflow of the proposed D*QN-
based AICDQN system is illustrated in Fig. 6.

The encoded system state St, enriched with dynamic features such as task urgency, load forecasts, and energy
availability, is processed by the D*QN agent. This architecture improves learning adaptability under fluctuating
workloads by decomposing the Q-value into two components: a context-aware state-value function V' (St, C)
and a task-aware advantage function A(S;, Ay, 1), where C; denotes environmental context (e.g., queue status,
resource availability) and 1) indicates task-level dynamics such as urgency and deadline slack.The complete
Q-value is expressed as:

Q(Se, Ar) =V (Si,Cr) + | A(Se, Av, v) — ﬁ ZA(S‘t,a’,wt) (34)

This dueling architecture enables a more accurate estimation of state values, even when actions differ minimally,
while the double Q-learning mechanism mitigates overestimation bias by separating action selection and
evaluation. Action selection follows a masked e-greedy exploration strategy:

random(A), with probability €,
at =4 arg max Q(St,a;60), otherwise (35)
a€

where ¢€; gradually decays to balance exploration and exploitation over time.

Algorithm 1 presents the proposed Dynamic Dueling Double DQN-Based Offloading and Scheduling
(AICDQN) framework. The algorithm operates on the canonical MDP state Sy defined in Eq. (13), which
embeds queue status, resource availability, predicted arrival rate, energy profile, and task urgency. Before
making decisions, this state is rearranged and feature-normalized in the encoded form S; following Egs. (32,
33), ensuring stable learning dynamics.

At each decision step, the GRU-LSTM module predicts future task arrivals to capture temporal correlations in
workload variation. The encoded state is partitioned into queue-related features, a context vector C containing
resource availability and predicted load, and the dynamic priority score 1), allowing both congestion-awareness
and QoS differentiation.

The AICDQN agent selects actions through a masked e-greedy strategy, where the action feasibility mask
prevents selection of energy-violating offloading choices. Interaction with the environment provides delay- and
energy-aware rewards, which are stored in a replay buffer for minibatch learning. Double Q-learning mitigates
Q-value overestimation, while the dueling network architecture separates state-value and action-advantage
estimations, allowing the agent to distinguish between inherently beneficial states and urgency-driven action

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Task Generator
(Priority, Deadline, Size of each Task)

|

Dynamic Priority Scorer
(Compute Urgency Score yi(t))

|

GRU-LSTM-based Load Predictor
(Predict At+q for queues)

|

D4QN Framework

State Space (i(t), A1, Queue
Status, Energy)

Action Space
(Local, Edge, Cloud Execution)

Reward Function (Minimize Delay &
Energy, Penalize Urgent Task Drops,
Adaptive Weights)

Y

Action Selection (e-greedy + Masking)

Y

Task Assignment
(Execute action — Local / Edge / Cloud)

|

Task Execution & Energy Monitoring
(Measure Delay, Drop, Energy per Task)

Y

Dynamic Feedback Mechanism
(Adjust Reward, Priorities, State Weights)

|

Energy-Aware Scheduler
(Enable low-power states where possible)

Y

IPerformance Metrics (Task Execution delay, Task
Drop ratio, Energy Consumption)

Fig. 6. Edge-cloud computing model.

preferences. Target network updates and exploration decay progressively stabilize the learning process, ensuring
convergence toward an optimal policy that yields predictive, energy-efficient, and priority-aware task oftfloading
decisions in multi-tier edge-cloud environments.

Energy-aware task scheduler
Once an action is selected, the Energy-Aware Task Scheduler verifies its feasibility by considering the remaining
battery budget and the power consumption of the selected execution destination. If a task is predicted to violate

Scientific Reports | (2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

energy thresholds or face resource saturation, the scheduler may defer or locally buffer tasks to prevent battery
drain while still preserving priority ordering. Thus, the scheduling policy dynamically prioritizes high-urgency
tasks under constrained energy availability.

Energy models
A hardware and location-based energy model is integrated to quantify the execution cost of each task 7; based
on its selected offload path:

Local Execution (HW):

EfY — k. f2 . pi- S (36)
Edge Execution (ES):
EFS = P Tans + Phpa - Tiec (37)
Cloud Execution (CL):
EFE = pHw. Tuplink + Pret * Thet + Pg;ﬁ Tk (38)

Here, the model parameters include CPU frequency f, switching capacitance k, transmission power P"W,
network power Py, and associated execution and transmission times.

Energy-constrained policy masking:
To avoid energy-inefficient decisions, the AICDQN agent applies a binary feasibility mask during action
selection:

_ 17 if Et(a) S Ethr sh
My (a) = { 0, otherwise - (39)

This mask is applied during exploration and policy evaluation to ensure that the selected actions comply with
the energy constraints at the device level.

Learning workflow and convergence
The AICDQN agent is trained using an episodic reinforcement learning framework, in which it interacts with a
dynamic edge-cloud environment to learn optimal task offloading strategies. In each episode, the agent observes
the current canonical system state S; (Eq. 13), encodes and normalizes it into S; (Egs. 32, 33), selects an
offloading action based on the D*QN policy, receives a reward, and updates its Q-values accordingly. The reward
function penalizes undesirable behaviors such as excessive task delay, high energy consumption, and dropped or
violated high-priority tasks, thus guiding the agent toward latency-aware, energy-efficient, and priority-sensitive
policies.

The training loop can be summarized as:

—

Observe the current canonical system state S; and construct its encoded form S;.

Forecast the upcoming workload A¢+1 using the GRU-LSTM module and update the dynamic task urgency
score 1;(t). B

Select an offloading action A; using a masked, priority-aware e-greedy strategy based on Q(S¢, a; 6).
Execute A; in the environment, obtain the immediate reward R;, and observe the next canonical state Sy 1.
Encode and normalize S;+1 to obtain S¢41.

Store the transition tuple (S¢, A¢, R¢, Si4+1) in the replay buffer B and periodically update the network pa-
rameters 0 via minibatch training.

>

W

To stabilize training and avoid divergence, AICDQN incorporates two standard deep Q-learning components:
Replay buffer: A memory module that stores past experience tuples (S¢, A¢, Ry, S¢+1). By sampling training
data randomly from B, temporal correlations are reduced, leading to improved sample efficiency and better
generalization.
Target network: A separate Q-network with parameters 6~ is maintained and updated periodically to follow
the online network parameters 6. The target network is used to compute a stable temporal-difference (TD) target:

yr = Ry + 7Q<§t+1,argm%X Q(Si41,d’;0); 9_) (40)

where v € [0,1) is the discount factor that regulates long-term reward sensitivity, and ¢ denotes the real
environment timestep during interaction.

Experience replay and minibatch training: At each update step, a minibatch of size B is sampled from
B, indexed by j € {1, ..., B}. Unlike the temporal index ¢, which reflects the sequential evolution of the
environment, the index j denotes randomly sampled past transitions, thereby breaking temporal correlations.
The mean squared TD loss for training the online Q-network is:

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

B 2
£0)= 5> (- Q. 450) ()
j=1

To further improve learning responsiveness and stability in highly dynamic environments, AICDQN incorporates
adaptive parameter mechanisms. The exploration rate €; decays with time, allowing extensive exploration during
the early training stages and more focused exploitation as learning progresses. The learning rate 7y can also
be decayed gradually to ensure smoother convergence and prevent overshooting. Additionally, the reward
weights (v, B¢, v¢)-which respectively penalize delay, energy consumption, and dropped urgent tasks-are
dynamically adjusted based on deviation from desired thresholds (e.g., target delay, energy budget, or drop
ratio). This adaptive feedback mechanism keeps the agent sensitive to task criticality and system performance
while accelerating convergence in variable edge-cloud conditions.

Convergence and policy quality: Convergence is monitored through episode-level performance indicators
such as average task delay, average energy consumption, and task drop ratio, as well as cumulative episode
reward. Under standard conditions of bounded rewards, adequate exploration, and decaying learning rates, the
learned policy empirically converges to a stable solution that maximizes the expected long-term return:

7" = argmax E, Z +'R: (42)

t=0

By jointly integrating predictive task modeling, queue-aware state encoding, dynamic dueling Double DQN
updates, replay-buffer-based minibatch training, and adaptive parameter feedback, the AICDQN framework
promotes robust learning behavior and produces intelligent, scalable, and context-aware task offloading
decisions in heterogeneous edge-cloud environments.

Simulation and performance evaluation

This section rigorously evaluates the effectiveness of the proposed AICDQN framework under diverse
operational scenarios using a realistic MEC environment. The simulation investigates the impact of AICDQN
on task delay, energy efficiency, task drop ratio, and real-time task satisfaction compared to several state-of-the-
art baseline algorithms.

Simulation setup

The simulation is conducted using a Python-based environment that integrates SimPy for discrete-event
modeling, PyTorch for implementing the Dynamic Dueling Double DQN core of the AICDQN agent, and
auxiliary libraries such as NumPy and Pandas for workload modeling and performance evaluation. The system
emulates a three-tier hierarchical edge-cloud computing architecture consisting of 50 mobile devices, 5 edge
servers, and a centralized cloud server.

Each mobile device generates computational tasks based on a Poisson arrival model, with urgency and
resource requirements varying dynamically over time. These devices periodically transmit system state features,
including current queue lengths, urgency scores, energy availability, and GRU-LSTM-based arrival forecasts, to
the AICDQN agent. The agent processes this global state representation and executes a customized D*QN policy
to determine delay-aware and priority-sensitive offloading actions across local, edge, and cloud layers.

The second tier, consisting of edge servers, provides low-latency processing with moderate resources and
serves as the preferred execution target. The cloud server forms the third tier with significantly higher capacity
but at the expense of higher transmission and propagation delay, making it suitable for overflow or low-urgency
tasks. This three-tier structure allows the AICDQN agent to intelligently balance execution delay, energy
consumption, and deadline violations.

The neural network model is trained using a batch size of 16, a learning rate of 0.001, and a discount factor
of 0.9. An RMSProp optimizer is employed, and the e-greedy exploration rate decays gradually from 1 to 0.01,
allowing efficient exploitation of the learned policies while retaining sufficient exploration. A replay buffer
facilitates decorrelated minibatch updates, and a target network updated every 50 steps ensures training stability.
All methods are trained and evaluated under identical stationary conditions, where the transition and cost
functions remain time-invariant, ensuring a fair comparison across baselines. The training spans 1000 episodes,
each with 100 time slots, providing sufficient interaction with the dynamic environment for stable convergence.

Parameter Value

Task arrival probability | 0.3 per time slot

Task size (d,) 2.0 - 5.0 Mbits

Processing density (c.,) | 0.297 Geycles/Mbit

Task deadline 10 time slots

Task priority levels Real-time / Best-effort

Table 2. Task and scheduling parameters.

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y

nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Parameter Value
Number of devices 50
Number of edge servers 5
Number of cloud server 1
Device CPU frequency 2.5 GHz

Edge server CPU Frequency | 41.8 GHz

Cloud server CPU Frequency | 100 GHz

Edge RTT (Round-Trip Time) | 10-20 ms

Cloud RTT 200-300 ms
Transmission rate 14 Mbps
Bandwidth 20 MHz

Table 3. Hardware and network configuration.

Parameter Value
Discount factor (vy) 0.9
Energy coefficient (k) | 1028
Learning rate 0.001
Batch size 16
Optimizer RMSProp

Exploration rate (€)

1 — 0.01 (decay)

Replay buffer Per-device
Episodes 1000
Time slots per episode | 100

Table 4. Learning and algorithm hyperparameters.

The parameters used in the simulation-including task generation settings, hardware and network configurations,

and learning hyperparameters-are detailed in Tables 2, 3, and 4, respectively'.

Task and scheduling parameters

Hardware and network configuration

Learning and algorithm settings
Each device uses a Dueling Double DQN agent, updated with feedback from its closest edge server. The state
includes the predicted queue load (via GRU-LSTM), task priority, and available resources.

Evaluation metrics
We assess performance based on the following metrics:

« Average task execution delay: Time from task arrival to completion.

N
D=+ D (T + T+ T5)

(43)

where T\, is the execution time, Téueue is the queueing delay, and T¢, is the transmission delay for the task i.

« Task drop ratio: The task drop ratio Ra:op represents the percentage of tasks that fail to meet their deadlines:

Where:

- Nuarop is the number of tasks dropped due to deadline violations,

N Tro
Rarop = —2P % 100%

Ntotal

- Niotal is the total number of tasks generated.

(44)

o Average energy consumption: The average energy consumption per successfully completed task is denoted

by E:

Scientific Reports |

(2026) 16:5456

| https://doi.org/10.1038/s41598-025-34765-y

nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Nsuce

_ 1
E= N z; E; (45)

Where:
- Nsucc is the number of tasks completed successfully,
- E; is the energy consumed for the task 7, calculated based on the offloading location (local, edge, or cloud).

Compared algorithms
We compare AICDQN with the following baselines:

« DDTO-DRL *: DDTO-DRL integrates GRU-based workload forecasting with centralized Q-network train-
ing to support delay-sensitive task offloading across edge clients, but lacks adaptive reward tuning, continuous
action support, and real-time priority awareness.

« IDDPG *!: IDDPG extends the classical DDPG for continuous task offloading decisions in MEC environ-
ments with improved stability through dual-critic learning, but lacks native support for task urgency and
suffers from sensitivity to hyper parameters and sparse reward conditions.

« PGOA 7: Employs game-theoretic utility negotiation among distributed agents to reach an offloading consen-
sus, but coordination overhead and limited adaptability hinder its performance in real-time edge scenarios.

« ULOOF : Relies on historical server utility patterns to guide offloading decisions, reducing responsiveness to
real-time load fluctuations, and degrades performance in highly dynamic mobile edge networks.

« DRL-DQN “2 A conventional Deep Q-Network that learns offloading policies based on observed rewards
but lacks predictive foresight and task priority handling, making it less effective in rapidly changing environ-
ments.

Results and analysis
Convergence behavior
The convergence behavior of a reinforcement learning algorithm is a key indicator of its learning efficiency
and long-term stability. In this study, the learning dynamics of the proposed AICDQN framework is evaluated
against those of the traditional DQN baseline. The AICDQN agent is trained online, continuously updating its
policy using real-time feedback from the edge-cloud environment. To capture its adaptability and robustness,
we analyze convergence trends under different neural network hyperparameters across 1,000 training episodes,
where each episode consists of multiple dynamic task arrivals.

Figure 7 presents the discounted cumulative cost per episode, where the x-axis indicates the training episode
and the y-axis reflects the total cost incurred within each episode. In all settings, AICDQN consistently converges
faster and reaches a lower cost level than the DQN baseline. This improvement stems from its dynamic priority-

(a) Learning Rate (b) Batch Size

0.9 A

0.8 1

0.7

0.6 1

0.5 1

Discounted Cumulative Cost

—@— AICDQN: Ir = 1le-4
~@— AICDQN: Ir = 1e-3
—@— AICDQN: Ir = 1e-2
—@— AICDQN: Ir = 1e-1

—@— AICDQN: Batch = 2
—@— AICDQN: Batch = 8
0.9 A —@— AICDQN: Batch = 32

== DOQN Baseline

0.8

Discounted Cumulative Cost

—=— DQN Baseline
0.4 T T T T 0.4 T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Episode Episode
(c) Optimizer (d) Parameter Request Frequency

—@- AICDQN: GD —@— AICDQN: Every Slot
~@— AICDQN: RMSProp —@- AICDQN: Every 100

0.9 —@- AICDQN: Adam 0.9 1 —@— AICDQN: Every 400
—— DQN Baseline —@— AICDQN: Every 1000

0.8 —— DQN Baseline

Discounted Cumulative Cost

Discounted Cumulative Cost

0.4 , , , : 0.4 . : : ,
0 200 400 600 800 1000 0 200 400 600 800 1000
Episode Episode
Fig. 7. Convergence of AICDQN vs DQN baselines under different training conditions.
Scientific Reports | (2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

aware advantage learning and workload prediction capability within the D*QN architecture. Specifically, in
Fig. 7a, we examine the effect of the learning rate on the convergence speed. A learning rate of (1 x 107%)
offers the most balanced trade-off, allowing rapid cost reduction while preserving training stability. In contrast,
a lower learning rate (for example, 1 x 10™%) results in slow convergence, while a higher learning rate (for
example, 1 x 107") leads to unstable learning dynamics and divergence, ultimately increasing the cumulative
cost beyond that of the baseline DQN. These observations validate the need for adaptive learning rate control,
which is a key feature embedded in the AICDQN model.

Figure 7b illustrates the impact of varying batch sizes on the convergence behavior of AICDQN. As the batch
size increases from 2 to 8, the convergence speed improves significantly without sacrificing learning accuracy.
However, larger batch sizes (for example 32) yield only marginal benefits while incurring higher computational
and memory overhead. Therefore, a moderate batch size of 8 offers an effective trade-off between convergence
efficiency and resource consumption, aligning with the lightweight and scalable learning requirements of edge
computing systems.

Figure 7c compares different optimizers in terms of cumulative cost. Optimizers are algorithms used to
adjust the weights of a neural network during training by minimizing the loss function, thereby influencing
both the speed and stability of convergence. Among the tested methods, Gradient Descent (GD), RMSProp,
and Adam, the Adam optimizer consistently achieves the lowest cumulative cost and exhibits faster and more
stable convergence. This result emphasizes the critical role of the optimizer choice in stabilizing the estimate of
the value function within the Dueling Double DQN architecture. Using Adam, AICDQN ensures robust and
responsive policy learning, which is essential in highly dynamic and delay-sensitive edge-cloud scenarios.

Finally, Fig. 7d analyzes the effect of parameter update frequency. Interestingly, reducing the update frequency
from every time slot to once every 100 slots has only a minor influence on overall learning performance.
This resilience is attributed to the experience replay buffer, which enables the agent to benefit from historical
transitions rather than relying solely on immediate feedback. As a result, communication overhead between
mobile devices and edge servers is significantly reduced, making AICDQN particularly effective in bandwidth-
constrained environments.

Overall, the convergence analysis confirms that AICDQN not only learns faster than baseline DQN, but also
remains robust across diverse training configurations. By appropriately tuning hyperparameters such as learning
rate, batch size, optimizer, and update frequency, AICDQN achieves adaptive, scalable, and resource-efficient
task scheduling, making it highly suitable for real-time edge-cloud applications.

Performance evaluation under varying number of mobile devices

To evaluate the adaptability and robustness of the proposed AICDQN framework compared to existing scheduling
methods under varying mobile device densities, the number of mobile clients is scaled from 10 to 150. This setup
enables a comprehensive evaluation of the task drop ratio, execution delay, and energy consumption as system
load intensifies.

As illustrated in Fig. 8, the following three key performance metrics are analyzed:

Ratio of dropped tasks: As shown in Fig. 8a, the task drop ratio increases across all algorithms as the number
of mobile devices grows, reflecting the rising competition for edge-cloud resources. AICDQN consistently
achieves the lowest average drop ratio of 6.65%, thanks to its predictive offloading and queue-aware decision-
making. Compared to DDPG and PGOA, AICDQN reduces the drop ratio by 79.8% and 79.7%, respectively.
Against ULOOF and DDTO-DRL, it offers improvements of 79.0% and 62.6%, respectively. Even against DRL,
a learning-based method, AICDQN shows a 48.0% improvement, highlighting its superior adaptability in
overload conditions.

Average delay analysis: Delay results are illustrated in Fig. 8b. As mobile density increases, average task delay
rises due to increased queuing and contention. AICDQN achieves the lowest average delay of 0.536 seconds,
leveraging foresight-driven scheduling and dynamic priority scoring. Compared to PGOA and ULOOF,
AICDQN reduces delay by 24.2% and 22.2%, respectively. Compared to other RL-based models, delay is reduced
by 14.3% over DDPG, 10.4% over DRL, and 7.7% over DDTO-DRL, confirming its efficiency in latency-sensitive
edge computing.

Average energy consumption: Energy consumption trends are presented in Fig. 8c. As the device count
increases, energy usage rises across all schemes due to higher task arrivals and offloading activity. AICDQN
maintains the lowest average energy usage of 0.01043 units, due to its integrated energy-aware task scheduling.
This represents a 18.6% reduction in PGOA, 15.3% in ULOOE, 13.2% in DRL, and 5.4% over DDPG. Even
compared to highly optimized DDTO-DRL, AICDQN achieves a 0.94% improvement, showcasing its meticulous
balance between performance and energy efficiency.

This comprehensive evaluation demonstrates that the proposed AICDQN framework exceeds heuristic and
deep reinforcement learning-based baselines under increasing mobile device load. As summarized in Table 5,
by integrating GRU-LSTM-based load forecasting, dynamic task prioritization, and Dueling Double Deep
Q-Network learning, AICDQN significantly reduces task drops, shortens execution delay, and lowers energy
consumption, making it exceptionally well-suited for dynamic, dense IoT-edge environments.

Varying task arrival rates

In mobile edge computing, fluctuating task arrival probabilities significantly impact system performance,
especially in terms of task drops, latency, and energy usage. As illustrated in Fig. 9 and summarized in Table 6,
the proposed AICDQN (Adaptive and Intelligent Deep Q-Network) model is evaluated against state-of-the-art
methods such as PGOA, ULOOF, DRL, DDPG, and DDTO-DRL. Below is a detailed theoretical comparison of
AICDQN’s improvement over these methods.

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—&— PGOA
—0— ULOOF

(a) Dropped Task Ratio

—@— DRL
—&— DDPG

—&— DDTO-DRL
—8— AICDQN

(b) Average Delay

o o o
N w =
L L |

Dropped Task Ratio

o
=
L

o
o
|

0.80

0.75 A

0.70 A

0.65 4

0.60

Average Delay (s)

0.55 A

0.50 A

40

T
60 80 100 120 140 20 40 60 80 100 120 140
Number of Devices Number of Devices

(c) Energy Consumption

0.014 A

0.013

Energy (J)
o o
2 2
- N

0.010 A

T T T T T
10 30 50 70 920 110 130 150
Number of Devices

Fig. 8. Performance evaluation under varying number of mobile devices.

Metric (%) PGOA | ULOOF | DRL | DDPG | DDTO-DRL
Dropped tasks 79.68 | 79.03 48.00 | 79.83 | 62.65
Average delay 24.18 | 2217 10.42 | 14.27 | 7.69

Energy consumption | 18.60 | 15.32 13.22 | 541 0.94

Table 5. AICDQN improvement over baseline algorithms (Metric %).

Dropped task ratio analysis: The Dropped Task Ratio is a critical metric indicating how well an algorithm
manages task load and prevents system overload. As shown in Fig. 9a , the proposed AICDQN demonstrates
a significant advantage over all baseline algorithms in reducing dropped tasks across all arrival probabilities.
Specifically, AICDQN achieves an average 72.21% improvement over PGOA, which exhibits the highest
drop rates due to its limited adaptability to dynamic traffic. Compared to ULOOE, the drop ratio reduction is
67.52%, showcasing AICDQN’s better queue-aware scheduling and prioritization. Similarly, compared to the
reinforcement-based DRL method, AICDQN achieves a 54.89% improvement, reflecting its superior reward
design and convergence behavior. Even with more advanced models such as DDPG and DDTO-DRL, AICDQN
outperforms them by 60.31% and 57.31% respectively. These improvements underscore AICDQN’s robust
learning capability to intelligently offload and schedule tasks in real-time, even under highly dynamic arrival
conditions.

Average delay analysis: Delay trends under different arrival probabilities are depicted in Figure 9b, where
AICDQN consistently achieves the lowest latency compared to all baseline models, underscoring its suitability
for delay-sensitive edge computing scenarios. Specifically, it reduces the delay by 18.75% compared to PGOA,
which lacks adaptive decision-making and often overloads a subset of nodes. AICDQN also outperforms ULOOF
by 13.76%, and DRL by 9.72%, indicating its more refined policy learning and better state-space awareness. The
improvement over DDPG stands at 9.72%, while over DDTO-DRL it achieves 5.28% delay reduction. These
results stem from AICDQN’s ability to anticipate system bottlenecks and schedule latency-sensitive tasks to edge
resources with the lowest estimated delay. Its adaptive and intelligent design ensures that task prioritization and
placement decisions consistently favor low-latency paths, contributing to an overall faster execution time across
varying traffic intensities.

Average energy consumption analysis: As shown in Figure 9c, AICDQN records the lowest average energy
consumption across all load conditions, consistently surpassing both heuristic and reinforcement learning-
based baselines. Compared to PGOA, AICDQN reduces energy consumption by 57.74%, a significant savings

Scientific Reports |

(2026) 16:5456

| https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

=8— PGOA =@ DRL =@ DDTO-DRL
=0 ULOOF =—@— DDPG =8— AICDQN

(a) Dropped Task Ratio (b) Average Delay

Dropped Task Ratio

0.8 1

Average Delay (s)
o °
(o)) ~
L 1

I
[
L

0.4 1

T T T T T T T T T

T T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task Arrival Probability Task Arrival Probability

(c) Energy Consumption

0.030

0.025 A

0.020 A

Energy ()

0.015 A

0.010 A

T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Task Arrival Probability

Fig. 9. Performance evaluation under varying number task arrival rate.

Metric (%) PGOA | ULOOF | DRL | DDPG | DDTO-DRL
Dropped tasks 7221 | 67.52 54.89 | 60.31 | 57.31
Average delay 18.75 | 13.76 9.72 19.72 5.28

Energy consumption | 57.74 | 55.02 52.74 | 6.67 4.27

Table 6. AICDQN improvement over baseline algorithms under varying task arrival rates (Metric %).

that reflects its ability to avoid unnecessary computation and redundant offloading. Against ULOOE the
improvement is 55.02%, and against DRL, AICDQN saves 52.74% energy, thanks to its energy-aware reward
design that actively penalizes power-intensive actions. Even when benchmarked against advanced deep
reinforcement learning algorithms, AICDQN maintains its edge, showing a 6.67% improvement over DDPG,
and a 4.27% reduction compared to DDTO-DRL. These gains demonstrate how AICDQN effectively learns to
utilize idle server states and reduce execution overhead, ensuring energy-efficient scheduling even under high
system loads and fluctuating task arrival rates.

Performance evaluation under varying task deadlines

Performance evaluation under varying task deadlines is a critical component of any task scheduling strategy
in edge-cloud environments. As shown in Fig. 10 and summarized in Table 7, it ensures that the system can
effectively adapt to real-time constraints, prioritize critical tasks, and make intelligent offloading decisions. By
incorporating this evaluation, frameworks like AICDQN can demonstrate not only theoretical soundness but
also practical applicability in latency-sensitive and resource-constrained edge environments.

Dropped task ratio analysis: Figure 10a shows that, under stricter task deadlines, AICDQN achieves the
lowest drop ratio, resulting in significant improvements compared to all baseline approaches. In particular,
AICDQN achieves an impressive 81.25% improvement over PGOA, which struggles with adaptive deadline
handling. Similarly, ULOOF is outperformed by 70.83%, reflecting AICDQN’s superior ability to manage task
queues and prioritize urgent deadlines. Although traditional DRL provides moderate deadline awareness,
AICDQN still reduces dropped tasks by 19.17%, indicating more robust real-time adaptability. More advanced
learning models such as DDPG and DDTO-DRL are also outpaced by 59.63% and 25.05% respectively, showing
that AICDQN'’s integration of deadline-awareness into its reward shaping and task mapping decisions leads to a
highly reliable task completion strategy.

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

-8~ PGOA —&— DRL —&— DDTO-DRL
—@— ULOOF —e— DDPG —@— AICDQN

(c) Ratio of Dropped Tasks (a) Average Delay

Dropped Task Ratio

1.1 A

1.0

0.9

0.8 4

0.7 4

Average Delay (s)

0.6

0.5 4

0.6

T T T T T T T
1.4 1.8 2.2 2.6 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Task Deadline Task Deadline

(b) Average Energy Consumption

0.015 o

0.014

Energy ()
S o
2 R
N w

0.011 o

0.010

T T T T T T T T
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Task Deadline

Fig. 10. Performance Evaluation under Varying Task Deadlines.

Metric (%) PGOA | ULOOF | DRL | DDPG | DDTO-DRL
Dropped tasks 81.25 |70.83 19.17 | 59.63 | 25.05
Average delay 3339 | 27.77 3.00 |36.27 |22.80
Energy consumption | 21.97 | 14.17 6.36 | 14.88 |6.36

Table 7. AICDQN Improvement Over Baseline Algorithms under Varying Deadlines (Metric %).

Average delay analysis: As illustrated in Fig. 10b, AICDQN consistently achieves the lowest average delay
across varying deadline constraints, clearly outperforming conventional models. It shows a 31.35% improvement
over PGOA, which lacks intelligent deadline-based resource allocation. Similarly, AICDQN outperforms
ULOOF by 25.56%, highlighting the benefits of its adaptive delay-sensitive offloading mechanism. Compared to
DDPG, AICDQN achieves the highest improvement in delay-34.32%, showcasing its effective temporal policy
learning. Interestingly, AICDQN also shows a 20.44% advantage over DDTO-DRL, which incorporates deadline
tolerance, but lacks dynamic attention to critical latency thresholds. However, compared to DRL, AICDQN
experiences a 2.44% decrease in delay performance. This slight deviation may result from DRLs shorter delay in
specific deadline conditions, though at the cost of higher task drop ratios or energy inefficiency. Nevertheless,
AICDQN maintains an optimal trade-off between delay, success rate, and energy.

Energy consumption analysis: Figure 10c highlights AICDQN’s clear advantage in minimizing energy
consumption under strict deadline constraints, reinforcing its efficiency over competing methods. Reduces
average energy consumption by 21.97% compared to PGOA, which performs redundant oftloading due to
its reactive policies. The model also shows a 14.17% improvement over ULOOF, and 14.88% over DDPG,
highlighting how AICDQN intelligently leverages energy-aware decisions without compromising task urgency.
Additionally, AICDQN exceeds both DRL and DDTO-DRL with a 6.36% improvement each, illustrating its
refined trade-off between execution urgency and resource conservation. These gains stem from AICDQN’s
adaptive control over resource utilization and its ability to put idle nodes into energy-saving modes when not
required, thereby maintaining sustainability under real-time deadline variations.

Discussion and insight

In dynamic and resource-constrained edge computing environments, the proposed AICDQN framework
introduces a novel, multidimensional task scheduling strategy tailored for real-time, latency-sensitive
applications. At its core, AICDQN integrates hybrid GRU-LSTM-based load forecasting to anticipate future

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

workload trends, enabling proactive task allocation before congestion arises. Coupled with this, a dynamic
priority-aware scheduling mechanism evaluates task urgency, deadline proximity, and queue status, ensuring
that critical tasks are processed with minimal delay.

The strength of AICDQN's lies in its queue-aware MDP formulation, which models computing resources
at multiple tiers to capture realistic stochastic behavior. Specifically, local devices are represented as M/M /1
systems, edge servers as M /M /c systems, and the cloud as M /M /oo system to reflect its virtually unlimited
processing capacity with negligible queuing delay. This hierarchical modeling enables the agent to make
latency-sensitive, resource-aware, and energy-conscious offloading decisions. To further optimize decision-
making under dynamic workloads, the framework employs an enhanced Dueling Double DQN architecture.
By decoupling state and advantage functions, this approach stabilizes the learning process and mitigates
Q-value overestimation, a common pitfall in reinforcement learning-based scheduling. Moreover, AICDQN
incorporates an energy-aware multi-tier offloading strategy that intelligently balances task distribution across
local, edge, and cloud resources. Energy efficiency is achieved by exploiting dynamic low-power state transitions,
ensuring minimal consumption when nodes are idle.

Empirical evaluations show that AICDQN substantially outperforms baseline methods under various
operating conditions, including varying task arrival rates, deadlines, and mobile device counts. Under varying
task arrival probabilities, AICDQN achieves a reduction of up to 72.21% in dropped tasks, an improvement of
18.75% in average delay and a savings of 57.74% in energy, with the largest gains observed against PGOA. In
deadline-sensitive experiments, AICDQN attains up to 81.25% fewer dropped tasks compared to PGOA, 36.27%
reduced average delay compared to DDPG, and 21.97% lower energy consumption compared to PGOA. With
increasing numbers of mobile devices, AICDQN maintains strong robustness, reducing dropped tasks by up to
79.83% compared to DDPG, lowering the average delay by 24.18% compared to PGOA, and achieving energy
savings of up to 18.60% compared to PGOA. Improvements are consistently the largest compared to heuristic
baselines such as PGOA and ULOOF, while gains against advanced RL-based methods including DRL, DDPG,
and DDTO-DRL are more moderate, particularly in energy efficiency.

Opverall, the results highlight that AICDQN effectively balances task success, delay, and energy consumption,
while demonstrating strong scalability under higher device loads. They further affirm its ability to adaptively
manage edge-cloud task scheduling, offering a resilient combination of responsiveness, efficiency, and
reliability. With its modular, foresight-driven design and reinforcement learning backbone, AICDQN emerges
as a compelling solution for intelligent edge computing applications such as smart cities, industrial IoT, and
autonomous systems.

Conclusion and future work

This study presented AICDQN, an Adaptive and Intelligent customized Deep Q-Network framework designed
for priority-driven, energy-efficient task offloading in dynamic edge-cloud environments. The framework
holistically addresses the challenges of latency, task drop ratio, and energy trade-offs in mobile edge computing
by integrating several key innovations. First, a hybrid GRU-LSTM-based load forecasting module was developed
to capture temporal variations in task arrivals, enabling anticipatory decision-making by the agent. Second,
AICDQN employs a dynamic priority-aware scheduling mechanism that considers urgency, deadline proximity,
and queue status, ensuring that critical and real-time tasks are serviced promptly. Furthermore, edge and cloud
resources are modeled through a queue-aware Markov Decision Process based on M/M/1, M/M/c, and
M /M /oo systems, which capture the stochastic dynamics of local devices, parallel edge servers, and virtually
unlimited cloud resources. To enhance stability and mitigate Q-value overestimation, the framework employs
an enhanced Dueling Double DQN for robust learning under dynamic workloads. Finally, the agent is guided
by an energy-aware multi-tier offloading strategy that intelligently distributes tasks across local, edge, and cloud
resources, while conserving energy through adaptive idle-state transitions. Collectively, these innovations enable
AICDQN to provide scalable, intelligent, and energy-efficient task scheduling in highly variable edge-cloud
environments.

Extensive simulations conducted under diverse conditions, including varying task arrival probabilities,
device densities, and deadlines, demonstrate that AICDQN consistently outperforms heuristic baselines such
as PGOA and ULOOFE, while also achieving competitive results against advanced RL methods including DRL,
DDPG, and DDTO-DRL across all scenarios. For instance, in scalability tests with increasing mobile devices,
AICDQN outperforms heuristic baselines by reducing dropped tasks by over 79%, lowering the average delay
by more than 22%, and cutting energy consumption by up to 18%. Compared with advanced RL methods, it
achieves 48-80% fewer dropped tasks, 7-14% lower delays, and up to 13% energy savings, with only a marginal
advantage over DDTO-DRL. Overall, AICDQN delivers the best balance of reliability, responsiveness, and
energy efficiency, clearly exceeding heuristic baselines while remaining highly competitive with state-of-the-art
RL approaches. In future work, we aim to extend AICDQN to multi-agent federated DRL architectures to enable
cooperative offloading among distributed edge nodes without central coordination. We also plan to integrate
online continual learning to adapt to long-term traffic shifts and preemptive task migration strategies to improve
resiliency under volatile network and computation conditions. Finally, incorporating security-aware decision-
making and privacy-preserving reinforcement learning can make AICDQN applicable to sensitive domains such
as smart healthcare and industrial automation.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author
on reasonable request

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Received: 18 September 2025; Accepted: 31 December 2025
Published online: 07 February 2026

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Alsharif, M. H. A comprehensive survey of energy-efficient computing to enable sustainable massive IoT networks. Elsevier B.V.
https://doi.org/10.1016/j.aj.2024.01.067 (2024).

Liu, J., Li, C. & Luo, Y. Efficient resource allocation for IoT applications in mobile edge computing via dynamic request scheduling
optimization. Expert Syst. Appl.255, 256. https://doi.org/10.1016/j.eswa.2024.124716 (2024).

Nan, Z., Wenjing, Y. & Nahar, G. A new task scheduling scheme based on genetic algorithm for edge computing. Comput. Mater.
Continua71, 843-854. https://doi.org/10.32604/cmc.2022.017504 (2022).

. Andriulo, E C,, Fiore, M., Mongiello, M., Traversa, E. & Zizzo, V. Edge computing and cloud computing for internet of things: a

review. Informatics11, 71. https://doi.org/10.3390/informatics11040071 (2024).

. Pournazari, J. et al. Computation offloading in the edge-to-cloud compute continuum: a survey of federated architectural solutions.

Cluster Comput.28, 839. https://doi.org/10.1007/s10586-025-05577-6 (2025).

. Li, W. & Zhou, H. Modeling and performance analysis of task offloading of heterogeneous mobile edge computing networks. Appl.

Sci.15, 4307. https://doi.org/10.3390/app15084307 (2025).

. Yang, L., Zhang, H., Li, X,, Ji, H. & Leung, V. A distributed computation offloading strategy in small-cell networks integrated with

mobile edge computing. IEEE/ACM Trans. Netw.26, 2762-2773. https://doi.org/10.1109/TNET.2018.2876065 (2018).

. Neto, J. L. D. et al. ULOOF: a user level online offloading framework for mobile edge computing. IEEE Trans. Mob. Comput.17,

2660-2674. https://doi.org/10.1109/TMC.2018.2828817 (2018).

. Sharif, Z., Jung, T. A. & Pitafi, S. Priority-based task scheduling and resource allocation in edge computing for health monitoring

system. J. King Saud Univ. Comput. Inf. Sci.35, 544-559. https://doi.org/10.1016/j.jksuci.2023.01.001 (2023).

Wang,], Li, S., Zhang, X., Wu, E & Xie, C. Deep reinforcement learning task scheduling method based on server realtime
performance. Peer] Comput. Sci.10, 256. https://doi.org/10.7717/peerj-cs.2120 (2024).

Iftikhar, S. et al. HunterPlus: AI based energy-efficient task scheduling for cloud-fog computing environments. Internet of Things
Netherl.21, 256. https://doi.org/10.1016/j.i0t.2022.100667 (2023).

Li, K., Peng, Z., Cui, D. & Li, Q. SLA-DQTS: SLA constrained adaptive online task scheduling based on DDQN in cloud computing.
Appl. Sci. Switzerl.11, 369. https://doi.org/10.3390/app11209360 (2021).

Chai, Z., Hou, H. & Li, Y. A dynamic queuing model based distributed task offloading algorithm using deep reinforcement learning
in mobile edge computing. Appl. Intell.53, 28832-28847. https://doi.org/10.1007/s10489-023-05065-7 (2023).

Khan, T, Tian, W,, Ilager, S. & Buyya, R. Workload forecasting and energy state estimation in cloud data centres: ML-centric
approach. Futur. Gener. Comput. Syst.128, 320-332. https://doi.org/10.1016/j.future.2021.10.019 (2022).

Alfakih, T., Hassan, G. & Fortino, G. Task offloading and resource allocation for mobile edge computing by deep reinforcement
learning based on SARSA. IEEE Access8, 54074-54084. https://doi.org/10.1109/ACCESS.2020.2981434 (2020).

Li, Y., Wang, Y. & Shao, S. Distributed edge computing offloading algorithm based on deep reinforcement learning. IEEE Access8,
85204-85215. https://doi.org/10.1109/ACCESS.2020.2991773 (2020).

Xiong, X., Zheng, K., Lei, L. & Hou, L. Resource allocation based on deep reinforcement learning in IoT edge computing. IEEE J.
Sel. Areas Commun.38, 1133-1146. https://doi.org/10.1109/JSAC.2020.2986615 (2020).

Chen, J., Wang, C. E & Hu, J. IRAF: a deep reinforcement learning approach for collaborative mobile edge computing IoT
networks. IEEE Internet Things J.6, 7011-7024. https://doi.org/10.1109/JI0T.2019.2913162 (2019).

Dai, Y., Zhang, K., Maharjan, S. & Zhang, Y. Edge intelligence for energy-efficient computation offloading and resource allocation
in 5G beyond. IEEE Trans. Veh. Technol.69, 12175-12186. https://doi.org/10.1109/TVT.2020.3013990 (2020).

Chen, Z. & Wang, X. Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning
approach. EURASIP J. Wirel. Commun. Netw.2020, 188. https://doi.org/10.1186/s13638-020-01801-6 (2020).

Liu, C., Guo, M. & Ristaniemi, D. Multiobjective optimization for computation offloading in Fog computing. IEEE Internet Things
.5, 283-294. https://doi.org/10.1109/JI0T.2017.2780236 (2018).

Zhang, L. et al. DQN-based mobile edge computing for smart Internet of vehicle. EURASIP J. Adv. Signal Process.2022, 45. https:/
/doi.org/10.1186/s13634-022-00876-1 (2022).

Wang, Y., Han, X. & Jin, S. MAP based modeling method and performance study of a task offloading scheme with time-correlated
traffic and VM repair in MEC systems. Wireless Netw.29, 47-68. https://doi.org/10.1007/s11276-022-03099-2 (2023).

Bai, X. & Jin, S. Performance analysis of an energy-saving strategy in cloud data centers based on a MMAP[K]/M[K]/N1+N2 non-
preemptive priority queue. Futur. Gener. Comput. Syst.136, 205-220. https://doi.org/10.1016/j.future.2022.06.004 (2022).

Zhang, Y. Energy-efficient blockchain-IIoT with mobile edge computing: optimizing resource allocation and multi-hop offloading.
Results Eng.26, 105379. https://doi.org/10.1016/j.rineng.2025.105379 (2025).

Li, S. et al. Multi-user joint task offloading and resource allocation based on mobile edge computing in mining scenarios. Sci.
Rep.15, 16170. https://doi.org/10.1038/s41598-025-00730-y (2025).

Zhu, K. An energy-efficient dynamic offloading algorithm for edge computing based on deep reinforcement learning. IEEE
Access12, 127489-127506. https://doi.org/10.1109/ACCESS.2024.3452190 (2024).

Peng, C., Wang, Q. & Zhang, D. Efficient dynamic task offloading and resource allocation in UAV-assisted MEC for large sport
event. Sci. Rep.15, 11828. https://doi.org/10.1038/s41598-025-96814-w (2025).

Li, P. et al. Eptask: deep reinforcement learning based energy-efficient and priority-aware task scheduling for dynamic vehicular
edge computing. IEEE Trans. Intell. Veh.9, 1830-1846. https://doi.org/10.1109/TIV.2023.3321679 (2024).

Sheng, S. et al. Deep reinforcement learning-based task scheduling in iot edge computing. Sensors21, 1-19. https://doi.org/10.339
0/s21051666 (2021).

Rajammal, K. & Chinnadurai, M. Dynamic load balancing in cloud computing using predictive graph networks and adaptive
neural scheduling. Sci. Rep.15, 22181. https://doi.org/10.1038/s41598-025-97494-2 (2025).

Morariu, C., Morariu, O., Réileanu, S. & Borangiu, T. Machine learning for predictive scheduling and resource allocation in large
scale manufacturing systems. Comput. Ind.120, 986. https://doi.org/10.1016/j.compind.2020.103244 (2020).

Bal, P. K. et al. A joint resource allocation, security with efficient task scheduling in cloud computing using hybrid machine
learning techniques. Sensors22, 369. https://doi.org/10.3390/s22030836 (2022).

Liu, Y. et al. Energy efficient task scheduling for heterogeneous multicore processors in edge computing. Sci. Rep.15, 11819. https:
//doi.org/10.1038/s41598-025-92604-6 (2025).

Ibrahim, M. A. & Askar, S. An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement
learning algorithm. IEEE Access11, 133607-133622. https://doi.org/10.1109/ACCESS.2023.3337034 (2023).

Chen, Y. etal. Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet
of things. IEEE Trans. Ind. Inf.17, 4925-4934. https://doi.org/10.1109/T11.2020.3028963 (2021).

Gupta, P. et al. Prediction of health monitoring with deep learning using edge computing. Meas. Sens.25, 1452. https://doi.org/10.
1016/j.measen.2022.100604 (2023).

Liu, C. et al. Distributed task migration optimization in MEC by extending multi-agent deep reinforcement learning approach.
IEEE Trans. Parallel Distrib. Syst.32, 1603-1614. https://doi.org/10.1109/TPDS.2020.3046737 (2021).

Scientific Reports |

(2026) 16:5456

| https://doi.org/10.1038/s41598-025-34765-y nature portfolio

https://doi.org/10.1016/j.aej.2024.01.067
https://doi.org/10.1016/j.eswa.2024.124716
https://doi.org/10.32604/cmc.2022.017504
https://doi.org/10.3390/informatics11040071
https://doi.org/10.1007/s10586-025-05577-6
https://doi.org/10.3390/app15084307
https://doi.org/10.1109/TNET.2018.2876065
https://doi.org/10.1109/TMC.2018.2828817
https://doi.org/10.1016/j.jksuci.2023.01.001
https://doi.org/10.7717/peerj-cs.2120
https://doi.org/10.1016/j.iot.2022.100667
https://doi.org/10.3390/app11209360
https://doi.org/10.1007/s10489-023-05065-7
https://doi.org/10.1016/j.future.2021.10.019
https://doi.org/10.1109/ACCESS.2020.2981434
https://doi.org/10.1109/ACCESS.2020.2991773
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/JIOT.2019.2913162
https://doi.org/10.1109/TVT.2020.3013990
https://doi.org/10.1186/s13638-020-01801-6
https://doi.org/10.1109/JIOT.2017.2780236
https://doi.org/10.1186/s13634-022-00876-1
https://doi.org/10.1186/s13634-022-00876-1
https://doi.org/10.1007/s11276-022-03099-2
https://doi.org/10.1016/j.future.2022.06.004
https://doi.org/10.1016/j.rineng.2025.105379
https://doi.org/10.1038/s41598-025-00730-y
https://doi.org/10.1109/ACCESS.2024.3452190
https://doi.org/10.1038/s41598-025-96814-w
https://doi.org/10.1109/TIV.2023.3321679
https://doi.org/10.3390/s21051666
https://doi.org/10.3390/s21051666
https://doi.org/10.1038/s41598-025-97494-2
https://doi.org/10.1016/j.compind.2020.103244
https://doi.org/10.3390/s22030836
https://doi.org/10.1038/s41598-025-92604-6
https://doi.org/10.1038/s41598-025-92604-6
https://doi.org/10.1109/ACCESS.2023.3337034
https://doi.org/10.1109/TII.2020.3028963
https://doi.org/10.1016/j.measen.2022.100604
https://doi.org/10.1016/j.measen.2022.100604
https://doi.org/10.1109/TPDS.2020.3046737
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

39. Anand, J. & Karthikeyan, B. Dynamic priority-based task scheduling and adaptive resource allocation algorithms for efficient edge
computing in healthcare systems. Results Eng. https://doi.org/10.1016/j.rineng.2025.104342 (2025).

40. Anand, J. & Karthikeyan, B. EADRL: efficiency-aware adaptive deep reinforcement learning for dynamic task scheduling in edge-
cloud environments. Results Eng. https://doi.org/10.1016/j.rineng.2025.105890 (2025).

41. Lu, H. et al. Edge QoE: computation offloading with deep reinforcement learning for Internet of Things. IEEE Internet Things J.7,
9255-9265. https://doi.org/10.1109/JI0T.2020.2996005 (2020).

42. Tang, M. & Wong, V. W. S. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mob.
Comput.21, 1985-1997. https://doi.org/10.1109/TMC.2020.3036871 (2022).

Author contributions

J. A. developed the conceptualization, methodology, and software, and carried out the formal analysis, investi-
gation and data curation. J. A. also prepared the original draft and created the visualizations. B. K. contributed
to the validation and investigation, supervised the work, and managed the project administration. J. A. and B. K.
jointly contributed to the writing, review, and editing of the manuscript. All authors reviewed the manuscript.

Funding

Open access funding provided by Vellore Institute of Technology. This research did not receive external funding.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2026) 16:5456 | https://doi.org/10.1038/s41598-025-34765-y nature portfolio

https://doi.org/10.1016/j.rineng.2025.104342
https://doi.org/10.1016/j.rineng.2025.105890
https://doi.org/10.1109/JIOT.2020.2996005
https://doi.org/10.1109/TMC.2020.3036871
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Adaptive and intelligent customized deep Q-network for energy-efficient task offloading in mobile edge computing environments
	﻿﻿Related works
	﻿﻿System architecture and proposed methodology
	﻿System architecture
	﻿Architectural overview
	﻿Task model
	﻿Queueing models
	﻿Local hardware: M/M/1 queue
	﻿Edge servers: M/M/c queue
	﻿Cloud delay model

	﻿Resource model
	﻿﻿Problem formulation
	﻿Load Forecaster (GRU-LSTM Module)
	﻿Forecasting objective
	﻿Hybrid GRU-LSTM architecture
	﻿Motivation and role in AICDQN framework
	﻿Training and optimization

	﻿Markov Decision Process (MDP) representation
	﻿State space ﻿￼﻿﻿
	﻿Action space ﻿￼﻿﻿
	﻿Transition dynamics ﻿￼﻿﻿
	﻿Reward function ﻿￼﻿﻿

	﻿Energy cost formulations ﻿￼﻿﻿
	﻿Priority penalty function ﻿￼﻿﻿
	﻿Cost model and objective
	﻿Reinforcement learning reformulation
	﻿﻿Proposed AICDQN framework
	﻿System state encoder
	﻿State representation
	﻿Normalization and preprocessing

	﻿Dynamic dueling double DQN agent ﻿￼﻿﻿
	﻿Energy-aware task scheduler
	﻿Energy models
	﻿Energy-constrained policy masking:

	﻿Learning workflow and convergence
	﻿﻿Simulation and performance evaluation
	﻿Simulation setup
	﻿Task and scheduling parameters
	﻿Hardware and network configuration
	﻿Learning and algorithm settings

	﻿Evaluation metrics
	﻿Compared algorithms
	﻿Results and analysis
	﻿Convergence behavior
	﻿Performance evaluation under varying number of mobile devices

	﻿Varying task arrival rates
	﻿Performance evaluation under varying task deadlines
	﻿Discussion and insight

	﻿﻿Conclusion and future work
	﻿References

