
Geographical variation in the quality of *Chimonobambusa rigidula* bamboo shoots and its relationship with site environment

Received: 29 July 2025

Accepted: 31 December 2025

Published online: 08 January 2026

Cite this article as: Fu Q., Chen Y., Liu F. *et al.* Geographical variation in the quality of *Chimonobambusa rigidula* bamboo shoots and its relationship with site environment. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-025-34834-2>

Qinchao Fu, Yuelin Chen, Fang Liu, Jixian Liu, Qinlan Guan & Bo Zhao

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Geographical Variation in the Quality of**
2 ***Chimonobambusa rigidula* Bamboo Shoots and Its**
3 **Relationship with Site Environment**

4 Qinchao Fu¹, Yuelin Chen², Fang Liu³, Jixian Liu³, Qinlan Guan³, Bo
5 Zhao^{4*}

6 1. Natural Science Museum of Leshan Normal University, Key
7 Laboratory of Sichuan Province for Bamboo Pests Control and
8 Resource Development, Leshan Normal University, Leshan 614000,
9 China;

10 2. Leshan Academy of Forestry, Leshan 614000, China;

11 3. School of Life Science, Leshan Normal University, Leshan,
12 614000, China;

13 4. Engineering Research Center of Biomass Materials, Ministry of E
14 ducation, College of Life Sciences and Agri-
15 forestry, Southwest University of Science and Technology,
16 Mianyang, 621010, China;

17

18 Email:

19 Qinchao Fu: fuqinchao@lsnu.edu.cn

20 Yuelin Chen: chenyuelin0833@163.com

21 Fang Liu: liufang9028@lsnu.edu.cn

22 Jixian Liu: liu10015082@163.com

23 Qinlan Guan: 15281930268@163.com

24 Bo Zhao: bozhao@swust.edu.cn

25

26 * Correspondence with: Prof. Bo Zhao (E-mail:
27 bozhao@swust.edu.cn),
28 Engineering Research Center of Biomass Materials, Ministry of Edu
29 cation, College of Life Sciences and Agri-
30 forestry, Southwest University of Science and Technology,
31 Mianyang, 59# Qinglong road, Mianyang, 621010, People's
32 Republic of China

33

34 **Abstract:** *Chimonobambusa rigidula* bamboo shoots are an
35 important health-promoting vegetable. This study aims to identify
36 the primary environmental factors influencing the quality of
37 bamboo shoots across various regions, thereby providing a
38 scientific foundation and theoretical support for managing this
39 plant and enhancing shoot quality. The results indicate that the
40 minimum and maximum temperatures in September, along with
41 total soil phosphorus content, soil pH, and total soil nitrogen
42 content, are the five critical factors affecting bamboo shoot quality
43 and should be prioritized during the site selection process for
44 bamboo shoot cultivation. The cumulative variation explanation
45 rate for bamboo quality concerning environmental factors was
46 found to be 90.22%. The appearance, morphology, and taste of
47 bamboo shoots from **Muchuan** and **Pingshan** are superior to those
48 from **Mabian**. Notably, bamboo shoots from **Mabian** exhibit the
49 highest content of essential amino acids, while bamboo shoots from

50 **Muchuan** contain the highest levels of mineral elements. This study
51 provides new insights into the interactions between plant
52 environments and *Chimonobambusa rigidula* bamboo shoot
53 nutrition, offering actionable strategies for region-specific
54 cultivation that align with consumer demand for healthier bamboo-
55 based products.

56 **Key words:** Bamboo shoot quality; geographical variation; site
57 environment; correlation analysis; redundancy analysis

58

59

60

61

62

63

64 **1 Introduction**

65 The quality of bamboo shoots is a critical factor that reflects
66 their economic value and market potential, serving as a key
67 indicator for evaluating high-quality bamboo shoots ¹. This quality
68 encompasses both external morphology and nutritional
69 components. External morphology includes indicators such as shoot
70 length, weight, and basal diameter, representing the most intuitive
71 aspects of bamboo shoot quality. Nutritional components refer to
72 the essential nutrients in bamboo shoots, including basic
73 nutritional elements and amino acid content. Bamboo shoots are
74 abundant in dietary fiber, protein, amino acids, minerals, and

75 vitamins while exhibiting low cholesterol and fat levels, making
76 them highly valuable for consumption ².

77 The quality of bamboo shoots is influenced not only by the
78 genetic characteristics of the bamboo species but also by various
79 environmental factors. Recent studies have demonstrated that
80 environmental factors significantly influence the nutritional quality
81 of bamboo shoots ³⁻⁵. Key environmental variables, such as
82 temperature, light, humidity, rainfall, latitude, and altitude, play a
83 crucial role in plant growth and nutrient accumulation. For
84 example, regions situated at higher altitudes typically experience
85 lower temperatures and increased ultraviolet (UV) radiation, which
86 promote the synthesis of secondary metabolites, including
87 flavonoids and phenolics, thereby enhancing nutritional value ⁶.
88 Likewise, optimal temperatures ranging from 15 to 25 °C and
89 sufficient rainfall facilitate enzyme activity and nutrient transport,
90 essential for bamboo shoots' tenderness and overall quality ⁷.
91 Additionally, soil characteristics such as organic matter, nitrogen,
92 phosphorus, and potassium are pivotal for bamboo growth ⁸.

93 Studies have also demonstrated that soil organic matter, total
94 porosity, and longitude are the primary factors influencing the
95 nutritional quality of bamboo shoots, with a positive correlation
96 observed between higher soil organic matter and increased
97 nutrient content. Transcriptome analyses reveal that environmental
98 conditions play a crucial role in determining bamboo shoot quality
99 by modulating key metabolic pathways ⁹. Environmental factors are

100 crucial for plant growth and development and significantly
101 influence the quality of bamboo shoots. Exploring the relationship
102 between these factors and bamboo shoot quality offers valuable
103 guidance for producing high-quality bamboo shoots.

104 *Chimonobambusa rigidula* belongs to the family Gramineae and
105 the genus Chimonobambusa. It features culms that range from 2 to
106 6 meters in height and 1.5 to 3 centimeters in diameter. The
107 internodes measure 10 to 20 centimeters and are characterized by
108 a slightly square or cylindrical shape devoid of hair. This bamboo
109 species is predominantly found in the mountainous regions of
110 southern Sichuan Province, where its distribution significantly
111 overlaps with key giant panda habitats, including the Daxiangling
112 and Qionglai Mountains. Consequently, it serves as a crucial food
113 source for giant pandas. The bamboo shoots typically emerge
114 between September and October, boasting a rich nutritional profile
115 that includes protein, amino acids, fats, carbohydrates, calcium,
116 phosphorus, iron, carotene, and vitamins. These shoots are not only
117 delicious but also highly nutritious.

118 The comprehensive impact of environmental factors on the
119 quality of *C. rigidula* bamboo shoots, the extent of their influence,
120 and whether they are the primary determinants of quality
121 variations in shoots of the same bamboo species across different
122 regions remain underexplored. In light of this, the present study
123 builds upon previous research to analyze the relationship between
124 the quality of *C. rigidula* bamboo shoots and environmental factors

125 in various regions. It aims to identify the principal environmental
126 factors affecting the quality of *C. rigidula* bamboo shoots, thereby
127 providing a scientific basis and theoretical support for managing *C.*
128 *rigidula* and enhancing shoot quality.

129 **2 Materials and methods**

130 2.1 Sample collection area and environmental characteristics

131 The sampling sites are situated in three distinct regions:
132 Muchuan County (MC), Mabian County (MB), and Pingshan County
133 (PS). The bamboo forests sampled consist exclusively of pure *C.*
134 *rigidula*, with each region's bamboo forest area measuring no less
135 than 1 hectare (hm^2). All bamboo stands are uniformly 8 years old,
136 and the management approach employed is extensive. These
137 regions were selected as they represent the primary cultivation
138 areas of *C. rigidula* in China. They encompass a diverse range of
139 climatic and geographical conditions, including variations in
140 temperature, rainfall, and soil properties. The meteorological data
141 of the three regions were sourced from the local meteorological
142 bureaus. Further details can be found in Table 1 and 8.

143 2.2 Experimental material

144 At each experimental site, we randomly selected and marked
145 100 bamboo shoots, ensuring their basal diameters were similar in
146 size. Subsequently, bamboo shoots with approximately 10 cm of
147 soil were excavated from each site. These shoots were entirely
148 severed at the culm base, and their external morphology and
149 nutritional components were assessed. The five-point sampling

150 method also collected mixed soil samples from the 10~15 cm soil
151 layer from the clumps. These samples were placed in sterile zip-
152 lock bags, labeled accordingly, and transported to the laboratory,
153 where they were air-dried at room temperature to determine soil
154 chemical properties.

155 2.3 Indicator determination and methods

156 2.3.1 Determination of bamboo shoot appearance morphology

157 After excavating the bamboo shoots and removing the soil, we
158 measured the mass (g), length (cm), and basal diameter (cm) of
159 each shoot. Subsequently, the outer shells were peeled off, and the
160 inedible portions at the base of the bamboo shoots were cut away.
161 The bamboo shoots were washed and weighed, and the edible
162 quantity (g) and rate (%) were calculated. Calculate the edible rate
163 according to the following formula.

$$164 \text{ Edible rate} = \frac{\text{total mass-outer shells mass-inedible portion at the base of bamboo shoots mass}}{\text{total mass}} \times 100\% \quad (1)$$

165 2.3.2 Determination of nutritional components in bamboo shoots

166 The moisture content of bamboo shoots was assessed using the
167 hot air oven method ¹⁰. The ash content was determined through
168 dry ashing in a muffle furnace at 600 °C until a grayish-white ash
169 was produced.

170 After measuring the external morphology, the bamboo shoots
171 were transported to the laboratory, where they were longitudinally
172 sliced, placed on tin foil, labeled, and then subjected to fixation in
173 an oven at 120 °C for 30 minutes. Subsequently, they were dried at
174 a temperature of 70 °C until a constant mass was achieved. The

175 dried samples were then crushed and stored in a desiccator to
176 determine nutritional indicators.

177 Approximately 3 g of extracted bamboo shoot powder is
178 continuously extracted in a Soxhlet extractor for 6 hours using a
179 benzene/ethanol (2:1, v/v) mixture in a water bath maintained at
180 92 °C. After extraction, the residue is dried and analyzed for lignin
181 and cellulose content. The method described determines the lignin
182 and cellulose content **11**. About 1 g of the dried powder is added to
183 12 M H₂SO₄, mixed, and hydrolyzed at room temperature for 4
184 hours. After hydrolysis, distilled water is added to dilute the H₂SO₄
185 to a final concentration of 1 M, and the mixture is then heated at
186 105 °C for 1 hour. The solution is cooled and subjected to vacuum
187 filtration through a funnel. The filter is air-dried at 60 °C until a
188 constant weight is achieved for lignin measurement. To measure
189 the cellulose content, approximately 1 g of dried powder is mixed
190 with 25 mL of a nitric acid-ethanol solution, heated at 100 °C for 1
191 hour, and then transferred to a funnel. The residual solution is
192 sequentially washed with a nitric acid-ethanol mixture and water.
193 Finally, all mixed solutions are vacuum-filtered and dried at 100 °C.
194 The cellulose and lignin content (%) is calculated using the formula
195 (1):

$$196 \frac{m_1 - m_2}{m_0} \times 100\% \quad (2)$$

197 where m₁ represents the total mass of lignin or cellulose
198 collected in the funnel after oven-drying to a constant weight, m₂ is
199 the mass of the empty funnel, and m₀ is the mass of the bamboo

200 shoot sample. Each treatment is conducted with three biological
201 replicates.

202 The protein content in bamboo shoots was determined using
203 the Coomassie Brilliant Blue G-250 method ¹². A sample of 1 g of
204 dried bamboo shoots was ground with 2 mL of water and
205 centrifuged at 4000 rpm for 20 minutes at room temperature. The
206 resulting supernatant was diluted to a final volume of 10 mL to
207 obtain the soluble protein solution, which was measured
208 spectrophotometrically at a wavelength of 595 nm. The soluble
209 sugar content in bamboo shoots was assessed using the anthrone
210 method ¹². To extract soluble sugars, 1 g of dried bamboo shoots
211 was combined with 15 mL of water in a test tube, which was then
212 heated in a boiling water bath for 20 minutes. The solution was
213 filtered and diluted to 100 mL, and the soluble sugar content was
214 determined spectrophotometrically at 620 nm.

215 To determine the starch content in bamboo shoots, 1 g of the
216 sample was ground and extracted twice with 80% ethanol, followed
217 by two extractions with 52% perchloric acid. The determination
218 was subsequently conducted using the anthrone-sulfuric acid
219 method at a wavelength of 640 nm with a spectrophotometer ¹³.

220 The amino acid composition was analyzed using an automatic
221 analyzer (HT-1010, HiTech Innovation, China). Briefly, 0.1 g of the
222 sample was hydrolyzed with 6 M HCl and placed in a sealed tube in
223 an oven at 105 °C for 24 hours. After hydrolysis, the sample was
224 eluted with water and subsequently freeze-dried. The analyte was

225 then dissolved in 0.02 M HCl prior to injection.

226 An analysis of the mineral elements selenium (Se), iron (Fe),
227 calcium (Ca), magnesium (Mg), sodium (Na), copper (Cu), zinc
228 (Zn), potassium (K) and manganese (Mn) was conducted on
229 bamboo shoots. The content of these mineral elements was
230 evaluated according to the Chinese standards (GB5009.268-2016).

231 Before the experiment, the bamboo shoots were placed in a freeze-
232 dryer until entirely dehydrated. Approximately 0.5 g of bamboo
233 shoot samples were digested using a microwave digestion system
234 using nitric acid. Subsequently, the digested bamboo shoot samples
235 were placed on an adjustable temperature-controlled hot plate to
236 evaporate the acid and then diluted to a final volume of 25 mL with
237 deionized water. Fe, Ca, Mg, Na, Cu, Zn, K, and Mn concentrations
238 were determined using flame atomic absorption spectrometry,
239 while the Se content was measured using atomic fluorescence
240 spectrometry. All samples were analyzed in triplicate.

241 The ascorbic acid content was determined following the
242 methodology outlined by Yang et al. ¹⁴. Initially, 1 g of bamboo
243 shoot powder was combined with 5 mL of 5% trichloroacetic acid
244 (TCA), and the mixture was centrifuged at 12,000 × g for 15
245 minutes. Subsequently, 0.1 mL of the supernatant was extracted
246 and combined with 1 mL of ethanol, 1.9 mL of TCA, 0.5 mL of 0.5%
247 phosphoric acid-ethanol, 1 mL of 0.5% O-phenanthroline-ethanol,
248 and 5 mL of 0.03% FeCl₃-ethanol. The resulting mixture was
249 maintained at 30 °C for 1 hour. Finally, the ascorbic acid content

250 was quantified by measuring the absorbance of the mixture at 534
251 nm.

252 Place 1 g of the sample into a Soxhlet extractor to determine
253 the flavonoid content in bamboo shoots. Add 100 mL of 70%
254 ethanol and a small quantity of CaCO_3 and extract for 6 to 8 hours.
255 Subsequently, concentrate the extract under reduced pressure. The
256 resulting concentrate should be washed with ethyl ether and then
257 diluted with 70% ethanol to achieve a final volume of 100 mL,
258 which will serve as the sample solution. After aspirating 1 mL of
259 the sample solution, sequentially add 1 mL of 70% ethanol, 0.3 mL
260 of 5% NaNO_2 , 0.3 mL of 10% $\text{Al}(\text{NO}_3)_3$, and 2 mL of 4% NaOH at 6-
261 minute intervals to prepare the mixed solution for analysis.
262 Following a 10-minute incubation period, measure the absorbance
263 at 510 nm using a spectrophotometer. Additionally, prepare a
264 standard solution of $100 \mu\text{g}\cdot\text{mL}^{-1}$ using rutin and 70% ethanol and
265 subsequently dilute it to working concentrations ranging from 0 to
266 $50 \mu\text{g}\cdot\text{mL}^{-1}$ ¹⁵.

267 The sample extract was prepared using methanol and dried
268 bamboo shoot powder, and the tannin content was determined
269 using the Folin-Ciocalteu method ¹⁶. A volume of 0.1 mL of the
270 sample extract was mixed with 7.5 mL of distilled water, followed
271 by adding 0.5 mL of Folin phenol reagent and 1 mL of a 35%
272 sodium carbonate solution. The resulting mixture was diluted to a
273 final volume of 10 mL with distilled water. The mixture was
274 thoroughly shaken and allowed to stand at room temperature for

275 30 minutes, after which the absorbance was measured at 725 nm—
276 distilled water served as the blank, replacing the sample extract. A
277 standard curve was constructed using a series of gallic acid
278 standard solutions.

279 Oxalic acid content was determined using reversed-phase high-
280 performance liquid chromatography (HPLC) ¹⁷. A 0.5-g fresh
281 sample was combined with 2 mL of 0.5 mol·L⁻¹ hydrochloric acid
282 and a small quartz sand. The mixture was thoroughly ground into a
283 homogenate and then transferred to a test tube. The test tube was
284 placed in a boiling water bath for 15 to 20 minutes, after which it
285 was shaken well. Upon cooling, 4 mL of distilled water were added,
286 and the mixture was allowed to stand overnight. The homogenate
287 was then filtered through a small funnel into a 50-mL volumetric
288 flask. The residue was washed repeatedly with distilled water until
289 the total volume reached 50 mL. Finally, the solution was filtered
290 through a microporous membrane filter and analyzed using an
291 HPLC (Agilent 1100, USA).

292 2.3.3 Soil sample collection and testing

293 The soil pH was analyzed using the method described by
294 Bottomley et al. ¹⁸. The soil organic matter content was determined
295 according to the method outlined by Te et al. ¹⁹. The total nitrogen
296 content was measured following the method proposed by Li et al.
297 ²⁰, while the total phosphorus content was assessed based on the
298 method presented by Kozyrev et al. ²¹. Additionally, the soil
299 potassium content was analyzed through inductively coupled

300 plasma optical emission spectrometry (ICP-OES, PerkinElmer
301 Optima 8000).

302 **2.4 Data analyses**

303 The results of the analyzed samples are presented as mean \pm
304 standard deviation ($n = 3$), derived from three independent
305 replicate experiments. A p-value of less than 0.05 indicated
306 significant differences between means. Calculations and Principal
307 Component Analysis (PCA) were executed using IBM SPSS
308 Statistics 27 software. Graphs were generated utilizing Origin
309 2022, and redundancy analysis (RDA) of environmental factors
310 about bamboo shoot quality was performed using Canoco 5.0
311 software.

312 **3. Results**

313 **3.1 The morphological differences of *C. rigidula* bamboo shoots**
314 The weight, basal diameter, and edible amount of bamboo
315 shoots in the MC and PS regions did not exhibit significant
316 differences ($p>0.05$); however, these parameters were significantly
317 greater than those observed in the MB region ($p<0.05$).
318 Furthermore, bamboo shoots' shoot length and edible rate across
319 the three regions showed no significant differences ($p>0.05$), with
320 an average shoot length of 34.15 cm and an average edible rate of
321 60.75%. Coefficient of variation analysis revealed that the
322 coefficients of variation for all indicators were below 20%,
323 categorizing them as indicators of weak variation (Table 2).
324 **3.2 Differences in the basic nutritional components of *C. rigidula***

325 bamboo shoots

326 The determination results of the basic nutritional components
327 of bamboo shoots across three regions are presented in Table 3.
328 The moisture, protein, total flavonoid, and starch content of
329 bamboo shoots exhibited no significant differences among the three
330 regions ($p>0.05$). Notably, the lignin, ash, ascorbic acid, and tannin
331 contents in the MB region were significantly higher than those in
332 the other two regions ($p<0.05$). Conversely, the cellulose contents
333 in the MC and PS regions were significantly greater than in the MB
334 region ($p<0.05$). Furthermore, the soluble sugar content in the PS
335 region was significantly elevated compared to the other two
336 regions. The oxalic acid content in the MC region was significantly
337 higher than in the other two regions. The coefficient of variation
338 analysis revealed that the variability of cellulose, lignin, water,
339 ascorbic acid, protein, oxalic acid, total flavonoids, and starch
340 content was low, with coefficients of variation below 20%, thus
341 categorizing them as indicators of weak variability. In contrast, the
342 coefficients of variation for ash, soluble sugar, and tannin content
343 ranged from 20% to 50%, categorizing them as indicators of
344 moderate variability.

345 3.3 Differences in the mineral content of *C. rigidula* bamboo shoots

346 The mineral content of bamboo shoots across the three regions
347 is presented in Table 4. The bamboo shoots from MC exhibit the
348 highest potassium, sodium, calcium, iron, and zinc levels,
349 significantly surpassing those from the other two regions ($p<0.05$).

350 In contrast, the differences in mineral contents between MB and PS
351 are not statistically significant ($p>0.05$). Notably, the copper
352 content in bamboo shoots from PS is the highest ($p<0.05$), while
353 the differences between the other two regions are not significant
354 ($p>0.05$). Furthermore, the magnesium content in bamboo shoots
355 from MB is the highest ($p<0.05$), with no significant differences
356 observed between the other two regions ($p>0.05$). Selenium
357 content was undetected in the bamboo shoots from the three
358 regions. The coefficient of variation analysis revealed low
359 variability for potassium, calcium, zinc, copper, and magnesium
360 contents, all exhibiting coefficients of variation below 20%. In
361 contrast, sodium and iron displayed moderate variability, with
362 coefficients of variation ranging from 20% to 50% (Table 3).
363 3.4 Differences in the amino acid content of *C. rigidula* bamboo
364 shoots

365 Table 5 shows that this study identified 18 amino acids,
366 including six essential amino acids for humans. Among these, the
367 bamboo shoots from MB exhibited the highest total content of 16
368 amino acids, with 11 being significantly higher than those found in
369 bamboo shoots from the other two regions ($p<0.05$). Furthermore,
370 the Asp content in the MC region was significantly greater than in
371 the other two regions. In comparison, the Lys content in bamboo
372 shoots across all three regions showed no significant differences
373 ($p>0.05$). An analysis of the average amino acid content revealed
374 that Glu had the highest concentration in bamboo shoots, followed

375 by Ser, with cystine being the least abundant, and Cys not
376 detected. The coefficient of variation analysis indicates significant
377 variability in amino acid content. Except Asp, Thr, Gly, Ala, Leu,
378 Lys, Arg, and Pro, which exhibit weak variation, the contents of
379 other amino acids demonstrate moderate to substantial variability.
380 Notably, the coefficient of variation for Tyr content reaches as high
381 as 58.69%.

382 3.5 Correlation analysis between nutritional traits of *C. rigidula*
383 bamboo shoots and environmental factors

384 Table 6 presents the pH levels, organic matter content, total
385 nitrogen, total phosphorus, and total potassium content in soils
386 from three distinct regions. Principal Component Analysis (PCA)
387 was conducted to identify the key quality indices of *C. rigidula*
388 bamboo shoots (Table 7). The first three principal components
389 (PC1, PC2, and PC3) accounted for 81.96% of the total variance,
390 with PC1 contributing 43.35%, PC2 contributing 29.56%, and PC3
391 contributing 9.06%. The most influential variables for PC1 were
392 Met (loading = 0.965), Tan (loading = 0.941), and Ser (loading =
393 0.918). For PC2, the most influential variables were K (loading =
394 0.994), Oa (loading = 0.850), and Fe (loading = 0.831). The most
395 influential variables for PC3 included Cel (loading = 0.621), Lys
396 (loading = 0.582), and Vc (loading = 0.471). These indicators are
397 closely associated with the nutritional value of *C. rigidula* bamboo
398 shoots; therefore, the aforementioned indicators were selected for
399 subsequent correlation analysis. As Fig. 1 shows, the correlation

400 analysis between bamboo shoot quality indicators and
401 environmental factors revealed several significant relationships.
402 The oxalic acid content in bamboo shoots exhibited a significant
403 positive correlation with the altitude of the growing site.
404 Additionally, the minimum temperature in September
405 demonstrated a significant positive correlation with the tannin and
406 serine (Ser) contents in bamboo shoots. Furthermore, the
407 maximum temperature in September also positively correlated with
408 the Vc content. There is a significant positive correlation between
409 soil organic matter content and the cellulose content of bamboo
410 shoots. Conversely, the average temperature in September
411 displayed a significant negative correlation with the potassium
412 content in bamboo shoots.

413 3.6 The relationship between environmental factors and the quality
414 of *C. rigidula* bamboo shoots

415 The redundancy analysis results of bamboo shoot quality
416 indicators across three regions, considering environmental factors
417 such as soil and climate, are presented in Fig. 2. The cumulative
418 variation explanation rate for bamboo shoot quality about
419 environmental factors was 90.22%. The first and second ordination
420 axes accounted for 82.74% of the cumulative variation, indicating a
421 significant correlation between the 16 quality indicators and the
422 five environmental factors. The minimum temperature in
423 September emerged as the most influential factor, explaining
424 60.8% of the total variation, followed by the maximum temperature

425 in September (20.4%), total soil phosphorus content (5.3%), soil pH
426 (3.6%), and total soil nitrogen content (0.5%). These findings
427 suggest that the minimum and maximum temperatures in
428 September, along with total soil phosphorus content, soil pH, and
429 total soil nitrogen content, are the five critical factors influencing
430 bamboo shoot quality and should be prioritized in the site selection
431 process for bamboo shoot cultivation.

432 **4 Discussion**

433 4.1 Geographical variation in *C. rigidula* bamboo shoots quality
434 This study reveals distinct differences in the external
435 morphology of bamboo shoots across three regions, with the
436 weight, basal stem diameter, and edible portion of MB bamboo
437 shoots being lower than those in the other two regions. Significant
438 variations in quality and basal diameter of bamboo shoots of the
439 same variety across different regions contribute to discrepancies in
440 the edible portion, which aligns with previous research findings on
441 other bamboo species ²². The responses, adaptations, and
442 sensitivities of plant phenotypic traits to varying growth
443 environments differ, and the functional traits of plants in response
444 to environmental changes also vary, resulting in marked
445 intraspecific and interspecific differences in the same phenotypic
446 trait ²³. An analysis of the coefficient of variation indicates that the
447 appearance and morphological indicators of bamboo shoots exhibit
448 weak variation, demonstrating stable traits with minimal changes.
449 Furthermore, the analysis of the appearance and morphology of the

450 bamboo shoots suggests that those from MC and PS are superior to
451 those from MB.

452 The basic nutritional components of bamboo shoots are
453 influenced by factors such as water content, protein, soluble
454 sugars, cellulose, lignin, and tannin, which collectively determine
455 their taste and nutritional value. For an example, the lignin and
456 cellulose content and composition of bamboo shoots vary based on
457 their age and geographical location, which critically influences the
458 mouthfeel and taste of the shoots²⁴. Higher levels of water content,
459 soluble sugars, and protein correlate with superior quality, while
460 lower levels of lignin and tannin indicate better quality. Water
461 content is a crucial indicator of tenderness in bamboo shoots,
462 directly impacting their taste and overall quality; thus, increased
463 water content is associated with enhanced flavor²⁵. This study
464 reveals that the water content of bamboo shoots across the three
465 studied regions is relatively high and exhibits low variability,
466 suggesting that the water content in these areas is relatively
467 stable. Consequently, water content may not be the primary factor
468 influencing the quality of bamboo shoots. Furthermore, MB
469 bamboo shoots exhibit the lowest cellulose content alongside the
470 highest levels of lignin and tannin; MC bamboo shoots have the
471 least tannin content; while PS bamboo shoots contain the highest
472 amounts of soluble sugars, indicating that bamboo shoots from the
473 MC and PS regions are likely to offer a more favorable taste.

474 In terms of amino acid content in bamboo shoots, components

475 such as Asp, Glu, Gly play a crucial role in determining their flavor.
476 A higher concentration of these amino acids correlates with an
477 improved flavor profile of bamboo shoots. This study assessed the
478 amino acid content in bamboo shoots from three regions, revealing
479 that the Gly and Glu levels in the bamboo shoots from MB and PS
480 were significantly higher than those from MC, which aligns with
481 the sensory evaluation results. Bamboo shoots are abundant in
482 various amino acids essential for human health, providing
483 necessary nutrients **26**. Additionally, this study identified eight
484 essential amino acids in bamboo shoots, specifically Met, Lys, Thr,
485 Ser, Leu, Ile, Val, and His, which are particularly important for
486 infants and young children. Notably, the Thr concentration in
487 bamboo shoots from MB and PS was significantly greater than that
488 from MC. Furthermore, the levels of all essential amino acids in
489 bamboo shoots from MB were markedly higher than those from the
490 other two regions, indicating the superior quality of bamboo shoots
491 from MB.

492 The test results indicate that the concentrations of potassium
493 (K), magnesium (Mg), and calcium (Ca) in bamboo shoots from the
494 three regions are notably high. Potassium is a crucial mineral that
495 helps regulate blood pressure, and foods abundant in potassium
496 contribute to maintaining stable blood pressure levels. Calcium
497 serves as an essential component for bone formation, while
498 magnesium plays a protective role for the myocardium. These
499 findings suggest that *C. rigidula* bamboo shoots are rich in mineral

500 elements, which can enhance the body's immune function and
501 improve disease resistance, thereby establishing them as an
502 excellent health-promoting vegetable. Notably, bamboo shoots from
503 the MC region exhibit the highest concentrations of these mineral
504 elements. No selenium was detected in bamboo shoots from all
505 three regions, primarily due to the absence of this element in the
506 local soil.

507 4.2 The relationship between environmental factors and *C. rigidula*
508 bamboo shoots quality

509 Soil serves as a crucial medium for plant survival and is a
510 primary source of water, heat, and nutrients essential for plant
511 growth. Numerous studies have established a strong correlation
512 between soil quality and the growth of bamboo shoots ²⁷⁻²⁹. This
513 study identifies low and high temperatures in September as the
514 primary environmental factors influencing the nutritional quality of
515 bamboo shoots. Specifically, these temperature extremes correlate
516 significantly with the amino acid content in bamboo shoots,
517 showing positive relationships with Ser and Thr, respectively.
518 Furthermore, low and high temperatures in September are also
519 associated with Vc, starch, and tannins. Research indicates that
520 temperature affects plant growth, development, yield, and quality
521 by influencing the rates of nutrient absorption and assimilation ³⁰⁻
522 ³². During their growth, plants are influenced by genetic factors
523 and environmental conditions. They adjust and balance various
524 functional traits to form a series of trait combinations in response

525 to habitat changes [33, 34](#). This study found that the quality of *C.*
526 *rigidula* bamboo shoots is susceptible to changes in the growing
527 environment. Besides temperature, total soil nitrogen, total
528 phosphorus, and pH significantly explain the variations in bamboo
529 shoot quality across different regions, affecting the nutritional
530 components of the bamboo shoots. The response of bamboo shoot
531 quality to environmental changes results from the combined effects
532 of multiple factors. Plants exhibit varying abilities to absorb and
533 utilize nutrients, and there may be synergistic or antagonistic
534 interactions among different environmental factors, leading to
535 varying degrees of influence on bamboo shoot quality. The
536 mechanisms underlying these effects warrant further in-depth
537 research.

538 **5 Conclusion**

539 This study highlights the significant role of environmental
540 factors in shaping the nutritional composition of *C. rigidula* bamboo
541 shoots. The minimum and maximum temperatures in September,
542 total soil phosphorus content, soil pH, and total soil nitrogen
543 content were identified as key drivers of regional variation in *C.*
544 *rigidula* bamboo shoot quality. The appearance, morphology, and
545 taste of bamboo shoots from MC and PS are superior to those from
546 MB. Notably, bamboo shoots from MB exhibit the highest content
547 of essential amino acids, while bamboo shoots from MC contain the
548 highest levels of mineral elements. In summary, these findings
549 provide critical insights into the sustainable cultivation of *C.*

550 *rigidula* bamboo shoots, highlighting the significance of region-
551 specific environmental management. Furthermore, the research
552 results present strategies for enhancing the value of *C. rigidula*
553 bamboo shoots by optimizing cultivation practices in response to
554 environmental changes.

555

556 **Funding**

557 This work was supported by Leshan Engineering Technology
558 Research Center for Innovative Utilization of Feature Plant
559 Resources (TSZW2025-6), Opening Foundation of Key Laboratory
560 of Sichuan Province for Bamboo Pests Control and Resource
561 Development (ZL2019002), Sichuan Science and Technology
562 Program (2024NSFSC2084).

563 **Data availability**

564 All the original data are contained in the supplementary data.

565 **Statement**

566 The bamboo forest from which the bamboo shoots were collected
567 for this study is owned by local farmers, and the collection process
568 was conducted with compensation provided at market prices.

569 **Reference**

- 570 1. Zhang, Y., et al. Bamboo shoot and its food applications in
571 last decade: An undervalued edible resource from forest to feed
572 future people. *Trends in Food Science & Technology*, 104399
573 (2024).
- 574 2. Choudhury, D., Sahu, J. K., Sharma, G. D. Value addition to

575 bamboo shoots: a review. *Journal of Food Science and*
576 *Technology*, 49, 407-414 (2012).

577 3. Chongtham, N., et al. Quality improvement of bamboo shoots
578 by removal of antinutrients using different processing techniques:
579 A review. *Journal of food science and technology*, 1-11(2022).

580 4. Wang, R., et al. Practices and roles of bamboo industry
581 development for alleviating poverty in China. *Clean Technologies*
582 and *Environmental Policy*, 23(6), 1687-1699 (2021).

583 5. Qian, Y., et al. Environmental drivers and transcriptomic
584 variations shaping Lei bamboo shoots across cultivation
585 regions. *Frontiers in Plant Science*, 16, 1565665 (2025).

586 6. Goud, E. L., et al. "Climate change and their impact on
587 global food production," in *Microbiome Under Changing Climate*.
588 Eds. A. Kumar, J. Singh and L. F. R. Ferreira (Woodhead
589 Publishing), 415-436 (2022).

590 7. Huang, Y., et al. Integrated metabolomic and transcriptomic
591 analysis reveals the effect of artificial shading on reducing the
592 bitter taste of bamboo shoots. *Horticulturae* 8, 594 (2022).

593 8. Chu, H., et al. Impact of nitrogen fertilizer application on soil
594 organic carbon and its active fractions in moso bamboo
595 forests. *Forests*, 15(9), 1483 (2024).

596 9. Qian, Y., et al. Environmental drivers and transcriptomic
597 variations shaping Lei bamboo shoots across cultivation
598 regions. *Frontiers in Plant Science*, 16, 1565665 (2025).

599 10. Singhal, P., et al. Effect of different drying techniques on

600 the nutritional, antioxidant and cyanogenic profile of bamboo
601 shoots. *Applied Food Research*, 2(1), 100036 (2022).

602 11. Zhang, Z., et al. Comparative analysis of the lignification
603 process of two bamboo shoots stored at room temperature. *Plants*,
604 (10), 1399 (2020).

605 12. Wang, J., et al. The influence of gamma irradiation on the
606 storage quality of bamboo shoots. *Radiation Physics and*
607 *chemistry*, 159, 124-130 (2019).

608 13. Yang, W. T., et al. Qualitative and quantitative
609 characterization of nutrient content and morphology in seeds of
610 bamboo, rice, and wheat. *Journal of Cereal Science*, 101, 103273
611 (2021).

612 14. Yang, B., et al. Impact of melatonin application on
613 lignification in water bamboo shoot during storage. *Food*
614 *Chemistry: X*, 13, 100254 (2022).

615 15. Indira, A., et al. Assessment of bioactive compound
616 variations and in-vitro and in-vivo antioxidant activity in edible
617 fresh and processed Bambusa nutans shoot through FTIR, GC/MS
618 and HPLC analyses. *Food Chemistry*, 452, 139552 (2024).

619 16. Tamilselvi, N., et al. Analysis of total phenols, total tannins
620 and screening of phytocomponents in Indigofera aspalathoides
621 (Shivanar Vembu) Vahl EX DC. *Journal of chemical and*
622 *pharmaceutical research*, 4(6), 3259-3262 (2012).

623 17. Fan, L., et al. Shoot nutrition and flavor variation in two
624 Phyllostachys species: does the quality of edible bamboo shoot

625 diaphragm and flesh differ?. *Foods*, 12(6), 1180 (2023).

626 18. Bottomley, P. J., et al. Methods of soil analysis, Part 2:

627 Microbiological and biochemical properties (John Wiley & Sons, the

628 Soil Science Society of America) (2020).

629 19. Te, X., et al. Effect of different planting pattern

630 arrangements on soil organic matter and soil nitrogen content

631 under a maize/soybean strip relay intercropping system. *Frontiers*

632 *in Plant Science*, 13, 995750 (2022).

633 20. Li, M., et al. Total nitrogen stock in soil profile affected by

634 land use and soil type in three counties of mollisols. *Frontiers in*

635 *Environmental Science*, 10, 945305 (2022).

636 21. Kozyrev, R., et al. Total phosphorus and phosphorus forms

637 change in sediments along the Tone River. *Frontiers in Earth*

638 *Science*, 11, 1060312 (2023).

639 22. Feleke, S. Site factor on nutritional content of *Arundinaria*

640 *alpina* and *Oxytenanthera abyssinica* bamboo shoots in

641 Ethiopia. *Journal of Horticulture and forestry*, 5(8), 115-121 (2013).

642 23. Mooney, K. A., et al. Evolutionary trade-offs in plants

643 mediate the strength of trophic cascades. *Science*, 327(5973),

644 1642-1644 (2010).

645 24. Yang, J., et al. Using the major components (cellulose,

646 hemicellulose, and lignin) of *Phyllostachys praecox* bamboo shoot

647 as dietary fiber. *Frontiers in Bioengineering and Biotechnology*, 9,

648 669136. (2021)

649 25. Ma, T., et al. A review of the nutritional composition,

650 storage challenges, processing technology and widespread use of
651 bamboo shoots. *Foods*, 13(22), 3539 (2024)

652 26. Nongdam, P., et al. The nutritional facts of bamboo shoots
653 and their usage as important traditional foods of northeast
654 India. *International scholarly research notices*, 2014(1), 679073
655 (2014).

656 27. Zhou, X., et al. Response of moso bamboo growth and soil
657 nutrient content to strip cutting. *Forests*, 13(8), 1293 (2022).

658 28. Chen, Q., et al. The role of soil chemical properties and
659 microbial communities on *Dendrocalamus brandisii* bamboo shoot
660 quality, Yunnan Province, China. *Frontiers in Microbiology*, 16,
661 1551638 (2025).

662 29. Nong, J., et al. Optimal fertilizer formulation for maximizing
663 bamboo shoot production while improving soil fertility. *BMC Plant
664 Biology*, 25(1), 1-19 (2025).

665 30. Näsholm, T., et al. Uptake of organic nitrogen by
666 plants. *New phytologist*, 182(1), 31-48 (2009).

667 31. McAllister, C. H., et al. Engineering nitrogen use efficient
668 crop plants: the current status. *Plant biotechnology journal*, 10(9),
669 1011-1025 (2012).

670 32. Ding, Y., et al. Molecular regulation of plant responses to
671 environmental temperatures. *Molecular plant*, 13(4), 544-564
672 (2020).

673 33. Baraloto, C., et al. Decoupled leaf and stem economics in
674 rain forest trees. *Ecology letters*, 13(11), 1338-1347 (2010).

675 34. Li, Y., et al. Leaf phenotypic variation of endangered plant
 676 *Tetracentron sinense* Oliv. and influence of geographical and
 677 climatic factors. *Journal of Forestry Research*, 32(2), 623-636
 678 (2021).

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697 Table 1 Basic information of sampling sites

sampling sites	Abbreviati on	Longitude (E)	Latitude (N)	Altitude (m)
Muchuan	MC	103°84'12"	28°84'87"	1280

Mabian	MB	103°47'53"	28°78'67"	1241
Pingshan	PS	103°96'81"	28°74'74"	1237

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

Table 2. Morphological traits of *C. rigidula* bamboo shoots

Sampling site	Weight (g)	Shoot length (cm)	Basal diameter (cm)	Edible amount (g)	Edible rate (%)
MC	201.09±4.41	34.49±1.2	2.14±0.0	121.52±2.53	60.44±1.48
MB	173.14±4.72	33.25±0.7	1.76±0.0	107.70±5.60	61.82±1.56

	b	3a	9b	b	a
PS	204.20±3.62	34.70±1.0	2.23±0.1	122.64±3.54	60.05±0.91
	a	1a	3a	a	a
Mean	192.81	34.15	2.04	117.29	60.75
CV(%)	8.87	2.29	12.2	7.09	1.56

723 Compared with the same column, different lowercase letters indicated significant

724 differences between different regions ($p<0.05$).

725

726

Table 3. The basic nutrients in *C. rigidula* bamboo shoots from different areas

Sample ng site	Cellulose (g·100g ⁻¹)	Lignin (g·100g ⁻¹)	AW (%)	Ash (g·100g ⁻¹)	ASC acid (mg·100g ⁻¹)	SS (g·100g ⁻¹) ¹⁾	Protein (g·100g ⁻¹) ¹⁾	Oxalic acid (mg·100g ⁻¹) ¹⁾	Tf (mg·1000g ⁻¹) ¹⁾	Tannin (mg·1000g ⁻¹) ¹⁾	Starch (g·100g ⁻¹) ¹⁾
MC	18.83±0.7	12.60±0.3	91.53±0.3	0.91±0.00	7.90±0.27b	0.35±0.0	2.68±0.1	5.37±0.0	56.83±3.8	576.33±20.	1.02±0.1
	0a	0b	2a	4c		4b	1a	8a	5a	55b	1a
MB	16.00±0.3	14.67±0.3	91.83±0.1	1.37±0.03	11.77±1.24	0.31±0.0	2.65±0.0	4.28±0.1	46.87±4.6	953.33±22.	1.14±0.1
	6b	2a	5a	a	a	5b	3a	0b	3a	03a	0a
PS	18.07±0.3	13.06±0.3	91.43±0.4	1.00±0.02	10.15±1.51	0.49±0.0	2.83±0.0	4.16±0.1	52.97±5.7	611.00±7.9	0.94±0.0
	8a	8b	7a	b	ab	6a	8a	1b	9a	4b	4a
Mean	17.63	13.44	91.60	1.09	9.94	0.38	2.72	4.60	52.22	713.55	1.03
CV(%)	8.31	8.09	0.22	22.30	19.55	24.66	3.55	14.48	9.62	29.20	9.74

728 Compared with the same column, different lowercase letters indicated significant differences between different regions ($p<0.05$). AW: Moisture
729 content; ASC acid: ascorbic acid; SS: soluble sugar; Tf: Total flavonoid

Table 4. The mineral content in *C. rigidula* bamboo shoots from different areas

Sampli ng site	Potassium (K) (mg·1000g ⁻¹)	Sodium (Na) (mg·1000g ⁻¹)	Calcium (Ca) (mg·1000g ⁻¹)	Iron (Fe) (mg·1000g ⁻¹)	Zinc (Zn) (mg·1000g ⁻¹)	Copper (Cu) (mg·1000g ⁻¹)	Magnesium (Mg) (mg·1000g ⁻¹)	Selenium (Se) (mg·1000g ⁻¹)
MC	6226.00±57 .00a	2.52±0.34 a	382.00±9. 85a	4.42±0.30a 3a	11.23±1.0 3a	2.08±0.10 b	208.33±1.53 ab	—
MB	5843.00±61 .59b	1.59±0.35 b	354.33±6. 81b	3.36±0.34 b	8.77±0.12 b	2.23±0.14 b	215.33±6.81 a	—
PS	4973.67±88 .38c	1.74±0.25 b	361.33±3 51b	2.94±0.24 b	8.64±0.23 b	2.86±0.24 a	202.00±5.30 b	—
Mean	5680.89	1.95	365.89	3.57	9.55	2.39	208.55	
CV(%)	11.30	25.60	3.93	21.34	15.28	17.31	3.19	

Compared with the same column, different lowercase letters indicated significant differences between different regions ($p<0.05$). -: undetected

ARTICLE IN PRESS

Table 5. The amino acid content in *C. rigidula* bamboo shoots from different areas

Amino acid	MC	MB	PS	Mean	CV(%)
(mg·100g ⁻¹)					
Asp	19.17±0.78a	15.87±1.12b	14.67±0.51b	16.57	14.06
Thr	14.40±1.06b	20.67±1.46a	18.87±1.70a	17.98	17.96
Ser	31.77±1.61b	50.83±1.27a	32.83±1.85b	38.48	27.84
Glu	80.30±2.01b	153.33±2.31a	162.67±7.57a	132.10	34.14
Gly	5.70±0.79b	8.5±0.20a	7.43±0.45a	7.21	19.60
Ala	24.30±1.91b	29.77±1.43a	23.70±0.10b	25.92	12.90
Val	25.80±0.46b	38.23±1.90a	22.63±1.27c	28.89	28.54
Cystine	1.13±0.23b	2.07±0.12a	2.30±0.10a	1.83	33.81
Met	6.37±0.40c	10.13±0.58a	7.60±0.44b	8.03	23.86
Ile	20.67±1.39b	25.73±2.06a	16.43±0.67c	20.94	22.23
Leu	25.53±0.59b	29.10±0.53a	24.83±2.16b	26.49	8.65
Tyr	15.77±0.42b	41.63±2.63a	17.07±0.85b	24.82	58.69
Pheny	22.57±0.55b	39.80±2.35a	17.83±1.34c	26.73	43.25
GABA	33.30±1.45a	20.87±0.57c	29.87±1.58b	28.01	22.92
Lys	22.70±2.20a	25.13±1.00a	21.50±1.14a	23.11	8.00
His	13.53±1.00c	20.83±0.60a	18.17±0.61b	17.51	21.10
Arg	22.97±1.03b	26.63±2.58a	18.70±0.90c	22.77	17.43
Pro	11.20±1.01b	13.47±0.91a	11.30±0.69b	11.99	10.70

Compared with the same row, different lowercase letters indicated significant differences between different regions ($p<0.05$). Pheny: phenylalanine; GABA: γ -aminobutyric acid

ARTICLE IN PRESS

Table 6. Soil indicators from different areas

Sampling site	Soil pH	Soil organic matter (g/kg)	Total soil nitrogen (%)	Total soil phosphorus (g/kg)	Total soil potassium (g/kg)
MC	6.02±0.0	98.03±2.00a	0.41±0.023a	0.90±0.036b	34.4±1.41a 4a
MB	5.74±0.1	38.83±0.83b	0.26±0.015b	0.77±0.036c	14.93±0.76c 0b
PS	4.45±0.0	85.03±1.01c	0.44±0.016a	1.21±0.031a	20.73±1.20b 4c
Mean	5.40	73.96	0.37	0.96	23.35
CV(%)	15.49778	42.07	26.06	23.55	42.81

Table 7. Principal component loading matrix in *C. rigidula* bamboo shoots of different quality index

Quality index	PC1	PC2	PC3
Met	0.965	-0.110	-0.079
Tan	0.941	0.101	-0.299
Ser	0.918	0.107	-0.074
Val	0.894	0.354	0.013
Leu	0.794	0.379	0.207
Thr	0.788	-0.486	0.239
Tf	-0.756	0.093	0.200
Vc	0.754	-0.294	0.471
Ca	-0.750	0.460	0.219
Ile	0.705	0.631	0.089
Na	-0.665	0.559	-0.214
Mg	0.611	0.510	-0.154
Lys	0.608	0.434	0.582
K		0.994	-0.048
Cu	-0.143	-0.954	-0.117
Oa	-0.423	0.850	0.085
Fe	-0.393	0.831	-0.045
SS	-0.473	-0.755	-0.118
Zn	-0.581	0.716	-0.223
Sta	0.487	0.358	-0.745
Cel	-0.574	0.041	0.621
Pr	-0.304	-0.515	-0.355
Lig	0.546	-0.068	-0.026
variance	43.349	29.556	9.057
contribution			
rate (%)			
cumulative variance	43.349	72.905	81.962
contribution			
rate (%)			

Tan: Tannin; SS: Soluble sugar; Lig: Lignin; Cel: Cellulose; Pr: Protein; Ser: Serine; Thr: Threonine; Val: Valine; Met: Methionine; Lys: Lysine; Leu: Leucine; Ile: Isoleucine; Vc: ascorbic acid; Oa: Oxalic acid; Tf: Total

flavonoid; Sta: Starch;

Table 8. Climate indicators for 2024 from different areas

Sampling site	MA T (°C)	AAR (mm)	RH (%)	SAT (°C)	STmi n (°C)	Stma x (°C)	SPr)
MC	13.8 2	1353. 2	79	21.7	10.4	32.2	159. 3
MB	14.6 6	1289. 6	81	22.1	12.0	33.6	167. 8
PS	14.6	817.2	77	23.0	10.6	33.1	85.2

SPr: September precipitation; MAT: Mean annual temperature; AAR: Average annual rainfall; RH: Relative humidity of 2024; SAT: September average temperature; STmin: September minimum temperature; STmax: September maximum temperature

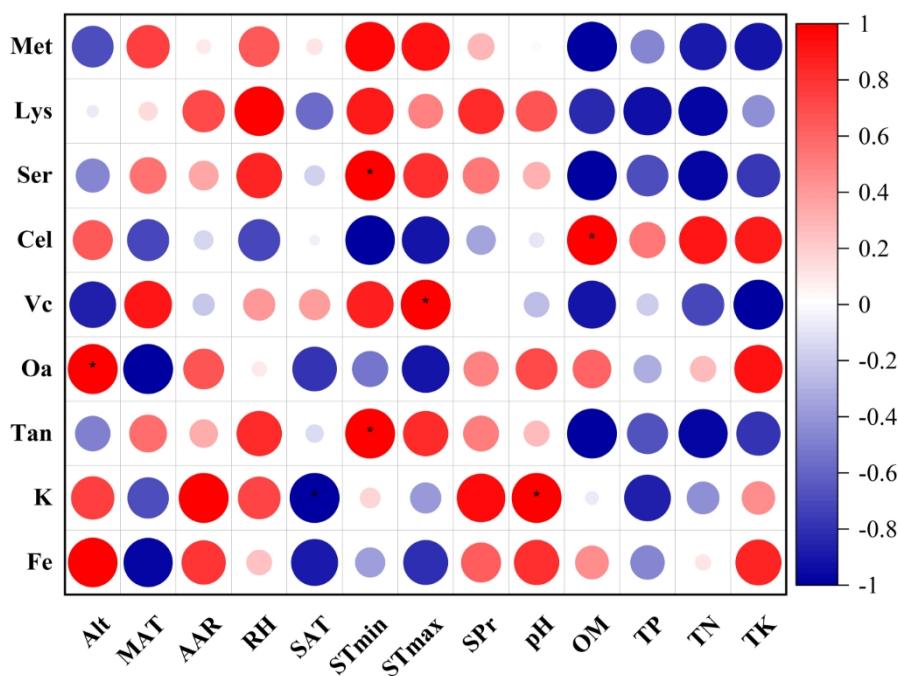


Fig.1 Correlation analysis between the nutritional qualities of *C. rigidula* bamboo shoots and environmental factors across cultivation sites. *: $p < 0.05$

Tan: Tannin; Cel: Cellulose; Ser: Serine; Met: Methionine; Lys: Lysine; Vc: ascorbic acid; Oa: Oxalic acid; pH: Soil pH; OM: Soil organic matter; TN: Total soil nitrogen; TP: Total soil phosphorus; TK: Total soil potassium; SPr: September precipitation; Alt: Altitude; MAT: Mean annual temperature; AAR: Average annual rainfall; RH: Relative humidity; SAT: September average temperature; STmin: September minimum temperature; STmax: September maximum temperature

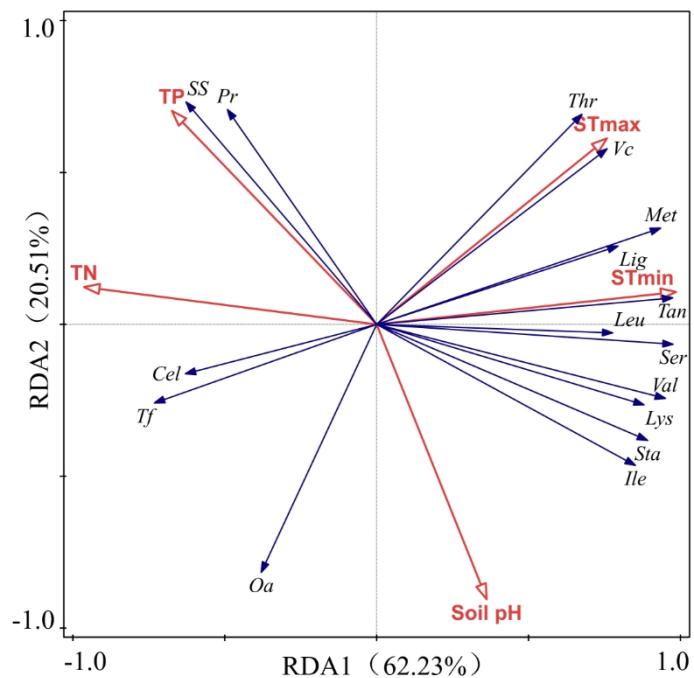


Fig.2 RDA analysis of environmental factors and nutritional quality of *C. rigidula* bamboo shoots.

Tan: Tannin; SS: Soluble sugar; Lig: Lignin; Cel: Cellulose; Pr: Protein; Ser: Serine; Thr: Threonine; Val: Valine; Met: Methionine; Lys: Lysine; Leu: Leucine; Ile: Isoleucine; Vc: ascorbic acid; Oa: Oxalic acid; Tf: Total flavonoid; Sta: Starch; pH: Soil pH; TN: Total soil nitrogen; TP: Total soil phosphorus; STmin: September minimum temperature; STmax: September maximum temperature