
Streamlined rAAV HeLaS3 producer cell line generation via GS selection

Received: 10 October 2025

Accepted: 31 December 2025

Published online: 09 January 2026

Cite this article as: Antunes M., Moura F., Sebastian I.R. *et al.* Streamlined rAAV HeLaS3 producer cell line generation via GS selection. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-025-34826-2>

Mariana Antunes, Filipa Moura, Ivy Rose Sebastian, Paula Alves, Patrícia Gomes-Alves & Jose M. Escandell

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Streamlined rAAV HeLaS3 Producer Cell Line Generation via GS Selection**
2 Mariana Antunes^{1,2}, Filipa Moura^{1,2}, Ivy Rose Sebastian³, Paula Alves^{1,2}, Patrícia
3 Gomes-Alves^{1,2}, Jose M Escandell^{1,2,†}

4 ¹*iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras,
5 Portugal*

6 ²*Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de
7 Lisboa, Av. da República, 2780-157 Oeiras, Portugal*

8 ³*BOKU University, Institute of Animal Cell Technology and Systems Biology,
9 Department of Biotechnology and Food Science, Muthgasse 11, 1190 Vienna, Austria*

10

11

12

13 [†]Corresponding author

14 **Keywords:** Glutamine synthetase (*GLUL*), rAAV production, HeLaS3 cell line, Producer
15 cell line (PCL), Gene therapy manufacturing

ARTICLE IN PRESS

17 **Abstract**

18 The high cost and complexity of manufacturing recombinant adeno-associated virus
19 vectors continue to limit the broader application of gene therapies, which offer life-
20 changing potential for individuals affected by genetic diseases. Although stable producer
21 cell lines represent a scalable and cost-effective alternative to transient transfection
22 methods, their development is often delayed by inefficient selection strategies and
23 extended timelines. In this study, we present a novel application of the glutamine
24 synthetase-based selection system -commonly used in CHO cells- to a HeLaS3-based
25 rAAV production platform. By generating glutamine synthetase-knockout HeLaS3 cells
26 via CRISPR-Cas9 and applying glutamine deprivation under serum-free conditions, we
27 significantly streamlined the PCL generation process, reducing the timeline to
28 approximately two months while maintaining rAAV productivity ($>1\times10^{11}$ vg/mL) and
29 product quality (~70% full capsids). This work establishes a robust and scalable workflow
30 for rAAV manufacturing, with the potential to enhance accessibility and reduce viral
31 vector production costs for applications in gene therapy.

ARTICLE IN PRESS

32 Introduction

33 Recombinant adeno-associated virus (rAAV)-based vectors have become widely used
34 in gene therapy, serving as efficient vehicles for *in vivo* delivery of therapeutic genes.
35 They combine low pathogenicity and low toxicity with broad cell tropism and the ability
36 to support long-term gene expression, making them a versatile and safe platform for
37 treating a wide range of genetic disorders¹. However, while more than 300 clinical trials
38 have been conducted and eight rAAV-based therapies have been approved so far²,
39 some of these therapies have been withdrawn, and research efforts are currently being
40 scaled back due to the high manufacturing costs³. These challenges highlight the urgent
41 need to improve recombinant AAV production processes to reduce costs and ensure the
42 continued advancement and accessibility of gene therapy.

43 Current manufacturing systems primarily rely on Human Embryonic Kidney (HEK) 293
44 transient transfection, which is the most straightforward and fast approach for rAAV
45 production, offering flexibility during the early stages of product development⁴. However,
46 while the transient transfection system offers advantages in terms of overall timelines
47 and flexibility, it lacks robustness, limits product quality, and poses significant challenges
48 for large-scale manufacturing—factors that contribute to elevated production costs⁵. On
49 the other hand, producer cell lines (PCL) present a promising alternative, providing
50 higher scalability, robustness, and product quality⁴.

51 The HeLaS3 based PCL platform is a well-established and promising system for rAAV
52 production. Originally developed by Clark et al. (1995)⁶, this platform has undergone
53 significant improvements to meet industrial standards and enhance regulatory
54 compliance^{7–9}. Despite these advancements, establishing a producer cell line remains
55 time-intensive (typically 6–8 months) and requires a complex protocol involving dual
56 screening stages, which continues to pose a major challenge^{7–9}.

57 This study introduces the adaptation of the glutamine synthetase (GS)-based selection
58 system—widely used in Chinese Hamster Ovary (CHO) cells for monoclonal antibody
59 production—to the HeLaS3 platform for the generation of rAAV producer cell lines. By
60 integrating this selection strategy into a fully suspension-adapted, serum-free workflow,
61 we establish a streamlined and scalable process that enables efficient cell line
62 development and robust rAAV production. Furthermore, we demonstrate that combining
63 GS-based selection with glutamine (Gln)-deprived conditions not only enables stringent
64 selection of high-producing clones but also enhances rAAV productivity by reducing
65 ammonia accumulation during production. Collectively, these results validate a versatile
66 and scalable platform that addresses key limitations of current transient transfection-

67 based systems and supports the development of next-generation gene therapy
68 manufacturing processes.

69 **Results**

70 **Generation and Characterization of *GLUL*^{-/-} HeLaS3 Cell Lines**

71 Previous efforts to implement suspension-based selection using antibiotic resistance
72 markers in HeLaS3 cells for rAAV production have largely been unsuccessful, often
73 resulting in poor enrichment and limited cell viability^{7,8}. To address this, we aimed to
74 evaluate the applicability of the GS-based selection system under Gln-depleted, serum-
75 free conditions. Originally developed for CHO cells, this approach has been also adapted
76 for HEK293 cells, supporting not only monoclonal antibody¹⁰ production but also the
77 expression of various recombinant proteins¹¹. To evaluate the suitability of GS-based
78 selection systems for rAAV production, we generated a *GLUL*-knockout (the human
79 homologous to GS) HeLaS3 cell line. In this selection system, cells become auxotrophic
80 for Gln, and the gene of interest is co-expressed from a plasmid carrying the *GLUL* gene.
81 Upon transfection, the plasmid integrates into the genome, and cells are selected under
82 Gln-depleted conditions, allowing only those with successful integration to survive¹².

83 Figure 1A shows the structure of the human *GLUL* gene and its isoforms, highlighting
84 exon 5, which encodes the catalytic domain. To disrupt *GLUL* expression in HeLaS3
85 cells, we performed CRISPR-Cas9 gene editing using a single guide RNA targeting exon
86 5. Cells were transfected via nucleofection with CRISPR-Cas9 ribonucleoprotein
87 complexes. Editing efficiency was assessed three days post-transfection using a T7
88 endonuclease I assay, which indicated a cleavage rate of approximately 65% (Fig. 1B).

89 Clones were obtained from the transfected cell pool, through limiting cell dilution. Single
90 cell cloning was confirmed by imaging at days 0, 3 and 10 after seeding (Fig. 1C). Clones
91 were amplified for further testing and to assess the efficiency of *GLUL* gene disruption,
92 we performed Western blot analysis (Fig. 1D) on three CRISPR-edited HeLa clones
93 (GKO1, GKO2, and GKO3). Interestingly, Clone GKO1 displayed a distinct migration
94 pattern (lower MW band) compared to wild-type (WT) HeLaS3 cells, indicating the
95 presence of a truncated GLUL protein. The sgRNA to delete *GLUL* gene was designed
96 near the exon 5 splice site, leading us to hypothesize that the splicing site may be
97 disrupted in this clone. Supporting this, nanopore sequencing analysis of Clone GKO1
98 (Suppl. Fig 1) revealed a subset of alignment sequences with large deletions in the
99 splicing site region. Although the GLUL protein is still expressed in this clone, given that
100 this exon encodes a critical region of the enzyme's active site¹⁰, the resulting protein is

101 expected to be non-functional despite its expression. In contrast, clones GKO2 and
102 GKO3 showed no detectable GLUL protein, consistent with complete knockout.

103 To assess functional Gln auxotrophy, HeLaS3 wild-type and *GLUL*^{-/-} clones (GKO1 and
104 GKO3) were analysed. Clone GKO2 was excluded from functional assays due to
105 impaired cell growth, suggesting a potential off-target effect. In Gln-supplemented culture
106 conditions, no differences in viability were observed between wild-type and *GLUL*^{-/-}
107 clones (Fig. 2A).

108 When HeLaS3 cells were cultured under glutamine-depleted conditions, a pronounced
109 decline in cell viability was observed (Fig. 2B). After nine days, a clear distinction
110 emerged between *GLUL*^{-/-} clones and WT cells, with viability decreasing to 9% in GKO1
111 and 12% in GKO3, compared to 60% in WT cells. As expected, no differences were
112 observed in Gln depleted conditions in clone GKO3 and GKO1, confirming that GKO1
113 truncated form of GLUL is not functional. Moreover, WT cells were able to adapt to
114 growth in this serum-free medium, achieving lower and stable PDTs (~35 h) after
115 subculturing cells for 42 days (Suppl. Fig. 2) due to overexpression of *GLUL* endogenous
116 gene (Suppl. Fig. 3), which would increase the background of this selection methodology.
117 This data suggests that the use of HeLaS3 *GLUL*^{-/-} clones is required for the *GLUL*
118 selection process.

119 **GS-Based Selection and Enrichment of rAAV-Producing Cells**

120 To assess the feasibility of selecting rAAV-producing clones directly in suspension
121 culture and to streamline the generation of high-rAAV producing HeLaS3 lines, we
122 transfected the *GLUL* knockout clone GKO1 with rAAV5 producing plasmid (Suppl. Fig
123 4). Selection was then carried out under glutamine-depleted, serum-free, suspension
124 culture conditions (Fig. 3A). As expected, non-transfected control cells failed to expand
125 under selective pressure (Fig. 3B), confirming the stringency of the Gln-deprived
126 selection. In contrast, transfected cells showed recovery of viability and resumed
127 proliferation by day 14 post-transfection (Fig. 3B), achieving 90 % of cell viability after 22
128 days indicating successful enrichment of transgene-expressing cells.

129 Following adaptation and enrichment, single-cell cloning was performed under serum-
130 free conditions (Fig. 3A). Expanded clones were screened for rAAV5 productivity. As
131 shown in Fig. 3C, a broad range of vector genome titers (vg/mL) was observed among
132 individual clones, with several exceeding volumetric productivity of 10¹⁰ vg/mL. Cell
133 specific production yield (qP, vg/cell) is presented in Fig. 3D, further confirming the
134 identification of high-producing clones achieving a qP of 3×10⁵ vg/cell. These results

135 demonstrate that the suspension-based selection strategy is effective for isolating rAAV-
136 producing HeLaS3 *GLUL*^{-/-} clones with high productivity.

137 **Characterization and Performance of the HeLaS3 GS-Based Platform**

138 To validate the platform performance and characterize stable integration of the
139 transgene, three high-producing clones were selected for scale-up and further analysis.
140 As shown in Fig. 4A, rAAV5 volumetric productivity was confirmed in shake flask
141 cultures, with Clone 1 showing vector genome titers exceeding 4×10^{10} vg/mL, consistent
142 with initial screening results.

143 We next evaluated *GLUL* expression levels by Western blot analysis (Fig. 4B).
144 Compared to the parental HeLaS3 *GLUL*^{-/-} line (GKO1), the transfected pool and all
145 selected clones expressed detectable *GLUL* protein, confirming functional rescue of
146 *GLUL* under selective pressure triggered by plasmid integration.

147 To evaluate transgene stability and integration, we quantified rAAV cassette copy
148 number by droplet digital PCR (ddPCR) (Fig. 4C). All analyzed clones carried multiple
149 copies per genome, which correlated with their respective productivity levels (Fig. 4A).
150 Clone 1 displayed the highest copy number (14.38 ± 0.56 copies/genome), consistent
151 with its higher rAAV yield. These values are in line with those recently reported for a
152 comparable platform based on *GLUL* wild-type cells and an alternative selection
153 strategy⁹.

154 Mass photometry of purified rAAV5 produced in PCL *GLUL*^{-/-} cells (GKO1, 66 h post-
155 infection) revealed two distinct populations, corresponding to molecular masses
156 matching expected full and empty capsids (Fig. 4D). Full particles comprised ~70% of
157 the total, confirming efficient genome packaging and platform robustness. Moreover,
158 these purified vectors were also shown to be infective, as evidenced by the presence of
159 GFP-positive cells following transduction (Suppl. Fig. 5).

160 This selection workflow was also validated with the rAAV2 serotype (Suppl. Fig. 6). The
161 GKO1 clone was transfected with a plasmid encoding rAAV2 carrying GFP as the
162 transgene (Suppl. Fig. 1) and selected under glutamine-depleted conditions. After pool
163 recovery (Suppl. Fig. 6A), cells were seeded as single cells in serum-free conditions.
164 Following single-cell outgrowth, clones were tested for rAAV production (Suppl. Fig. 6B),
165 and the best-producing clones were successfully adapted to suspension culture,
166 achieving titers above 10^{10} vg/mL (Suppl. Fig. 6C). This confirms the versatility and
167 robustness of the approach across different serotypes. Moreover, the rAAV2 vectors
168 generated using this GS^{-/-} based platform demonstrated the ability to transduce cells,
169 as shown in Suppl. Fig. 7.

170 As rAAV production does not occur in growth medium, the HeLaS3 platform requires
171 separation of cell expansion and vector manufacturing into two distinct phases using
172 dedicated media: a growth medium to support proliferation and a production medium to
173 enable vector generation⁷. To evaluate the role of Gln in this selection system in both
174 phases, we assessed its impact on cell growth and rAAV productivity under
175 supplemented and deprived conditions. In growth medium, cells cultured without Gln
176 exhibited a population doubling time of 35 ± 0.6 h, whereas Gln supplementation
177 significantly enhanced proliferation, reducing doubling time to 26 ± 0.7 h (Fig. 5A).
178 Accordingly, Gln-supplemented medium was used for cell expansion and subsequent
179 experiments.

180 Next, we tested rAAV productivity in Gln-deprived and supplemented media. Notably,
181 rAAV5 production was markedly higher under Gln-depleted conditions, yielding an
182 almost three-fold increase in volumetric productivity compared to Gln-supplemented
183 cultures ($1.3 \times 10^{11} \pm 0.4 \times 10^{11}$ vg/mL vs. $0.5 \times 10^{11} \pm 0.09 \times 10^{11}$ vg/mL; Fig. 5B). qP was
184 also enhanced, reaching $2.1 \times 10^5 \pm 0.4 \times 10^5$ vg/cell in Gln-deprived conditions versus
185 $0.7 \times 10^5 \pm 0.1 \times 10^5$ vg/cell with Gln. Moreover, ammonia (NH₃) accumulation, a byproduct
186 of Gln metabolism, was substantially reduced in Gln-deprived cultures (0.17 ± 0.05 mM
187 vs. 2.19 ± 0.37 mM in Gln-supplemented conditions; Fig. 5C), with negligible production
188 rates in Gln-depleted conditions (-0.0022 ± 0.0019 mM/ 10^6 cells·h⁻¹ vs. 0.0511 ± 0.0042
189 mM/ 10^6 cells·h⁻¹; Fig. 5D). These findings suggest that reduced ammonia accumulation
190 contributes to enhanced rAAV productivity under Gln-deprived conditions.

191 Discussion

192 The manufacturing of recombinant rAAV vectors remains a critical bottleneck in gene
193 therapy development, primarily due to high production costs and the limited scalability of
194 transient transfection methods currently used for production. Although transient
195 transfection in HEK293 cells dominates industrial practice, its dependence on GMP-
196 grade plasmids and susceptibility to batch-to-batch variability significantly increases cost
197 and complexity. In contrast, stable producer cell lines offer a promising alternative,
198 providing improved scalability and cost-effectiveness. However, their widespread
199 adoption has been hindered by extended development timelines, which remain a major
200 barrier to establishing this approach as a viable solution for the future of gene therapy^{4,13}.

201 In this study, we adapted the GS-based selection system - widely used in CHO cell
202 platforms for monoclonal antibody production - for the HeLaS3-based rAAV production
203 platform. HeLaS3 based production platform were selected for this study due to its
204 robustness and recent advances in upstream and downstream processing^{7,14}. The

205 approach here presented addresses a key limitation of traditional dual-selection
206 workflows used in the HeLaS3 platform, which typically require 6–8 months for PCL
207 generation^{7,8}. By enabling direct selection and single-cell cloning in suspension cultures,
208 this approach reduced the timeline to approximately two months, aligning with industry
209 efforts to accelerate cell line development.

210 A critical factor in GS-based selection is the Gln metabolism. Consistent with previous
211 reports, Gln deprivation initially caused growth arrest and viability loss in wild-type
212 HeLaS3 cells^{15,16}. However, adaptation via upregulation of endogenous *GLUL*
213 compromised selection stringency, necessitating *GLUL* knockout to enforce Gln
214 auxotrophy (Suppl. Fig. 2 and Suppl. Fig. 3). This strategy mirrors previous findings in
215 HEK293 and CHO systems, where GS knockout significantly improved selection
216 efficiency^{10,17}. Our *GLUL* knockout clones exhibited strict Gln dependence, validating
217 their suitability as host cells for rAAV production.

218 Following selection, engineered cells expressing exogenous *GLUL* and rAAV
219 components achieved high titers ($>10^{11}$ vg/mL) under serum-free suspension conditions.
220 Notably, while Gln-free media were essential during selection, supplementation post-
221 selection improved cell growth and viability, pointing to a limitation in the ability to
222 produce enough Gln for cell's metabolic needs. Interestingly, during the production
223 phase, Gln-free conditions enhanced rAAV yields. We hypothesize that (1) reduced
224 ammonia accumulation - known to negatively impact rAAV quality at concentrations >1
225 mM¹⁴ - and (2) potential transcriptional coupling between *GLUL* and rAAV genes may
226 contribute to this effect, possibly enhancing Rep gene amplification⁸.

227 This platform consistently delivers high-quality rAAV particles with approximately 70%
228 full capsids, significantly outperforming conventional transient transfection-based
229 production systems, which typically achieve only 10–30% full capsids depending on the
230 serotype⁴. This elevated proportion of full particles not only enhances overall product
231 quality but also represents a substantial advantage for DSP; higher full-to-empty ratios
232 reduce the burden on purification steps, improve process efficiency, and facilitate
233 compliance with stringent regulatory expectations for product consistency and potency.
234 Furthermore, its applicability to different serotypes (rAAV2 and rAAV5) underscores its
235 versatility. These results align with recent reports advocating for stable cell line platforms
236 as a scalable alternative to transient systems, which remain constrained by cost and
237 variability^{18,19}.

238 In conclusion, this GS-based selection strategy significantly accelerates PCL
239 development, reducing current timelines from 6–8 months to approximately 2 months,

240 while delivering high titers and enhanced product quality. Historically, key opinion leaders
241 in the gene therapy field have faced a strategic dilemma at project inception: whether to
242 rely on transient transfection for speed or invest in generating a PCL for long-term
243 scalability and cost efficiency. Too often, the transient route is selected for rapid entry
244 into clinical trials, only to encounter a manufacturing bottleneck in late-stage
245 development—where capacity constraints, variability, and DSP challenges jeopardize
246 readiness for process performance qualification and biologics license application
247 submissions^{19–21}. At that stage, pivoting to a PCL is typically impractical because it
248 triggers major chemistry, manufacturing, and controls (CMC) changes, comparability
249 risks, and timeline resets. By compressing PCL generation to ~2 months without
250 compromising quality, our approach resolves this conundrum: enabling early adoption of
251 stable PCLs, de-risking late-stage manufacturing, streamlining DSP with higher full
252 capsid content, and maintaining a seamless path to pivotal supply and
253 commercialization.

254 Future work will focus on optimizing upstream processes of this GS-based platform by
255 leveraging knowledge from established CHO cell processes and GS-based selection
256 systems implemented for other biologics production platforms. This includes media or
257 feed optimization to enhance productivity and robustness. Additionally, efforts will be
258 directed at expanding the platform to different serotypes and therapeutic cargos, while
259 ensuring the integrity of the packaged rAAV genome and confirming the absence of host-
260 related impurities (possible co-packaged). Finally, the platform will be scaled to perfusion
261 bioreactors to enable continuous manufacturing—an approach increasingly recognized
262 as critical for meeting clinical demand¹⁹.

263 **Materials and Methods**264 **Cell culture**

265 HeLaS3 cell line was acquired from ATCC (CCL-2.2) and maintained in adherent culture
266 at 37 °C and in a 5 % CO₂ atmosphere, in Dulbecco's Modified Eagle's Medium (DMEM)
267 (10-013-CV, Corning) supplemented with 10 % Fetal Bovine Serum (FBS) (1027016,
268 Gibco). Cells were subcultured every 3 to 4 days, at approximately 80% confluence.
269 HeLaS3 cell line and derived clones were maintained in suspension culture in EX-CELL
270 HeLa Serum-Free Medium (14591 C, Sigma-Aldrich) containing 6 mM L-glutamine, at
271 37 °C in a 5 % CO₂ atmosphere under agitation at 125 rpm (25 mm orbital diameter).
272 Cells were subcultured every 3 to 4 days at a cell concentration of 0.3×10^6 cell/mL. PDT
273 was calculated by the equation: PDT (h) = $\ln(2)/\mu$ where $\mu = (\ln [\text{cell concentration 2}] -$
274 $\ln [\text{cell concentration 1}]) / (\text{time of measurement 2 (h)} / \text{time of measurement 1(h)})$.

275 **Generation of *GLUL* edited cell lines**

276 To test *GLUL* based selection system, *GLUL* gene edited cells were generated using
277 CRISPR-Cas9. The insertion of the CRISPR-Cas9 protein and the sgRNA was
278 performed by nucleofection, using Lonza 4D-Nucleofector®, using the SE Cell Line Kit L
279 (LONV4XC-1012, Lonza). A total of 8×10^5 HeLaS3 cells were centrifuged (90 g, 10 min)
280 and resuspended in 10 µL RNP solution (2 µg/µL Cas9-GFP (ALT-R S. p. Cas9-GFP
281 V3; 10008161, IDT) and 24 nM sgRNA (5' - AAAUUCCACUCAGGCAACUC - 3') + 30
282 µL nucleofection solution. Cells were nucleofected with program DS-150 and seeded in
283 1 mL of DMEM + 10 % FBS + 4 mM L-glutamine. Five days after editing the *GLUL* gene,
284 cells were seeded at a concentration of 1 cell/well in a 96 well-plate in DMEM + 10 %
285 FBS + 4 mM L-glutamine. To guarantee clonality, the growth was followed by imaging
286 the wells at a 4x amplification using the cell imaging multimode reader CytationTM 3
287 (BioTek), at days 0 (1 h after plating), 3 and 10 after plating.

288 **CRISPR-Cas9 editing efficiency on *GLUL* gene**

289 CRISPR-Cas9 editing efficiency assay was performed based on the T7 Endonuclease I-
290 based mutation detection method with the EnGen® Mutation Detection Kit (NEB
291 #E3321) following manufacturer's protocol. Fragments were run in a 4-20 %
292 polyacrylamide TBE gel (EC62255BOX, Invitrogen) in a 0.5× TBE buffer (Novex). The
293 percentage of gene modification was estimated by the ratio between the edited and wild-
294 type band, previously normalized by respective molecular weight.

295 **Western Blot**

296 Cell pellets for western blot were homogenized in lysis buffer consisting of 4x NuPAGE™
297 LDS Sample Buffer (NP0007, Invitrogen) and 10x NuPAGE™ Sample Reducing Agent

298 (NP0004, Invitrogen) diluted in molecular grade water and incubated at 70 °C for 10 min.
299 Samples were run in a 4-12 % polyacrylamide gel (NP0321BOX, Invitrogen). Gel was
300 transferred to a nitrocellulose membrane. The membrane was incubated with anti-GLUL
301 (1:5000, ab7359, abcam) and anti-actin (1:5000, A5441, Sigma) antibodies. The
302 secondary antibodies used were Anti-rabbit, (NA9341, Cytiva), for GLUL detection, and
303 Anti-mouse (NA931-1ML, Cytiva), for β-actin detection, diluted 1:50000. Membranes
304 were imaged using iBright (Invitrogen).

305 **Digital droplet PCR quantification of copy number**

306 The ddPCR reaction was performed with ddPCR Supermix for Probes (No dUTP)
307 (1863024, Bio-Rad), primers (900 nM final concentration) for the albumin gene (Fw: 5'-
308 GCTGTGAAAAACCTCTGTTGG-3'; Rv: 5'-GACATCCTTGCCTCAGCAT-3') and the
309 BGH poly A motif (Fw: 5'-TCTAGTTGCCAGCCATCTGTTGT-3'; 5'-
310 TGGGAGTGGCACCTCCA-3'), as a proxy plasmid insertion, and probes (250 nM final
311 concentration) for the same sequences (5'-/5'-
312 HEX/AGTGGAAA/ZEN/TGATGAGATGCCTGCT/3/AbkFQ/-3' and 5'-/56-FAM/
313 TCCCCCGTG/ZEN/CCTTCCTTGACC/3/AbkFQ/-3', respectively). ddPCR was
314 performed using the QX200 AutoDG Droplet Digital PCR System (Bio-rad).

315 **Establishment of rAAV producers cell lines**

316 HeLaS3 cells with *GLUL* gene knock-out were nucleofected with the rAAV-*GLUL*
317 plasmid, as previously published⁷. Cells were initially cultured for 3 days in EX-CELL
318 HeLa medium supplemented with glutamine. Following this period, the medium was
319 replaced with EX-CELL HeLa serum-free medium lacking glutamine. Cells were seeded
320 at a density of 0.5×10^6 cells/mL and subcultured every 3–4 days by complete medium
321 exchange. After three weeks selected cells were tested for rAAV production as described
322 below and seeded at 3 cell/well in serum-free medium with a single-cell growth
323 supplement to generate single-cell clones as described previously⁹. Single-cell clones
324 were further tested for rAAV production as described previously⁷.

325 **rAAV production and titration**

326 To test rAAV production in suspension, cells were seeded at 0.5×10^6 cell/mL in serum-
327 free medium diluted in DMEM, with supplementation and infected with wtAd5 at an MOI
328 of 1. Cells were maintained for 3 days at 37 °C and in a 5 % CO₂ atmosphere under
329 agitation at 125 rpm, in 25 mm orbital diameter. Cells were harvested for rAAV
330 quantification according to previously published protocol⁷.

331 **rAAV5 Purification and Full-to-Empty Capsid Quantification**

332 Producer cells were harvested by centrifugation at $300 \times g$ for 5 min and resuspended
333 in 1 mL of lysis buffer (50 mM Tris-HCl, pH 8.0; 20 mM MgCl₂; 1% Tween-20).
334 Benzonase was added at 150 U/mL, and the suspension was incubated for 1.5 h at
335 37°C to degrade nucleic acids. Subsequently, NaCl was added to a final concentration
336 of 200 mM, followed by a 15 min incubation at 37°C. The lysate was clarified by
337 centrifugation at 4,000 $\times g$ for 5 min and filtration through a 0.45 µm membrane.

338 Purification of rAAV5 particles was performed using PhyTip™ columns according to the
339 manufacturer's protocol, with minor adjustments. Columns were equilibrated with 50 mM
340 Tris (pH 8.0), 350 mM NaCl, and 0.001% Pluronic F-68, followed by six capture cycles
341 of the sample. Washing was carried out in two steps: first with 50 mM Tris (pH 8.0), 1 M
342 NaCl, and 0.001% Pluronic, and then with 50 mM Tris (pH 8.0) containing 0.001%
343 Pluronic. Elution was performed in four cycles using 50 mM citric acid (pH 2.5) with
344 0.001% Pluronic. The eluate (approximately 60 µL) was immediately neutralized with
345 Tris buffer (pH 9.0) at a 1:5 dilution. The ratio of full to empty capsids was determined by
346 mass photometry using a SamuxMP instrument (Refeyn).

347 **rAAV Infectious Units Quantification**

348 rAAV infectious titer was determined as described in Fernandes et al 2025 ²² with some
349 modifications. HeLa RC32 were plated in 96 well plates at a cell concentration of 15 000
350 cells/well in DMEM + 10% FBS + 4 mM L Glutamine and incubated overnight at 37 °C in
351 a 5% CO₂ atmosphere. Cells were infected at an rAAV MOI of 6.67×10^4 vg/cell in DMEM
352 + 1% FBS + 4 mM L Glutamine containing 3.20×10^8 wtAd5 DNase resistant
353 genomes/mL. Cells were infected by total medium exchange and incubated for 2 h.
354 Subsequently, the culture medium was diluted 1:2 with DMEM + 10% FBS + 4 mM L
355 Glutamine. Images were acquired at 48 h post-infection with 10x amplification using
356 MICA microscope (Leica).

357 **Acknowledgements**

358 The author(s) gratefully acknowledge the members of the laboratory for their insightful
359 discussions and constructive feedback throughout the development of this work.

360 **Author contributions**

361 M.A writing – original draft, investigation, methodology, visualization, and formal
362 analysis. F.M., investigation, methodology, visualization, and formal analysis. I.R.S
363 investigation, methodology, and formal analysis. P.M.A, supervision and funding
364 acquisition P.G.A. supervision, project supervision, project administration, funding

365 acquisition. J.M.E., writing – original draft, project conceptualization, supervision, project
366 supervision, investigation, funding acquisition. All authors: writing – review & editing.

367 Competing interests

368 The authors don't have competing interests.

369 Funding

370 This work was supported by the Research Unit UID/04462: iNOVA4Health – Programme
371 in Translational Medicine, financially supported by Fundação para a Ciência e
372 Tecnologia / Ministério da Educação, Ciência e Inovação
373 (PTDC_BTM_ORG_1383_2020), the Associate Laboratory LS4FUTURE
374 (LA/P/0087/2020) and the AAVscreen iBETXplore Grant. J.M.E is funded by Stimulus of
375 Scientific Employment, Individual Support program (2020. 01216.CEECIND) and F.M.
376 by PhD fellowship 2022.11494.BD from FCT. I.R.S. appreciate support by the FWF PhD
377 Program Grant 10.55776/W1224 "Biotechnology of Proteins – BioTop".

378 Data availability

379 All research data and methods presented in the main and supplementary figures are
380 available from the lead contact upon reasonable request. Correspondence and requests
381 for materials should be directed to J.M.E. (jose.escandell@ibet.pt).

382 Figure Legends

383 **Figure 1. Generation and validation of *GLUL*^{-/-} HeLaS3 cell lines.**

384 (A) Schematic representation of the *GLUL* gene structure, showing three transcript
385 variants with exons represented as boxes and coding sequences highlighted in yellow.
386 Exon 5, where the protein catalytic site is located, is also highlighted in orange. (B) T7
387 endonuclease I assay of PCR-amplified genomic DNA from nucleofected cells. Original
388 gel is presented in Supplementary Figure 7. (C) Phase-contrast microscopy images of
389 *GLUL*^{-/-} clones GKO1, GKO2, and GKO3 at Day 0, Day 3, and Day 10 post single-cell
390 seeding. White arrows indicate clonal outgrowth. (D) Western blot analysis of *GLUL*
391 protein expression in parental HeLaS3 (*GLUL*^{+/+}) and *GLUL*^{-/-} clones. β-actin was used
392 as a loading control. Original blots are presented in Supplementary Figure 8.

393 **Figure 2. Viability of HeLaS3 wild-type and *GLUL*^{-/-} clones under Gln-supplemented 394 and Gln-depleted conditions.**

395 Cells were cultured in standard conditions in serum-containing medium supplemented

396 with Gln (A) or depleted of Gln (B). Five cell viability measurements were taken by Trypan
397 blue exclusion method over a 9 day period.

398 **Figure 3. Establishment and characterization of rAAV producer clones using**
399 **GLUL-based selection in suspension-adapted HeLaS3 cells.**

400 (A) Schematic overview of the streamlined 2-month workflow for rAAV producer cell line
401 generation. The process includes plasmid transfection, 3-week selection in Gln-depleted
402 suspension culture, 4-week single-cell cloning, and expansion of selected producer
403 clones. (B) Cell viability and viable cell density (VCD) of HeLaS3 cells non-transfected
404 (in black) or transfected with the rAAV-GLUL producer plasmid (in pink) cultured in Gln-
405 depleted EX-CELL medium over time. The selected pool underwent single-cell cloning,
406 and 120 wells with clonal outgrowth were screened for productivity. rAAV5 vector
407 genome titers (vg/mL) (C) and qP (D) were measured in culture cell lysates of selected
408 clones by qPCR.

409 **Figure 4. Characterization of rAAV5 production and GLUL expression in HeLaS3-
410 derived cell lines.**

411 (A) Quantification of rAAV5 vector genome (vg) titers expressed as vg/mL for Clone 1,
412 Clone 2, and Clone 3 across different amplification stages: primary screen, secondary
413 screen (static culture), and suspension culture production. Data shown as mean \pm SD
414 ($n=2$) is presented for suspension culture conditions.

415 (B) Western blot analysis of GLUL protein levels with β -actin as loading control across
416 HeLaS3 $GLUL^{-/-}$, transfected Pool, Clone 1, Clone 2, and Clone 3. Original blots are
417 presented in Supplementary Figure 9. (C) Digital Droplet PCR analysis of rAAV5
418 plasmid copy number per cell for the same cell lines. Data shown as mean \pm SD ($n=2$).
419 (D) Mass photometry analysis of rAAV5 particles purified from Clone 1 production,
420 showing empty capsids (~ 3.7 MDa) and full capsids (~ 4.7 MDa).

421 **Figure 5. Optimization of rAAV5 production in HeLaS3-derived cell lines.**

422 (A) Population doubling time (PDT) and viability of rAAV5 producer Clone 1 grown in the
423 presence (black square) or absence (pink circle) of Gln in growth media. Cells were
424 cultured in standard serum-free conditions and subcultured every 3-4 days. (B) rAAV5
425 vector genome titers (vg/mL; black bars) and Cell specific production yield (qP, vg/cell;
426 pink bars) measured in culture cell lysates by qPCR of Clone 1 with production media
427 either supplemented or depleted of Gln. Data shown as mean \pm SD ($n=4$). Statistical
428 analysis was performed using unpaired t-test with Welch's correction (*: $p < 0.05$; ***: p
429 < 0.001). (C) Representation of ammonia (NH_3) concentration (mM) up to 66 h post
430 wtAd5 infection, either in Gln-supplemented medium (black circles) or Gln-depleted (pink
431 squares). Data shown as mean \pm SD ($n=4$). (D) Gln and NH_3 metabolic rates (mM/ 10^6

432 cells h⁻¹) with production media either supplemented (black bars) or depleted (pink bars)
433 in Gln. Data shown as mean \pm SD (n=3). Statistical analysis was performed using
434 unpaired t-test with Welch's correction (*: p < 0.05; **: p < 0.001).

435 **References**

436

- 437 1. Zwi-Dantsis, L., Mohamed, S., Massaro, G. & Moeendarbary, E. Adeno-
438 Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy.
439 *Viruses* **2025**, Vol. 17, Page 239 **17**, 239 (2025).
- 440 2. Liu, Z. *et al.* The clinical safety landscape for ocular AAV gene therapies: A
441 systematic review and meta-analysis. *iScience* **28**, 112265 (2025).
- 442 3. Reid, C. A., Hörer, M. & Mandegar, M. A. Advancing AAV production with high-
443 throughput screening and transcriptomics. *Cell Gene Ther Insights* **10**, 821–840
444 (2024).
- 445 4. Merten, O.-W. Development of Stable Packaging and Producer Cell Lines for the
446 Production of AAV Vectors. *Microorganisms* **12**, 384 (2024).
- 447 5. Escandell, J. M. *et al.* Leveraging rAAV bioprocess understanding and next
448 generation bioanalytics development. *Curr Opin Biotechnol* **74**, 271–277 (2022).
- 449 6. Clark, K. R., Voulgaropoulou, F., Fraley, D. M. & Johnson, P. R. Cell lines for the
450 production of recombinant adeno-associated virus. *Hum Gene Ther* **6**, 1329–1341
451 (1995).
- 452 7. Escandell, J. *et al.* Towards a scalable bioprocess for rAAV production using a
453 HeLa stable cell line. *Biotechnol Bioeng* **120**, 2578–2587 (2023).
- 454 8. Martin, J. *et al.* Generation and characterization of adeno-associated virus
455 producer cell lines for research and preclinical vector production. *Hum Gene Ther*
456 *Methods* **24**, 253–269 (2013).
- 457 9. Escandell, J. M. *et al.* Development of a Serum-Free Producer Cell Line
458 Generation Process for Scalable and Efficient rAAV Production for gene therapy
459 applications. *bioRxiv* 2025.10.02.679972 (2025) doi:10.1101/2025.10.02.679972.
- 460 10. Yu, D. Y., Lee, S. Y. & Lee, G. M. Glutamine synthetase gene knockout-human
461 embryonic kidney 293E cells for stable production of monoclonal antibodies.
462 *Biotechnol Bioeng* **115**, 1367–1372 (2018).

463 11. Chin, C. L. *et al.* A human expression system based on HEK293 for the stable
464 production of recombinant erythropoietin. *Sci Rep* **9**, (2019).

465 12. Fan, L., Frye, C. C. & Racher, A. J. The use of glutamine synthetase as a selection
466 marker: recent advances in Chinese hamster ovary cell line generation processes.
467 *Pharm Bioprocess* **1**, 487–502 (2013).

468 13. Srivastava, A., Mallela, K. M. G., Deorkar, N. & Brophy, G. Manufacturing
469 Challenges and Rational Formulation Development for AAV Viral Vectors. *J
470 Pharm Sci* **110**, 2609–2624 (2021).

471 14. Xue, W. *et al.* Adeno-associated virus perfusion enhanced expression: A
472 commercially scalable, high titer, high quality producer cell line process. *Mol Ther
473 Methods Clin Dev* **32**, 101266 (2024).

474 15. Prasad, A. *et al.* Low-dose exposure to phytosynthesized gold nanoparticles
475 combined with glutamine deprivation enhances cell death in the cancer cell line
476 HeLa via oxidative stress-mediated mitochondrial dysfunction and G0/G1 cell
477 cycle arrest. *Nanoscale* **14**, 10399–10417 (2022).

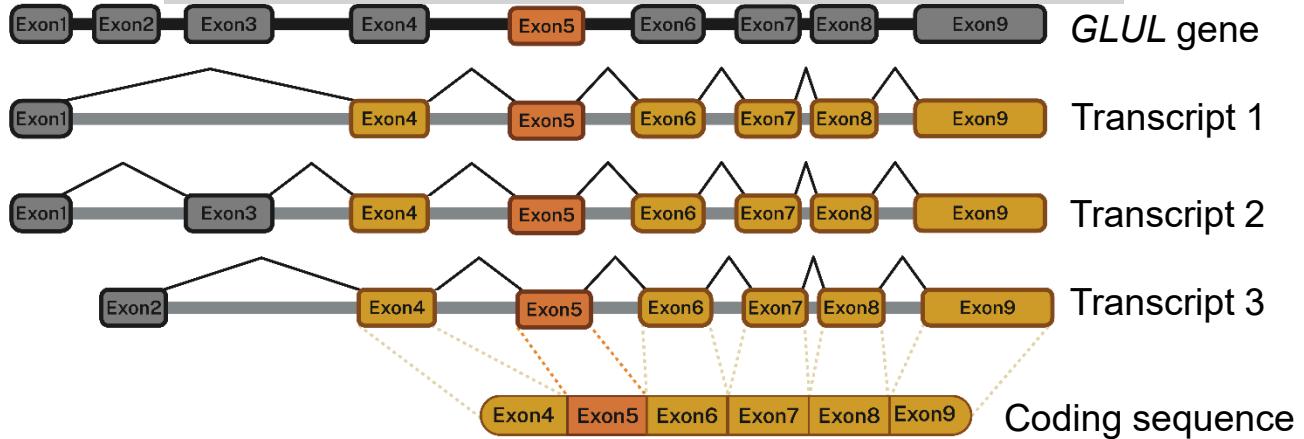
478 16. Reitzer, L. J., Wice, B. M. & Kennell, D. Evidence that glutamine, not sugar, is the
479 major energy source for cultured HeLa cells. *J Biol Chem* **254**, 2669–76 (1979).

480 17. Srila, W. *et al.* Glutamine synthetase (GS) knockout (KO) using CRISPR/Cpf1
481 diversely enhances selection efficiency of CHO cells expressing therapeutic
482 antibodies. *Sci Rep* **13**, (2023).

483 18. Fu, Q., Polanco, A., Lee, Y. S. & Yoon, S. Critical challenges and advances in
484 recombinant adeno-associated virus (rAAV) biomanufacturing. *Biotechnol Bioeng*
485 **120**, 2601–2621 (2023).

486 19. Destro, F. *et al.* The state of technological advancement to address challenges in
487 the manufacture of rAAV gene therapies. *Biotechnology Advances* vol. 76 Preprint
488 at <https://doi.org/10.1016/j.biotechadv.2024.108433> (2024).

489 20. Lorek, J. K., Isaksson, M. & Nilsson, B. Chromatography in Downstream
490 Processing of Recombinant Adeno-Associated Viruses: A Review of Current and
491 Future Practises. *Biotechnology and Bioengineering* vol. 122 1067–1086 Preprint
492 at <https://doi.org/10.1002/bit.28932> (2025).


493 21. FDA. *Manufacturing Changes and Comparability for Human Cellular and Gene*
494 *Therapy Products; Draft Guidance for Industry.* <http://www.regulations.gov>.
495 (2023).

496 22. Fernandes, S., Guerra, J., Ferreira, M. V. & Coroadinha, A. S. Deciphering Key
497 Adenoviral Elements in the Production of Recombinant Adeno-Associated Virus
498 Vectors. *Hum Gene Ther* **36**, (2025).

499

ARTICLE IN PRESS

A)

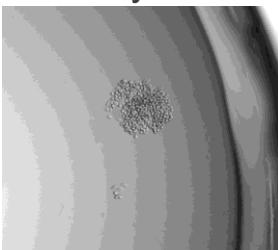
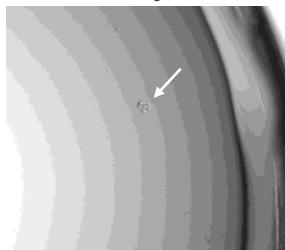
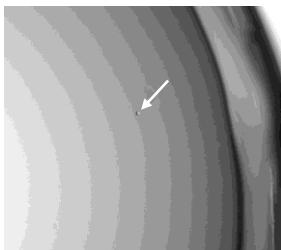
B)

Cas9 + sgRNA
nucleofection

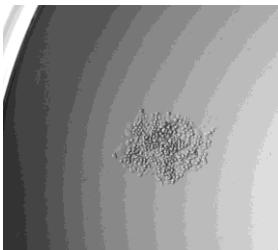
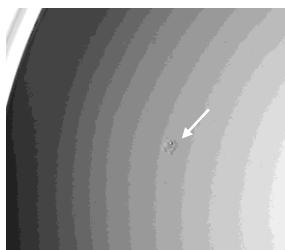
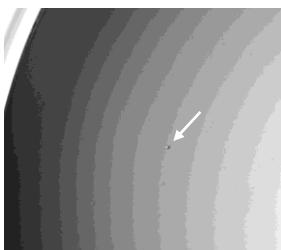
—

+

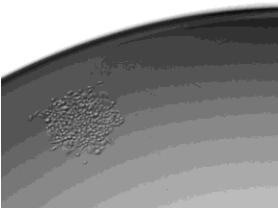
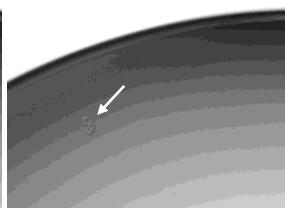
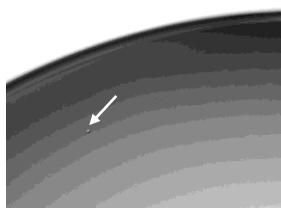
GKO1




Indels (%) : 65%

C)




Day 0

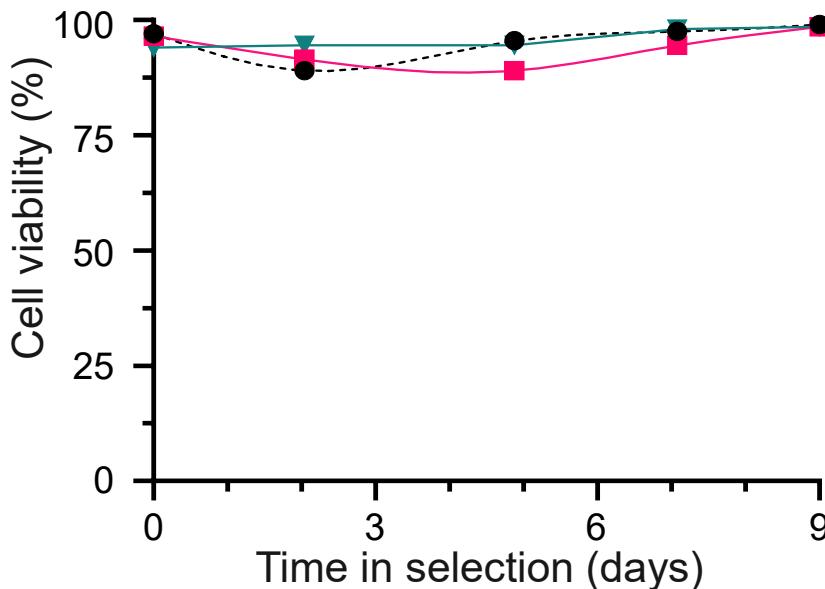
Day 3




Day 10

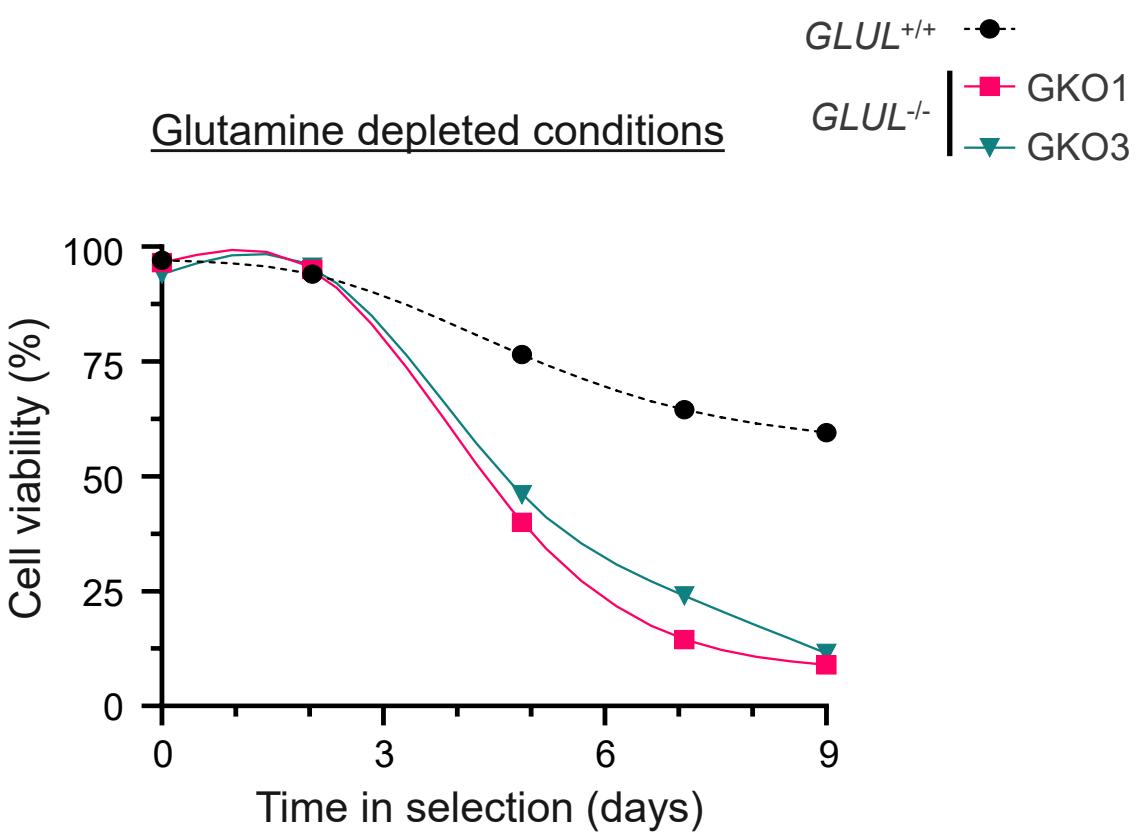
GKO2

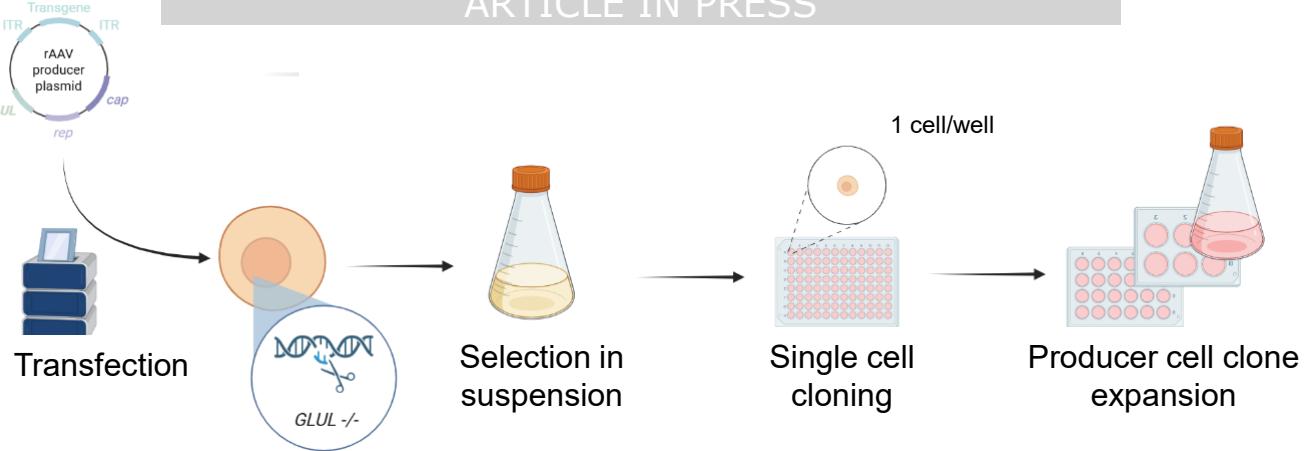
GKO3

D)

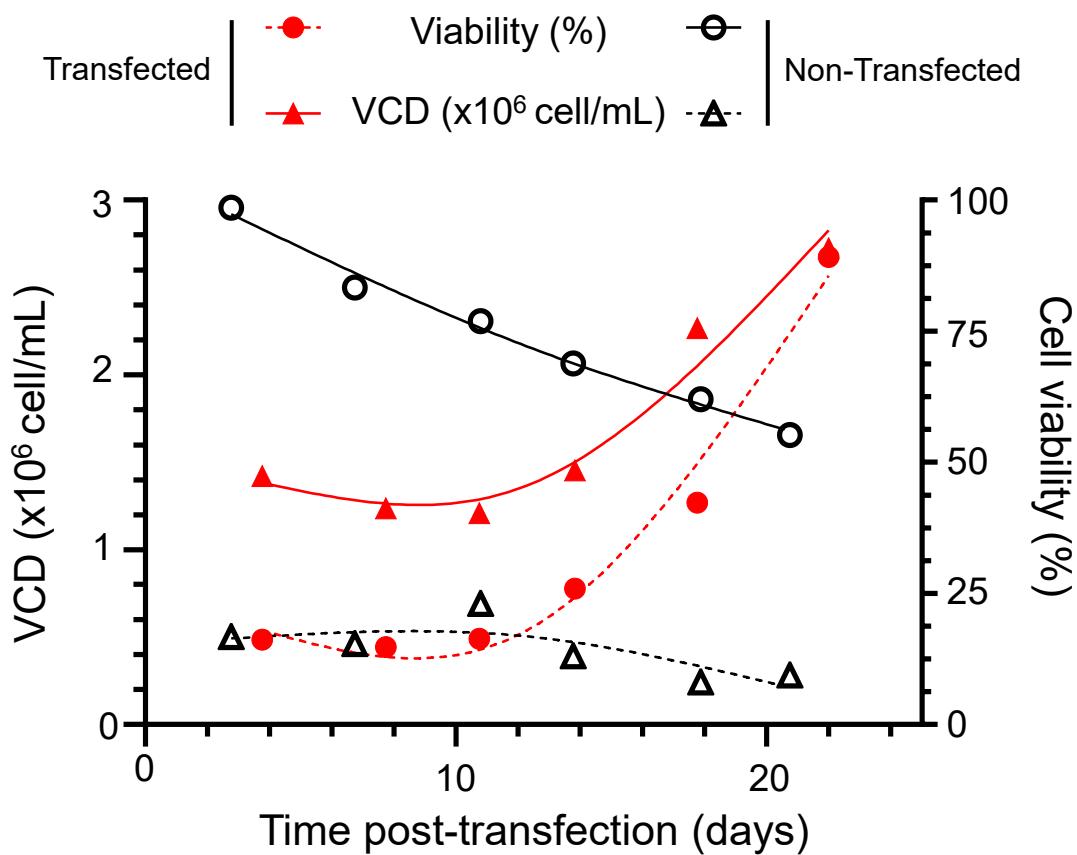

	HeLaS3 <i>GLUL</i> ^{-/-} clones		
HeLaS3 <i>GLUL</i> ^{+/+}	GKO1	GKO2	GKO3

GLUL

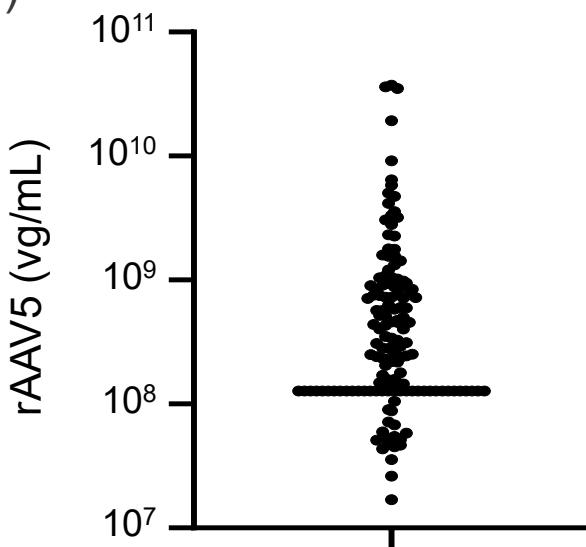

β -actin


Figure 1

A)



B)



B)

C)

D)

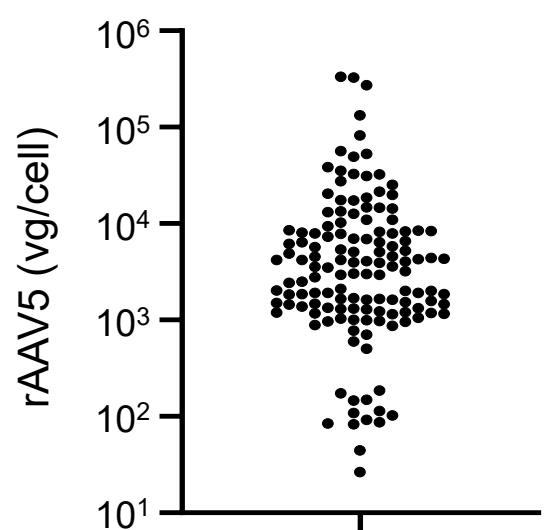
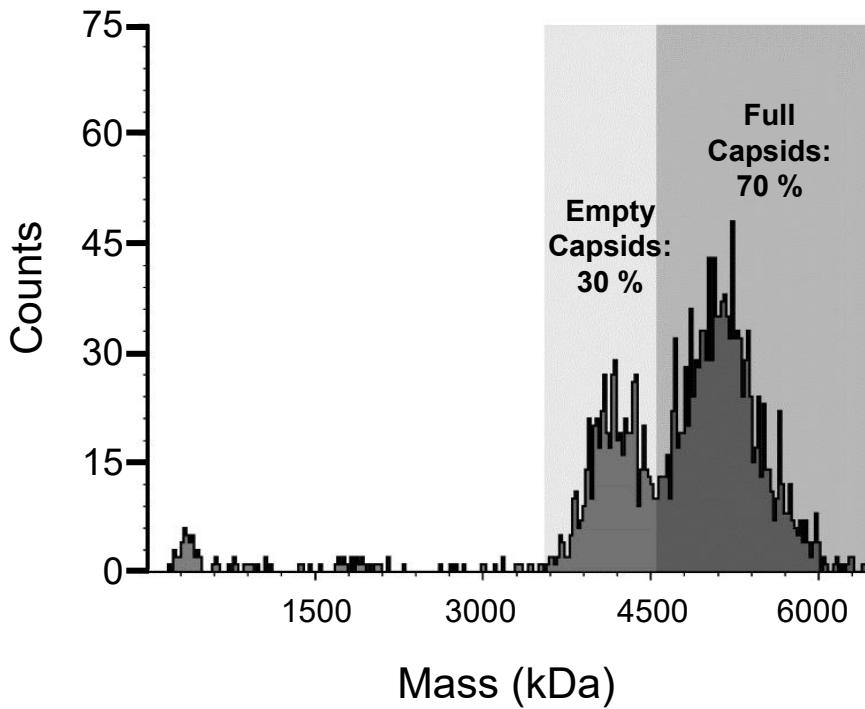
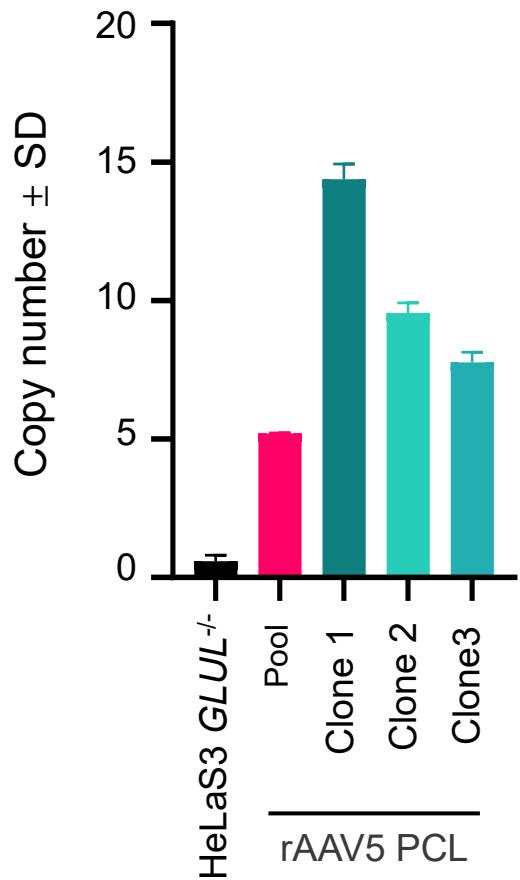
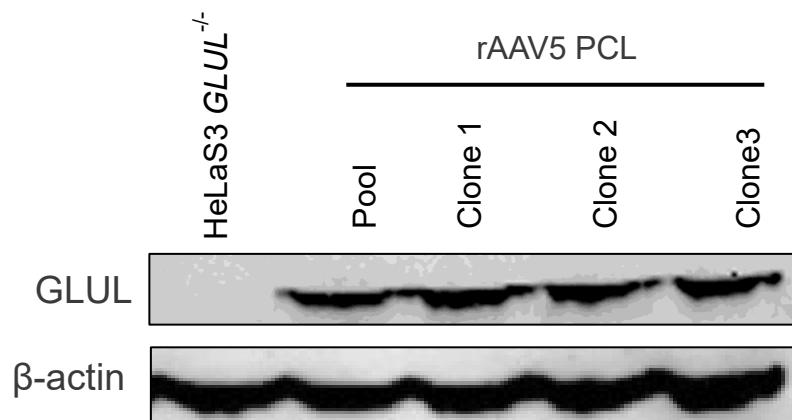
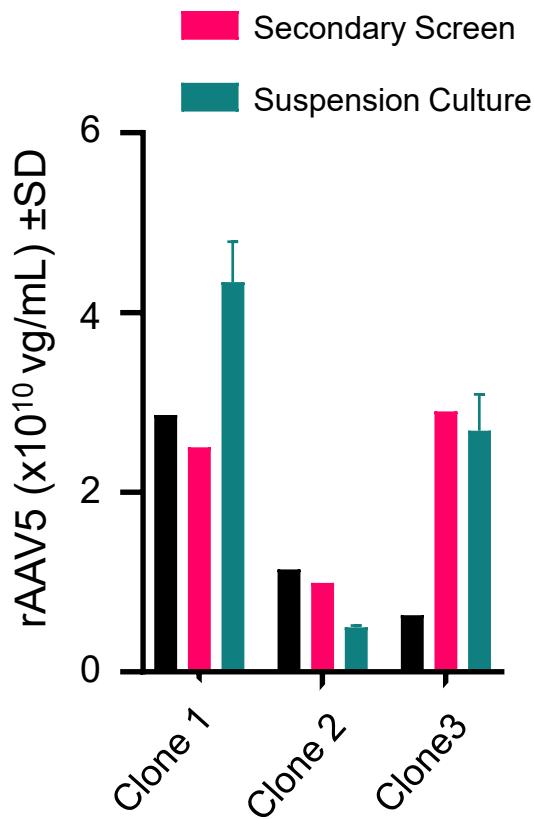
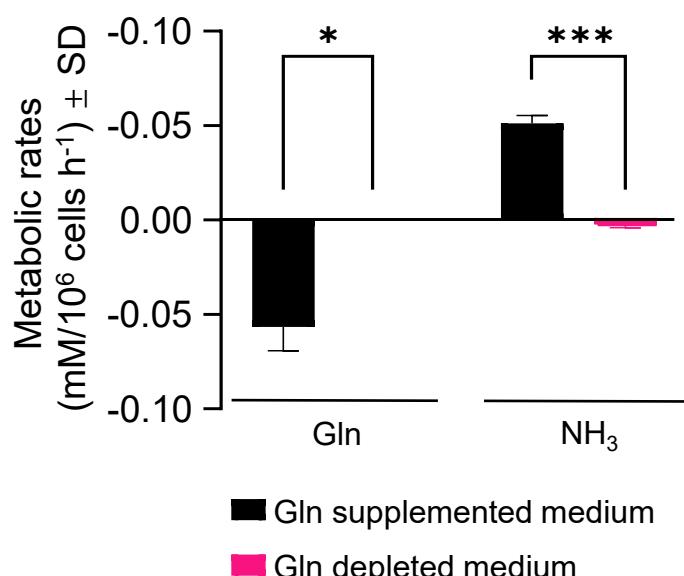
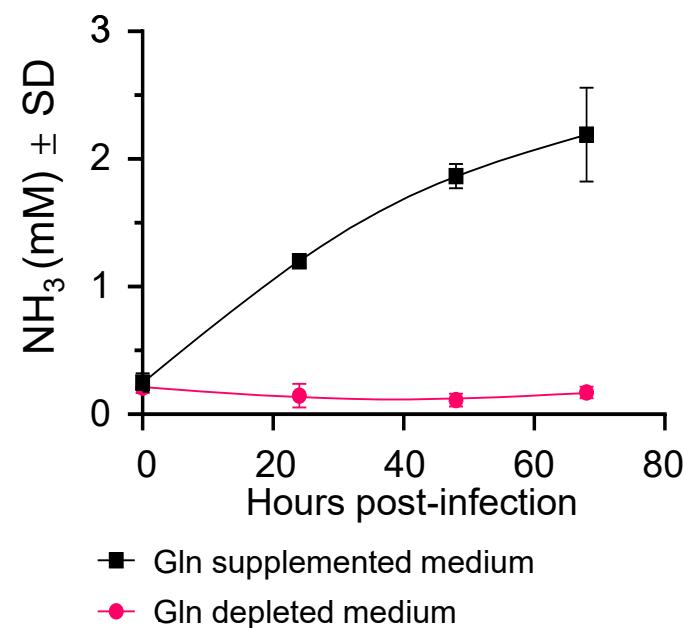
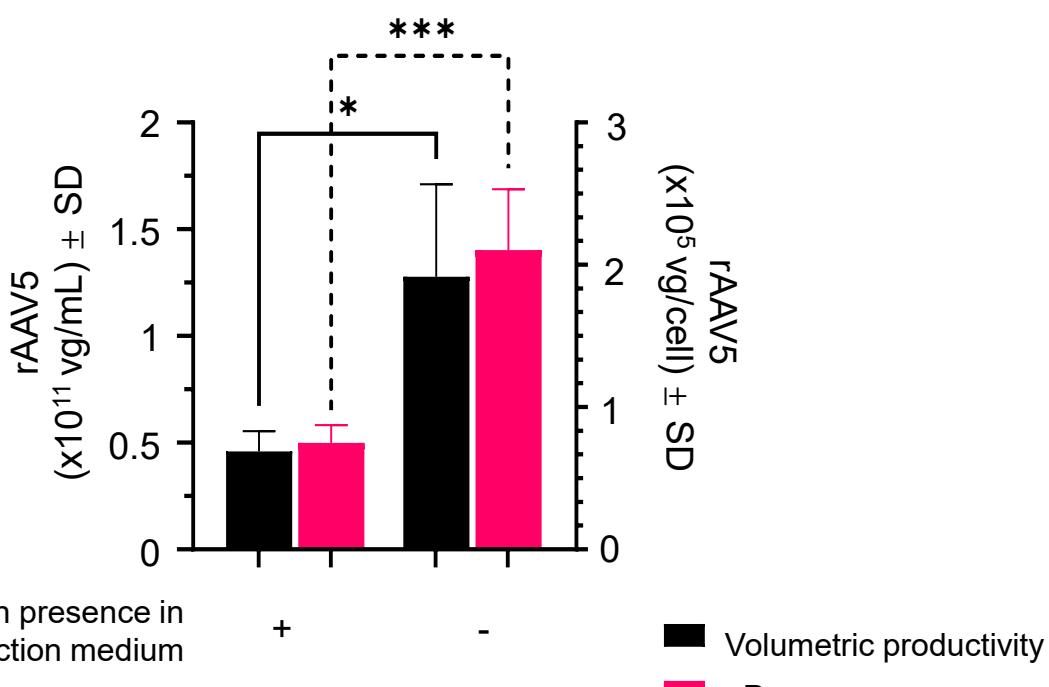
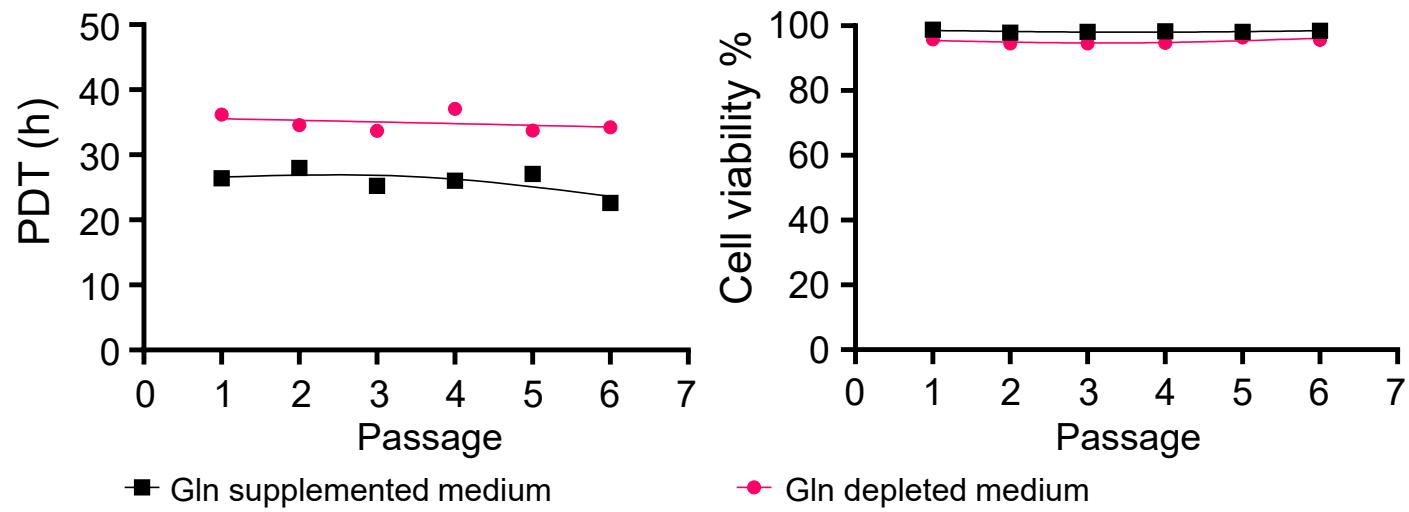










Figure 3

