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Abstract

Left bundle branch block (LBBB) is an important electrocardiographic 

(ECG) finding strongly associated with left ventricular systolic dysfunction 

(LVSD), a condition linked to poor clinical outcomes. Although early LVSD 

detection is crucial, standard diagnosis via echocardiography may not 

always be immediately accessible. In this study, we propose a fine-tuned 

ECG foundation model (FM) to enhance LVSD detection specifically in 

patients with LBBB. We conducted a retrospective multicenter analysis of 

2,031 paired ECG-echocardiographic datasets from 892 LBBB patients. 

The ECG-FM was fine-tuned for optimal LVSD prediction and compared 

against baseline models, which were conventional deep learning methods, 

including Fully Convolutional Network (FCN), LSTM-FCN, ResNet, and 

InceptionTime. The proposed ECG-FM with single-step full fine-tuning 

outperformed baseline models, achieving accuracy, sensitivity, and 

AUROC of 0.758, 0.771, and 0.807, respectively. Additionally, sequential 

partial fine-tuning exhibited the highest sensitivity (0.787), enhancing 

screening capability. DeepLIFT analysis identified QRS complex and T 

wave features in leads V1–V4 as critical predictive factors. Our results 

demonstrated that the recommended fine-tuned ECG-FM significantly 

improves LBBB patient LVSD detection, potentially enabling earlier 

clinical diagnosis in such cases when echocardiography is not readily 

available, thereby potentially improving patient outcomes and clinical 

management.
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I. Introduction 

Left bundle branch block (LBBB) is an important electrocardiographic 

finding that arises from impaired conduction through the left branch of the 

cardiac conduction system.1 Since its  disturbance interferes with normal 

ventricular conduction, it results in asynchronous ventricular activation 

that diminishes left ventricular efficiency and can result in systolic 

dysfunction.2 Most commonly associated with ischemic heart disease, 

hypertension, cardiomyopathies, or valvular dysfunctions, LBBB often 

indicates the presence of an underlying structural heart disorder.3-5 Of 

particular concern among these is left ventricular systolic dysfunction 

(LVSD), which is closely associated with LBBB6 as its relevance is known 

to adversely affect clinical outcomes.7 So, the early detection of LVSD is 

crucial for implementing appropriate management and improving 

prognosis. 

For diagnosing LVSD, typically defined as a left ventricular ejection 

fraction (LVEF) below 40%, echocardiographic evaluation is the gold 

standard.8 In heart failure patients, the development of LBBB is clinically 

important because it could exacerbate LVSD, and severe LVSD becomes 

one of the major indications to consider cardiac resynchronization therapy 

(CRT).9 For that, routine echocardiographic follow-up is advised even in 

patients with newly diagnosed LBBB who do not initially exhibit LVSD.10 

Although echocardiography is expensive, requires specialist imaging 

expertise, and is thus not easy to perform routinely in primary care or 

emergency practice.
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Compared to echocardiography, electrocardiogram (ECG) is more 

accessible and cost-effective. Accurate ECG-based differentiation of 

patients with LVSD could facilitate early screening and reduce 

unnecessary echocardiographic tests.11 Among conventional ECG 

morphological criteria, only QRS duration has demonstrated a strong 

correlation with LVSD12; however, reliance solely on visually identifiable 

morphologic markers may overlook subtle or nonspecific findings, limiting 

diagnostic accuracy.13 

Over the last few years, deep learning models have been developed to 

predict LVSD from ECG data.14-17 Attia et al.15 proposed a convolutional 

neural network (CNN) that was able to predict LVSD from a 10-second 12-

lead ECG in heterogenous populations, including specific disease 

subgroups and COVID-19 patients, with high robustness and 

demonstrating good generalizability.18-20 Similarly, Kwon et al.21 proposed 

a deep learning model based on a multi-layer perceptron (MLP) utilizing 

manually acquired features from raw ECG signal. This was further 

improved by adding a residual neural network architecture, externally 

validated in patients having atrial fibrillation with rapid ventricular 

responses.22 These did not, however, study prediction of LVSD in LBBB 

patients particularly. Therefore, there remains a clinical need for 

specialized predictive models tailored explicitly for LVSD detection in the 

LBBB population.

In this study, we propose a deep learning-based model to predict LVSD 

using ECG, specifically tailored for patients with LBBB. While most 

existing models have been trained on general populations, our approach 
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fine-tunes a foundation model (ECG-FM) pre-trained on large-scale public 

ECG datasets to better capture the unique characteristics of this high-risk 

subgroup. We applied and compared various fine-tuning strategies to 

overcome the limitations of a small patient dataset and demonstrated the 

generalizability of the model using multi-center data. The design not only 

enhances predictive performance compared to conventional approaches 

that train models from scratch, but also improves clinical interpretability, 

as we visualized the model’s focus areas on ECG signals using DeepLIFT.

II. Methods

Study Design

This study proposes a deep learning-based model to predict LVSD (LVEF 

< 40%) in patients with LBBB using ECG data. LBBB was diagnosed using 

conventional LBBB criteria based on electrocardiograms measured by 

commercially available ECG machines. These diagnostic criteria included 

QRS duration greater than 120ms; the presence or absence of Q wave in 

lateral leads (I, aVL, V5, and V6); the morphology of R waves in lateral 

leads, morphology of QRS complex in right precordial leads including 

dominant S wave, QS or rS pattern; and the R wave peak time in V5/V6.23 

Conventional deep learning models for time-series data served as baseline 

models. These included FCN, LSTM-FCN, ResNet, and InceptionTime. 

Their performance was then compared with a fine-tuned version of ECG-

FM24, a publicly available foundation model pre-trained on large-scale ECG 
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datasets. The performance of the ECG-FM backbone was evaluated by 

comparing single-step fine-tuning and sequential fine-tuning approaches 

(Figure 1b).

We used paired ECG-echocardiographic datasets of patients with LBBB, 

each dataset including 12-lead ECG and the associated echocardiographic 

test conducted within a one-month interval. Our datasets comprised 2,031 

paired ECG-echocardiographic tests from three institutions: 1,657 

datasets from 691 patients in Chungnam National University Hospital 

(CNUH), 259 datasets from 91 patients in Chungnam National University 

Sejong Hospital (CNUSH), and 115 datasets from 115 patients in Jeonbuk 

National University Hospital (JNUH). After accounting for five patients 

present in both CNUH and CNUSH datasets, the final cohort consisted of 

892 unique patients.

This multicenter retrospective study was approved by the Institutional 

Review Boards (IRBs) of Chungnam National University Hospital (CNUH, 

Daejeon, Korea, CNUH IRB 2025-02-001) and Jeonbuk National University 

Hospital (JNUH, Jeonju, Korea, JNUH IRB 2025-02-030). All procedures 

were performed in accordance with relevant guidelines and regulations. 

Data preparation

We divided the dataset into four distinct subsets: training, tuning, internal 

validation, and external validation. Each dataset was a paired ECG-

echocardiogram study. The training set comprised datasets from CNUH 

collected up to 2023 (n=1,200), while the tuning set included additional 

CNUH datasets from the same period (n=300). The internal validation set 
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consisted of datasets collected from CNUH in 2024 (n=194). For external 

validation, we used two separate datasets: one from JNUH (n=115, 

recruited between 2008 and 2021) and another from CNUSH (n=222, 

recruited between 2022 and 2024). The sets were mutually exclusive to 

avoid data leakage. Table 1 shows comprehensive descriptions. No 

subgroup analyses (e.g., on age, sex, or institution) were planned in the 

present study.

Preprocessing

The ECG data used in this study consisted of two types. The first type 

included ECGs originally stored as digital images in electronic medical 

records, later converted to XML format (Mediv Co., Cheongju, Korea). The 

conversion was performed using a software system from Medical User 

Software Exchange (MUSE; General Electric Healthcare, Waukesha, WI) 

and an ECG management system (Medical Information System, Mediana 

Co., Ltd., Wonju, Korea). Samples were stored at various sampling rates, 

ranging from 99 Hz to 221 Hz. The second type comprised digitally 

acquired ECGs collected prospectively using commercial ECG machines 

(MAC5000 v1.0; General Electric Healthcare, Waukesha, WI) and stored 

directly in XML format within the MUSE system. For these samples, 12-

lead resting ECG data were all recorded at a sampling rate of 500 Hz for 

10 seconds. The detailed preprocessing is described in Supplementary 

Materials.
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We converted both datasets into a standardized format of four channels 

(Figure 1a). There are 5,000 time points in each channel (500 Hz × 10 

seconds). The converted final dataset consisted of three channels from a 

standard 12-lead ECG and a rhythm strip (lead II) that was recorded for 

10 seconds. All ECG data underwent preprocessing with a high-pass 

Butterworth filter (0.5 Hz) and powerline noise removal (50 Hz). The 

detailed transformation and integration process for each ECG data type is 

presented in Supplementary Fig. S1.

Baseline Models for LVSD Prediction 

The baseline models used in this study for predicting LVSD included Fully 

Convolutional Network (FCN)25, Long Short-Term Memory Fully 

Convolutional Network (LSTM-FCN)26, ResNet25, and InceptionTime27. All 

baseline models were trained from scratch without pre-training. LVSD 

prediction was formulated as a binary classification task distinguishing 

patients based on an LVEF cutoff of 40%.

First, the FCN25 model comprised three 1D convolutional blocks 

without local pooling layers to preserve original time-series length. The 

filter sizes of each convolutional block were 128, 256, and 128, in that 

order, and the kernel sizes were 8, 5, and 3, respectively. ReLU was used 

as the activation function in all three blocks. The convolutional 

architecture considers inter-lead spatial ECG characteristics but neglects 

long-range temporal dependencies. Second, the LSTM-FCN26 paired a 

Long Short-Term Memory (LSTM) layer with the FCN architecture to learn 

temporal dynamics, overcoming the weakness of FCN to learn only spatial 
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features. The number of convolutional layers, kernel sizes, and filters was 

identical to that used in the FCN. Third, the ResNet25 model comprised 

three residual blocks. The initial two blocks consisted of four layers of 

Conv1D each, and the third block consisted of three Conv1D layers, 

totaling 11 layers within the network. Last, InceptionTime27 utilized multi-

scale pattern detection through iterative Inception modules with three 

convolutional filters of kernel sizes 10, 20, and 40. The module was 

repeated six times (depth=6), and two residual connections were included 

across the entire network to help stabilize training and capture ECG 

features at multiple temporal scales.

Fine-tuned ECG-FM for LVSD Prediction

In this study, a pre-trained ECG foundation model (ECG-FM) was fine-

tuned using ECG data from LBBB patients to improve LVSD prediction. 

The ECG-FM effectively captured general ECG representations before 

being adapted specifically for LBBB. The pre-training method of ECG-FM, 

initially proposed by Oh et al.28, is a lead-agnostic self-supervised approach 

that uses random lead masking and contrastive learning29, combining 

CNN, transformer architecture, and temporal average pooling to capture 

latent ECG representations (Figure 2). McKeen et al.24 adopted the 

technique proposed by Oh et al. and developed ECG-FM by pre-training it. 

The pre-training was conducted in two stages: first, the model was pre-

trained on approximately 1.4 million ECG recordings (12-lead, 5 seconds 

each, sampled at 500 Hz). Second, this pre-trained model was further 
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trained through multi-label diagnostic classification using general 

population ECG data from the PhysioNet 2021 dataset. It should be noted 

that all four linearly dependent leads (aVR, aVL, aVF, III) were retained 

during the pre-training phase without exclusion.

We performed the downstream task of predicting LVSD (LVEF < 40%) 

in a cohort of LBBB patients through single-step fine-tuning of the first 

pre-trained ECG-FM (Figure 1b). Due to differences in data format 

between our ECG inputs and the original backbone model, we modified the 

architecture accordingly. Our ECG data consisted of four channels - either 

four distinct leads recorded for 2.5 seconds each, or a single lead recorded 

continuously for 10 seconds (as a rhythm strip). To accommodate this, we 

added a projection layer using a 1D convolution at the front of the pre-

trained ECG-FM and appended a linear classification head at the end, 

enabling binary classification for LVSD (Figure 2).

Drawing upon prior research30, we employed three single-step fine-

tuning methods: full fine-tuning, partial fine-tuning, and additive fine-

tuning. Full fine-tuning updated all model parameters, including the added 

projection layer and classification head. Partial fine-tuning consisted of 

freezing some of the pre-trained ECG-FM layers and updating the others. 

More specifically, we froze the top 10, 8, 6, 4, and 2 transformer layers 

(out of 12) and generated five different partial fine-tuned models. This 

stepwise approach was based on the understanding that lower layers tend 

to capture general ECG representations, whereas upper layers encode 

more task-specific features; thus, selectively updating higher layers allows 

the model to retain broadly useful physiological representations while 
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introducing only the minimal adaptation required for the downstream task. 
Additive fine-tuning froze all pre-trained ECG-FM layers but only updated 

the added projection layer and classification head. Thus, seven distinct 

models were evaluated through single-step fine-tuning.

For sequential fine-tuning, we utilized a second ECG-FM model 

previously fine-tuned for multilabel classification on other ECG datasets. 

Following the same approach as single-step fine-tuning, we added a 

projection layer at the input and a classification head at the output. 

Sequential fine-tuning was also performed using full, partial, and additive 

fine-tuning methods, producing another set of seven distinct models.

Explainability using Deep Learning Important Features 

(DeepLIFT)

We applied DeepLIFT31 to enhance the interpretability of ECG-based 

predictions. DeepLIFT is a backpropagation-based attribution method that 

quantifies feature importance by explaining the difference between the 

model’s actual output and a reference output in relation to differences 

between actual inputs and reference inputs. This approach enables 

quantitative analysis of ECG signal features identified by the deep learning 

model and facilitates visualization of contributions from specific ECG 

segments, such as the P wave, QRS complex, and T wave, to the model’s 

prediction.

DeepLIFT calculates contributions according to the following equation:
n
∑

i=1
C∆xi∆t = (1)
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where ∆xi denotes the difference between the input and its reference 

value, ∆t represents the change in the output relative to the reference 

output, and C∆xi∆t quantifies the contribution of each input feature xi to 

the output difference. In this study, zero scalar values corresponding to 

each input tensor were used as reference inputs.

Implementation Details

The baseline models in this study were trained from scratch for 100 epochs 

with a learning rate of 5e-6. This setting was determined based on the 

observation that training accuracy had converged, and validation accuracy 

had reached its maximum around 100 epochs. The same approach was 

applied for fine-tuned ECG-FM models, which were trained for 60 epochs 

and had learning rates between 1e-3 and 5e-7, depending on the model. 

For every experiment, we employed the Adam optimizer and cross-entropy 

loss function. 

All calculations were carried out with Python (version 3.10). ECG 

preprocessing was carried out using the Neurokit2 toolbox. PyTorch 

(version 2.2) and sktime libraries were used to implement models, which 

were trained on an NVIDIA RTX A6000 GPU running CUDA version 12.3. 

DeepLIFT analysis for model interpretation was performed using the 

Captum library. The source code for this study is publicly available at: 

https://github.com/doheon114/ECG-FM-LVSD.git.

Evaluation Metrics 
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We measured the predictive performance of the models using accuracy, 

sensitivity, specificity, positive predictive value (PPV), negative predictive 

value (NPV), F1-score, area under the receiver operating characteristic 

curve (AUROC), and area under the receiver precision-recall curve 

(AUPRC) for one internal and two external validations. The performance 

metrics were calculated using macro-averages.

Statistical Analysis

In this study, statistical analyses were performed to assess variations in 

dataset characteristics and model performance. The normality assumption 

for parametric tests was assessed using the Shapiro-Wilk test, and 

homogeneity of variances was evaluated using Levene’s test. To compare 

mean values of continuous variables between datasets, one-way ANOVA or 

Welch’s ANOVA was performed depending on the results of the 

homogeneity test. Differences in categorical variables were evaluated 

using chi-square analysis. For comparison of model performance, both 

repeated-measures ANOVA and the Friedman test were applied to detect 

differences among all models. Post-hoc single model comparisons were 

conducted using Wilcoxon signed-rank tests with Holm's step-down 

correction. Statistical significance was defined at a level of 0.05. All 

analyses were performed using Python (version 3.10) and the statsmodels 

package (version 0.14.4).
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III. Results

Comparative Performance of Models for LVSD Prediction 

Table 2 summarizes the comparative performance of the baseline models 

(FCN, LSTM-FCN, ResNet, and InceptionTime) and ECG-FM models 

trained by single-step full fine-tuning (SS-FF) and sequential partial fine-

tuning (Sq-PF). ECG-FM-based methods showed superior performance 

compared with baseline models across the majority of metrics for both 

internal and external validation sets. Specifically, the ECG-FM-based SS-

FF model achieved the best overall performance, with an average accuracy 

of 0.758, specificity of 0.851, PPV of 0.651, F1-score of 0.703, AUROC of 

0.807, and AUPRC of 0.678, surpassing the maximum performance values 

of all baseline models for these metrics. On the other hand, Sq-PF model 

derived using ECG-FM displayed the highest sensitivity (average = 0.787), 

crucial for effective LVSD screening, and highest NPV (average = 0.855).

Repeated-measures ANOVA indicated statistically significant 

performance differences among the models across the eight performance 

metrics (F = 16.67, p < 0.001). This finding was further confirmed by the 

Friedman test (p < 0.001). Post-hoc analysis demonstrated significant 

performance differences between the ECG-FM-based methods and 

baseline models. However, there were no statistically significant 

differences between the individual baseline models themselves (Figure 3).

Table 3 compares the accuracy and AUROC performance of the baseline 

model (InceptionTime) with consistent performance across metrics and 

the ECG-FM-based SS-FF method with overall best performance. The 
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model trained from scratch showed the lowest overall performance, with 

a mean accuracy of 0.622 and an AUROC of 0.677, falling below the 

performance values of the baseline InceptionTime model, which achieved 

an accuracy of 0.691 and an AUROC of 0.746. This highlights that fine-

tuning pre-trained ECG-FM weights—rather than altering the model 

architecture—significantly improved model performance.

Comparative Performance of ECG-FM-Based Models 

We compared the performance of ECG-FM models trained using single-

step fine-tuning (SS) and sequential fine-tuning (Sq) methods, varying the 

number of trainable (unfrozen) layers. For single-step fine-tuning, seven 

models were developed using additive fine-tuning (SS-AF), partial fine-

tuning (SS-PF), and full fine-tuning (SS-FF). The SS-AF method, which 

updated parameters only in the projection layer and classification head 

while freezing all CNN and transformer encoder layers, achieved an F1-

score of 0.598. In contrast, the SS-FF method, which allowed all layers to 

be trainable, reached a higher F1-score of 0.703. Partial fine-tuning 

methods, in which only some transformer encoder layers were trainable, 

showed intermediate performance between SS-AF and SS-FF 

(Supplementary Table S1). However, statistical analyses indicated no 

significant differences among the seven SS models based on repeated-

measures ANOVA (p=0.708) and the Friedman test (p=0.282).

For sequential fine-tuning, we similarly developed seven models with 

additive fine-tuning (Sq-AF), partial fine-tuning (Sq-PF), and full fine-

tuning (Sq-FF). Unlike single-step fine-tuning, sequential fine-tuning did 
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not show a linear relationship between performance and the number of 

trainable layers. Notably, the Sq-PF model (8 trainable layers) 

outperformed the Sq-FF model (all 12 layers trainable) in terms of 

sensitivity, NPV, F1-score, AUROC, and AUPRC (Supplementary Table S2). 

Statistical analysis demonstrated significant differences among the 

sequential fine-tuning methods, and post-hoc tests revealed that the Sq-PF 

model (8 layers trainable) significantly differed from three of the other six 

models (Supplementary Figure S2).

Analysis of Explainability using DeepLIFT

Figure 4 illustrates an example of local explanations for LVSD 

classification results obtained after tuning the ECG-FM using the SS-FF 

method. The DeepLIFT analysis showed that, across most leads, the QRS 

complex contributed most significantly to the model's prediction, 

particularly in leads V1–V4, which reflect the septum and anterior wall of 

the left ventricle (LV). A notably strong contribution from the deep S wave 

was identified. Additionally, T wave contributions were prominent in leads 

V1–V4, indicating that ventricular repolarization characteristics (including 

shape and magnitude of the T wave) were important for LVSD prediction. 

Limb leads (I, II, III, aVR, aVL, aVF) occasionally showed significant QRS 

contributions, but the precordial leads (V1–V6), particularly V1–V4, 

consistently provided the highest contribution and thus had greater 

predictive importance.
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IV. Discussion

Early detection of LVSD in patients with LBBB is crucial for improving 

clinical outcomes, but current deep learning models for predicting LVSD 

are not specifically designed for LBBB patients. In this study, we proposed 

a fine-tuned ECG foundation model (ECG-FM) for predicting LVSD in 

patients with LBBB. Unlike previous approaches that train models from 

scratch,15,21 our method fine-tunes a publicly available ECG-FM pre-

trained on large-scale ECG datasets using LBBB patient data, and we 

systematically compared their performance against conventional baseline 

models (Supplementary Table S3). Among the various fine-tuning 

strategies, the single-step full fine-tuning (SS-FF) method demonstrated 

the best overall performance, and sequential partial fine-tuning (Sq-PF) 

achieved the highest sensitivity. The superior overall performance of SS-

FF likely reflects the benefit of fully adapting the pretrained ECG-FM 

representations to the downstream task, enabling the model to optimize 

across most evaluation metrics. In contrast, the higher sensitivity observed 

with Sq-PF suggests that freezing some of the layers allows the model to 

better preserve salient low-level ECG features relevant for detecting 

positive cases, even if this comes at the cost of reduced performance in 

other metrics. 

    By analyzing different layer-freezing strategies during fine-tuning, we 

identified optimal settings and confirmed that fine-tuning the ECG-FM 

significantly outperformed baseline models trained from scratch. It is 

important to note that the performance gain does not simply arise from 
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architectural differences. Rather, the advantage primarily stems from the 

representation learning achieved during the large-scale pre-training stage, 

which enables the model to capture rich morphological and temporal 

patterns in ECG signals. Fine-tuning these pretrained representations for 

LVSD classification proved more effective than training models from 

scratch, ultimately leading to superior performance and robustness across 

multi-center validation cohorts. Important ECG regions associated with 

LVSD predictions were then visualized, enhancing interpretability.

Although several general ECG-based LVSD prediction models exist, this 

is the first study, to our knowledge, specifically developing an LVSD 

prediction model for LBBB patients. This specialized model can support 

personalized clinical decisions and early screening, offering timely 

opportunities for appropriate management.32 In particular, the improved 

sensitivity is crucial for screening, as it maximizes the detection of true 

LVSD cases and minimizes missed diagnoses. Coupled with the enhanced 

AUROC, which reflects better overall discriminative ability, these 

improvements highlight the model’s clinical relevance by enabling earlier 

identification and intervention in at-risk LBBB patients. While the 

proposed ECG-FM-based SS-FF model showed relatively low PPV (0.651), 

previous evidence indicates that patients with false-positive ECG 

predictions still exhibit a higher incidence of subsequent LVSD15, 

suggesting clinical utility superior to routine echocardiography screening 

alone.

The explainability analysis revealed that significant predictive features 

were predominantly associated with the QRS complex and T wave, aligning 
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with previous research findings.12,33 The prominence of ECG signals from 

the septum and anterior LV wall in model predictions suggests these 

features play a critical role in LVSD onset. Although we applied various 

augmentation and oversampling techniques to mitigate overfitting from 

limited training data, their contribution to improved performance was 

minimal. Instead, fine-tuning an ECG-FM pre-trained on extensive ECG 

data consistently proved more effective than training conventional deep-

learning models from scratch, especially for small, disease-specific 

datasets.

In addition, although performance on external validation datasets 

typically did not surpass that of internal validation, the proposed model 

showed better performance on the second external validation set 

compared to the internal set. This result likely occurred because the 

second external validation set exhibited a bimodal LVEF distribution 

around the 40% threshold, facilitating clearer classification 

(Supplementary Figure S2). Conversely, the internal validation set 

contained a larger proportion of patients with LVEF values between 40% 

and 50%, defined by the European Society of Cardiology (ESC) as heart 

failure with mildly reduced ejection fraction (HFmrEF).8 Patients with 

HFmrEF often fall within a clinical "gray zone," where mild systolic 

dysfunction may or may not be present34, complicating accurate 

classification by ECG-FM-based models.

This research has several limitations. First, the performance evaluation 

was constrained by differences in ECG data formats. To utilize the ECG-

FM model, ECG data had to be converted from the 4-channel format used 
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in this study to a 12-channel format. Because data format can significantly 

influence model performance, the results observed here may not 

generalize to ECGs in other formats. Future studies should systematically 

investigate different configurations while maintaining the 12-channel ECG 

format. Second, variations in sampling frequency posed a limitation. Some 

signals were up-sampled to 500Hz via linear interpolation (Supplementary 

Figure S1). Although this approach appears to preserve key waveforms, 

the impact of different sampling rates on model performance was not 

quantitatively evaluated, leaving uncertainty about the model’s robustness 

to signals recorded at other frequencies.Third, patients with LBBB 

included in this study might have other cardiovascular conditions affecting 

LVSD prediction. Even though these comorbidities and histories of 

medication are helpful in defining the population and determining clinical 

utility for the model, these data were not consistently available, limiting 

the ability to fully assess the model’s generalizability across 

heterogeneous populations. Nevertheless, since LBBB inherently 

associates with various cardiovascular diseases, imposing strict exclusion 

criteria for the existence of other LVSD-related illness might preclude the 

development of disease-specific models. Fourth, we used conventional 

criteria for LBBB detection. If we used strict criteria for detecting LBBB, 

it can detect LVSD more precisely and the results may be changed with 

more precise diagnostic power.35 However, we aimed to perform this study 

to check the presence of LVSD when LBBB is diagnosed using currently 

available ECG machines commonly used in the usual clinical practice. Thus, 

the use of conventional criteria in the detection of LBBB may be 
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appropriate in this study. Lastly, although DeepLIFT analysis was applied 

to provide local explanation for each sample, the direct relationship 

between specific ECG features and model predictions was not fully 

elucidated. This highlights a limitation of DeepLIFT in that its 

interpretability is primarily local rather than global, especially in a 

relatively small dataset. Nevertheless, these local insights can still support 

clinical understanding by providing clinicians with interpretative evidence 

of which ECG regions may contribute to LVSD predictions. Future 

research with larger datasets should aim to systematically investigate the 

influence of specific ECG characteristics (e.g., QRS complex, T wave) and 

perform global interpretability analyses.   

In conclusion, this study proposes an ECG foundation model (FM)-based 

approach to predict LVSD in patients with LBBB. Compared to deep 

learning-based baseline and the scratch-trained models, the proposed 

model demonstrates significant performance improvement through fine-

tuning the ECG-FM. This foundation model-based approach is expected to 

serve as a broadly applicable strategy for developing disease-specific 

predictive models across various clinical domains. Future research should 

focus on prospective validation, integration of the model into clinical 

workflows, and further investigate methods to enhance the interpretability 

of model predictions.
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Figure Legends

Figure 1. Flowchart of the left ventricular systolic dysfunction (LVSD) 
classification process using electrocardiographic (ECG) data and training 
approaches. (a) ECG scan images are converted into 4-channel ECG time 
series data through optical character recognition (OCR), followed by 
resampling. Separately, 12-channel native digital ECG data are spliced to 
match the same 4-channel format. (b) Each line represents baseline 
training models from scratch, single-step and sequential fine-tuning of the 
pre-trained ECG-FM. The preprocessed left bundle branch block (LBBB) 
ECG data from (a) are used to train and validate all models. Models can be 
loaded using custom frameworks or public checkpoints.

Figure 2. Architecture of the left bundle branch block (LBBB)-specific 
ECG-FM. It is used to fine-tune the ECG-FM with LBBB ECG data. The 
projection layer, which converts 4-channel ECG data into 12-channel data, 
feeds the transformed inputs into the convolutional encoder. After passing 
through the convolutional encoder, latent features are combined with 
positional embeddings and processed by the transformer encoder to refine 
local representations. * indicates that 7 individual models are developed 
by freezing the top 12, 10, 8, 6, 4, 2, and 0 layers of the transformer 
encoder, respectively.

Figure 3. Post-hoc pairwise comparison of all individual models between 
the baseline model and the ECG-FM using the Wilcoxon signed-rank test 
with Holm correction.
Sq-PF, sequential partial fine-tuning; SS-FF, single-step full fine-tuning.

Figure 4. Local explanation of the electrocardiographic (ECG) signal for 
left ventricular systolic dysfunction (LVSD) prediction using DeepLIFT. 
The areas highlighted in red indicate the parts of the ECG signal that 
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contributed most to the model's prediction. Each lead (I, II, III, aVR, aVL, 
aVF, V1-V6, and the rhythm strip) is displayed with intensity proportional 
to the importance of the segment to the prediction. The color bar at the 
bottom represents the magnitude of the contribution, with higher values 
indicating greater importance.
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Tables

Table 1. Dataset composition, including demographics and echocardiographic findings. 

Characteristics Training & 
Tuning

Internal 
Validation

External 
Validation 1

External 
Validation 2 P-value

Number of Patients 602 89 115 86

Number of ECG-
EchoCG pairs 1,500 194 115 222

Demographics
Age, mean ± SD 
(years) 72.6 ± 11.1 76.7 ± 9.9 71.8 ± 12.0 75.5 ± 10.8 < 0.001

Females, n (%) 738 (49.2) 88 (45.4) 81(70.4) 121 (54.5) < 0.001
Echocardiographic findings

LVEF, mean ±  SD(%) 41.4 ± 14.0 46.0 ± 14.8 43.3 ± 14.4 46.2 ± 13.5 < 0.001

LVEF<40%, n (%) 680 (45.3) 68 (35.1) 45 (39.1) 80 (36.0) 0.004
ECG: electrocardiogram, EchoCG: echocardiography, LVEF, left ventricular ejection fraction
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Table 2. Performance of electrocardiographic-foundation model (ECG-FM) compared to conventional baseline 
models in the prediction of left ventricular systolic dysfunction. 

Model
(Tuning 
Method)

Dataset Accuracy Sensitivity Specificity PPV NPV F1 
score AUROC AUPRC

Int. val 0.660 0.750 0.611 0.510 0.819 0.607 0.719 0.572
Ext. val 1 0.617 0.804 0.493 0.514 0.791 0.627 0.681 0.567
Ext. val 2 0.730 0.738 0.725 0.602 0.831 0.663 0.744 0.558

FCN
(Scratch)

Average 0.669 0.764 0.610 0.542 0.813 0.632 0.715 0.566
Int. val 0.670 0.765* 0.619 0.520 0.830* 0.619 0.739 0.595

Ext. val 1 0.626 0.739 0.551 0.523 0.760 0.613 0.682 0.569
Ext. val 2 0.712 0.700 0.718 0.583 0.810 0.636 0.746 0.566

LSTM-FCN
(Scratch)

Average 0.669 0.735 0.629 0.542 0.800 0.623 0.722 0.567
Int. val 0.670 0.691 0.659 0.522 0.798 0.595 0.736 0.539

Ext. val 1 0.652 0.870* 0.507 0.541 0.854 0.667 0.672 0.536
Ext. val 2 0.694 0.613 0.739 0.570 0.772 0.590 0.751 0.534

ResNet
(Scratch)

Average 0.672 0.724 0.635 0.544 0.808 0.617 0.720 0.536
Int. val 0.701 0.603 0.754 0.569 0.779 0.586 0.739 0.505

Ext. val 1 0.652 0.761 0.580 0.547 0.784 0.636 0.716 0.593
Ext. val 2 0.721 0.575 0.803 0.622 0.770 0.597 0.783 0.586

Inception
Time

(Scratch)
Average 0.691 0.646 0.712 0.579 0.778 0.606 0.746 0.561
Int. val 0.742 0.691 0.770 0.618 0.822 0.653 0.776 0.581

Ext. val 1 0.696 0.870* 0.580 0.580 0.870* 0.696 0.783 0.641
Ext. val 2 0.784 0.800* 0.775 0.667 0.873* 0.727* 0.844 0.740

ECG-FM
(Sq-PF)

Average 0.741 0.787* 0.708 0.622 0.855* 0.692 0.801 0.654
Int. val 0.773* 0.691 0.831* 0.671* 0.817 0.681* 0.786* 0.619*

Ext. val 1 0.713* 0.848 0.860* 0.600* 0.623 0.703* 0.784* 0.659*
Ext. val 2 0.788* 0.775 0.863* 0.681* 0.796 0.725 0.850* 0.755*

ECG-FM
(SS-FF)

Average 0.758* 0.771 0.851* 0.651* 0.745 0.703* 0.807* 0.678*
* indicates statistical significance

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the receiver precision-recall curve; ECG-
FM, electrocardiographic-foundation model; Ext. val, External validation; FCN, Fully Convolutional Network; Int. val, Internal 
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validation; LSTM-FCN, Long Short Term Memory Fully Convolutional Network; NPV, negative predictive value; PPV, positive 
predictive value; ResNet, Residual Network; SS-FF, single-step full fine-tuning; Sq-PF, sequential partial fine-tuning
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Table 3. Comparison of performance of electrocardiographic-foundation model (ECG-FM) and InceptionTime 
model. ECG-FM includes single-step full fine-tuning (SS-FF) and scratch training methods.

* indicates statistical significance; AUROC, area under the receiver operating characteristic curve; ECG-FM, 
electrocardiographic-foundation model; SS-FF, single-step full fine-tuning

InceptionTime ECG-FM
Average Score

Scratch Scratch SS-FF

Accuracy 0.691 0.622 0.758*

AUROC 0.746 0.677 0.807*
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