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Abstract

Left bundle branch block (LBBB) is an important electrocardiographic
(ECQ) finding strongly associated with left ventricular systolic dysfunction
(LVSD), a condition linked to poor clinical outcomes. Although early LVSD
detection is crucial, standard diagnosis via echocardiography may not
always be immediately accessible. In this study, we propose a fine-tuned
ECG foundation model (FM) to enhance LVSD detection specifically in
patients with LBBB. We conducted a retrospective multicenter analysis of
2,031 paired ECG-echocardiographic datasets from 892 LBBB patients.
The ECG-FM was fine-tuned for optimal LVSD prediction and compared
against baseline models, which were conventional deep learning methods,
including Fully Convolutional Network (FCN), LSTM-FCN, ResNet, and
InceptionTime. The proposed ECG-FM with single-step full fine-tuning
outperformed baseline  models, achieving accuracy, sensitivity, and
AUROC of 0.758, 0.771, and 0.807, respectively. Additionally, sequential
partial fine-tuning exhibited the highest sensitivity (0.787), enhancing
screening capability. DeepLIFT analysis identified QRS complex and T
wave features in leads V1-V4 as critical predictive factors. Our results
demonstrated that the recommended fine-tuned ECG-FM significantly
improves LBBB patient LVSD detection, potentially enabling earlier
clinical diagnosis in such cases when echocardiography is not readily
available, thereby potentially improving patient outcomes and clinical

management.
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I. Introduction

Left bundle branch block (LBBB) is an important electrocardiographic
finding that arises from impaired conduction through the left branch of the
cardiac conduction system.! Since its disturbance interferes with normal
ventricular conduction, it results in asynchronous ventricular activation
that diminishes left ventricular efficiency and can result in systolic
dysfunction.? Most commonly associated with ischemic heart disease,
hypertension, cardiomyopathies, or valvular dysfunctions, LBBB often
indicates the presence of an underlying structural heart disorder.3-> Of
particular concern among these is left ventricular systolic dysfunction
(LVSD), which is closely associated with LBBB® as its relevance is known
to adversely affect clinical outcomes.” So, the early detection of LVSD is
crucial for implementing appropriate management and improving
prognosis.

For diagnosing LVSD, typically defined as a left ventricular ejection
fraction (LVEF) below 40%, echocardiographic evaluation is the gold
standard.® In heart failure patients, the development of LBBB is clinically
important because it could exacerbate LVSD, and severe LVSD becomes
one of the major indications to consider cardiac resynchronization therapy
(CRT).? For that, routine echocardiographic follow-up is advised even in
patients with newly diagnosed LBBB who do not initially exhibit LVSD.10
Although echocardiography is expensive, requires specialist imaging
expertise, and is thus not easy to perform routinely in primary care or

emergency practice.



Compared to echocardiography, electrocardiogram (ECG) is more
accessible and cost-effective. Accurate ECG-based differentiation of
patients with LVSD could facilitate early screening and reduce
unnecessary echocardiographic tests.!! Among conventional ECG
morphological criteria, only QRS duration has demonstrated a strong
correlation with LVSD12; however, reliance solely on visually identifiable
morphologic markers may overlook subtle or nonspecific findings, limiting
diagnostic accuracy.!3

Over the last few years, deep learning models have been developed to
predict LVSD from ECG data.l%-17 Attia et al.l®> proposed a convolutional
neural network (CNN) that was able to predict LVSD from a 10-second 12-
lead ECG in heterogenous populations, including specific disease
subgroups and COVID-19 patients, with high robustness and
demonstrating good generalizability.18-20 Similarly, Kwon et al.2! proposed
a deep learning model based on a multi-layer perceptron (MLP) utilizing
manually acquired features from raw ECG signal. This was further
improved by adding a residual neural network architecture, externally
validated in patients having atrial fibrillation with rapid ventricular
responses.22 These did not, however, study prediction of LVSD in LBBB
patients particularly. Therefore, there remains a clinical need for
specialized predictive models tailored explicitly for LVSD detection in the
LBBB population.

In this study, we propose a deep learning-based model to predict LVSD
using ECG, specifically tailored for patients with LBBB. While most

existing models have been trained on general populations, our approach
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fine-tunes a foundation model (ECG-FM) pre-trained on large-scale public
ECG datasets to better capture the unique characteristics of this high-risk
subgroup. We applied and compared various fine-tuning strategies to
overcome the limitations of a small patient dataset and demonstrated the
generalizability of the model using multi-center data. The design not only
enhances predictive performance compared to conventional approaches
that train models from scratch, but also improves clinical interpretability,

as we visualized the model’s focus areas on ECG signals using DeepLIFT.

I1. Methods

Study Design

This study proposes a deep learning-based model to predict LVSD (LVEF
< 40%) in patients with LBBB using ECG data. LBBB was diagnosed using
conventional LBBB criteria based on electrocardiograms measured by
commercially available ECG machines. These diagnostic criteria included
QRS duration greater than 120ms; the presence or absence of Q wave in
lateral leads (I, aVL, V5, and V6); the morphology of R waves in lateral
leads, morphology of QRS complex in right precordial leads including
dominant S wave, QS or rS pattern; and the R wave peak time in V5/V6.23
Conventional deep learning models for time-series data served as baseline
models. These included FCN, LSTM-FCN, ResNet, and InceptionTime.
Their performance was then compared with a fine-tuned version of ECG-

FM?Z24, a publicly available foundation model pre-trained on large-scale ECG
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datasets. The performance of the ECG-FM backbone was evaluated by
comparing single-step fine-tuning and sequential fine-tuning approaches
(Figure 1b).

We used paired ECG-echocardiographic datasets of patients with LBBB,
each dataset including 12-lead ECG and the associated echocardiographic
test conducted within a one-month interval. Our datasets comprised 2,031
paired ECG-echocardiographic tests from three institutions: 1,657
datasets from 691 patients in Chungnam National University Hospital
(CNUH), 259 datasets from 91 patients in Chungnam National University
Sejong Hospital (CNUSH), and 115 datasets from 115 patients in Jeonbuk
National University Hospital (JNUH). After accounting for five patients
present in both CNUH and CNUSH datasets, the final cohort consisted of
892 unique patients.

This multicenter retrospective study was approved by the Institutional
Review Boards (IRBs) of Chungnam National University Hospital (CNUH,
Daejeon, Korea, CNUH IRB 2025-02-001) and Jeonbuk National University
Hospital (JNUH, Jeonju, Korea, JNUH IRB 2025-02-030). All procedures

were performed in accordance with relevant guidelines and regulations.

Data preparation

We divided the dataset into four distinct subsets: training, tuning, internal
validation, and external validation. Each dataset was a paired ECG-
echocardiogram study. The training set comprised datasets from CNUH
collected up to 2023 (n=1,200), while the tuning set included additional

CNUH datasets from the same period (n=300). The internal validation set
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consisted of datasets collected from CNUH in 2024 (n=194). For external
validation, we used two separate datasets: one from JNUH (n=115,
recruited between 2008 and 2021) and another from CNUSH (n=222,
recruited between 2022 and 2024). The sets were mutually exclusive to
avoid data leakage. Table 1 shows comprehensive descriptions. No
subgroup analyses (e.g., on age, sex, or institution) were planned in the

present study.

Preprocessing

The ECG data used in this study consisted of two types. The first type
included ECGs originally stored as digital images in electronic medical
records, later converted to XML format (Mediv Co., Cheongju, Korea). The
conversion was performed using a software system from Medical User
Software Exchange (MUSE; General Electric Healthcare, Waukesha, WI)
and an ECG management system (Medical Information System, Mediana
Co., Ltd., Wonju, Korea). Samples were stored at various sampling rates,
ranging from 99 Hz to 221 Hz. The second type comprised digitally
acquired ECGs collected prospectively using commercial ECG machines
(MAC5000 v1.0; General Electric Healthcare, Waukesha, WI) and stored
directly in XML format within the MUSE system. For these samples, 12-
lead resting ECG data were all recorded at a sampling rate of 500 Hz for
10 seconds. The detailed preprocessing is described in Supplementary

Materials.



We converted both datasets into a standardized format of four channels
(Figure 1a). There are 5,000 time points in each channel (500 Hz x 10
seconds). The converted final dataset consisted of three channels from a
standard 12-lead ECG and a rhythm strip (lead II) that was recorded for
10 seconds. All ECG data underwent preprocessing with a high-pass
Butterworth filter (0.5 Hz) and powerline noise removal (50 Hz). The
detailed transformation and integration process for each ECG data type is

presented in Supplementary Fig. S1.

Baseline Models for LVSD Prediction

The baseline models used in this study for predicting LVSD included Fully
Convolutional Network (FCN)2%, Long Short-Term Memory Fully
Convolutional Network (LSTM-FCN)26, ResNet23, and InceptionTime?27. All
baseline models were trained from scratch without pre-training. LVSD
prediction was formulated as a binary classification task distinguishing
patients based on an LVEF cutoff of 40%.

First, the FCN2> model comprised three 1D convolutional blocks
without local pooling layers to preserve original time-series length. The
filter sizes of each convolutional block were 128, 256, and 128, in that
order, and the kernel sizes were 8, 5, and 3, respectively. ReLU was used
as the activation function in all three blocks. The convolutional
architecture considers inter-lead spatial ECG characteristics but neglects
long-range temporal dependencies. Second, the LSTM-FCN?6 paired a
Long Short-Term Memory (LSTM) layer with the FCN architecture to learn

temporal dynamics, overcoming the weakness of FCN to learn only spatial
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features. The number of convolutional layers, kernel sizes, and filters was
identical to that used in the FCN. Third, the ResNet2> model comprised
three residual blocks. The initial two blocks consisted of four layers of
ConvlD each, and the third block consisted of three ConvlD layers,
totaling 11 layers within the network. Last, InceptionTime?2” utilized multi-
scale pattern detection through iterative Inception modules with three
convolutional filters of kernel sizes 10, 20, and 40. The module was
repeated six times (depth=6), and two residual connections were included
across the entire network to help stabilize training and capture ECG

features at multiple temporal scales.

Fine-tuned ECG-FM for LVSD Prediction

In this study, a pre-trained ECG foundation model (ECG-FM) was fine-
tuned using ECG data from LBBB patients to improve LVSD prediction.
The ECG-FM effectively captured general ECG representations before
being adapted specifically for LBBB. The pre-training method of ECG-FM,
initially proposed by Oh et al.28, is a lead-agnostic self-supervised approach
that uses random lead masking and contrastive learning29 combining
CNN, transformer architecture, and temporal average pooling to capture
latent ECG representations (Figure 2). McKeen et al.?¢ adopted the
technique proposed by Oh et al. and developed ECG-FM by pre-training it.
The pre-training was conducted in two stages: first, the model was pre-
trained on approximately 1.4 million ECG recordings (12-lead, 5 seconds

each, sampled at 500 Hz). Second, this pre-trained model was further
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trained through multi-label diagnostic classification wusing general
population ECG data from the PhysioNet 2021 dataset. It should be noted
that all four linearly dependent leads (aVR, aVL, aVF, III) were retained
during the pre-training phase without exclusion.

We performed the downstream task of predicting LVSD (LVEF < 40%)
in a cohort of LBBB patients through single-step fine-tuning of the first
pre-trained ECG-FM (Figure 1b). Due to differences in data format
between our ECG inputs and the original backbone model, we modified the
architecture accordingly. Our ECG data consisted of four channels - either
four distinct leads recorded for 2.5 seconds each, or a single lead recorded
continuously for 10 seconds (as a rhythm strip). To accommodate this, we
added a projection layer using a 1D convolution at the front of the pre-
trained ECG-FM and appended a linear classification head at the end,
enabling binary classification for LVSD (Figure 2).

Drawing upon prior research3%, we employed three single-step fine-
tuning methods: full fine-tuning, partial fine-tuning, and additive fine-
tuning. Full fine-tuning updated all model parameters, including the added
projection layer and classification head. Partial fine-tuning consisted of
freezing some of the pre-trained ECG-FM layers and updating the others.
More specifically, we froze the top 10, 8, 6, 4, and 2 transformer layers
(out of 12) and generated five different partial fine-tuned models. This
stepwise approach was based on the understanding that lower layers tend
to capture general ECG representations, whereas upper layers encode
more task-specific features; thus, selectively updating higher layers allows

the model to retain broadly useful physiological representations while
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introducing only the minimal adaptation required for the downstream task.
Additive fine-tuning froze all pre-trained ECG-FM layers but only updated
the added projection layer and classification head. Thus, seven distinct
models were evaluated through single-step fine-tuning.

For sequential fine-tuning, we utilized a second ECG-FM model
previously fine-tuned for multilabel classification on other ECG datasets.
Following the same approach as single-step fine-tuning, we added a
projection layer at the input and a classification head at the output.
Sequential fine-tuning was also performed using full, partial, and additive

fine-tuning methods, producing another set of seven distinct models.

Explainability using Deep Learning Important Features
(DeepLIFT)

We applied DeepLIFT3! to enhance the interpretability of ECG-based
predictions. DeepLIFT is a backpropagation-based attribution method that
quantifies feature importance by explaining the difference between the
model’s actual output and a reference output in relation to differences
between actual inputs and reference inputs. This approach enables
quantitative analysis of ECG signal features identified by the deep learning
model and facilitates visualization of contributions from specific ECG
segments, such as the P wave, QRS complex, and T wave, to the model’s
prediction.

DeepLIFT calculates contributions according to the following equation:

n

'—21 Caxat = (1)
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where Ax; denotes the difference between the input and its reference
value, At represents the change in the output relative to the reference
output, and Caxar quantifies the contribution of each input feature x; to
the output difference. In this study, zero scalar values corresponding to

each input tensor were used as reference inputs.

Implementation Details

The baseline models in this study were trained from scratch for 100 epochs
with a learning rate of 5e-6. This setting was determined based on the
observation that training accuracy had converged, and validation accuracy
had reached its maximum around 100 epochs. The same approach was
applied for fine-tuned ECG-FM models, which were trained for 60 epochs
and had learning rates between 1e-3 and 5e-7, depending on the model.
For every experiment, we employed the Adam optimizer and cross-entropy
loss function.

All calculations were carried out with Python (version 3.10). ECG
preprocessing was carried out using the Neurokit2 toolbox. PyTorch
(version 2.2) and sktime libraries were used to implement models, which
were trained on an NVIDIA RTX A6000 GPU running CUDA version 12.3.
DeepLIFT analysis for model interpretation was performed using the

Captum library. The source code for this study is publicly available at:

https.//qithul doheonl14/ECG-FM-LVSD.dit.

Evaluation Metrics
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We measured the predictive performance of the models using accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), Fl-score, area under the receiver operating characteristic
curve (AUROC), and area under the receiver precision-recall curve
(AUPRC) for one internal and two external validations. The performance

metrics were calculated using macro-averages.

Statistical Analysis

In this study, statistical analyses were performed to assess variations in
dataset characteristics and model performance. The normality assumption
for parametric tests was assessed using the Shapiro-Wilk test, and
homogeneity of variances was evaluated using Levene’s test. To compare
mean values of continuous variables between datasets, one-way ANOVA or
Welch’s ANOVA was performed depending on the results of the
homogeneity test. Differences in categorical variables were evaluated
using chi-square analysis. For comparison of model performance, both
repeated-measures ANOVA and the Friedman test were applied to detect
differences among all models. Post-hoc single model comparisons were
conducted using Wilcoxon signed-rank tests with Holm's step-down
correction. Statistical significance was defined at a level of 0.05. All
analyses were performed using Python (version 3.10) and the statsmodels

package (version 0.14.4).
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IT1. Results

Comparative Performance of Models for LVSD Prediction
Table 2 summarizes the comparative performance of the baseline models
(FCN, LSTM-FCN, ResNet, and InceptionTime) and ECG-FM models
trained by single-step full fine-tuning (SS-FF) and sequential partial fine-
tuning (Sq-PF). ECG-FM-based methods showed superior performance
compared with baseline models across the majority of metrics for both
internal and external validation sets. Specifically, the ECG-FM-based SS-
FF model achieved the best overall performance, with an average accuracy
of 0.758, specificity of 0.851, PPV of 0.651, F1-score of 0.703, AUROC of
0.807, and AUPRC of 0.678, surpassing the maximum performance values
of all baseline models for these metrics. On the other hand, Sg-PF model
derived using ECG-FM displayed the highest sensitivity (average = 0.787),
crucial for effective LVSD screening, and highest NPV (average = 0.855).
Repeated-measures ANOVA indicated statistically significant
performance differences among the models across the eight performance
metrics (F = 16.67, p < 0.001). This finding was further confirmed by the
Friedman test (p < 0.001). Post-hoc analysis demonstrated significant
performance differences between the ECG-FM-based methods and
baseline models. However, there were no statistically significant
differences between the individual baseline models themselves (Figure 3).
Table 3 compares the accuracy and AUROC performance of the baseline
model (InceptionTime) with consistent performance across metrics and

the ECG-FM-based SS-FF method with overall best performance. The
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model trained from scratch showed the lowest overall performance, with
a mean accuracy of 0.622 and an AUROC of 0.677, falling below the
performance values of the baseline InceptionTime model, which achieved
an accuracy of 0.691 and an AUROC of 0.746. This highlights that fine-
tuning pre-trained ECG-FM weights—rather than altering the model

architecture—significantly improved model performance.

Comparative Performance of ECG-FM-Based Models
We compared the performance of ECG-FM models trained using single-
step fine-tuning (SS) and sequential fine-tuning (Sq) methods, varying the
number of trainable (unfrozen) layers. For single-step fine-tuning, seven
models were developed using additive fine-tuning (SS-AF), partial fine-
tuning (SS-PF), and full fine-tuning (SS-FF). The SS-AF method, which
updated parameters only in the projection layer and classification head
while freezing all CNN and transformer encoder layers, achieved an F1-
score of 0.598. In contrast, the SS-FF method, which allowed all layers to
be trainable, reached a higher Fl-score of 0.703. Partial fine-tuning
methods, in which only some transformer encoder layers were trainable,
showed intermediate performance between SS-AF and SS-FF
(Supplementary Table S1). However, statistical analyses indicated no
significant differences among the seven SS models based on repeated-
measures ANOVA (p=0.708) and the Friedman test (p=0.282).

For sequential fine-tuning, we similarly developed seven models with
additive fine-tuning (Sg-AF), partial fine-tuning (Sq-PF), and full fine-

tuning (Sq-FF). Unlike single-step fine-tuning, sequential fine-tuning did
17



not show a linear relationship between performance and the number of
trainable layers. Notably, the Sqg-PF model (8 trainable layers)
outperformed the Sq-FF model (all 12 layers trainable) in terms of
sensitivity, NPV, F1-score, AUROC, and AUPRC (Supplementary Table S2).
Statistical analysis demonstrated significant differences among the
sequential fine-tuning methods, and post-hoc tests revealed that the Sq-PF
model (8 layers trainable) significantly differed from three of the other six

models (Supplementary Figure S2).

Analysis of Explainability using DeepLIFT

Figure 4 illustrates an example of local explanations for LVSD
classification results obtained after tuning the ECG-FM using the SS-FF
method. The DeepLIFT analysis showed that, across most leads, the QRS
complex contributed most significantly to the model's prediction,
particularly in leads V1-V4, which reflect the septum and anterior wall of
the left ventricle (LV). A notably strong contribution from the deep S wave
was identified. Additionally, T wave contributions were prominent in leads
V1-V4, indicating that ventricular repolarization characteristics (including
shape and magnitude of the T wave) were important for LVSD prediction.
Limb leads (I, II, III, aVR, aVL, aVF) occasionally showed significant QRS
contributions, but the precordial leads (V1-V6), particularly V1-V4,
consistently provided the highest contribution and thus had greater

predictive importance.
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IV. Discussion

Early detection of LVSD in patients with LBBB is crucial for improving
clinical outcomes, but current deep learning models for predicting LVSD
are not specifically designed for LBBB patients. In this study, we proposed
a fine-tuned ECG foundation model (ECG-FM) for predicting LVSD in
patients with LBBB. Unlike previous approaches that train models from
scratch,!>21 our method fine-tunes a publicly available ECG-FM pre-
trained on large-scale ECG datasets using LBBB patient data, and we
systematically compared their performance against conventional baseline
models (Supplementary Table S3). Among the wvarious fine-tuning
strategies, the single-step full fine-tuning (SS-FF) method demonstrated
the best overall performance, and sequential partial fine-tuning (Sq-PF)
achieved the highest sensitivity. The superior overall performance of SS-
FF likely reflects the benefit of fully adapting the pretrained ECG-FM
representations to the downstream task, enabling the model to optimize
across most evaluation metrics. In contrast, the higher sensitivity observed
with Sq-PF suggests that freezing some of the layers allows the model to
better preserve salient low-level ECG features relevant for detecting
positive cases, even if this comes at the cost of reduced performance in
other metrics.

By analyzing different layer-freezing strategies during fine-tuning, we
identified optimal settings and confirmed that fine-tuning the ECG-FM
significantly outperformed baseline models trained from scratch. It is

important to note that the performance gain does not simply arise from
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architectural differences. Rather, the advantage primarily stems from the
representation learning achieved during the large-scale pre-training stage,
which enables the model to capture rich morphological and temporal
patterns in ECG signals. Fine-tuning these pretrained representations for
LVSD classification proved more effective than training models from
scratch, ultimately leading to superior performance and robustness across
multi-center validation cohorts. Important ECG regions associated with
LVSD predictions were then visualized, enhancing interpretability.

Although several general ECG-based LVSD prediction models exist, this
is the first study, to our knowledge, specifically developing an LVSD
prediction model for LBBB patients. This specialized model can support
personalized clinical decisions and early screening, offering timely
opportunities for appropriate management.32 In particular, the improved
sensitivity is crucial for screening, as it maximizes the detection of true
LVSD cases and minimizes missed diagnoses. Coupled with the enhanced
AUROC, which Treflects better overall discriminative ability, these
improvements highlight the model’s clinical relevance by enabling earlier
identification and intervention in at-risk LBBB patients. While the
proposed ECG-FM-based SS-FF model showed relatively low PPV (0.651),
previous evidence indicates that patients with false-positive ECG
predictions still exhibit a higher incidence of subsequent LVSDI5,
suggesting clinical utility superior to routine echocardiography screening
alone.

The explainability analysis revealed that significant predictive features

were predominantly associated with the QRS complex and T wave, aligning
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with previous research findings.12.33 The prominence of ECG signals from
the septum and anterior LV wall in model predictions suggests these
features play a critical role in LVSD onset. Although we applied various
augmentation and oversampling techniques to mitigate overfitting from
limited training data, their contribution to improved performance was
minimal. Instead, fine-tuning an ECG-FM pre-trained on extensive ECG
data consistently proved more effective than training conventional deep-
learning models from scratch, especially for small, disease-specific
datasets.

In addition, although performance on external validation datasets
typically did not surpass that of internal validation, the proposed model
showed better performance on the second external validation set
compared to the internal set. This result likely occurred because the
second external validation set exhibited a bimodal LVEF distribution
around the 40% threshold, facilitating clearer classification
(Supplementary Figure S2). Conversely, the internal validation set
contained a larger proportion of patients with LVEF values between 40%
and 50%, defined by the European Society of Cardiology (ESC) as heart
failure with mildly reduced ejection fraction (HFmrEF).8 Patients with
HFmrEF often fall within a clinical "gray zone," where mild systolic
dysfunction may or may not be present34, complicating accurate
classification by ECG-FM-based models.

This research has several limitations. First, the performance evaluation
was constrained by differences in ECG data formats. To utilize the ECG-

FM model, ECG data had to be converted from the 4-channel format used
21



in this study to a 12-channel format. Because data format can significantly
influence model performance, the results observed here may not
generalize to ECGs in other formats. Future studies should systematically
investigate different configurations while maintaining the 12-channel ECG
format. Second, variations in sampling frequency posed a limitation. Some
signals were up-sampled to 500Hz via linear interpolation (Supplementary
Figure S1). Although this approach appears to preserve key waveforms,
the impact of different sampling rates on model performance was not
quantitatively evaluated, leaving uncertainty about the model’s robustness
to signals recorded at other frequencies.Third, patients with LBBB
included in this study might have other cardiovascular conditions affecting
LVSD prediction. Even though these comorbidities and histories of
medication are helpful in defining the population and determining clinical
utility for the model, these data were not consistently available, limiting
the ability to fully assess the model’s generalizability across
heterogeneous populations. Nevertheless, since LBBB inherently
associates with various cardiovascular diseases, imposing strict exclusion
criteria for the existence of other LVSD-related illness might preclude the
development of disease-specific models. Fourth, we used conventional
criteria for LBBB detection. If we used strict criteria for detecting LBBB,
it can detect LVSD more precisely and the results may be changed with
more precise diagnostic power.3> However, we aimed to perform this study
to check the presence of LVSD when LBBB is diagnosed using currently
available ECG machines commonly used in the usual clinical practice. Thus,

the use of conventional criteria in the detection of LBBB may be
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appropriate in this study. Lastly, although DeepLIFT analysis was applied
to provide local explanation for each sample, the direct relationship
between specific ECG features and model predictions was not fully
elucidated. This highlights a limitation of DeepLIFT in that its
interpretability is primarily local rather than global, especially in a
relatively small dataset. Nevertheless, these local insights can still support
clinical understanding by providing clinicians with interpretative evidence
of which ECG regions may contribute to LVSD predictions. Future
research with larger datasets should aim to systematically investigate the
influence of specific ECG characteristics (e.g., QRS complex, T wave) and
perform global interpretability analyses.

In conclusion, this study proposes an ECG foundation model (FM)-based
approach to predict LVSD in patients with LBBB. Compared to deep
learning-based baseline and the scratch-trained models, the proposed
model demonstrates significant performance improvement through fine-
tuning the ECG-FM. This foundation model-based approach is expected to
serve as a broadly applicable strategy for developing disease-specific
predictive models across various clinical domains. Future research should
focus on prospective validation, integration of the model into clinical
workflows, and further investigate methods to enhance the interpretability

of model predictions.
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Figure Legends

Figure 1. Flowchart of the left ventricular systolic dysfunction (LVSD)
classification process using electrocardiographic (ECG) data and training
approaches. (a) ECG scan images are converted into 4-channel ECG time
series data through optical character recognition (OCR), followed by
resampling. Separately, 12-channel native digital ECG data are spliced to
match the same 4-channel format. (b) Each line represents baseline
training models from scratch, single-step and sequential fine-tuning of the
pre-trained ECG-FM. The preprocessed left bundle branch block (LBBB)
ECG data from (a) are used to train and validate all models. Models can be

loaded using custom frameworks or public checkpoints.

Figure 2. Architecture of the left bundle branch block (LBBB)-specific
ECG-FM. It is used to fine-tune the ECG-FM with LBBB ECG data. The
projection layer, which converts 4-channel ECG data into 12-channel data,
feeds the transformed inputs into the convolutional encoder. After passing
through the convolutional encoder, latent features are combined with
positional embeddings and processed by the transformer encoder to refine
local representations. * indicates that 7 individual models are developed
by freezing the top 12, 10, 8, 6, 4, 2, and 0 layers of the transformer

encoder, respectively.

Figure 3. Post-hoc pairwise comparison of all individual models between
the baseline model and the ECG-FM using the Wilcoxon signed-rank test
with Holm correction.

Sqg-PF, sequential partial fine-tuning; SS-FF, single-step full fine-tuning.

Figure 4. Local explanation of the electrocardiographic (ECG) signal for
left ventricular systolic dysfunction (LVSD) prediction using DeepLIFT.
The areas highlighted in red indicate the parts of the ECG signal that
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contributed most to the model's prediction. Each lead (I, II, III, aVR, aVL,
aVF, V1-V6, and the rhythm strip) is displayed with intensity proportional
to the importance of the segment to the prediction. The color bar at the
bottom represents the magnitude of the contribution, with higher values

indicating greater importance.
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Tables

Table 1. Dataset composition, including demographics and echocardiographic findings.

Training &

Internal

External

External

Characteristics Tuning Validation Validation 1 Validation 2 P-value
Number of Patients 602 89 115 86
Number of ECG-
EchoCG pairs 1,500 194 115 222
Demographics

+
Age, mean = SD 72.6 + 11.1 76.7 = 9.9 71.8 = 12.0 75.5 £ 10.8 <0.001
(years)
Females, n (%) 738 (49.2) 88 (45.4) 81(70.4) 121 (54.5) < 0.001
Echocardiographic findings
LVEF, mean £ SD(%) 41.4 = 14.0 46.0 = 14.8 43.3 £ 14.4 46.2 + 13.5 < 0.001
LVEF<40%, n (%) 680 (45.3) 68 (35.1) 45 (39.1) 80 (36.0) 0.004

ECG: electrocardiogram, EchoCG: echocardiography, LVEF, left ventricular ejection fraction
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Table 2. Performance of electrocardiographic-foundation model (ECG-FM) compared to conventional baseline

models in the prediction of left ventricular systolic dysfunction.

Model
(Tuning Dataset Accuracy Sensitivity  Specificity PPV NPV S(}:)lre AUROC AUPRC
Method)
Int. val 0.660 0.750 0.611 0.510 0.819 0.607 0.719 0.572
FCN Ext. val 1 0.617 0.804 0.493 0.514 0.791 0.627 0.681 0.567
(Scratch) Ext. val 2 0.730 0.738 0.725 0.602 0.831 0.663 0.744 0.558
Average 0.669 0.764 0.610 0.542 0.813 0.632 0.715 0.566
Int. val 0.670 0.765* 0.619 0.520 0.830* 0.619 0.739 0.595
LSTM-FCN | Ext. val 1 0.626 0.739 0.551 0.523 0.760 0.613 0.682 0.569
(Scratch) Ext. val 2 0.712 0.700 0.718 0.583 0.810 0.636 0.746 0.566
Average 0.669 0.735 0.629 0.542 0.800 0.623 0.722 0.567
Int. val 0.670 0.691 0.659 0.522 0.798 0.595 0.736 0.539
ResNet Ext. val 1 0.652 0.870* 0.507 0.541 0.854 0.667 0.672 0.536
(Scratch) Ext. val 2 0.694 0.613 0.739 0.570 0.772 0.590 0.751 0.534
Average 0.672 0.724 0.635 0.544 0.808 0.617 0.720 0.536
_ Int. val 0.701 0.603 0.754 0.569 0.779 0.586 0.739 0.505
In‘%‘?ptlon Ext. val 1 0.652 0.761 0.580 0.547 0.784 0.636 0.716 0.593
(Sc;gih) Ext. val 2 0.721 0.575 0.803 0.622 0.770 0.597 0.783 0.586
Average 0.691 0.646 0.712 0.579 0.778 0.606 0.746 0.561
Int. val 0.742 0.691 0.770 0.618 0.822 0.653 0.776 0.581
ECG-FM Ext. val 1 0.696 0.870* 0.580 0.580 0.870*  0.696 0.783 0.641
(Sq-PF) Ext. val 2 0.784 0.800* 0.775 0.667  0.873* 0.727* 0.844 0.740
Average 0.741 0.787* 0.708 0.622  0.855*  0.692 0.801 0.654
Int. val 0.773* 0.691 0.831* 0.671* 0.817 0.681* 0.786* 0.619*
ECG-FM Ext. val 1 0.713* 0.848 0.860* 0.600* 0.623  0.703*  0.784* 0.659*
(SS-FF) Ext. val 2 0.788* 0.775 0.863* 0.681*  0.796 0.725 0.850* 0.755%
Average 0.758* 0.771 0.851* 0.651* 0.745 0.703* 0.807* 0.678*

* indicates statistical significance

AUROC, area under the receiver operating characteristic curve; AUPRC, area under the receiver precision-recall curve; ECG-
FM, electrocardiographic-foundation model; Ext. val, External validation; FCN, Fully Convolutional Network; Int. val, Internal
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validation; LSTM-FCN, Long Short Term Memory Fully Convolutional Network; NPV, negative predictive value; PPV, positive
predictive value; ResNet, Residual Network; SS-FF, single-step full fine-tuning; Sq-PF, sequential partial fine-tuning
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Table 3. Comparison of performance of electrocardiographic-foundation model (ECG-FM) and InceptionTime
model. ECG-FM includes single-step full fine-tuning (SS-FF) and scratch training methods.

InceptionTime ECG-FM
Average Score
Scratch Scratch SS-FF
Accuracy 0.691 0.622 0.758*
AUROC 0.746 0.677 0.807*

* indicates statistical significance; AUROC, area under the receiver operating characteristic curve;

electrocardiographic-foundation model; SS-FF, single-step full fine-tuning
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