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Abstract

The high cost and complexity of manufacturing recombinant adeno-associated virus
vectors continue to limit the broader application of gene therapies, which offer life-
changing potential for individuals affected by genetic diseases. Although stable producer
cell lines represent a scalable and cost-effective alternative to transient transfection
methods, their development is often delayed by inefficient selection strategies and
extended timelines. In this study, we present a novel application of the glutamine
synthetase-based selection system -commonly used in CHO cells- to a HeLaS3-based
rAAV production platform. By generating glutamine synthetase-knockout HeLaS3 cells
via CRISPR-Cas9 and applying glutamine deprivation under serum-free conditions, we
significantly streamlined the PCL generation process, reducing the timeline to
approximately two months while maintaining rAAV productivity (>1x10'" vg/mL) and
product quality (~70% full capsids). This work establishes a robust and scalable workflow
for rAAV manufacturing, with the potential to enhance accessibility and reduce viral

vector production costs for applications in gene therapy.
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Introduction

Recombinant adeno-associated virus (rAAV)-based vectors have become widely used
in gene therapy, serving as efficient vehicles for in vivo delivery of therapeutic genes.
They combine low pathogenicity and low toxicity with broad cell tropism and the ability
to support long-term gene expression, making them a versatile and safe platform for
treating a wide range of genetic disorders’. However, while more than 300 clinical trials
have been conducted and eight rAAV-based therapies have been approved so far?,
some of these therapies have been withdrawn, and research efforts are currently being
scaled back due to the high manufacturing costs®. These challenges highlight the urgent
need to improve recombinant AAV production processes to reduce costs and ensure the

continued advancement and accessibility of gene therapy.

Current manufacturing systems primarily rely on Human Embryonic Kidney (HEK) 293
transient transfection, which is the most straightforward and fast approach for rAAV
production, offering flexibility during the early stages of product development*. However,
while the transient transfection system offers advantages in terms of overall timelines
and flexibility, it lacks robustness, limits product quality, and poses significant challenges
for large-scale manufacturing—factors that contribute to elevated production costs®. On
the other hand, producer cell lines (PCL) present a promising alternative, providing

higher scalability, robustness, and product quality*.

The HeLaS3 based PCL platform is a well-established and promising system for rAAV
production. Originally developed by Clark et al. (1995)8, this platform has undergone
significant improvements to meet industrial standards and enhance regulatory
compliance”™®. Despite these advancements, establishing a producer cell line remains
time-intensive (typically 6—8 months) and requires a complex protocol involving dual

screening stages, which continues to pose a major challenge’™®.

This study introduces the adaptation of the glutamine synthetase (GS)-based selection
system—uwidely used in Chinese Hamster Ovary (CHO) cells for monoclonal antibody
production—to the HeLaS3 platform for the generation of rAAV producer cell lines. By
integrating this selection strategy into a fully suspension-adapted, serum-free workflow,
we establish a streamlined and scalable process that enables efficient cell line
development and robust rAAV production. Furthermore, we demonstrate that combining
GS-based selection with glutamine (GIn)-deprived conditions not only enables stringent
selection of high-producing clones but also enhances rAAV productivity by reducing
ammonia accumulation during production. Collectively, these results validate a versatile

and scalable platform that addresses key limitations of current transient transfection-
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based systems and supports the development of next-generation gene therapy

manufacturing processes.

Results

Generation and Characterization of GLUL"-HeLaS3 Cell Lines

Previous efforts to implement suspension-based selection using antibiotic resistance
markers in HeLaS3 cells for rAAV production have largely been unsuccessful, often
resulting in poor enrichment and limited cell viability”8. To address this, we aimed to
evaluate the applicability of the GS-based selection system under GIn-depleted, serum-
free conditions. Originally developed for CHO cells, this approach has been also adapted
for HEK293 cells, supporting not only monoclonal antibody' production but also the
expression of various recombinant proteins''. To evaluate the suitability of GS-based
selection systems for rAAV production, we generated a GLUL-knockout (the human
homologous to GS) HelLaS3 cell line. In this selection system, cells become auxotrophic
for GIn, and the gene of interest is co-expressed from a plasmid carrying the GLUL gene.
Upon transfection, the plasmid integrates into the genome, and cells are selected under

GIn-depleted conditions, allowing only those with successful integration to survive'?.

Figure 1A shows the structure of the human GLUL gene and its isoforms, highlighting
exon 5, which encodes the catalytic domain. To disrupt GLUL expression in HeLaS3
cells, we performed CRISPR-Cas9 gene editing using a single guide RNA targeting exon
5. Cells were transfected via nucleofection with CRISPR-Cas9 ribonucleoprotein
complexes. Editing efficiency was assessed three days post-transfection using a T7

endonuclease | assay, which indicated a cleavage rate of approximately 65% (Fig. 1B).

Clones were obtained from the transfected cell pool, through limiting cell dilution. Single
cell cloning was confirmed by imaging at days 0, 3 and 10 after seeding (Fig.1C). Clones
were amplified for further testing and to assess the efficiency of GLUL gene disruption,
we performed Western blot analysis (Fig. 1D) on three CRISPR-edited HelLa clones
(GKO1, GKO2, and GKO3). Interestingly, Clone GKO1 displayed a distinct migration
pattern (lower MW band) compared to wild-type (WT) HelLaS3 cells, indicating the
presence of a truncated GLUL protein. The sgRNA to delete GLUL gene was designed
near the exon 5 splice site, leading us to hypothesize that the splicing site may be
disrupted in this clone. Supporting this, nanopore sequencing analysis of Clone GKO1
(Suppl. Fig 1) revealed a subset of alignment sequences with large deletions in the
splicing site region. Although the GLUL protein is still expressed in this clone, given that

this exon encodes a critical region of the enzyme’s active site', the resulting protein is
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expected to be non-functional despite its expression. In contrast, clones GKO2 and

GKO3 showed no detectable GLUL protein, consistent with complete knockout.

To assess functional GIn auxotrophy, HeLaS3 wild-type and GLUL"- clones (GKO1 and
GKO3) were analysed. Clone GKO2 was excluded from functional assays due to
impaired cell growth, suggesting a potential off-target effect. In Gln-supplemented culture
conditions, no differences in viability were observed between wild-type and GLUL"
clones (Fig. 2A).

When HelLaS3 cells were cultured under glutamine-depleted conditions, a pronounced
decline in cell viability was observed (Fig. 2B). After nine days, a clear distinction
emerged between GLUL" clones and WT cells, with viability decreasing to 9% in GKO1
and 12% in GKO3, compared to 60% in WT cells. As expected, no differences were
observed in GIn depleted conditions in clone GKO3 and GKO1, confirming that GKO1
truncated form of GLUL is not functional. Moreover, WT cells were able to adapt to
growth in this serum-free medium, achieving lower and stable PDTs (~35 h) after
subculturing cells for 42 days (Suppl. Fig. 2) due to overexpression of GLUL endogenous
gene (Suppl. Fig. 3), which would increase the background of this selection methodology.
This data suggests that the use of HeLaS3 GLUL™ clones is required for the GLUL

selection process.

GS-Based Selection and Enrichment of rAAV-Producing Cells

To assess the feasibility of selecting rAAV-producing clones directly in suspension
culture and to streamline the generation of high-rAAV producing HeLaS3 lines, we
transfected the GLUL knockout clone GKO1 with rAAV5 producing plasmid (Suppl. Fig
4). Selection was then carried out under glutamine-depleted, serum-free, suspension
culture conditions (Fig. 3A). As expected, non-transfected control cells failed to expand
under selective pressure (Fig. 3B), confirming the stringency of the Gin-deprived
selection. In contrast, transfected cells showed recovery of viability and resumed
proliferation by day 14 post-transfection (Fig. 3B), achieving 90 % of cell viability after 22

days indicating successful enrichment of transgene-expressing cells.

Following adaptation and enrichment, single-cell cloning was performed under serum-
free conditions (Fig. 3A). Expanded clones were screened for rAAV5S productivity. As
shown in Fig. 3C, a broad range of vector genome titers (vg/mL) was observed among
individual clones, with several exceeding volumetric productivity of 10 vg/mL. Cell
specific production yield (gP, vg/cell) is presented in Fig. 3D, further confirming the

identification of high-producing clones achieving a qP of 3x10% vg/cell. These results
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demonstrate that the suspension-based selection strategy is effective for isolating rAAV-

producing HeLaS3 GLUL " clones with high productivity.

Characterization and Performance of the HeLaS3 GS-Based Platform

To validate the platform performance and characterize stable integration of the
transgene, three high-producing clones were selected for scale-up and further analysis.
As shown in Fig. 4A, rAAV5 volumetric productivity was confirmed in shake flask
cultures, with Clone 1 showing vector genome titers exceeding 4x10'° vg/mL, consistent

with initial screening results.

We next evaluated GLUL expression levels by Western blot analysis (Fig. 4B).
Compared to the parental HeLaS3 GLUL " line (GKO1), the transfected pool and all
selected clones expressed detectable GLUL protein, confirming functional rescue of

GLUL under selective pressure triggered by plasmid integration.

To evaluate transgene stability and integration, we quantified rAAV cassette copy
number by droplet digital PCR (ddPCR) (Fig. 4C). All analyzed clones carried multiple
copies per genome, which correlated with their respective productivity levels (Fig. 4A).
Clone 1 displayed the highest copy number (14.38 £ 0.56 copies/genome), consistent
with its higher rAAV yield. These values are in line with those recently reported for a
comparable platform based on GLUL wild-type cells and an alternative selection

strategy®.

Mass photometry of purified rAAV5 produced in PCL GLUL~'~ cells (GKO1, 66 h post-
infection) revealed two distinct populations, corresponding to molecular masses
matching expected full and empty capsids (Fig. 4D). Full particles comprised ~70% of
the total, confirming efficient genome packaging and platform robustness. Moreover,
these purified vectors were also shown to be infective, as evidenced by the presence of

GFP-positive cells following transduction (Suppl. Fig. 5).

This selection workflow was also validated with the rAAV2 serotype (Suppl. Fig. 6). The
GKO1 clone was transfected with a plasmid encoding rAAV2 carrying GFP as the
transgene (Suppl. Fig. 1) and selected under glutamine-depleted conditions. After pool
recovery (Suppl. Fig. 6A), cells were seeded as single cells in serum-free conditions.
Following single-cell outgrowth, clones were tested for rAAV production (Suppl. Fig. 6B),
and the best-producing clones were successfully adapted to suspension culture,
achieving titers above 10'° vg/mL (Suppl. Fig. 6C). This confirms the versatility and
robustness of the approach across different serotypes. Moreover, the rAAV2 vectors
generated using this GS—/~ based platform demonstrated the ability to transduce cells,

as shown in Suppl. Fig. 7.
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As rAAV production does not occur in growth medium, the HeLaS3 platform requires
separation of cell expansion and vector manufacturing into two distinct phases using
dedicated media: a growth medium to support proliferation and a production medium to
enable vector generation’. To evaluate the role of GIn in this selection system in both
phases, we assessed its impact on cell growth and rAAV productivity under
supplemented and deprived conditions. In growth medium, cells cultured without Gin
exhibited a population doubling time of 35 + 0.6 h, whereas GIn supplementation
significantly enhanced proliferation, reducing doubling time to 26 + 0.7 h (Fig. 5A).
Accordingly, GIn-supplemented medium was used for cell expansion and subsequent

experiments.

Next, we tested rAAV productivity in GIn-deprived and supplemented media. Notably,
rAAV5 production was markedly higher under Gin-depleted conditions, yielding an
almost three-fold increase in volumetric productivity compared to GIn-supplemented
cultures (1.3x10"" £ 0.4x10"" vg/mL vs. 0.5x10" + 0.09x10" vg/mL; Fig. 5B). qP was
also enhanced, reaching 2.1x105 + 0.4x105 vg/cell in GIn-deprived conditions versus
0.7x10%+ 0.1x10°% vg/cell with GIn. Moreover, ammonia (NH3) accumulation, a byproduct
of GIn metabolism, was substantially reduced in GIn-deprived cultures (0.17 £ 0.05 mM
vs. 2.19 £ 0.37 mM in Gin-supplemented conditions; Fig. 5C), with negligible production
rates in GIn-depleted conditions (-0.0022 £ 0.0019 mM/108 cells-h-' vs. 0.0511 + 0.0042
mM/108 cells-h'; Fig. 5D). These findings suggest that reduced ammonia accumulation

contributes to enhanced rAAV productivity under Gin-deprived conditions.

Discussion

The manufacturing of recombinant rAAV vectors remains a critical bottleneck in gene
therapy development, primarily due to high production costs and the limited scalability of
transient transfection methods currently used for production. Although transient
transfection in HEK293 cells dominates industrial practice, its dependence on GMP-
grade plasmids and susceptibility to batch-to-batch variability significantly increases cost
and complexity. In contrast, stable producer cell lines offer a promising alternative,
providing improved scalability and cost-effectiveness. However, their widespread
adoption has been hindered by extended development timelines, which remain a major

barrier to establishing this approach as a viable solution for the future of gene therapy*13.

In this study, we adapted the GS-based selection system - widely used in CHO cell
platforms for monoclonal antibody production - for the HeLaS3-based rAAV production
platform. HeLaS3 based production platform were selected for this study due to its

robustness and recent advances in upstream and downstream processing”'4. The
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approach here presented addresses a key limitation of traditional dual-selection
workflows used in the HeLaS3 platform, which typically require 6—8 months for PCL
generation”2. By enabling direct selection and single-cell cloning in suspension cultures,
this approach reduced the timeline to approximately two months, aligning with industry

efforts to accelerate cell line development.

A critical factor in GS-based selection is the GIn metabolism. Consistent with previous
reports, GIn deprivation initially caused growth arrest and viability loss in wild-type
HelLaS3 cells''®. However, adaptation via upregulation of endogenous GLUL
compromised selection stringency, necessitating GLUL knockout to enforce Gin
auxotrophy (Suppl. Fig. 2 and Suppl. Fig. 3). This strategy mirrors previous findings in
HEK293 and CHO systems, where GS knockout significantly improved selection
efficiency'®'7. Our GLUL knockout clones exhibited strict GIn dependence, validating

their suitability as host cells for rAAV production.

Following selection, engineered cells expressing exogenous GLUL and rAAV
components achieved high titers (>10'" vg/mL) under serum-free suspension conditions.
Notably, while GIn-free media were essential during selection, supplementation post-
selection improved cell growth and viability, pointing to a limitation in the ability to
produce enough GIn for cell’'s metabolic needs. Interestingly, during the production
phase, Gin-free conditions enhanced rAAV yields. We hypothesize that (1) reduced
ammonia accumulation - known to negatively impact rAAV quality at concentrations >1
mM™ - and (2) potential transcriptional coupling between GLUL and rAAV genes may

contribute to this effect, possibly enhancing Rep gene amplification?®.

This platform consistently delivers high-quality rAAV particles with approximately 70%
full capsids, significantly outperforming conventional transient transfection-based
production systems, which typically achieve only 10-30% full capsids depending on the
serotype*. This elevated proportion of full particles not only enhances overall product
quality but also represents a substantial advantage for DSP; higher full-to-empty ratios
reduce the burden on purification steps, improve process efficiency, and facilitate
compliance with stringent regulatory expectations for product consistency and potency.
Furthermore, its applicability to different serotypes (rAAV2 and rAAVS) underscores its
versatility. These results align with recent reports advocating for stable cell line platforms
as a scalable alternative to transient systems, which remain constrained by cost and

variability'8.1°.

In conclusion, this GS-based selection strategy significantly accelerates PCL

development, reducing current timelines from 6—-8 months to approximately 2 months,
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while delivering high titers and enhanced product quality. Historically, key opinion leaders
in the gene therapy field have faced a strategic dilemma at project inception: whether to
rely on transient transfection for speed or invest in generating a PCL for long-term
scalability and cost efficiency. Too often, the transient route is selected for rapid entry
into clinical ftrials, only to encounter a manufacturing bottleneck in late-stage
development—where capacity constraints, variability, and DSP challenges jeopardize
readiness for process performance qualification and biologics license application
submissions'9-2'. At that stage, pivoting to a PCL is typically impractical because it
triggers major chemistry, manufacturing, and controls (CMC) changes, comparability
risks, and timeline resets. By compressing PCL generation to ~2 months without
compromising quality, our approach resolves this conundrum: enabling early adoption of
stable PCLs, de-risking late-stage manufacturing, streamlining DSP with higher full
capsid content, and maintaining a seamless path to pivotal supply and

commercialization.

Future work will focus on optimizing upstream processes of this. GS-based platform by
leveraging knowledge from established CHO cell processes and GS-based selection
systems implemented for other biologics production platforms. This includes media or
feed optimization to enhance productivity and robustness. Additionally, efforts will be
directed at expanding the platform to different serotypes and therapeutic cargos, while
ensuring the integrity of the packaged rAAV genome and confirming the absence of host-
related impurities (possible co-packaged). Finally, the platform will be scaled to perfusion
bioreactors to enable continuous manufacturing—an approach increasingly recognized

as critical for meeting clinical demand'®.
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Materials and Methods

Cell culture

HelLaS3 cell line was acquired from ATCC (CCL-2.2) and maintained in adherent culture
at 37 °C and in a 5 % CO, atmosphere, in Dulbecco’s Modified Eagle’s Medium (DMEM)
(10-013-CV, Corning) supplemented with 10 % Fetal Bovine Serum (FBS) (1027016,
Gibco). Cells were subcultured every 3 to 4 days, at approximately 80% confluency.
HelLaS3 cell line and derived clones were maintained in suspension culture in EX-CELL
HelLa Serum-Free Medium (14591 C, Sigma-Aldrich) containing 6 mM L-glutamine, at
37 °C in a 5 % CO, atmosphere under agitation at 125 rpm (25 mm orbital diameter).
Cells were subcultured every 3 to 4 days at a cell concentration of 0.3x108 cell/mL. PDT
was calculated by the equation: PDT (h) = In (2)/u where p = (In [cell concentration 2] —

In [cell concentration 1])/(time of measurement 2 (h)/time of measurement 1(h)).

Generation of GLUL edited cell lines

To test GLUL based selection system, GLUL gene edited cells were generated using
CRISPR-Cas9. The insertion of the CRISPR-Cas9 protein and the sgRNA was
performed by nucleofection, using Lonza 4D-Nucleofector®, using the SE Cell Line Kit L
(LONV4XC-1012, Lonza). A total of 8x10° HeLaS3 cells were centrifuged (90 g, 10 min)
and resuspended in 10 yL RNP solution (2 ug/uL Cas9-GFP (ALT-R S. p. Cas9-GFP
V3; 10008161, IDT) and 24 nM sgRNA (5" - AAAUUCCACUCAGGCAACUC - 3’) + 30
ML nucleofection solution. Cells were nucleofected with program DS-150 and seeded in
1 mL of DMEM + 10 % FBS + 4 mM L-glutamine. Five days after editing the GLUL gene,
cells were seeded at a concentration of 1 cell/well in a 96 well-plate in DMEM + 10 %
FBS + 4 mM L-glutamine. To guarantee clonality, the growth was followed by imaging
the wells at a 4x amplification using the cell imaging multimode reader CytationTM 3

(BioTek), at days 0 (1 h after plating), 3 and 10 after plating.

CRISPR-Cas)9 editing efficiency on GLUL gene

CRISPR-Cas9 editing efficiency assay was performed based on the T7 Endonuclease |-
based mutation detection method with the EnGen® Mutation Detection Kit (NEB
#E3321) following manufacturer’s protocol. Fragments were run in a 4-20 %
polyacrylamide TBE gel (EC62255BOX, Invitrogen) in a 0.5x TBE buffer (Novex). The
percentage of gene modification was estimated by the ratio between the edited and wild-

type band, previously normalized by respective molecular weight.

Western Blot
Cell pellets for western blot were homogenized in lysis buffer consisting of 4x NUPAGE™
LDS Sample Buffer (NP0007, Invitrogen) and 10x NUPAGE™ Sample Reducing Agent

10
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(NP0O0O04, Invitrogen) diluted in molecular grade water and incubated at 70 °C for 10 min.
Samples were run in a 4-12 % polyacrylamide gel (NP0321BOX, Invitrogen). Gel was
transferred to a nitrocellulose membrane. The membrane was incubated with anti-GLUL
(1:5000, ab7359, abcam) and anti-actin (1:5000, A5441, Sigma) antibodies. The
secondary antibodies used were Anti-rabbit, (NA9341, Cytiva), for GLUL detection, and
Anti-mouse (NA931-1ML, Cytiva), for B-actin detection, diluted 1:50000. Membranes

were imaged using iBright (Invitrogen).

Digital droplet PCR quantification of copy number

The ddPCR reaction was performed with ddPCR Supermix for Probes (No dUTP)
(1863024, Bio-Rad), primers (900 nM final concentration) for the albumin gene (Fw: 5’-
GCTGTGAAAAACCTCTGTTGG-3’; Rv: 5-GACATCCTTTGCCTCAGCAT-3’) and the
BGH poly A motif (Fw: 5-TCTAGTTGCCAGCCATCTGTTGT-3; 5'-
TGGGAGTGGCACCTTCCA-3’), as a proxy plasmid insertion, and probes (250 nM final
concentration) for the same sequences (5’-/5-
HEX/AGTGGAAAA/ZEN/TGATGAGATGCCTGCT/3/AbkFQ/-3’ and 5’-/56-FAM/
TCCCCCGTG/ZEN/CCTTCCTTGACC/3/AbkFQ/-3’, respectively). ddPCR  was
performed using the QX200 AutoDG Droplet Digital PCR System (Bio-rad).

Establishment of rAAV producers cell lines

HelLaS3 cells with GLUL gene knock-out were nucleofected with the rAAV-GLUL
plasmid, as previously published’. Cells were initially cultured for 3 days in EX-CELL
HelLa medium supplemented with glutamine. Following this period, the medium was
replaced with EX-CELL Hela serum-free medium lacking glutamine. Cells were seeded
at a density of 0.5 x 10(1 cells/mL and subcultured every 3—4 days by complete medium
exchange. After three weeks selected cells were tested for rAAV production as described
below and seeded at 3 cell/well in serum-free medium with a single-cell growth
supplement to generate single-cell clones as described previously °. Single-cell clones

were further tested for rAAV production as described previously 7.

rAAV production and titration

To test rAAV production in suspension, cells were seeded at 0.5%10° cell/mL in serum-
free medium diluted in DMEM, with supplementation and infected with wtAd5 at an MOI
of 1. Cells were maintained for 3 days at 37 °C and in a 5 % CO, atmosphere under
agitation at 125 rpm, in 25 mm orbital diameter. Cells were harvested for rAAV

quantification according to previously published protocol’.

rAAVS5 Purification and Full-to-Empty Capsid Quantification

11
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Producer cells were harvested by centrifugation at 300 x g for 5 min and resuspended
in 1 mL of lysis buffer (60 mM Tris-HCI, pH 8.0; 20 mM MgClz; 1% Tween-20).
Benzonase was added at 150 U/mL, and the suspension was incubated for 1.5 h at
3711°C to degrade nucleic acids. Subsequently, NaCl was added to a final concentration
of 200 mM, followed by a 15 min incubation at 3711°C. The lysate was clarified by

centrifugation at 4,000 x g for 5 min and filtration through a 0.45 pm membrane.

Purification of rAAV5 particles was performed using PhyTip™ columns according to the
manufacturer’s protocol, with minor adjustments. Columns were equilibrated with 50 mM
Tris (pH 8.0), 350 mM NacCl, and 0.001% Pluronic F-68, followed by six capture cycles
of the sample. Washing was carried out in two steps: first with 50 mM Tris (pH 8.0), 1 M
NaCl, and 0.001% Pluronic, and then with 50 mM Tris (pH 8.0) containing 0.001%
Pluronic. Elution was performed in four cycles using 50 mM citric acid (pH 2.5) with
0.001% Pluronic. The eluate (approximately 60 pyL) was immediately neutralized with
Tris buffer (pH 9.0) at a 1:5 dilution. The ratio of full to empty capsids was determined by

mass photometry using a SamuxMP instrument (Refeyn).

rAAYV Infectious Units Quantification

rAAV infectious titer was determined as described in Fernandes et al 2025 22 with some
modifications. HeLa RC32 were plated in 96 well plates at a cell concentration of 15 000
cells/well in DMEM + 10% FBS + 4 mM L Glutamine and incubated overnight at 37 °C in
a 5% CO, atmosphere. Cells were infected at an rAAV MOI of 6.67x10* vg/cell in DMEM
+ 1% FBS + 4 mM L Glutamine containing 3.20x108 wtAd5 DNAse resistant
genomes/mL. Cells were infected by total medium exchange and incubated for 2 h.
Subsequently, the culture medium was diluted 1:2 with DMEM + 10% FBS + 4 mM L
Glutamine. Images were acquired at 48 h post-infection with 10x amplification using

MICA microscope (Leica).
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Figure Legends

Figure 1. Generation and validation of GLUL" HeLaS3 cell lines.

(A) Schematic representation of the GLUL gene structure, showing three transcript
variants with exons represented as boxes and coding sequences highlighted in yellow.
Exon 5, where the protein catalytic site is located, is also highlighted in orange. (B) T7
endonuclease | assay of PCR-amplified genomic DNA from nucleofected cells. Original
gel is presented in Supplementary Figure 7. (C) Phase-contrast microscopy images of
GLUL" clones GKO1, GKO2, and GKO3 at Day 0, Day 3, and Day 10 post single-cell
seeding. White arrows indicate clonal outgrowth. (D) Western blot analysis of GLUL
protein expression in parental HeLaS3 (GLUL"") and GLUL clones. B-actin was used

as a loading control. Original blots are presented in Supplementary Figure 8.

Figure 2. Viability of HeLaS3 wild-type and GLUL"- clones under GIin-supplemented
and GIn-depleted conditions.

Cells were cultured in standard conditions in serum-containing medium supplemented
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with GIn (A) or depleted of GIn (B). Five cell viability measurements were taken by Trypan

blue exclusion method over a 9 day period.

Figure 3. Establishment and characterization of rAAV producer clones using
GLUL-based selection in suspension-adapted HeLaS3 cells.

(A) Schematic overview of the streamlined 2-month workflow for rAAV producer cell line
generation. The process includes plasmid transfection, 3-week selection in GIn-depleted
suspension culture, 4-week single-cell cloning, and expansion of selected producer
clones. (B) Cell viability and viable cell density (VCD) of HeLaS3 cells non-transfected
(in black) or transfected with the rAAV-GLUL producer plasmid (in pink) cultured in Gin-
depleted EX-CELL medium over time. The selected pool underwent single-cell cloning,
and 120 wells with clonal outgrowth were screened for productivity. rAAV5 vector
genome titers (vg/mL) (C) and gP (D) were measured in culture cell lysates of selected

clones by qPCR.

Figure 4. Characterization of rAAV5 production and GLUL expression in HeLaS3-
derived cell lines.

(A) Quantification of rAAVS vector genome (vg) titers expressed as vg/mL for Clone 1,
Clone 2, and Clone 3 across different amplification stages: primary screen, secondary
screen (static culture), and suspension culture production. Data shown as mean + SD
(n=2) is presented for suspension culture conditions.

(B) Western blot analysis of GLUL protein levels with B-actin as loading control across
HelLaS3 GLUL ™", transfected Pool, Clone 1, Clone 2, and Clone 3. Original blots are
presented in Supplementary Figure 9. (C) Digital Droplet PCR analysis of rAAV5
plasmid copy number per cell for the same cell lines. Data shown as mean + SD (n=2).
(D) Mass photometry analysis of rAAVS5 particles purified from Clone 1 production,
showing empty capsids (~3.7 MDa) and full capsids (~4.7 MDa).

Figure 5. Optimization of rAAVS5 production in HeLaS3-derived cell lines.

(A) Population doubling time (PDT) and viability of rAAVS producer Clone 1 grown in the
presence (black square) or absence (pink circle) of Gln in growth media. Cells were
cultured in standard serum-free conditions and subcultured every 3-4 days. (B) rAAV5
vector genome titers (vg/mL; black bars) and Cell specific production yield (gP, vg/cell;
pink bars) measured in culture cell lysates by gqPCR of Clone 1 with production media
either supplemented or depleted of GIn. Data shown as mean + SD (n=4). Statistical
analysis was performed using unpaired t-test with Welch’s correction (*: p < 0.05; ***: p
< 0.001). (C) Representation of ammonia (NH3;) concentration (mM) up to 66 h post
wtAd5 infection, either in Gln-supplemented medium (black circles) or Gln-depleted (pink

squares). Data shown as mean + SD (n=4). (D) GIn and NH; metabolic rates (mM/10°
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cells h-') with production media either supplemented (black bars) or depleted (pink bars)

in GIn. Data shown as mean + SD (n=3). Statistical analysis was performed using

unpaired t-test with Welch’s correction (*: p < 0.05; ***: p < 0.001).
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