
Modulation of autonomic responses to cognitive tasks under acute mental stress

Received: 18 July 2025

Accepted: 31 December 2025

Published online: 08 January 2026

Cite this article as: Coelli S., De Tommaso M., Reali P. *et al.* Modulation of autonomic responses to cognitive tasks under acute mental stress. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-025-34921-4>

Stefania Coelli, Matteo De Tommaso, Pierluigi Reali, Rossana Actis-Grosso & Anna M. Bianchi

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

1 **Modulation of Autonomic responses to Cognitive Tasks Under**
2 **Acute Mental Stress**

3 Stefania Coelli^{1*}, Matteo De Tommaso², Pierluigi Reali¹, Rossana Actis-Grosso^{2,3}
4 and Anna M. Bianchi^{1,4}

5 1. Department of Electronic, Information and Bioengineering, Politecnico di Milano,
6 Milano, Italy
7 2. Department of Psychology, University of Milano Bicocca, Milan, Italy
8 3. Milan Centre for Neuroscience, Italy
9 4. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
10

11 ***Corresponding author:**

12 Stefania Coelli

13 Department of Electronic, Information and Bioengineering, Politecnico di
14 Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy. Phone: +39 02 2399 3789

15 Email: stefania.coelli@polimi.it
16

17 **Keywords:** Physiological measurement, Heart Rate Variability, Electrodermal Activity,
18 Respiration, Mental Stress
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33

34 **Abstract:**

35 Acute mental stress activates the autonomic nervous system (ANS), modulating
36 physiological parameters. To assess the ANS response, we collected multimodal
37 physiological signals, including electrocardiogram (ECG), electrodermal activity (EDA),
38 and respiratory activity from healthy participants. The experimental protocol was
39 designed to induce a high stress level in one group (STRESS) and low stress in the other
40 (CONTROL), undergoing the same cognitive tasks. Heart rate variability (HRV) indices,
41 parameters from respiratory activity and EDA were computed and analyzed. First, the
42 effect of the proposed stress manipulation on the ANS was assessed, showing that linear
43 HRV and respiratory parameters significantly changed during cognitive tasks with respect
44 to rest in both the groups, mainly when respiration activity was integrated in the analysis.
45 Nonlinear HRV parameters and EDA-based indices presented more task-specific
46 modulations. Significant differences among groups were found only for the mean RR
47 interval and the EDA-derived parameters. Additionally, Random Forest models were
48 trained, and feature importance was assessed through Shapley values. Results identified
49 the amplitude of the phasic EDA component, respiratory sinus arrhythmia (RSA), HRV
50 sample entropy, and mean breathing period as the features most clearly differentiating
51 cognitive tasks from rest, highlighting the importance of a multimodal assessment of
52 acute stress.

53

54 **1. Introduction**

55 In its negative connotation, psychological stress (i.e., distress) is caused by the disruption
56 of balance between perceived cognitive and emotional load induced by external stimuli,
57 and the individual's ability to cope with them^{1,2}. This condition can be transitory (acute
58 phase) or can persist for longer periods (chronic condition), impacting the subject's
59 quality of life. Specifically, acute stress episodes may temporarily affect human mood,
60 attention, and engagement; potentially reducing work- and study-related efficiency. A
61 sustained exposure to stress can also be a trigger for cardiovascular events³. The
62 production of cortisol and other biological mediators is the result of an active process
63 aimed at maintaining stability, referred to as 'Allostasis', but when the stability is altered,
64 the body is forced to a new equilibrium causing an 'Allostatic load' that can be harmful⁴.
65 Thus, from a physiological point of view, events perceived as stressful induce a complex
66 sequence of responses, comprising an interplay between the central and autonomic
67 nervous systems (ANS) and endocrine regulation^{5,6}, often measured through cortisol
68 concentration⁷. This mechanism has been shown, by many laboratory-based studies, to
69 modulate measurable ANS-related parameters^{2,8-11}, principally in terms of heart rate
70 variability (HRV). HRV is a recognized marker of cardiovascular health¹², which can be
71 derived from the electrocardiogram (ECG) and other related signals such as
72 photoplethysmography (PPG). Specifically, the ANS works with other physiological

73 systems to regulate the heart rhythm, increasing and decreasing the heart rate (HR)
74 through the activation of the parasympathetic and sympathetic branches of the nervous
75 system. In stressful conditions, it has been demonstrated that a predominance of
76 sympathetic activity is reflected in an increase of HR and a decrease of the variability, in
77 both acute and chronic conditions^{2,13-15}. Other studies also evaluated responses to
78 stressors and emotional stimuli using respiratory parameters¹⁶⁻¹⁸, or pointed out the
79 usefulness of integrating the respiratory information to refine the HRV analysis^{8,19}. In the
80 latter case, the possibility to disentangle the respiratory contribution from the HRV signal
81 has been shown to improve the estimation of frequency-domain HRV parameters,
82 particularly of the respiratory sinus arrhythmia (RSA)²⁰, also recently named Respiratory
83 Heart Rate Variability (RespHRV) to reduce the potential pathological connotation²¹. RSA
84 quantifies the influence of respiration on oscillations of the HRV signal, which is
85 associated with vagal control and expected to decrease under stress.

86 Another set of parameters widely used in the affective research field is derived from the
87 electrodermal activity (EDA) signal (i.e., Skin Conductance response), which has been
88 demonstrated to respond to emotional stimuli^{22,23}, mental load^{24,25}, and stress
89 manipulation protocols in multimodal frameworks^{9,26,27}.

90 In recent years, the possibility to monitor vital signs, using wearable and smart
91 technologies, has increased research interest in understanding which physiological
92 parameters better detect acute stress events, to potentially prevent chronic conditions²⁸⁻³⁰. Even so, how the ANS responds to stress has still not been fully characterized, and
93 research findings are often conflicting. In fact, psychological stress is a very complex
94 condition composed of several factors belonging to social, cognitive, physical, and
95 psychological domains³¹. In this context, the first objective of the study was to evaluate
96 the effectiveness of different physiological parameters in characterizing ANS responses
97 to acute mental stress. A second aim was to assess the effects of varying degrees of acute
98 mental stress by comparing the ANS responses to subsequent cognitive tasks in two
99 groups of individuals after different exposure to stress (i.e., a Stress and a Control group).
100 To this aim, short-term (< 5 min) linear and nonlinear HRV indices from the ECG signal,
101 time-domain parameters from respiratory activity, and features from EDA were analyzed.
102 Finally, we investigated the relationship between physiological responses, psychometric
103 variables, and biochemical parameters (i.e., cortisol concentration).

105 Specifically, our study was based on a randomized acute stress manipulation protocol in
106 which the Montreal imaging stress task (MIST)³² was used to induce acute stress in half
107 of the study population (31 participants), while the other half (31 participants) performed
108 a modified, less-challenging MIST version as a control condition. After this stress-inducing
109 task, two cognitive assignments were also performed: the mixed gambling task (MGT) and
110 a spatial attention task based on visual search (VS), which were administered equally to
111 all participants. Physiological signals (i.e., ECG, respiration, and EDA) were continuously
112 acquired, while psychometric assessment and biochemical samples to measure cortisol
113 release were collected at specific time points during the procedure. By taking advantage
114 of a multidisciplinary approach, the results of our study yield comprehensive insights into
115 characterizing the effects of acute stress on physiological responses in healthy adults.

116 **2. Materials and methods**117 **2.1. Participants**

118 The described study was compliant with the Declaration of Helsinki and approved by the
119 Ethics Committee of Politecnico di Milano (opinion n°12/2024), where the data collection
120 took place.

121 A total of 62 participants (30 male, 32 female) with an age between 18 and 40 years (mean
122 age 30.2, SD 6.9 years) were recruited for the experiment. Inclusion criteria comprise the
123 absence of any cardiovascular, neurological, or psychiatric pathologies. Participants were
124 recruited through an online advertisement of a specialized recruiting agency, and
125 monetary compensation was agreed upon acceptance. Volunteers received instructions
126 about the experiment and all the documentation by email and were asked to refrain from
127 caffeine consumption and intense physical activities for 24 hours preceding the
128 experiment. All subjects were Italian speakers.

129 **2.2. Experimental Procedure**

130 On arrival, participants were asked to read and sign the informed consent form before the
131 biomedical signal recording equipment was set up. They sat in a comfortable chair in front
132 of a 27" computer screen at a distance of approximately 80 cm, and an Italian keyboard
133 was given to perform the assignments. Participants collected the first salivary sample.
134 Subsequently, a general description of the experiment was shown on the computer screen
135 before the procedure started. To estimate the initial stress level, two self-assessment
136 questionnaires (Italian versions) were digitally filled out, namely the Profile of Mood
137 States (POMS) scale and Perceived Stress Scale (PSS) answering to each question with a
138 value between 1 and 5. Finally, participants were asked to identify their level of stress
139 from 0 to 100 using the Subjective Units of Distress Scale (SUDS), which measures the
140 level of perceived stress at a specific time.

141 Data collection started with a resting phase of four minutes (REST), during which a gray
142 fixation cross was displayed in the center of the screen on a black background. To provide
143 a baseline for physiological measurements, participants were asked to remain still, with
144 eyes open, and were invited to relax. To study the influence of the previous task on the
145 subsequent one, task order was fixed for all participants, with the sequence depicted in
146 **Fig. 1(a)**: after the REST phase, the Montreal Imaging Stress Task (MIST)³² was
147 implemented to induce higher stress levels in half of the participants (STRESS group) and
148 to be less stressful in the other half (Control group); then, the Mixed Gambling Task (MGT)
149 was presented after three minutes of break and was followed by a spatial attention
150 exercise, specifically the visual search (VS) task. All tasks were preceded by written
151 instructions, MIST and VS also by a short training phase. Saliva samples and SUDS
152 responses were re-collected after MIST and MGT. The protocol was implemented and
153 managed using MATLAB and Psychtoolbox-3 (available at <https://www.psychtoolbox.net/>).
154 Participants were randomly assigned to the CONTROL group (31 participants, 18
155 females), which underwent the less-challenging MIST task, and to the experimental one
156 (STRESS, 31 participants, 14 females) that performed the demanding MIST task with
157 additional stressing factors as described in 2.2.1.

158 2.2.1. Montreal Imaging Stress Task (MIST)

159 The MIST task is a digital protocol proposed by Dedovic³² designed to induce
 160 psychological stress in participants by asking them to solve arithmetic operations. In this
 161 study, two MIST protocols were implemented: an experimental one, assigned to the
 162 STRESS group, aimed at inducing sustained mental stress through demanding cognitive
 163 efforts; an easier one, administered to the CONTROL group. Specifically, in the
 164 experimental version, following the description and instructions provided by the original
 165 proposing study and subsequent implementations³³, participants were asked to quickly
 166 solve several arithmetic operations, with 5 levels of difficulty (randomly mixed), under
 167 time pressure, and social pressure due to the presence of the experimenter next to the
 168 participant. Moreover, a bar showing their progress (i.e., increasing with correct answers
 169 and decreasing with each error) was constantly shown on the screen. Mistakes were
 170 underlined by unpleasant sounds. The easier version of the MIST, instead, proposed the
 171 same arithmetic operations, with mixed difficulty levels, but without any time constraint
 172 displayed on the screen or social pressure, and correct answers were accompanied by a
 173 pleasant sound. For both conditions, a short training phase was performed to calibrate
 174 the time given for answering MIST arithmetic operations and allow participants to
 175 practice before the actual task. Based on guidance from the literature^{32,33}, during the
 176 training phase, which was designed to last two minutes, participants performed 21 trials
 177 on average (SD=1.8), depending on their reaction times, sufficient to estimate their mean
 178 reaction times and to calibrate initial difficulty. The time constraint was set to minimize
 179 unnecessary task exposure prior to stress induction. The experimental MIST took six
 180 minutes during which the initial calibration parameters were adaptively updated to match
 181 participants' performance and maintain the desired level of difficulty.

182 2.2.2. Mixed Gambling Task (MGT)

183 During the MGT, task participants were asked to accept or refuse bet proposals, each
 184 involving a specific number of virtual points as potential gain or loss^{34,35}. Participants
 185 were informed that, at the end of the protocol, among the accepted bets, five would be
 186 randomly selected and the outcome would have been determined by chance in order to
 187 calculate the final 'bonus' to be added to the agreed payment. MGT phase lasted between
 188 5 and 7 minutes, and the number of bet proposals to be evaluated was fixed.

189

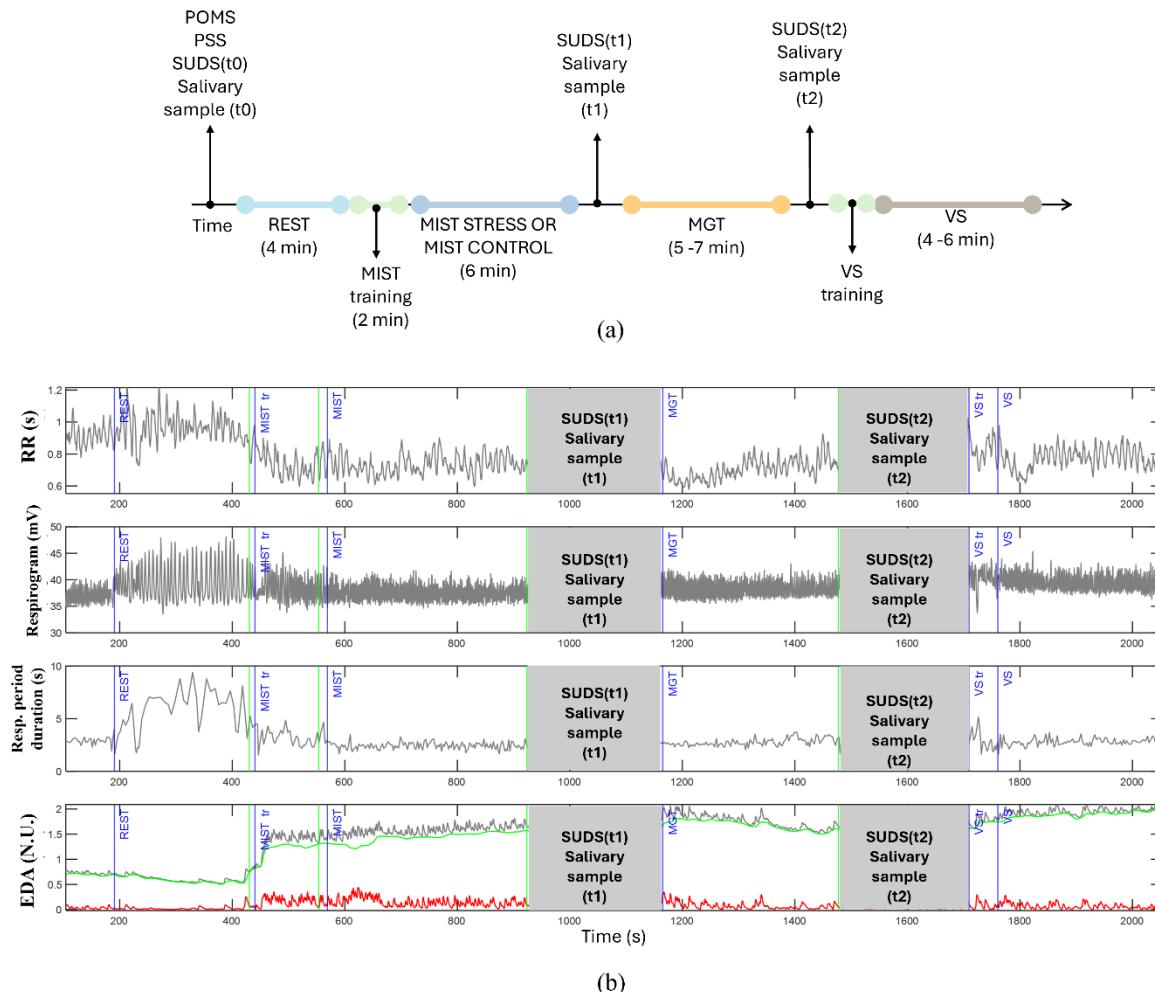
190 2.2.3. Visual Search (VS)

191 The VS task was performed after a short practice phase. The stimuli consisted of one L
 192 and one T (1.8° × 1.8°), presented simultaneously and spaced 180° apart on an imaginary
 193 circle with a 6° radius, centered on the screen, and participants were instructed to detect
 194 the T (target). The two letters appeared randomly tilted to the left or to the right, and
 195 participants had to indicate the direction of the tilted T as quickly as possible using the
 196 left/right arrow keys on the keyboard. A fixation cross, inscribed in a circle with 0.5°
 197 diameter, was displayed at the center of the screen. A too slow or incorrect target
 198 identification was accompanied by an unpleasant sound for both the groups. For each
 199 stimulus, reaction time and accuracy were recorded. A fixed number of trials was
 200 presented to participants, and the VS task lasted between 4 and 6 minutes.

201 **2.3. Data recordings**

202 Physiological data were collected at the B3 Lab, Politecnico di Milano, Italy. EDA, ECG,
 203 PPG, and respiratory signals were simultaneously recorded using the ProComp Infiniti
 204 (Thought Technology, Canada), an 8-channel polygraph. ECG and respiratory signals were
 205 sampled at 2048 Hz, while PPG and EDA at 256 Hz. The EDA sensors were attached to
 206 the palm side of the annular and middle finger on the left hand for all participants, since
 207 the PPG sensor was attached to the index finger. Participants were asked to use their
 208 right hand to solve the tasks using the keyboard. ECG was acquired using three disposable
 209 electrodes applied in lead-I configuration. The respiratory signal was measured using a
 210 chest strap equipped with a resistive sensor positioned at the level of the sternum. To
 211 minimize artifacts and improve signal quality, participants were asked to remain still
 212 throughout the experiment. In this study, the PPG signal was not analyzed, since we
 213 focused on the ECG signal to extract HR-related parameters. Salivary samples were
 214 collected using Salivette Cortisol® (Sarsted) and analyzed by an external laboratory.

215 **2.4. Physiological Data Analysis**216 **2.4.1. Signal pre-processing**


217 The Pan-Tompkins algorithm³⁶ was used to identify R peaks in the ECG to obtain the RR
 218 series (tachogram), and results were manually checked to correct misdetections and
 219 remove ectopic beats through an in-house MATLAB graphical interface. The identified
 220 peaks were used to compute the RR series, i.e., the series of the time distances between
 221 consecutive heartbeats¹². The respiratory signal was low-pass filtered at 10 Hz with a
 222 zero-phase FIR filter using a Kaiser window with 7426 coefficients. A series synchronous
 223 with the RR signal, called respirogram, was extracted by sampling the amplitude of
 224 preprocessed respiratory signal in correspondence with each identified R peak^{12,37-40}.

225 The low-pass filtered respiratory signal was also further processed to derive the series of
 226 respiratory period durations, that is the series of the time distances between consecutive
 227 breathing actions. Specifically, following and adapting the processing pipeline proposed
 228 in the literature⁴¹, it was downsampled to 64 Hz and further filtered between 0.05 Hz and
 229 1 Hz using a Butterworth filter (order 4, zero-phase implementation) before detecting the
 230 positive peaks of the waveforms using the MATLAB function 'findpeaks'. A minimum
 231 distance of 1.5 seconds, corresponding to a maximum respiratory rate of 40 respirations
 232 per minute, and a prominence of 0.2 were imposed. Results of the procedure were visually
 233 checked to ensure the correct detection of breathing actions.

234 The EDA signal was low-pass filtered at 2.5 Hz using a zero-phase FIR filter (Kaiser
 235 window, 586 coefficients), downsampled to 16 Hz, and normalized by applying the z-score
 236 transformation. The open-source Ledalab toolbox²² was used to decompose the signal into
 237 its tonic and phasic components. Specifically, the first reflects the slow-changing baseline
 238 level of skin conductance over time (i.e., Skin Conductance level - SCL), while the second
 239 contains rapid changes associated with transient activations, called Skin Conductance
 240 Responses (SCR), represented by the phasic component.

241 Data from two participants belonging to the control group were removed due to failed
 242 recording in one case and low-quality signal in the other, resulting in 29 subjects in the

243 CONTROL group and 31 in the STRESS group. An example of the analyzed signals is
 244 displayed in **Fig. 1 (b)** for one participant.

245

246 Fig. 1(a) Experimental protocol. (b) Example of the time series of interest from a participant. The
 247 first row shows the corrected tachogram (RR series), the second row displays the respirogram
 248 derived sampling the respiration signal using the RR series. The third row displays the respiratory
 249 period duration series derived from the respiration signal. Finally, the EDA signal in gray, its tonic
 250 component in green and the phasic component in red are displayed in the last row. Gray areas
 251 represent the time periods in which the cortisol and SUDS were collected, thus artifacts can be
 252 present in these phases, which were discharged. Blue lines indicate the start of each phase, green
 253 lines their end.

254

2.4.2. Linear time-domain and frequency-domain HRV parameters

255 Time-domain and frequency-domain short-term (<5 minutes) HRV parameters¹⁴ were
 256 extracted from the HRV signals (RR series and related respirogram), considering the
 257 central four minutes of recording for each protocol phase. In the time domain, the mean
 258 RR (meanRR [ms]), RR standard deviation (stdRR [ms]), and root mean square of
 259 successive R peak differences (RMSSD [ms]) were computed.

260 Concerning the frequency domain, the power spectral density (PSD) was estimated using
 261 the Autoregressive (AR) modelling approach^{42,43}, both in a univariate and in a bivariate
 262 fashion. Specifically, linear trend was removed from individuals' HRV signals to reduce
 263 spectral contribution of the lowest frequencies and highlight faster oscillations. For each
 264 segment, first an AR model of order p based on the expression in Eq (1)

$$y(n) = - \sum_{i=1}^p a_i y(n - i) + u(n) \quad (\text{Eq.1})$$

265 where $y(n)$ is the HRV signal at sample n , $y(n - i)$ indicates previous samples, a_i are the
 266 coefficients of the AR model, and $u(n)$ is the white noise having zero-mean and variance
 267 σ^2 . The optimal order p of the AR model was automatically selected between 7 and 15
 268 using the Akaike information criterion (AIC)^{12,20} for each processed segment and the
 269 model was estimated using the Yule-Walker formulation. Once the AR(p) model is
 270 estimated, the transfer function of the model is given by Eq.2

$$H(z) = \frac{1}{(1 + \sum_{i=1}^p a_i z^{-i})} = \frac{1}{A(z)} \quad (\text{Eq.2})$$

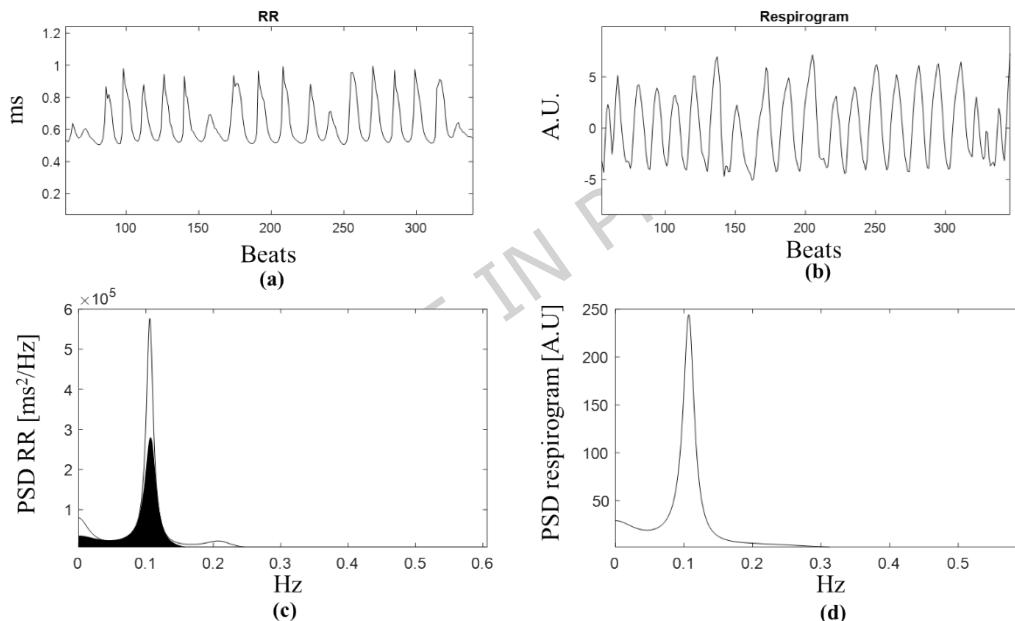
271 From which the representation in the frequency domain, the $\text{PSD}(f)$, can be estimated as
 272 in Eq.3

$$\text{PSD}(f) = \left. \frac{T\sigma^2}{A(z)A(z^{-1})} \right|_{z=e^{2\pi j f T}} \quad (\text{Eq.3})$$

273 with T being the sampling period, corresponding to the average duration of the RR
 274 intervals in the considered segment^{20,39}.

275 From the obtained PSD, powers in LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) bands were
 276 estimated as the sum of the individual contributions of the poles that fall in the frequency
 277 range of each band. Moreover, the LF/HF ratio and the normalized LF and HF (normalized
 278 units, n.u.) powers were also extracted as relative values to the total power minus the
 279 very low frequency component¹².

280 Secondly, the bivariate-AR analysis was also applied to the same RR signal segments and
 281 the corresponding segments of the detrended respirogram. This approach is commonly
 282 used to highlight linear frequency relationships between the two considered signals and
 283 offers the possibility to disentangle the contribution of the respiratory activity in the total
 284 heart rate variability^{20,44,45}. Specifically, the HRV signal can be modeled as the sum of
 285 two contributions: the RSA (deterministic), caused by the respiratory activity, which can
 286 be seen as a contribution in the HRV frequency content coherent with respiration, and
 287 the not-coherent component, an intrinsic stochastic activity of the system. The usefulness
 288 of this approach is shown in **Fig.2**, where the contribution of the respiratory activity is
 289 completely overlapped with the traditional LF component of the HRV and may be
 290 erroneously attributed to non-vagal contributions.


291 The bivariate-AR was modeled for each signal segment using the formulation^{38,46} in Eq. 4

$$Y(n) = - \sum_{i=1}^p A(i)Y(n - i) + U(n) \quad (4)$$

$$Y(n) = \begin{bmatrix} y_1(n) \\ y_2(n) \end{bmatrix}, \quad A(i) = \begin{bmatrix} a_{11}(i) & a_{21}(i) \\ a_{12}(i) & a_{22}(i) \end{bmatrix}, \quad U(n) = \begin{bmatrix} u_1(n) \\ u_2(n) \end{bmatrix}$$

292

293 In this case, the processed series are in the form of vector $Y(n)$, the matrix $A(i)$ of order p
 294 contains the model coefficients ($2*2*p$), and $U(n)$ is the vector of the residual terms. The
 295 model was estimated using the Yule-Walker equations solved through the Levinson-
 296 Wiggins-Robinson algorithm, and the model order p was again estimated between 7 and
 297 15 by applying the AIC criterion and verifying the whiteness of the residuals.
 298 Transforming the estimated model into the frequency domain, the PSD matrix can be
 299 obtained. The bivariate model disentangles the contribution of the respiratory activity (y_2
 300 (n) = respirogram) from the HRV series ($y_1(n)$ = RR series). Using this approach, three
 301 parameters were extracted in each phase, specifically the power of the coherent
 302 component (PCOH), representing the RSA index²⁰, and the power of the not-coherent
 303 component (PNCOH).

304

305 Fig. 2 (a) The HRV signal at REST and (b) the associated respirogram signal for a participant.
 306 (c) The auto spectrum of the RR signal is represented with the portion of the spectrum that
 307 is due to the contribution of the respiration activity (black area) overlapped. (d) Auto
 308 spectrum of the respirogram.

309

2.4.3. Nonlinear HRV parameters

310 Additionally, the following nonlinear analysis methods were also applied to the HRV signal
 311 in each protocol phase and previously defined time windows: Sample Entropy (SamEn),
 312 Detrended Fluctuation Analysis (DFA), and Poincarè plot (or recurrence plot)^{14,47,48}. The
 313 nonlinear analysis was conducted using scripts adapted from open-source codes
 314 [<https://github.com/jramshur/HRVAS>]⁴⁹ and custom implementations. Entropy analysis
 315 quantifies the irregularity and complexity of the HRV signal and of its fluctuations.

316 Specifically, the SamEn, which can be robustly estimated from short signals (at least 1
 317 minute of RR signal is required, according to¹⁴), was determined using an embedding
 318 dimension $m = 2$ and a tolerance threshold $r = 0.2$ of the standard deviation of the signal.
 319 From the DFA, which characterizes the long-range fluctuation of the HRV signal, two
 320 slope parameters were extracted: a_1 from 4 to 12 heartbeats and a_2 from 12 to 64
 321 heartbeats¹³. The second slope requires at least 2 minutes of RR intervals to be correctly
 322 estimated¹⁴.
 323 From the Poincarè plot, comparing the variation between consecutive RR intervals, we
 324 extracted the standard deviation of the short-term RR series variability (SD1), the
 325 standard deviation of the long-term RR series variability (SD2), and their ratio SD1/SD2⁴⁸.

326 **2.4.4. Respiration parameters**

327 Two parameters in the time domain were extracted from the series of respiratory period
 328 duration estimated as described in section [2.4.1]. Also in this case, a 4-minute segment
 329 centered in each protocol phase was used to compute the mean interval between
 330 consecutive breaths (meanBB) and their standard deviation (stdBB).

331 **2.4.5. EDA parameters**

332 Finally, from the EDA signal, processed through the Ledalab toolbox²², three phasic
 333 indexes of the EDA were computed considering a 4-minute window at the center of each
 334 protocol phase. Specifically, in each segment, the number of phasic peaks (nSCR), the
 335 mean amplitude of the phasic driver (SCR), and the sum of the phasic response amplitudes
 336 (AmpSum) were extracted. Parameters based on the tonic component were not considered
 337 in this analysis, since an influence of wearing time was observed for most participants
 338 (i.e., a constantly increasing tonic level).

339 **2.5. Statistical analysis**

340 First, to analyze the modulation of physiological indexes due to different intensities of
 341 mental engaging and stress levels, we compared the entire sample's ($N = 60$) parameter
 342 distributions among the four conditions ('REST', 'MIST', 'MGT', and 'VS') with the
 343 hypothesis that the MIST, MGT, and VS tasks elicit a physiological activation with respect
 344 to REST. The statistical analysis was carried out using the non-parametric Friedman's
 345 test, since most parameters were not normally distributed, according to the Kolmogorov-
 346 Smirnov test and quartile-quartile plot exploration. A post-hoc analysis was also
 347 conducted to identify specific differences between conditions at a significance level of
 348 0.05, after p-value correction using Bonferroni's method. The same approach was
 349 repeated within each group (i.e., CONTROL, STRESS), in order to observe possible
 350 different patterns induced by the introduction of time and social pressure in the MIST
 351 task. To further investigate the role of such additional stressors in MIST and highlight
 352 possible differences between the two experimental groups, the variation with respect to
 353 the REST condition was computed (MIST-REST, MGT-REST, and VS-REST) for each
 354 parameter and compared between the two groups using a Mann-Whitney U-test within
 355 each task.

356 To strengthen the interpretation of the results, Cohen's non-parametric effect size (r) was
 357 computed⁵⁰. The suggested interpretation (> 0.1 small, > 0.3 medium, > 0.5 large) was
 358 adopted.

359 To explore the relationship between physiological parameters and perceived stress due
 360 to MIST manipulations, Spearman's correlation (rho) was estimated between changes in
 361 physiological parameters (MIST-REST) and SUDS levels (post-pre MIST) measured
 362 before and during or after MIST. Furthermore, Spearman's correlation was also estimated
 363 between the variation of physiological parameters during MIST and MGT with respect to
 364 REST and the corresponding variation of cortisol levels in terms of percentage variation
 365 from baseline computed as $100 * \frac{t_0 - t_{1,2}}{t_0}$.

366 Additionally, with the aim of understanding whether a combination of the analyzed
 367 parameters can provide a clear distinction between REST and the three cognitive tasks,
 368 we applied a multivariable analysis considering the parameters showing significant
 369 variations across tasks. Specifically, we first evaluated Pearson's correlation between
 370 indices to exclude highly correlated pairs of features ($|Pearson's\ r| > 0.75$) and normalized
 371 (z-score) the remaining ones. The features from all participants were used to train three
 372 binary Random Forest (RF) models with 100 estimators and leave-one-subject-out cross-
 373 validation. The procedure was repeated 100 times, using different random seeds. Models
 374 were trained to distinguish the following condition pairs: REST vs MIST, REST vs MGT,
 375 and REST vs VS. We preferred this approach to a multinomial classification because our
 376 goal was not obtaining a model able to separate the specific experimental conditions we
 377 examined but, rather, to determine which set of features better allows to distinguish each
 378 kind of task from the resting state and explain possible reasons behind that. To evaluate
 379 model performance, classification accuracy was computed and averaged across procedure
 380 repetitions.

381 Since the aim of this analysis was to identify a set of features that, combined, may better
 382 characterize the observed physiological responses, we applied the Shapley (SHAP)⁴¹
 383 approach to analyze feature importance for the three described models, thereby
 384 explaining the contribution of the most relevant features.

385

386 3. RESULTS

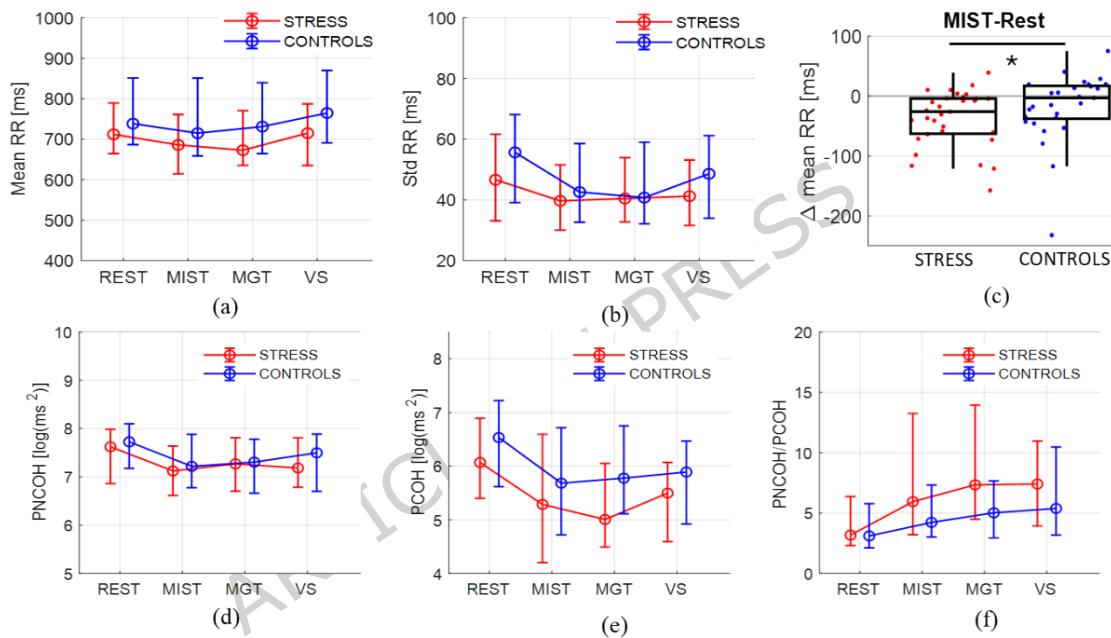
387 The assessment of the initial stress level as measured by the PSS, POMS, and SUDS
 388 showed homogeneous starting levels for the two groups. Specifically, the CONTROL
 389 group reported a mean response (between 1 to 5) to PSS of 3.11 (SD=0.35) and a mean
 390 response (between 1 to 5) to POMS of 2.17 (SD=0.44), while the STRESS group reported
 391 a mean PSS of 3.05 (SD=0.33) and a mean POMS of 2.08 (SD=0.46). As for the initial
 392 SUDS levels on a scale from 0 to 100, CONTROL group indicated a mean of 33.6 (SD =
 393 20.5), the STRESS group indicated a mean level of 28.9 (SD = 19.1).

394 The non-parametric Wilcoxon signed rank test was applied to test whether the Cortisol
 395 concentrations collected at t1 and t2 varied significantly with respect to t0. Cortisol

396 concentrations collected at t1 (ALL : median = 0.26 $\mu\text{g}/\text{dL}$, IQR = 0.20 $\mu\text{g}/\text{dL}$; CONTROLS:
 397 median = 0.27 $\mu\text{g}/\text{dL}$, IQR = 0.14 $\mu\text{g}/\text{dL}$; STRESS: median = 0.25 $\mu\text{g}/\text{dL}$, IQR = 0.22 $\mu\text{g}/\text{dL}$)
 398 and t2 (ALL : median = 0.25 $\mu\text{g}/\text{dL}$, IQR = 0.20 $\mu\text{g}/\text{dL}$; CONTROLS: median = 0.24 $\mu\text{g}/\text{dL}$,
 399 IQR = 0.16 $\mu\text{g}/\text{dL}$; STRESS: median = 0.28 $\mu\text{g}/\text{dL}$, IQR = 0.28 $\mu\text{g}/\text{dL}$) did not show any
 400 significant variation with respect to baseline values at t0 (ALL : median = 0.26 $\mu\text{g}/\text{dL}$, IQR
 401 = 0.16 $\mu\text{g}/\text{dL}$; CONTROLS: median = 0.26 $\mu\text{g}/\text{dL}$, IQR = 0.14 $\mu\text{g}/\text{dL}$; STRESS: median = 0.26
 402 $\mu\text{g}/\text{dL}$, IQR = 0.21 $\mu\text{g}/\text{dL}$), neither considering the whole population (t1-t0: $p = 0.349$, $r < 0.001$;
 403 t2-t0: $p = 0.123$, $r = 0.004$), neither considering the STRESS (t1-t0: $p = 0.202$, $r = 0.008$;
 404 t2-t0: $p = 0.147$, $r = 0.014$) and the CONTROL group (t1-t0: $p = 0.886$, $r = 0.014$; t2-t0:
 405 $p = 0.523$, $r = 0.006$) separately.

406 3.1. Heart Rate Variability parameters

407 **Table I** reports median, 25th, and 75th percentile values of all the HRV indexes, for the
 408 entire sample and the two groups separately. While a general decreasing trend from REST
 409 to all the other conditions is observable for the three time domain parameters, Friedman's
 410 test identified significant differences only for meanRR and stdRR when the complete
 411 sample was considered (meanRR $p < 0.001$; stdRR $p = 0.004$; RMSSD $p = 0.121$). Concerning
 412 the mean RR interval duration, post-hoc analysis with Bonferroni's correction showed a
 413 significantly decreased value from REST to MIST ($p = 0.009 \downarrow$, $r = 0.468$) and to MGT
 414 ($p = 0.011 \downarrow$, $r = 0.473$), and an increase from MIST to VS ($p = 0.043 \uparrow$, $r = 0.435$). A
 415 significant decrease with moderate effect size was also observed for the stdRR from REST
 416 to all the other protocol phases (Rest to MIST, $p < 0.001 \downarrow$, $r = 0.498$; Rest to MGT,
 417 $p = 0.023 \downarrow$, $r = 0.455$, and Rest to VS, $p = 0.023 \downarrow$, $r = 0.415$).


418 Interestingly, repeating the analysis for the two groups separately revealed different
 419 modulations shown in **Fig.3 (a) and (b)**. Specifically, in the CONTROL group, Friedman's
 420 test detected statistically significant differences for the meanRR ($p = 0.033$) and stdRR
 421 ($p = 0.008$) parameters, not for RMSSD ($p = 0.121$). In the STRESS group, only meanRR
 422 showed significant variations ($p = 0.002$). Pairwise corrected comparisons for the
 423 CONTROL group identified a significant increase in meanRR from MGT to VS phases ($p = 0.036 \uparrow$,
 424 $r = 0.620$) and significant decreases in stdRR from REST to both MIST
 425 ($p = 0.007 \downarrow$, $r = 0.576$) and MGT ($p = 0.049 \downarrow$, $r = 0.560$). In the STRESS group, instead, the
 426 mean RR interval significantly decreased from REST to MIST ($p = 0.002 \downarrow$, $r = 0.672$) and to
 427 MGT ($p = 0.019 \downarrow$, $r = 0.616$) phases. This different behavior is also confirmed by the
 428 significant difference (with small effect size) between the two groups in terms of Δ meanRR
 429 observed in the MIST task (MIST-REST, $p = 0.03$, $r = 0.273$), as depicted in **Fig.3 (c)**.

430 The frequency-domain analysis based on the univariate AR model to estimate LF and HF
 431 powers and the corresponding normalized values showed a decreasing, yet not significant,
 432 trend for LF, HF and LF/HF, mostly due to a decrease in total power of the HRV signal
 433 during the three tasks with respect to REST, while we observed unchanged normalized
 434 powers.

435 Table I:Linear HRV parameters in time and frequency domain (median and
 436 25th-75th percentiles values). Symbols identify statistical differences: *
 437 different from REST; # different from MIST; § different from MGT.

		ALL				CONTROL				STRESS			
		REST	MIST	MGT	VS	REST	MIST	MGT	VS	REST	MIST	MGT	VS
meanR R (ms)	<i>me</i> <i>d</i>	726.28	693.8 7*	696.4 4*	724.4 9 #	738.35	714.97	731.03	764.6 2 §	711.92	685.8 9*	672.8 3*	714.95
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		673.11	631.08	645.76	652.74	686.55	658.78	664.29	690.88	664.28	614.31	635.24	634.92
		807.61	803.87	805.84	817.28	851.06	850.87	839.33	869.64	789.21	761.16	770.59	786.91
StdRR (ms)	<i>me</i> <i>d</i>	47.88	41.58 *	40.62 *	43.65 *	55.67	42.60 *	40.77 *	48.60	46.64	39.71	40.46	41.24
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		37.25- 65.03	31.10- 52.41	32.51- 55.99	32.62- 57.60	39.14- 68.11	32.66- 58.54	32.15- 58.97	33.97- 61.14	33.12- 61.64	30.05- 51.56	32.74- 53.93	31.59- 53.15
RMSSD (ms)	<i>me</i> <i>d</i>	24.64	25.46	23.31	714.95	29.42	26.24	23.74	30.83	22.57	21.27	22.50	26.08
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		17.78- 41.45	14.11- 40.94	16.07- 39.52	634.92 786.91	19.81- 43.84	17.30- 39.55	16.08- 41.07	20.33- 43.01	15.41- 32.84	12.97- 40.86	14.49- 37.30	15.44- 34.39
HF (ms ⁻²)	<i>me</i> <i>d</i>	260.87	247.51	198.54	238.34	272.76	265.23	196.47	258.45	172.07	157.56	200.60	233.11
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		106.31	89.32- 451.22	89.23- 449.53	99.00- 467.03	201.71	102.78	104.47	99.62- 589.72	62.86- 501.81	84.40- 384.41	55.71- 412.07	68.35- 367.86
LF (ms ⁻²)	<i>me</i> <i>d</i>	680.32	626.87	589.70	616.36	1006.8 5	716.00	664.31	695.08	568.09	615.88	453.40	532.34
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		425.49	308.76	260.58	285.18	513.39	357.66	281.97	316.26	259.51	263.86	250.30	237.35
		1488.2 9	1121.9 0	1123.5 0	1288.9 0	1736.0 9	1319.1 6	1251.8 0	1682.9 2	1204.1 1	1086.4 9	911.81 3	1053.4
LF/HF	<i>me</i> <i>d</i>	3.23	3.08	3.63	2.28	2.85	2.85	3.25	1.75	3.64	3.39	3.91	2.69
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		1.70- 6.28	1.63- 5.60	1.24- 6.42	1.43- 6.32	1.59- 5.79	1.88- 4.76	1.31- 4.91	1.34- 7.04	1.97- 7.66	1.54- 5.79	0.98- 7.51	1.43- 5.31
HF norm (%)	<i>me</i> <i>d</i>	23.80	24.54	21.61	30.53	25.98	25.96	23.55	36.32	21.53	22.76	20.38	27.09
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		13.75- 37.03	15.16- 38.00	13.47- 44.61	13.68- 41.19	14.76- 38.73	17.45- 34.79	16.94- 43.25	12.56- 43.07	11.69- 33.64	14.72- 39.45	11.75- 50.53	15.91- 41.14
LF norm (%)	<i>me</i> <i>d</i>	76.20	75.46	78.39	69.47	74.02	74.04	76.45	63.68	78.47	77.24	79.62	72.91
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		62.97- 86.25	62.00- 84.84	55.39- 86.53	58.81- 86.32	61.27- 85.24	65.21- 82.55	56.75- 83.06	56.93- 87.44	66.36- 88.31	60.55- 85.28	49.47- 88.25	58.86- 84.09
PCOH (RSA index) (ms ⁻²)	<i>me</i> <i>d</i>	522.38	276.2 4*	250.2 6*	272.5 5*	688.05	294.0 7*	322.8 5*	361.9 1*	432.51	197.8 2*	149.5 6*	244.2 5*
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		252.37	80.53- 1194.7 6	121.80	100.91	276.11	112.23	166.35	141.31	222.22	66.87- 734.05	89.90- 425.82	98.95- 433.86
		80.53- 778.80	482.76	531.01		1382.4 0	826.34	855.83	645.02	983.63			
PNCOH (ms ⁻²)	<i>me</i> <i>d</i>	2110.2 2	1317. 51*	1468. 02*	1495. 98*	2268.1 6	1365.1 6	1489.0 7	1805. 94*	2047.0 4	1242. 03*	1436.5 4	1319. 50*
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		1188.1 6- 3102.4 7	758.11	781.79	830.12	1310.4 4- 3292.1 1	878.20 - 2647.9 2	782.46 - 2397.3 6	812.16 - 2657.2 5	955.16 - 2939.5 0	747.41 - 2078.1 2	815.66 - 2464.9 6	885.07 - 2460.7 1
PNCOH/ PCOH	<i>me</i> <i>d</i>	3.15	4.99*	5.76*	6.52*	3.12	4.24	5.03	5.39*	3.19	5.95*	7.35*	7.42*
<i>25^t</i> <i>h</i> <i>75^t</i> <i>h</i>		2.20- 5.96	3.18- 11.23	3.43- 11.58	3.50- 10.74	2.13- 5.79	3.03- 7.33	2.95- 7.67	3.18- 10.47	2.31- 6.37	3.21- 13.25	4.49- 13.94	3.94- 10.97

439 Considering the bivariate analysis for the whole sample, PNCOH and PCOH showed a
 440 decreasing trend going from REST to task conditions, while the ratio PNCOH/PCOH
 441 increased. These trends were found significant according to the Friedman's test (PNCOH
 442 $p<0.001$; PCOH $p<0.001$; PNCOH/PCOH $p<0.001$) and the post-hoc Bonferroni-corrected
 443 analysis was performed. Specifically, significant decreases in PNCOH were observed
 444 between REST and all the tasks with mainly moderate effect size (Rest to MIST,
 445 $p<0.001 \downarrow, r=0.540$; Rest to MGT, $p=0.018 \downarrow, r=0.359$, Rest to VS, $p<0.001 \downarrow, r=0.453$),
 446 while no differences were found among the three tasks. Similar results were obtained for
 447 PCOH (RSA index) with larger effect size (Rest to MIST, $p<0.001 \downarrow, r=0.590$; Rest to MGT,
 448 $p<0.001 \downarrow, r=0.682$, Rest to VS, $p<0.001 \downarrow, r=0.668$), while the ratio significantly
 449 increased in the same tasks reporting from moderate to large effect sizes (Rest to MIST,
 450 $p=0.035 \uparrow, r=0.392$; Rest to MGT, $p<0.001 \uparrow, r=0.536$; Rest to VS, $p<0.001 \uparrow, r=0.562$).

451

452 Fig. 3. HRV parameters showing significant modulations (Friedman's Test $p<0.05$).
 453 Panels (a) and (b) show the median, 25th and 75th percentiles values of time domain
 454 parameters, respectively the mean RR and the std RR, for the two groups in each
 455 protocol phase. Panel (c) represents the variation of the mean RR during MIST with
 456 respect to Rest for STRESS in red and CONTROLS in blue. * Indicates a significant
 457 difference $p = 0.03$. Panels (d), (e) and (f) display the median, 25th and 75th
 458 percentiles values of frequency domain parameters estimated using the bivariate
 459 approach, respectively the power not coherent with respiration, the RSA estimation
 460 and their ratio.

461 These results are confirmed at the single-group level. For the CONTROL group, the
 462 Friedman's test highlighted the presence of significant variations among tasks in PNCOH
 463 ($p=0.012$), PCOH ($p<0.001$), and PNCOH/PCOH ($p=0.043$). In particular, only the
 464 PNCOH decrease during VS with moderate effect size survived to Bonferroni's correction
 465 (Rest to VS, $p = 0.0137 \downarrow, r=0.488$), the PCOH significantly decreased in all the tasks with

466 respect to REST with large effect size (Rest to MIST, $p=0.0033 \downarrow$, $r=0.612$; Rest to MGT,
 467 $p=0.0007 \downarrow$, $r=0.733$, Rest to VS, $p=0.0001 \downarrow$, $r=0.636$), while their ratio significantly
 468 increased only in VS with respect to REST ($p=0.0264 \uparrow$, $r=0.584$). The same differences
 469 were more marked in the STRESS group, particularly for the PINCOH/PCOH parameter
 470 (Friedman's test: PNCOH $p=0.010$; PCOH $p<0.001$; PNCOH/PCOH $p<0.001$). More in
 471 detail, after p-values corrections, significant decreases in PNCOH were observed during
 472 MIST ($p=0.014 \downarrow$, $r=0.524$) and VS with respect to REST ($p=0.035 \downarrow$, $r=0.402$) and for
 473 PCOH, again, from REST to MIST ($p=0.002 \downarrow$, $r=0.591$), MGT ($p=0.002 \downarrow$, $r=0.679$), and
 474 VS ($p=0.002 \downarrow$, $r=0.707$), while no differences were found among cognitive tasks. The
 475 STRESS group also showed an increase in PNCOH/PCOH for all the tasks with respect to
 476 REST (Rest to MIST, $p = 0.047 \uparrow$, $r=0.461$; Rest to MGT, $p<0.001 \uparrow$, $r=0.598$; Rest to VS,
 477 $p = 0.007 \uparrow$, $r=0.535$). The distribution of these parameters are shown in **Fig.3 (d), (e)**
 478 and **(f)**.

479 In the frequency domain, there were no significant differences among the groups.

480 **Table II** reports median, 25th, and 75th percentile values for the nonlinear HRV indexes
 481 for the whole population and the two groups separately. SamEn was found to be
 482 significantly affected by the protocol phase for the entire sample and for each group (All: $p<0.0001$, CONTROL: $p<0.001$, STRESS: $p<0.001$). On the entire sample, after p-values
 483 correction, we found a significant increase in SamEn during all tasks with respect to REST
 484 conditions with an effect size from moderate to large (Rest to MIST, $p<0.001 \uparrow$, $r=0.539$;
 485 Rest to MGT, $p=0.022 \uparrow$, $r=0.359$; Rest to VS, $p<0.001 \uparrow$, $r=0.710$) and during VS
 486 compared to MGT ($p=0.028 \uparrow$). Analyzing the groups separately, we notice a significant
 487 increase in SamEn in both cases, from REST to MIST and from REST to VS (CONTROL:
 488 Rest to MIST, $p=0.013 \uparrow$, $r=0.572$, Rest to VS, $p<0.001 \uparrow$, $r=0.661$; STRESS: Rest to
 489 MIST, $p=0.009 \uparrow$, $r=0.514$; REST to VS, $p<0.001 \uparrow$, $r=0.750$). No differences were
 490 observed between the two groups.

492 **Table II** Nonlinear HRV parameters in time and frequency domain (median and
 493 25th-75th percentile values). Symbols identify statistical differences: * different
 494 from REST; # different from MIST; § different from MGT.

		ALL				CONTROL				STRESS			
		REST	MIST	MGT	VS	REST	MIST	MGT	VS	REST	MIST	MGT	VS
SD1	<i>med</i>	0.017	0.018	0.017	0.020	0.021	0.019	0.017	0.022	0.016	0.015	0.016	0.018
	<i>25th</i> -	0.013- 0.029	0.010- 0.029	0.011- 0.028	0.012- 0.027	0.014- 0.031	0.012- 0.028	0.011- 0.029	0.014- 0.030	0.011- 0.023	0.009- 0.029	0.010- 0.026	0.011- 0.024
SD2	<i>med</i>	0.066	0.056 *	0.055 *	0.057 *	0.075	0.058 *	0.056	0.067	0.064	0.053 *	0.054	0.056
	<i>25th</i> -	0.051- 0.086	0.043- 0.071	0.044- 0.072	0.045- 0.077	0.054- 0.091	0.044- 0.072	0.044- 0.076	0.046- 0.082	0.046- 0.083	0.040- 0.068	0.045- 0.071	0.042- 0.071
SD1 / SD 2	<i>med</i>	0.280	0.314 *	0.291	0.339 *	0.292	0.336	0.292	0.398 *	0.253	0.294	0.289	0.306 *
	<i>25th</i> -	0.239- 0.341	0.253- 0.396	0.236- 0.403	0.265- 0.423	0.249- 0.351	0.274- 0.404	0.246- 0.366	0.266- 0.432	0.229- 0.307	0.220- 0.391	0.225- 0.430	0.262- 0.362
Sam En	<i>med</i>	1.239	1.409 *	1.325 *	1.504 *§	1.286	1.407 *	1.402	1.542 *	1.208	1.411 *	1.226	1.487 *

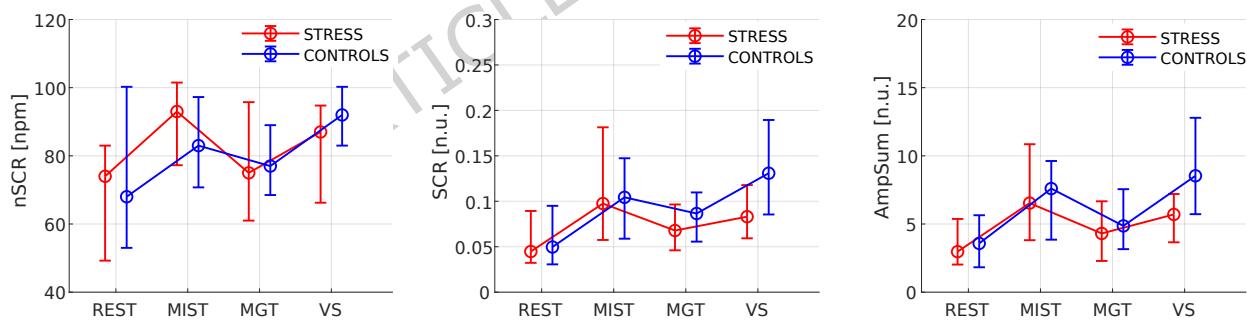
25^{th}	1.030- 1.398	1.239- 1.649	1.116- 1.528	1.257- 1.694	1.142- 1.525	1.316- 1.658	1.165- 1.525	1.303- 1.781	1.013- 1.347	1.045- 1.646	0.998- 1.534	1.144- 1.569	
a₁	<i>med</i>	1.392	1.295	1.340	1.222	1.385	1.276	1.330	1.190	1.457	1.407	1.351	1.320
25^{th}	1.186- 1.505	1.112- 1.495	1.091- 1.526	1.079- 1.442	1.133- 1.500	1.156- 1.481	1.091- 1.522	1.074- 1.350	1.239- 1.518	1.094- 1.538	1.072- 1.528	1.092- 1.443	
a₂	<i>med</i>	0.808	0.770	0.837	0.802	0.787	0.747	0.801	0.800	0.831	0.776	0.870	0.828
25^{th}	0.686- 0.929	0.634- 0.908	0.734- 0.936	0.645- 0.983	0.661- 0.892	0.638- 0.899	0.737- 0.949	0.677- 0.955	0.722- 1.011	0.619- 0.908	0.714- 0.930	0.637- 0.988	

495

496 The extracted DFA indices did not show any significant differences. As for the recurrence
 497 plot analysis, the SD1 was not affected by the protocol phases for both the whole sample
 498 and the group-wise analysis. SD2 showed a general decrease from REST to all the other
 499 protocol phases, while the SD1/SD2 ratio increased. Specifically, considering the
 500 complete sample (Friedman's test $p<0.001$), the SD2 decrease was significant for each
 501 protocol phase with respect to REST (Rest to MIST, $p<0.001 \downarrow$, $r=0.539$; Rest to MGT,
 502 $p=0.04 \downarrow$, $r=0.460$; Rest to VS, $p=0.007 \downarrow$, $r=0.451$), while in the CONTROL group, after
 503 correction for multiple comparisons, the difference was significant only between REST
 504 and MIST ($p=0.013 \downarrow$, $r=0.604$) as for the STRESS group ($p=0.026$, $r=0.465$). The ratio
 505 SD1/SD2, instead, increased during the tasks with respect to REST (Friedman test: ALL:
 506 $p<0.001$, CONTROL: $p=0.035$, STRESS: $p=0.006$). Specifically, for the entire sample, the
 507 increase was significant for both MIST ($p=0.011 \uparrow$, $r=0.457$) and VS with respect to REST
 508 ($p<0.001 \uparrow$, $r=0.537$), whereas separating the two groups, only VS showed a higher value
 509 than the REST condition for both groups (CONTROL: $p=0.02$, $r=0.500$, STRESS: $p=0.003$,
 510 $r=0.598$).

511

512 3.2. Respiration parameters


513 From the thoracic belt signal, we estimated the mean interval between consecutive
 514 breaths (meanBB) and their variability (stdBB) for each protocol phase, reported in **Table**
 515 **III**. Considering the overall sample, Friedman's test identified statistically significant
 516 differences due to task effect for both the indexes (meanBB $p<0.001$, stdBB $p<0.001$).
 517 Specifically, both the parameters significantly decreased from REST to MIST, MGT, and
 518 VS (meanBB: Rest to MIST, $p<0.001 \downarrow$, $r=0.703$; Rest to MGT, $p<0.001 \downarrow$, $r=0.688$, Rest
 519 to VS, $p<0.001 \downarrow$, $r=0.750$; stdBB: Rest to MIST, $p=0.001 \downarrow$, $r=0.540$; Rest to MGT,
 520 $p=0.002 \downarrow$, $r=0.538$, Rest to VS, $p<0.001 \downarrow$, $r=0.643$), while no differences were observed
 521 among the three tasks after Bonferroni's correction.

522 Similar patterns were found in the two groups, where Friedman's test reported significant
 523 variations (CONTROL: meanBB $p<0.001$, stdBB $p<0.001$; STRESS: meanBB $p<0.001$,
 524 stdBB $p<0.001$), which were confirmed by the post-hoc analysis with correction for
 525 multiple comparisons. The meanBB was significantly decreased during MIST, MGT, and
 526 VS with respect to REST for both the CONTROL (Rest to MIST, $p<0.001 \downarrow$, $r=0.713$; Rest
 527 to MGT, $p=0.003 \downarrow$, $r=0.761$; Rest to VS, $p<0.001 \downarrow$, $r=0.833$) and the STRESS group
 528 (Rest to MIST, $p<0.001 \downarrow$, $r=0.700$; Rest to MGT, $p=0.035 \downarrow$, $r=0.613$; Rest to VS,

529 p<0.001 ↓, r=0.676). As for the variability of the respiratory period, a significant decrease
 530 was observed from REST to MIST (p=0.036 ↓, r=0.516) and to VS (p<0.001 ↓, r=0.677)
 531 in the CONTROL group, while the decrease in the STRESS group was significant from
 532 REST to MGT (p=0.01 ↓, r=0.535) and to VS (p<0.001 ↓, r=0.623) only. For the
 533 respiratory parameters, no statistical differences were observed between experimental
 534 groups.

535 **3.3. EDA parameters**

536 The activation parameters of interest extracted from the phasic component of the EDA
 537 signal are reported in **Table III** as median values and 25th-75th percentiles and
 538 represented in Fig.4. Concerning the whole sample, Friedman's test revealed a significant
 539 effect of the protocol phases for all three parameters (nSCR p<0.001; SCR p<0.001 and
 540 AmpSum p<0.001). Post-hoc Bonferroni-corrected analysis showed a significant
 541 difference between each of the three tasks and the REST condition. Specifically, a
 542 significant increase in nSCR was observed during MIST (p<0.001 ↑, r=0.566), MGT (p =
 543 0.042 ↑, r=0.393), and VS (p<0.001 ↑, r=0.589). As for SCR, significant increases were
 544 observed during all the tasks with respect to REST with mostly large effect size (REST to
 545 MIST, p<0.001 ↑, r=0.802; REST to MGT, p=0.002 ↑, r=0.527; and REST to VS,
 546 p<0.001 ↑, r=0.693) and in VS with respect to MGT (MGT to VS, p=0.001 ↑, r=0.562),
 547 suggesting decreased activation during MGT, even if non-significant when compared to
 548 MIST. Similar results were obtained analyzing the AmpSum index (REST to MIST,
 549 p<0.001 ↑, r=0.802; REST to VS, p<0.001 ↑, r=0.698; REST to MGT, p=0.005 ↑, r=0.540;
 550 MGT to VS, p<0.001 ↑, r=0.550).

551

552 Fig.4: Median, 25th and 75th percentiles values for the EDA derived parameters in
 553 each protocol phase for the STRESS and the CONTROL group. The nSCR is reported
 554 in number per minute (npm), the SCR and the AmpSum are represented in
 555 normalized units (N.U.).

556 Table III Respiration variability metrics and EDA derived phasic parameters (median
 557 and 25th-75th percentiles values). Symbols identify statistical differences: * different
 558 from REST; # different from MIST; § different from MGT

Respiration	ALL				CONTROL				STRESS			
	REST	MIST	MGT	VS	REST	MIST	MGT	VS	REST	MIST	MGT	VS

meanBB (s)	med	3.88	3.22*	3.4 6*	3.14*	3.67	3.19*	3.33*	3.04*	3.99	3.33*	3.50*	3.20*
25 th		3.29-	2.85-	3.00	2.83-	3.35-	2.83-	2.94-	2.83-	3.02-	2.87-	3.11-	2.83-
-		4.59	3.66	-	3.57	4.58	4.03	3.91	3.59	4.57	3.62	3.86	3.56
75 th				3.90									
stdBB (s)	med	0.99	0.75*	0.7 4*	0.54*	0.99	0.67*	0.77	0.62*	1.00	0.80	0.72*	0.52*
25 th		0.71-	0.43-	0.48	0.37-	0.72-	0.42-	0.50-	0.37-	0.70-	0.44-	0.48-	0.39-
-		1.60	1.03	-	0.94	1.70	1.05	1.09	0.84	1.47	1.00	1.15	1.03
75 th				1.13									
EDA													
nSCR	med	70	88*	76*	87*	68	83	77	92*	74	93*	75	87*
25 th		53-86	73.5-	66-	75.5-	53-	70.75	68.5-	83-	49.25	77.25	61-	66.25
-			98.5	92	98	100.2	-	89	100.2	-83	-	95.75	-
75 th						5	97.25		5	101.5			94.75
SCR	med	0.05	0.10*	0.0 7*	0.10* §	0.05	0.10*	0.09*	0.13 *#§	0.04	0.10*	0.07	0.08*
25 th		0.03-	0.06-	0.05	0.07-	0.03-	0.06-	0.06-	0.09-	0.03-	0.06-	0.05-	0.06-
-		0.09	0.16	-	0.16	0.09	0.15	0.11	0.19	0.09	0.18	0.10	0.12
75 th				0.11									
Amp Sum	med	3.19	6.97*	4.5 5*	6.40* §	3.58	7.60*	4.86	8.54 *#§	2.97	6.53*	4.31	5.70*
25 th		1.93-	3.83-	2.96	4.07-	1.83-	3.85-	3.16-	5.72-	2.02-	3.81-	2.29-	3.66-
-		5.45	10.27	-	10.57	5.64	9.62	7.55	12.79	5.37	10.85	6.67	7.20
75 th				7.31									

559

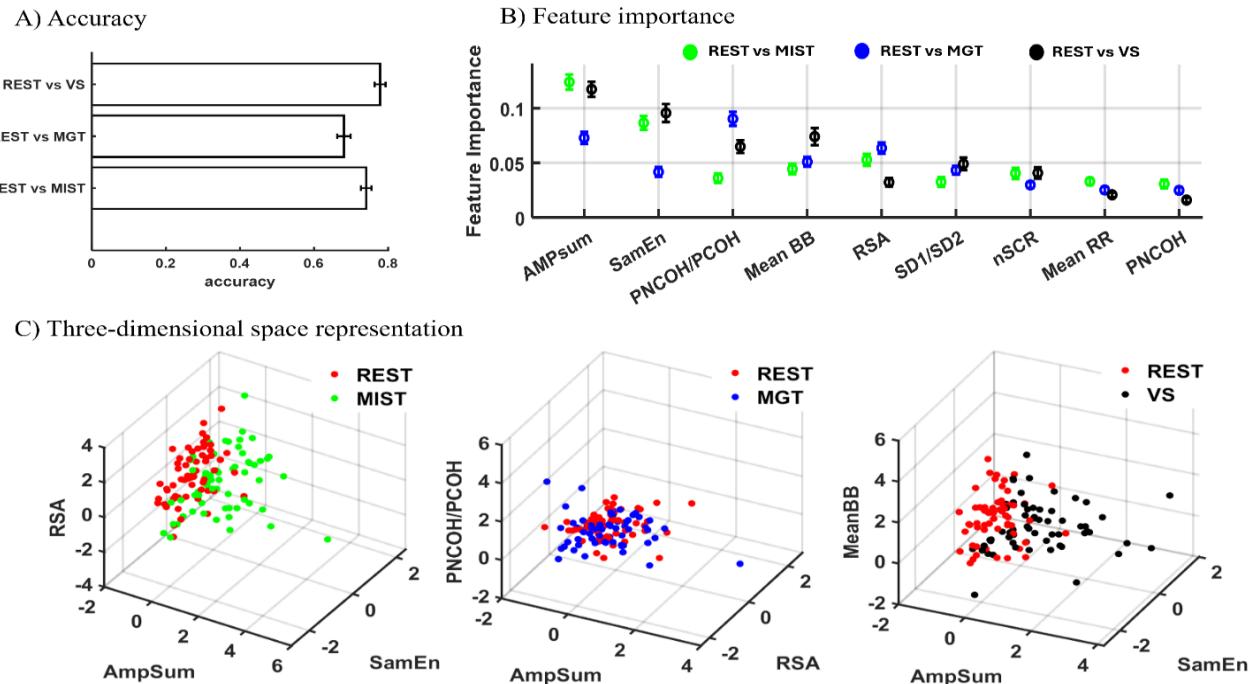
560 Regarding the single-group level analysis, the CONTROL group showed significant
 561 variations in all the analyzed parameters (nSCR $p=0.001$; SCR $p<0.001$ and AmpSum
 562 $p<0.001$). Interestingly, the number of SCR peaks increased significantly only during the
 563 VS task compared to the REST condition ($p<0.001 \uparrow$, $r=0.655$). Anyway, the mean SCR
 564 and AmpSum significantly increased from REST to MIST (SCR $p=0.001 \uparrow$, $r=0.833$;
 565 AmpSum $p=0.002 \uparrow$, $r=0.829$), from REST to VS (both with $p<0.001$, $r=0.829$ and
 566 $r=0.813$), but also from MIST to VS (SCR $p=0.036 \uparrow$, $r=0.432$, AmpSum $p=0.049 \uparrow$,
 567 $r=0.431$) and from MGT to VS (both with $p<0.001$, $r=0.737$ and $r=0.729$). Of note, the
 568 SCR also increases in MGT with respect to the REST phase ($p=0.036 \uparrow$, $r=0.544$).

569 The STRESS group showed a similar pattern, but with a more pronounced response to the
 570 MIST task, as expected. Friedman's test again detected significant trends due to the
 571 different protocol phases (nSCR $p=0.017$; SCR $p<0.001$ and AmpSum $p<0.001$). A
 572 significant increase in terms of nSCR was observed only from REST to MIST (nSCR
 573 $p=0.001 \uparrow$, $r=0.690$) and to VS ($p=0.025 \uparrow$, $r=0.495$). Similarly, significantly increased
 574 SCR and AmpSum were observed from REST to MIST ($p<0.001 \uparrow$, $r=0.771$ both indices)
 575 and from REST to VS ($p<0.001 \uparrow$, $r=0.532$ and $r=0.556$ respectively). No differences were
 576 reported among the three cognitive tasks.

577 Comparing parameter changes with respect to the REST condition between groups, a
 578 significant difference with moderate effect size was found for both SCR ($p=0.006$,
 579 $r=0.353$) and AmpSum ($p=0.008$, $r=0.340$) indexes during the VS tasks. Specifically, a
 580 more pronounced increase in activation was observed in the CONTROL group.

581 3.4. Correlation analysis

582 Correlations were investigated among physiological parameters that were significantly
 583 modulated by the protocol phases and the perceived stress level (SUDS scale). Changes


584 in SUDS, from before to after the MIST task, were found negatively correlated with the
 585 modulation of the mean RR interval duration, both across the whole sample ($p=0.005$,
 586 Spearman's rho=-0.355) and in the STRESS group ($p=0.009$, Spearman's rho=-0.464),
 587 but not in the control group. This suggests an increase in heart rate (i.e., decrease in mean
 588 RR interval) associated with an increased perceived stress. All the other parameters were
 589 not significantly correlated with SUDS changes.

590 As for the cortisol level, one subject was removed because it resulted in an outlier (larger
 591 than mean $+3*std$). However, no significant correlation was found between any of the
 592 physiological parameters and cortisol level variation in t_1 and t_2 with respect to t_0 .

593 **3.5. Multivariable analysis**

594 **Fig. 5** summarizes the main results for the multivariable analysis. Nine features were
 595 considered: nSCR, AmpSum, MeanRR, MeanBB, RSA index, PNCOH/PCOH, SamEn, and
 596 SD1/SD2. **Fig.5.A** shows the classification cross-validation accuracy of each binary model.
 597 In line with the univariate results, both the MIST and the VS task obtained moderate
 598 separation accuracy (MIST: 0.75 ± 0.014 , VS: 0.78 ± 0.015), while the MGT was more
 599 difficult to separate from the REST condition, with an average accuracy of 0.68 ± 0.018 .
 600 Since moderate differences emerged in the behaviors observed in the two groups, these
 601 results were obtained by training the models on the whole sample to maximize the number
 602 of available observations.

603 **Fig.5.B** shows the results of Shapley analysis, pointing out the averaged importance of
 604 individual features (absolute Shapley values were considered for comparison) in each
 605 model. It is interesting to note that, depending on the task to be distinguished from REST,
 606 the contribution of each physiological parameter may change. Specifically, the EDA phasic
 607 parameter AmpSum highly contributes to distinguishing each task from REST.

608

609 Fig. 5. Multivariable analysis results. A) Mean and standard deviation of accuracy values
 610 for the three binary models. B) Mean and standard deviation of feature importance
 611 obtained from SHAP analysis, represented in order of descending importance considering
 612 the mean of the three tasks. C) Scatter plots showing data distribution for each pair of
 613 conditions (REST vs MIST, REST vs MGT, and REST vs VS) in the three-dimensional space
 614 represented by the three most important features for each model.

615 From the HRV domain, the RSA index contributed to both MIST and MGT classification
 616 against REST, while SamEn was crucial for both MIST and VS. In the case of MGT, the
 617 PNCOH/PCOH was indicated as the most important feature. Finally, the mean distance
 618 between consecutive breaths (meanBB) contributed to VS classification. **Fig.5.C** displays
 619 three-dimensional scatterplots built using the three most important features for each
 620 mental task as indicated by the SHAP evaluation.

621 4. Discussion

622 In the current study, we investigated the ANS responses in a sample of healthy adults
 623 during an acute mental stress and cognitive stimulation protocol, analyzing a set of
 624 physiological parameters comprising cardiovascular, electrodermal, and respiratory
 625 activity. While the effect of acute mental stress and cognitive tasks has been largely
 626 investigated in recent literature^{2,8,11,13,14}, results often appear conflicting depending on
 627 different factors, such as the study population, experimental protocol, and parameter
 628 estimation approach. Moreover, most of the previous literature has focused on HRV
 629 parameters, sometimes including EDA analysis, while respiratory activity is often
 630 overlooked. A second aim of the study was to understand if a different level of initially
 631 induced acute stress could affect the ANS responses throughout the experimental

632 protocol. Therefore, the sample was randomly divided into two groups, one undergoing
633 the original MIST and the other performing the same task in a less challenging modality.
634 We also explored possible relationships between physiological parameters and
635 psychometric as well as biochemical results. Finally, to identify a possible combination of
636 parameters that could better characterize the response to each protocol condition, an RF-
637 based multivariable analysis was also performed.

638 Our results confirmed that most of the physiological parameters included in the analysis
639 were modulated by cognitive tasks, and depending on their characteristics and origins,
640 their modulations possibly reflected different ANS response components. Regarding the
641 HRV, in the whole group a decrease of the mean and the standard deviation of the RR
642 intervals supported the hypothesis of a shift towards a sympathetic prevalence induced
643 by mental stress, as previously reported^{8,9}. It is worth noting that, considering the two
644 groups separately, the meanRR was found significantly reduced during MIST only for the
645 STRESS group, while in the CONTROL group, even if a decrease was observed, this was
646 not significant, probably because of a larger variability. On the contrary, the stdRR
647 significantly decreased only for the CONTROL group, but the decrease was not significant
648 in the experimental group. Nevertheless, the two parameters, even if the significance
649 resulted 'group specific', showed expected modulations, in line with the literature and the
650 study hypothesis.

651 Interestingly, the RMSSD parameter, which has been described as one of the most
652 sensitive indicators of acute stress⁵, did not show any significant modulation in our
653 experiment. Similarly, frequency-domain HRV features were not considerably affected by
654 the proposed protocol when estimated without considering the contribution of respiration,
655 as also reported in the literature^{20,47}. When disentangling the contribution of respiratory
656 activity from the HRV signal, the task effect was significant, with a decreased RSA index
657 suggesting withdrawal or deactivation of the parasympathetic (vagal) nervous system
658 (PNS), in preparation for a demanding situation²⁰. Nevertheless, this result should be
659 interpreted also considering the observed changes in the respiration period (meanBB),
660 which also modulate HRV parameters. In fact, the RSA index, when directly derived from
661 the HF of the HRV spectrum, may be misinterpreted as a direct measure of vagal tone⁵¹.
662 In our case, the use of the bivariate AR analysis mitigates this caveat by identifying the
663 contribution of the respiration to the HRV spectrum at frequencies outside the expected
664 HF range²⁰. These results underscore the importance of integrating respiratory activity
665 in frequency-domain HRV analysis, since breathing modulates HR and HRV¹⁹. Besides the
666 frequency domain approaches, to learn more about RSA possible interpretation, new
667 advanced tools have been developed able to estimate RSA and its dynamic⁵².

668 Linear HRV parameters were found sensitive to mental activities compared to the REST
669 condition, but their changes were similar across the three tasks (MIST, MGT, and VS).
670 Concerning the analysis of the HRV, it is worth noting that we used a 4-minute segment
671 of RR time series to estimate both linear and nonlinear parameters. Although the
672 reliability of estimates using at least 3 minutes of signals has been demonstrated in the
673 literature¹⁴, we acknowledge that results related to LF power should be carefully
674 considered since only a few cycles of the lowest LF frequency were captured.

675 Nonlinear HRV parameters, in particular SD2, SD1/SD2, and sample entropy, were also
676 found sensitive to task manipulation. However, the interpretation of these parameters is
677 not straightforward, and contrasting results have been reported in the literature. For
678 example, while Pereira¹³ and Castaldo¹⁴ found a significant SD1 increase, other works
679 reported decreases in short-term variability related to mental stress⁴⁷, which resembles
680 our results more closely, although such a decrease was not significant in our case
681 (Friedman's $p=0.121$). As for the SD2 parameter, the literature and our results
682 consistently suggest a significant decrease in long-range variability under stress and
683 mental load⁴⁷.

684 The SD1/SD2 ratio, which significantly increased primarily during VS tasks in our case,
685 has rarely been investigated in relation to mental stress. However, an increase in its value
686 has been associated with the activation of the sympathetic nervous system, which is
687 consistent with our hypothesis and results^{48,53}. As for the SamEn index, in line with the
688 results reported by Brugnera⁸ and Hao⁴⁷, a significant increase in HRV complexity and
689 irregularity under stress was identified. Although this index is widely used in literature,
690 its interpretation in relation to ANS activity is still debated. To shed light on this, Lewis
691 and Short⁵⁴ measured the SamEn of the RR series during different levels of physical
692 exercise. They reported an increase in signal complexity during exercise and a reduction
693 during recovery. The authors concluded that changes in SamEn could be related to
694 alterations in ANS control. In agreement with this interpretation, we speculate that an
695 increase in SamEn, and therefore in signal irregularity, may also reflect a change in ANS
696 control in the present study. Interestingly, the nonlinear parameters were differently
697 modulated by the three tasks; specifically, a stronger change was observed during the
698 MIST and VS phases compared to the REST, whereas the MGT was characterized by a
699 lower variation. This pattern became particularly evident when analyzing the STRESS and
700 CONTROL groups separately.

701 Concerning the analysis of EDA, we focused on its phasic component, as less affected by
702 possible environmental factors and sensor wearing time. The three phasic indices were
703 highly coherent and very sensitive to the different tasks; specifically, a strong sympathetic
704 activation was evident during MIST and VS, as suggested by an increase in all the EDA
705 parameters. Conversely, a return to almost initial levels was observed during MGT. In
706 general, these results confirmed the close relationship between EDA and cognitive
707 load^{23,55}.

708 Additionally, a multivariable, RF-based analysis, followed by a feature importance
709 evaluation, was performed on the entire sample to explore which combination of the
710 considered parameters best characterizes the physiological response to each task relative
711 to the resting condition. While the separation accuracy was only moderate in every case,
712 ranging from an average of 0.68 for MGT to 0.78 for VS, some features clearly emerged
713 as the most useful for classification. Specifically, AmpSum, RSA index, and SamEn were
714 fundamental for separating the MIST condition from REST; AmpSum, PNCOH/PCOH, and
715 RSA index were the most important features in the case of MGT; finally, AmpSum, SamEn,
716 and MeanBB mostly contributed to the VS classification. Overall, the results of our
717 multivariable analysis corroborate the physiological characterization of the responses to

718 the proposed tasks provided by the univariable non-parametric statistics discussed above.
719 In particular, they emphasize the importance of specific parameter combinations that
720 should be prioritized when evaluating acute stress or mental activity, which may vary
721 depending on the specific task of interest. Moreover, they suggest that a multimodal
722 approach can provide a more complete view of the physiological mechanisms underlying
723 stress and attention, given that most of those combinations were found to include features
724 extracted from different signals.

725 When the two groups were analyzed separately, similar modulations of the ANS
726 parameters were found. In fact, only a few parameters exhibited significant differences
727 between groups, specifically the mean RR interval and the EDA phasic parameters. Even
728 so, we were able to confirm the different effects of the two MIST implementations based
729 on the stronger mean RR decrease (heart rate increase) for the STRESS group during
730 MIST and the stronger relationship between this parameter and the variation in the
731 perceived stress (SUDS score), which was not significant for the CONTROL group.
732 Interestingly, also the phasic EDA activity was differently modulated in the two groups.
733 In fact, a stronger, but non-significant activation during MIST was observed in the
734 STRESS group, while, surprisingly, the CONTROL group showed a significantly higher
735 activation during the attention test (VS task), while the experimental group was less
736 activated. This result may suggest a long-lasting effect of the acute mental stress induced
737 by the MIST on the STRESS group, who seemed to perceive the VS task as 'less
738 demanding' due to the initial stress manipulation, while for controls, VS could be
739 considered the first truly demanding task. In addition, in line with previous studies
740 suggesting that acute stress exposure improves general alertness and cognitive control⁵⁶,
741 our results might indicate that the increased alertness in the STRESS group also reflects
742 a lower need for additional autonomic activation during the attention task.

743 The current study has some limitations that need to be disclosed and properly discussed.
744 First, since the participants receiving stress manipulation were led to believe they would
745 be rewarded based on their performance, we could not implement a crossover protocol
746 and randomize the order of the proposed tasks. Thus, it could be questioned whether our
747 results were influenced by the time the sensors were worn. However, aside from the tonic
748 level of the EDA, which was excluded from the analysed parameters for this very reason,
749 the other parameters exhibited modulation patterns consistent with the manipulation of
750 the ANS. In particular, parameters principally reflecting sympathetic activation (nSCR,
751 SCR, and AmpSum) were differently modulated by the three tasks, indicating a higher
752 activation for the MIST and VS, while a balanced response was observed for most of the
753 HRV parameters, suggesting an interplay between sympathetic and parasympathetic
754 activation. Still, we cannot entirely exclude the presence of a task sequence effect in our
755 results, which may have influenced the effect size of the differences observed between
756 protocol conditions.

757 Second, our experimental sample was highly heterogeneous in terms of professional
758 background. Thus, the arithmetic exercises proposed in the MIST task were simpler for
759 participants who were accustomed to working with numbers and more challenging for
760 others, increasing the inter-subject variability in perceived stress, even within groups.

761 This variability may have reduced the possibility of identifying significant differences
762 between the experimental groups. Indeed, some controls verbally reported a highly
763 perceived frustration after the 'control' MIST, while some STRESS participants did not
764 respond as expected, either in terms of ANS modulation or according to psychometric
765 indicators. Future studies may include at least two stress-inducing tasks belonging to
766 different psychological domains (e.g., social, cognitive), as proposed in^{5,8,9}, to possibly
767 observe more specific stress responses. However, while this limitation could be attributed
768 to the MIST task, our study enabled different ANS responses to be identified, which could
769 help to improve our understanding of the specific nature of stress induced by cognitive
770 tasks. It is also worth mentioning that stress responses may be influenced by individual
771 vulnerability or resilience to stressors, which cannot be estimated a priori without tracing
772 the profile of each participants response at baseline⁴. Therefore, further research aimed
773 at better understanding the effect of acute stress should include a pre-experiment
774 assessment of the included participants to understand their vulnerability/resilience to
775 stressors.

776 Finally, a third important limitation concerns the collection of cortisol data using saliva
777 samples, which led to a negative result, since no clear modulations in cortisol
778 concentration were detected, in contrast with our hypothesis. A possible reason is related
779 to the short time delay between the task execution and the collection of the cortisol
780 samples, that we based on previous literature³², but that, in our case, may have been too
781 short for complete cortisol release, preventing the detection of significant variations in
782 the metabolic response. Therefore, future study designs, including metabolomic sample
783 collection, should consider longer time intervals between tasks and between each task
784 and the collection of the cortisol sample, to ensure that the metabolomic response has
785 been completely activated. As an alternative, other faster biochemical mediators, such as
786 amylase and chromogranin A⁵⁷can be considered. To further interpret our negative results
787 with cortisol data, the relation between salivary cortisol responses and other factors that
788 were not controlled in our protocol but that have been associated with cortisol responses
789 should also be mentioned. Among these, gender, social factors, personality, and personal
790 habits, such as smoking, diet, and alcohol consumption, may influence the individual
791 response to acute stress and the associated metabolic activity⁵⁸. A direct influence is
792 exerted by endogenous sex hormone levels, depending on the phase of the female
793 menstrual cycle⁵⁹, and the circadian rhythm⁶⁰. Therefore, future studies should take into
794 consideration all these factors as much as possible. Specifically, when female individuals
795 of reproductive age are included, the hormonal phase should also be recorded to
796 strengthen the interpretation of metabolic results.

797 5. Conclusion

798 This study presents a multimodal ANS analysis for characterizing physiological responses
799 to a stimulation protocol based on randomized acute stress manipulation in two groups of
800 healthy adults for a total of 60 participants. Specifically, linear (in both time and frequency
801 domains) and nonlinear HRV indices from ECG, phasic activation features from EDA, and
802 respiratory activity analysis provided an effective characterization of the physiological
803 modulations in response to cognitive tasks under different stress manipulation. Our

804 findings further support the importance of integrating information from respiratory
 805 activity for a better interpretation of the frequency-domain analysis of the HRV.
 806 Particularly, the current study illustrates how parameters from various biosignals and
 807 physiological domains are modulated by mental stress, supporting the need for
 808 multimodal approaches to improve understanding of acute mental stress in practical
 809 applications.

810

811 **References**

- 812 1. Tervonen, J. *et al.* Personalized mental stress detection with self-organizing map: From
 813 laboratory to the field. *Comput Biol Med* **124**, (2020).
- 814 2. Reali, P., Brugnara, A., Compare, A. & Bianchi, A. M. Efficacy of Time- and Frequency-
 815 Domain Heart Rate Variability Features in Stress Detection and Their Relation with Coping
 816 Strategies. in *IFMBE Proceedings* vol. 76 209-216 (Springer, 2020).
- 817 3. Vancheri, F., Longo, G., Vancheri, E. & Henein, M. Y. Mental Stress and Cardiovascular
 818 Health—Part I. *Journal of Clinical Medicine* vol. 11 Preprint at
 819 <https://doi.org/10.3390/jcm11123353> (2022).
- 820 4. McEwen, B. S. & Akil, H. Revisiting the Stress Concept: Implications for Affective Disorders.
 821 *The Journal of Neuroscience* **40**, 12-21 (2020).
- 822 5. Immanuel, S., Teferra, M. N., Baumert, M. & Bidargaddi, N. Heart Rate Variability for
 823 Evaluating Psychological Stress Changes in Healthy Adults: A Scoping Review.
 824 *Neuropsychobiology* **82**, 187-202 (2023).
- 825 6. Berretz, G., Packheiser, J., Kumsta, R., Wolf, O. T. & Ocklenburg, S. The brain under stress—
 826 A systematic review and activation likelihood estimation meta-analysis of changes in BOLD
 827 signal associated with acute stress exposure. *Neuroscience and Biobehavioral Reviews* vol.
 828 124 89-99 Preprint at <https://doi.org/10.1016/j.neubiorev.2021.01.001> (2021).
- 829 7. Szabo, Y. Z., Slavish, D. C. & Graham-Engeland, J. E. The effect of acute stress on salivary
 830 markers of inflammation: A systematic review and meta-analysis. *Brain, Behavior, and
 831 Immunity* vol. 88 887-900 Preprint at <https://doi.org/10.1016/j.bbi.2020.04.078> (2020).
- 832 8. Brugnara, A. *et al.* Heart rate variability during acute psychosocial stress: A randomized
 833 cross-over trial of verbal and non-verbal laboratory stressors. *International Journal of
 834 Psychophysiology* **127**, 17-25 (2018).
- 835 9. Ernst, H. *et al.* Assessment of the human response to acute mental stress-An overview and a
 836 multimodal study. *PLoS One* **18**, (2023).
- 837 10. Lucini, D., Norbiato, G., Clerici, M. & Pagani, M. Hemodynamic and Autonomic Adjustments
 838 to Real Life Stress Conditions in Humans. *Hypertension* **39**, 184-188 (2002).
- 839 11. Brugnara, A. *et al.* Cortical and cardiovascular responses to acute stressors and their
 840 relations with psychological distress. *International Journal of Psychophysiology* **114**, 38-46
 841 (2017).
- 842 12. Malik, M. Heart Rate Variability. *Annals of Noninvasive Electrocardiology* **1**, 151-181 (1996).

843 13. Pereira, T., Almeida, P. R., Cunha, J. P. S. & Aguiar, A. Heart rate variability metrics for fine-
844 grained stress level assessment. *Comput Methods Programs Biomed* **148**, 71-80 (2017).

845 14. Castaldo, R., Montesinos, L., Melillo, P., James, C. & Pecchia, L. Ultra-short term HRV
846 features as surrogates of short term HRV: a case study on mental stress detection in real
847 life. *BMC Med Inform Decis Mak* **19**, 12 (2019).

848 15. Lucini, D., Di Fede, G., Parati, G. & Pagani, M. Impact of Chronic Psychosocial Stress on
849 Autonomic Cardiovascular Regulation in Otherwise Healthy Subjects. *Hypertension* **46**,
850 1201-1206 (2005).

851 16. Hernando, A. *et al.* Inclusion of Respiratory Frequency Information in Heart Rate Variability
852 Analysis for Stress Assessment. *IEEE J Biomed Health Inform* **20**, 1016-1025 (2016).

853 17. Nicolò, A., Massaroni, C., Schena, E. & Sacchetti, M. The Importance of Respiratory Rate
854 Monitoring: From Healthcare to Sport and Exercise. *Sensors* **20**, 6396 (2020).

855 18. Homma, I. & Masaoka, Y. Breathing rhythms and emotions. *Exp Physiol* **93**, 1011-1021
856 (2008).

857 19. Hayano, J. & Yuda, E. Pitfalls of assessment of autonomic function by heart rate variability.
858 *J Physiol Anthropol* **38**, 3 (2019).

859 20. Reali, P. *et al.* Assessing stress variations in children during the strange situation procedure:
860 comparison of three widely used respiratory sinus arrhythmia estimation methods. *Physiol
861 Meas* **42**, 085007 (2021).

862 21. Menuet, C. *et al.* Redefining respiratory sinus arrhythmia as respiratory heart rate
863 variability: an international Expert Recommendation for terminological clarity. *Nat Rev
864 Cardiol* (2025) doi:10.1038/s41569-025-01160-z.

865 22. Benedek, M. & Kaernbach, C. A continuous measure of phasic electrodermal activity. *J
866 Neurosci Methods* **190**, 80-91 (2010).

867 23. Polo, E. M. *et al.* Comparative Assessment of Physiological Responses to Emotional
868 Elicitation by Auditory and Visual Stimuli. *IEEE J Transl Eng Health Med* **12**, 171-181 (2024).

869 24. Tian, Y. *et al.* Physiological Signal Analysis for Evaluating Flow during Playing of Computer
870 Games of Varying Difficulty. *Front Psychol* **8**, (2017).

871 25. Feng, Y. X., Tang, T. B. & Ho, E. T. W. Phasic Electrodermal Activity Indicates Changes in
872 Workload and Affective States. in *2021 International Conference on Intelligent Cybernetics
873 Technology & Applications (ICICyTA)* 133-137 (IEEE, 2021).
874 doi:10.1109/ICICyTA53712.2021.9689112.

875 26. Zhou, Y. *et al.* Inference-enabled tracking of acute mental stress via multi-modal wearable
876 physiological sensing: A proof-of-concept study. *Biocybern Biomed Eng* **44**, 771-781 (2024).

877 27. Giorgi, A. *et al.* Wearable Technologies for Mental Workload, Stress, and Emotional State
878 Assessment during Working-Like Tasks: A Comparison with Laboratory Technologies.
879 *Sensors* **21**, 2332 (2021).

880 28. Rodríguez-Arce, J., Lara-Flores, L., Portillo-Rodríguez, O. & Martínez-Méndez, R. Towards
881 an anxiety and stress recognition system for academic environments based on physiological
882 features. *Comput Methods Programs Biomed* **190**, (2020).

883 29. Zhu, L. *et al.* Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and
884 Machine Learning. *IEEE J Biomed Health Inform* **27**, 2155-2165 (2023).

885 30. Gedam, S. & Paul, S. A Review on Mental Stress Detection Using Wearable Sensors and
886 Machine Learning Techniques. *IEEE Access* **9**, 84045-84066 (2021).

887 31. Steffen, P. R. Using the Research Domain Criteria as a framework to integrate
888 psychophysiological findings into stress management and psychotherapy interventions.
889 *Frontiers in Neuroergonomics* **4**, (2023).

890 32. Dedovic, K. *et al.* *The Montreal Imaging Stress Task: Using Functional Imaging to*
891 *Investigate the Effects of Perceiving and Processing Psychosocial Stress in the Human Brain.*
892 *J Psychiatry Neurosci* vol. 30 (2005).

893 33. Pruessner, J. C. *et al.* Deactivation of the Limbic System During Acute Psychosocial Stress:
894 Evidence from Positron Emission Tomography and Functional Magnetic Resonance Imaging
895 Studies. *Biol Psychiatry* **63**, 234-240 (2008).

896 34. Tom, S. M., Fox, C. R., Trepel, C. & Poldrack, R. A. The Neural Basis of Loss Aversion in
897 Decision-Making Under Risk. *Science (1979)* **315**, 515-518 (2007).

898 35. Chandrasekhar Pammi, V. S. *et al.* Neural loss aversion differences between depression
899 patients and healthy individuals: A functional MRI investigation. *Neuroradiol J* **28**, 97-105
900 (2015).

901 36. Pan, J. & Tompkins, W. J. A Real-Time QRS Detection Algorithm. *IEEE Trans Biomed Eng*
902 **BME-32**, 230-236 (1985).

903 37. Reali, P., Lolatto, R., Coelli, S., Tartaglia, G. & Bianchi, A. M. Information Retrieval from
904 Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation
905 and Breath-Extraction Techniques at Different Sampling Rates. *Sensors* **22**, 1428 (2022).

906 38. Baselli, G., Porta, A., Rimoldi, O., Pagani, M. & Cerutti, S. Spectral decomposition in
907 multichannel recordings based on multivariate parametric identification. *IEEE Trans Biomed
908 Eng* **44**, 1092-1101 (1997).

909 39. Faes, L. *et al.* Information decomposition in the frequency domain: a new framework to study
910 cardiovascular and cardiorespiratory oscillations. *Philosophical Transactions of the Royal
911 Society A: Mathematical, Physical and Engineering Sciences* **379**, (2021).

912 40. Porta, A. *et al.* Categorizing the Role of Respiration in Cardiovascular and Cerebrovascular
913 Variability Interactions. *IEEE Trans Biomed Eng* **69**, 2065-2076 (2022).

914 41. Guede-Fernandez, F., Fernandez-Chimeno, M., Ramos-Castro, J. & Garcia-Gonzalez, M. A.
915 Driver Drowsiness Detection Based on Respiratory Signal Analysis. *IEEE Access* **7**, 81826-
916 81838 (2019).

917 42. Bianchi, A. *et al.* Spectral analysis of heart rate variability signal and respiration in diabetic
918 subjects. *Med Biol Eng Comput* **28**, 205-211 (1990).

919 43. Cerutti, S. *et al.* Compressed spectral arrays for the analysis of 24-hr heart rate variability
920 signal: Enhancement of parameters and data reduction. *Computers and Biomedical*
921 *Research* **22**, 424–441 (1989).

922 44. Faes, L. *et al.* Causal transfer function analysis to describe closed loop interactions between
923 cardiovascular and cardiorespiratory variability signals. *Biol Cybern* **90**, 390–399 (2004).

924 45. Widjaja, D., Caicedo, A., Vlemincx, E., Van Diest, I. & Van Huffel, S. Separation of
925 Respiratory Influences from the Tachogram: A Methodological Evaluation. *PLoS One* **9**,
926 e101713 (2014).

927 46. Baselli, G., Cerutti, S., Civardi, S., Malliani, A. & Pagani, M. Cardiovascular variability
928 signals: towards the identification of a closed-loop model of the neural control mechanisms.
929 *IEEE Trans Biomed Eng* **35**, 1033–1046 (1988).

930 47. Hao, T., Zheng, X., Wang, H., Xu, K. & Chen, S. Linear and nonlinear analyses of heart rate
931 variability signals under mental load. *Biomed Signal Process Control* **77**, 103758 (2022).

932 48. Henriques, T. *et al.* Nonlinear methods most applied to heart-rate time series: A review.
933 *Entropy* vol. 22 Preprint at <https://doi.org/10.3390/e22030309> (2020).

934 49. Ramshur, J. T. J. Design, Evaluation, and Application of Heart Rate Variability Analysis
935 Software (HRVAS). (University of Memphis, 2010).

936 50. Fritz, C. O., Morris, P. E. & Richler, J. J. Effect size estimates: Current use, calculations, and
937 interpretation. *J Exp Psychol Gen* **141**, 2–18 (2012).

938 51. Grossman, P. & Taylor, E. W. Toward understanding respiratory sinus arrhythmia: Relations
939 to cardiac vagal tone, evolution and biobehavioral functions. *Biol Psychol* **74**, 263–285
940 (2007).

941 52. Ghibaudo, V., Granget, J., Dereli, M., Buonviso, N. & Garcia, S. A Unifying Method to Study
942 Respiratory Sinus Arrhythmia Dynamics Implemented in a New Toolbox. *eNeuro* **10**,
943 ENEURO.0197-23.2023 (2023).

944 53. Rahman, S., Habel, M. & Contrada, R. J. Poincaré plot indices as measures of sympathetic
945 cardiac regulation: Responses to psychological stress and associations with pre-ejection
946 period. *International Journal of Psychophysiology* **133**, 79–90 (2018).

947 54. Lewis, M. J. & Short, A. L. Sample entropy of electrocardiographic RR and QT time-series
948 data during rest and exercise. *Physiol Meas* **28**, 731–744 (2007).

949 55. Reali, P., Cosentini, C., Carvalho, P. de, Traver, V. & Bianchi, A. M. Towards the development
950 of physiological models for emotions evaluation. in *2018 40th Annual International*
951 *Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)* 110–113
952 (IEEE, 2018). doi:10.1109/EMBC.2018.8512236.

953 56. Qi, M. & Gao, H. Acute psychological stress promotes general alertness and attentional
954 control processes: An ERP study. *Psychophysiology* **57**, (2020).

955 57. Jantaratnotai, N., Rungnapapaisarn, K., Ratanachamnong, P. & Pachimsawat, P. Comparison
956 of salivary cortisol, amylase, and chromogranin A diurnal profiles in healthy volunteers. *Arch*
957 *Oral Biol* **142**, 105516 (2022).

958 58. Kudielka, B. M., Hellhammer, D. H. & Wüst, S. Why do we respond so differently? Reviewing
 959 determinants of human salivary cortisol responses to challenge. *Psychoneuroendocrinology*
 960 **34**, 2-18 (2009).

961 59. Wolfram, M., Bellingrath, S. & Kudielka, B. M. The cortisol awakening response (CAR) across
 962 the female menstrual cycle. *Psychoneuroendocrinology* **36**, 905-912 (2011).

963 60. Martel, J. *et al.* Effects of light, electromagnetic fields and water on biological rhythms.
 964 *Biomed J* **48**, 100824 (2025).

965

966 **Funding**

967 The research is carried out within MUSA - Multilayered Urban Sustainability Action -
 968 project, funded by the European Union - NextGenerationEU, under the National Recovery
 969 and Resilience Plan (NRRP) Mission 4 Component 2 Investment Line 1.5: Strenghtening
 970 of research structures and creation of R&D "innovation ecosystems", set up of "territorial
 971 leaders in R&D"

972 **Author contributions:** SC: Conceptualization, Methodology, Formal analysis,
 973 Data curation, Writing—original draft, Writing—review & editing; MDT: Conceptualization, Formal analysis, Data curation, Writing—original draft,
 974 Writing—review & editing; PR: Methodology, Software, Writing—original draft,
 975 Writing—review & editing; RAG: Conceptualization, Supervision, Funding
 976 acquisition, Writing—review & editing; AMB: Conceptualization, Project
 977 administration; Supervision, Methodology, Funding acquisition, Writing—review
 978 & editing;

980 **Data availability statement.** The datasets generated and analysed during the
 981 current study could be obtained from the corresponding author on reasonable
 982 request.

983 **Competing Interest Statement.** Authors have no conflict of interest to report.

984 **Ethics statement.** I ensure that all procedures were performed in compliance
 985 with relevant laws and institutional guidelines and have been approved by the
 986 institutional committee of Politecnico di Milano (opinion n°12/2024). Informed
 987 consent was obtained for experimentation with human subjects.

988