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Abstract:

Acute mental stress activates the autonomic nervous system (ANS), modulating
physiological parameters. To assess the ANS response, we collected multimodal
physiological signals, including electrocardiogram (ECG), electrodermal activity (EDA),
and respiratory activity from healthy participants. The experimental protocol was
designed to induce a high stress level in one group (STRESS) and low stress in the other
(CONTROL), undergoing the same cognitive tasks. Heart rate variability (HRV) indices,
parameters from respiratory activity and EDA were computed and analyzed. First, the
effect of the proposed stress manipulation on the ANS was assessed, showing that linear
HRYV and respiratory parameters significantly changed during cognitive tasks with respect
to rest in both the groups, mainly when respiration activity was integrated in the analysis.
Nonlinear HRV parameters and EDA-based indices presented more task-specific
modulations. Significant differences among groups were found only for the mean RR
interval and the EDA-derived parameters. Additionally, Random Forest models were
trained, and feature importance was assessed through Shapley values. Results identified
the amplitude of the phasic EDA component, respiratory sinus arrhythmia (RSA), HRV
sample entropy, and mean breathing period as the features most clearly differentiating
cognitive tasks from rest, highlighting the importance of a multimodal assessment of
acute stress.

1. Introduction

In its negative connotation, psychological stress (i.e., distress) is caused by the disruption
of balance between perceived cognitive and emotional load induced by external stimuli,
and the individual’s ability to cope with them?!2. This condition can be transitory (acute
phase) or can persist for longer periods (chronic condition), impacting the subject’s
quality of life. Specifically, acute stress episodes may temporarily affect human mood,
attention, and engagement; potentially reducing work- and study-related efficiency. A
sustained exposure to stress can also be a trigger for cardiovascular events3. The
production of cortisol and other biological mediators is the result of an active process
aimed at maintaining stability, referred to as ‘Allostasis’, but when the stability is altered,
the body is forced to a new equilibrium causing an ‘Allostatic load’ that can be harmful?.
Thus, from a physiological point of view, events perceived as stressful induce a complex
sequence of responses, comprising an interplay between the central and autonomic
nervous systems (ANS) and endocrine regulation®6, often measured through cortisol
concentration’. This mechanism has been shown, by many laboratory-based studies, to
modulate measurable ANS-related parameters?8-11, principally in terms of heart rate
variability (HRV). HRV is a recognized marker of cardiovascular health!?, which can be
derived from the electrocardiogram (ECG) and other related signals such as
photoplethysmography (PPG). Specifically, the ANS works with other physiological
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systems to regulate the heart rhythm, increasing and decreasing the heart rate (HR)
through the activation of the parasympathetic and sympathetic branches of the nervous
system. In stressful conditions, it has been demonstrated that a predominance of
sympathetic activity is reflected in an increase of HR and a decrease of the variability, in
both acute and chronic conditions?13-15, Other studies also evaluated responses to
stressors and emotional stimuli using respiratory parameters!6-18, or pointed out the
usefulness of integrating the respiratory information to refine the HRV analysis®19. In the
latter case, the possibility to disentangle the respiratory contribution from the HRV signal
has been shown to improve the estimation of frequency-domain HRV parameters,
particularly of the respiratory sinus arrhythmia (RSA)29, also recently named Respiratory
Heart Rate Variability (RespHRV) to reduce the potential pathological connotation?!. RSA
quantifies the influence of respiration on oscillations of the HRV signal, which is
associated with vagal control and expected to decrease under stress.

Another set of parameters widely used in the affective research field is derived from the
electrodermal activity (EDA) signal (i.e., Skin Conductance response), which has been
demonstrated to respond to emotional stimuli?223, mental load?%2°, and stress
manipulation protocols in multimodal frameworks?26.27,

In recent years, the possibility to monitor vital signs, using wearable and smart
technologies, has increased research interest in understanding which physiological
parameters better detect acute stress events, to potentially prevent chronic conditions?28-
30, Even so, how the ANS responds to stress has still not been fully characterized, and
research findings are often conflicting. In fact, psychological stress is a very complex
condition composed of several factors belonging to social, cognitive, physical, and
psychological domains3!. In this context, the first objective of the study was to evaluate
the effectiveness of different physiological parameters in characterizing ANS responses
to acute mental stress. A second aim was to assess the effects of varying degrees of acute
mental stress by comparing the ANS responses to subsequent cognitive tasks in two
groups of individuals after different exposure to stress (i.e., a Stress and a Control group).
To this aim, short-term (< 5 min) linear and nonlinear HRV indices from the ECG signal,
time-domain parameters from respiratory activity, and features from EDA were analyzed.
Finally, we investigated the relationship between physiological responses, psychometric
variables, and biochemical parameters (i.e., cortisol concentration).

Specifically, our study was based on a randomized acute stress manipulation protocol in
which the Montreal imaging stress task (MIST)32 was used to induce acute stress in half
of the study population (31 participants), while the other half (31 participants) performed
a modified, less-challenging MIST version as a control condition. After this stress-inducing
task, two cognitive assignments were also performed: the mixed gambling task (MGT) and
a spatial attention task based on visual search (VS), which were administered equally to
all participants. Physiological signals (i.e., ECG, respiration, and EDA) were continuously
acquired, while psychometric assessment and biochemical samples to measure cortisol
release were collected at specific time points during the procedure. By taking advantage
of a multidisciplinary approach, the results of our study yield comprehensive insights into
characterizing the effects of acute stress on physiological responses in healthy adults.
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2. Materials and methods
2.1. Participants

The described study was compliant with the Declaration of Helsinki and approved by the
Ethics Committee of Politecnico di Milano (opinion n°12/2024), where the data collection
took place.

A total of 62 participants (30 male, 32 female) with an age between 18 and 40 years (mean
age 30.2, SD 6.9 years) were recruited for the experiment. Inclusion criteria comprise the
absence of any cardiovascular, neurological, or psychiatric pathologies. Participants were
recruited through an online advertisement of a specialized recruiting agency, and
monetary compensation was agreed upon acceptance. Volunteers received instructions
about the experiment and all the documentation by email and were asked to refrain from
caffeine consumption and intense physical activities for 24 hours preceding the
experiment. All subjects were Italian speakers.

2.2, Experimental Procedure

On arrival, participants were asked to read and sign the informed consent form before the
biomedical signal recording equipment was set up. They sat in a comfortable chair in front
of a 27” computer screen at a distance of approximately 80 cm, and an Italian keyboard
was given to perform the assignments. Participants collected the first salivary sample.
Subsequently, a general description of the experiment was shown on the computer screen
before the procedure started. To estimate the initial stress level, two self-assessment
questionnaires (Italian versions) were digitally filled out, namely the Profile of Mood
States (POMS) scale and Perceived Stress Scale (PSS) answering to each question with a
value between 1 and 5. Finally, participants were asked to identify their level of stress
from 0 to 100 using the Subjective Units of Distress Scale (SUDS), which measures the
level of perceived stress at a specific time.

Data collection started with a resting phase of four minutes (REST), during which a gray
fixation cross was displayed in the center of the screen on a black background. To provide
a baseline for physiological measurements, participants were asked to remain still, with
eyes open, and were invited to relax. To study the influence of the previous task on the
subsequent one, task order was fixed for all participants, with the sequence depicted in
Fig. 1(a): after the REST phase, the Montreal Imaging Stress Task (MIST)32 was
implemented to induce higher stress levels in half of the participants (STRESS group) and
to be less stressful in the other half (Control group); then, the Mixed Gambling Task (MGT)
was presented after three minutes of break and was followed by a spatial attention
exercise, specifically the visual search (VS) task. All tasks were preceded by written
instructions, MIST and VS also by a short training phase. Saliva samples and SUDS
responses were re-collected after MIST and MGT. The protocol was implemented and
managed using MATLAB and Psychtoolbox-3 (available at https://www.psychtoolbox.net/).
Participants were randomly assigned to the CONTROL group (31 participants, 18
females), which underwent the less-challenging MIST task, and to the experimental one
(STRESS, 31 participants, 14 females) that performed the demanding MIST task with
additional stressing factors as described in 2.2.1.
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2.2.1. Montreal Imaging Stress Task (MIST)
The MIST task is a digital protocol proposed by Dedovic3? designed to induce

psychological stress in participants by asking them to solve arithmetic operations. In this
study, two MIST protocols were implemented: an experimental one, assigned to the
STRESS group, aimed at inducing sustained mental stress through demanding cognitive
efforts; an easier one, administered to the CONTROL group. Specifically, in the
experimental version, following the description and instructions provided by the original
proposing study and subsequent implementations33, participants were asked to quickly
solve several arithmetic operations, with 5 levels of difficulty (randomly mixed), under
time pressure, and social pressure due to the presence of the experimenter next to the
participant. Moreover, a bar showing their progress (i.e., increasing with correct answers
and decreasing with each error) was constantly shown on the screen. Mistakes were
underlined by unpleasant sounds. The easier version of the MIST, instead, proposed the
same arithmetic operations, with mixed difficulty levels, but without any time constraint
displayed on the screen or social pressure, and correct answers were accompanied by a
pleasant sound. For both conditions, a short training phase was performed to calibrate
the time given for answering MIST arithmetic operations and allow participants to
practice before the actual task. Based on guidance from the literature 32.33, during the
training phase, which was designed to last two minutes, participants performed 21 trials
on average (SD=1.8), depending on their reaction times, sufficient to estimate their mean
reaction times and to calibrate initial difficulty. The time constraint was set to minimize
unnecessary task exposure prior to stress induction. The experimental MIST took six
minutes during which the initial calibration parameters were adaptively updated to match
participants’ performance and maintain the desired level of difficulty.

2.2.2. Mixed Gambling Task (MGT)

During the MGT, task participants were asked to accept or refuse bet proposals, each
involving a specific number of virtual points as potential gain or loss3435. Participants
were informed that, at the end of the protocol, among the accepted bets, five would be
randomly selected and the outcome would have been determined by chance in order to
calculate the final ‘bonus’ to be added to the agreed payment. MGT phase lasted between
5 and 7 minutes, and the number of bet proposals to be evaluated was fixed.

2.2.3. Visual Search (VS)

The VS task was performed after a short practice phase. The stimuli consisted of one L
and one T (1.8° x 1.8°), presented simultaneously and spaced 180° apart on an imaginary
circle with a 6° radius, centered on the screen, and participants were instructed to detect
the T (target). The two letters appeared randomly tilted to the left or to the right, and
participants had to indicate the direction of the tilted T as quickly as possible using the
left/right arrow keys on the keyboard. A fixation cross, inscribed in a circle with 0.5°
diameter, was displayed at the center of the screen. A too slow or incorrect target
identification was accompanied by an unpleasant sound for both the groups. For each
stimulus, reaction time and accuracy were recorded. A fixed number of trials was
presented to participants, and the VS task lasted between 4 and 6 minutes.

5
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2.3. Data recordings

Physiological data were collected at the B3 Lab, Politecnico di Milano, Italy. EDA, ECG,
PPG, and respiratory signals were simultaneously recorded using the ProComp Infiniti
(Thought Technology, Canada), an 8-channel polygraph. ECG and respiratory signals were
sampled at 2048 Hz, while PPG and EDA at 256 Hz. The EDA sensors were attached to
the palm side of the annular and middle finger on the left hand for all participants, since
the PPG sensor was attached to the index finger. Participants were asked to use their
right hand to solve the tasks using the keyboard. ECG was acquired using three disposable
electrodes applied in lead-I configuration. The respiratory signal was measured using a
chest strap equipped with a resistive sensor positioned at the level of the sternum. To
minimize artifacts and improve signal quality, participants were asked to remain still
throughout the experiment. In this study, the PPG signal was not analyzed, since we
focused on the ECG signal to extract HR-related parameters. Salivary samples were
collected using Salivette Cortisol® (Sarsted) and analyzed by an external laboratory.

2.4. Physiological Data Analysis
2.4.1. Signal pre-processing

The Pan-Tompkins algorithm3% was used to identify R peaks in the ECG to obtain the RR
series (tachogram), and results were manually checked to correct misdetections and
remove ectopic beats through an in-house MATLAB graphical interface. The identified
peaks were used to compute the RR series, i.e., the series of the time distances between
consecutive heartbeats!2. The respiratory signal was low-pass filtered at 10 Hz with a
zero-phase FIR filter using a Kaiser window with 7426 coefficients. A series synchronous
with the RR signal, called respirogram, was extracted by sampling the amplitude of
preprocessed respiratory signal in correspondence with each identified R peak!2.37-40,

The low-pass filtered respiratory signal was also further processed to derive the series of
respiratory period durations, that is the series of the time distances between consecutive
breathing actions. Specifically, following and adapting the processing pipeline proposed
in the literature*!, it was downsampled to 64 Hz and further filtered between 0.05 Hz and
1 Hz using a Butterworth filter (order 4, zero-phase implementation) before detecting the
positive peaks of the waveforms using the MATLAB function ‘findpeaks’. A minimum
distance of 1.5 seconds, corresponding to a maximum respiratory rate of 40 respirations
per minute, and a prominence of 0.2 were imposed. Results of the procedure were visually
checked to ensure the correct detection of breathing actions.

The EDA signal was low-pass filtered at 2.5 Hz using a zero-phase FIR filter (Kaiser
window, 586 coefficients), downsampled to 16 Hz, and normalized by applying the z-score
transformation. The open-source Ledalab toolbox22 was used to decompose the signal into
its tonic and phasic components. Specifically, the first reflects the slow-changing baseline
level of skin conductance over time (i.e., Skin Conductance level - SCL), while the second
contains rapid changes associated with transient activations, called Skin Conductance
Responses (SCR), represented by the phasic component.

Data from two participants belonging to the control group were removed due to failed

recording in one case and low-quality signal in the other, resulting in 29 subjects in the
6
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CONTROL group and 31 in the STRESS group. An example of the analyzed signals is
displayed in Fig. 1 (b) for one participant.
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Fig. 1(a) Experimental protocol. (b) Example of the time series of interest from a participant. The
first row shows the corrected tachogram (RR series), the second row displays the respirogram
derived sampling the respiration signal using the RR series. The third row displays the respiratory
period duration series derived from the respiration signal. Finally, the EDA signal in gray, its tonic
component in green and the phasic component in red are displayed in the last row. Gray areas
represent the time periods in which the cortisol and SUDS were collected, thus artifacts can be
present in these phases, which were discharged. Blue lines indicate the start of each phase, green
lines their end.

2.4.2.Linear time-domain and frequency-domain HRV parameters

Time-domain and frequency-domain short-term (<5 minutes) HRV parameters!4 were
extracted from the HRV signals (RR series and related respirogram), considering the
central four minutes of recording for each protocol phase. In the time domain, the mean
RR (meanRR [ms]), RR standard deviation (stdRR [ms]), and root mean square of
successive R peak differences (RMSSD [ms]) were computed.
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Concerning the frequency domain, the power spectral density (PSD) was estimated using
the Autoregressive (AR) modelling approach#243, both in a univariate and in a bivariate
fashion. Specifically, linear trend was removed from individuals’ HRV signals to reduce
spectral contribution of the lowest frequencies and highlight faster oscillations. For each
segment, first an AR model of order p based on the expression in Eq (1)

y(n) = - 37 ajy(n - i)+ u(n) (Eq.1)

where Yy(n) is the HRV signal at sample n, y(n - i) indicates previous samples, a;are the
coefficients of the AR model, and u(n) is the white noise having zero-mean and variance
02. The optimal order p of the AR model was automatically selected between 7 and 15
using the Akaike information criterion (AIC)!220 for each processed segment and the
model was estimated using the Yule-Walker formulation. Once the AR(p) model is
estimated, the transfer function of the model is given by Eq.2

H(z) = (1+3P,azl)  A@ (Eq.2)
From which the representation in the frequency domain, the PSD(f), can be estimated as
in Eq.3
2

PSD(f) = —19

AAEZ Y| o2 (Eq.3)
with T being the sampling period, corresponding to the average duration of the RR
intervals in the considered segment20-39,

From the obtained PSD, powers in LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) bands were
estimated as the sum of the individual contributions of the poles that fall in the frequency
range of each band. Moreover, the LF/HF ratio and the normalized LF and HF (normalized
units, n.u.) powers were also extracted as relative values to the total power minus the
very low frequency component!2.

Secondly, the bivariate-AR analysis was also applied to the same RR signal segments and
the corresponding segments of the detrended respirogram. This approach is commonly
used to highlight linear frequency relationships between the two considered signals and
offers the possibility to disentangle the contribution of the respiratory activity in the total
heart rate variability 204445, Specifically, the HRV signal can be modeled as the sum of
two contributions: the RSA (deterministic), caused by the respiratory activity, which can
be seen as a contribution in the HRV frequency content coherent with respiration, and
the not-coherent component, an intrinsic stochastic activity of the system. The usefulness
of this approach is shown in Fig.2, where the contribution of the respiratory activity is
completely overlapped with the traditional LF component of the HRV and may be
erroneously attributed to non-vagal contributions.

The bivariate-AR was modeled for each signal segment using the formulation3846 in Eq. 4
Y(n) = -3 A@)Y(n - i) + U(n) (4)
8
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In this case, the processed series are in the form of vector Y(n), the matrix A(i) of order p
contains the model coefficients (2*2*p), and U(n) is the vector of the residual terms. The
model was estimated using the Yule-Walker equations solved through the Levinson-
Wiggins-Robinson algorithm, and the model order p was again estimated between 7 and
15 by applying the AIC criterion and verifying the whiteness of the residuals.
Transforming the estimated model into the frequency domain, the PSD matrix can be
obtained. The bivariate model disentangles the contribution of the respiratory activity (y»
(n)= respirogram) from the HRV series (y;(n)= RR series). Using this approach, three
parameters were extracted in each phase, specifically the power of the coherent
component (PCOH), representing the RSA index2°?, and the power of the not-coherent
component (PNCOH).
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Fig. 2 (a) The HRV signal at REST and (b) the associated respirogram signal for a participant.
(c) The auto spectrum of the RR signal is represented with the portion of the spectrum that
is due to the contribution of the respiration activity (black area) overlapped. (d) Auto
spectrum of the respirogam.

2.4.3.Nonlinear HRV parameters

Additionally, the following nonlinear analysis methods were also applied to the HRV signal
in each protocol phase and previously defined time windows: Sample Entropy (SamEn),
Detrended Fluctuation Analysis (DFA), and Poincare plot (or recurrence plot)!447.48 The
nonlinear analysis was conducted using scripts adapted from open-source codes

[https://github.com/jramshur/HRVAS]#® and custom implementations. Entropy analysis

quantifies the irregularity and complexity of the HRV signal and of its fluctuations.

9
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Specifically, the SamEn, which can be robustly estimated from short signals (at least 1
minute of RR signal is required, according tol4), was determined using an embedding
dimension m = 2 and a tolerance threshold r = 0.2 of the standard deviation of the signal.
From the DFA, which characterizes the long-range fluctuation of the HRV signal, two
slope parameters were extracted: a; from 4 to 12 heartbeats and a; from 12 to 64
heartbeats!3. The second slope requires at least 2 minutes of RR intervals to be correctly
estimated!4.

From the Poincare plot, comparing the variation between consecutive RR intervals, we
extracted the standard deviation of the short-term RR series variability (SD1), the
standard deviation of the long-term RR series variability (SD2), and their ratio SD1/SD248,

2.4.4.Respiration parameters
Two parameters in the time domain were extracted from the series of respiratory period
duration estimated as described in section [2.4.1]. Also in this case, a 4-minute segment
centered in each protocol phase was used to compute the mean interval between
consecutive breaths (meanBB) and their standard deviation (stdBB).

2.4.5.EDA parameters

Finally, from the EDA signal, processed through the Ledalab toolbox?2, three phasic
indexes of the EDA were computed considering a 4-minute window at the center of each
protocol phase. Specifically, in each segment, the number of phasic peaks (nSCR), the
mean amplitude of the phasic driver (SCR), and the sum of the phasic response amplitudes
(AmpSum) were extracted. Parameters based on the tonic component were not considered
in this analysis, since an influence of wearing time was observed for most participants
(i.e., a constantly increasing tonic level).

2.5. Statistical analysis

First, to analyze the modulation of physiological indexes due to different intensities of
mental engaging and stress levels, we compared the entire sample’s (N = 60) parameter
distributions among the four conditions (‘REST’, ‘MIST’, ‘MGT’, and ‘VS’) with the
hypothesis that the MIST, MGT, and VS tasks elicit a physiological activation with respect
to REST. The statistical analysis was carried out using the non-parametric Friedman’s
test, since most parameters were not normally distributed, according to the Kolmogorov-
Smirnov test and quartile-quartile plot exploration. A post-hoc analysis was also
conducted to identify specific differences between conditions at a significance level of
0.05, after p-value correction using Bonferroni’s method. The same approach was
repeated within each group (i.e., CONTROL, STRESS), in order to observe possible
different patterns induced by the introduction of time and social pressure in the MIST
task. To further investigate the role of such additional stressors in MIST and highlight
possible differences between the two experimental groups, the variation with respect to
the REST condition was computed (MIST-REST, MGT-REST, and VS-REST) for each
parameter and compared between the two groups using a Mann-Whitney U-test within
each task.
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To strengthen the interpretation of the results, Cohen’s non-parametric effect size (r) was
computed>?. The suggested interpretation (> 0.1 small, > 0.3 medium, > 0.5 large) was
adopted.

To explore the relationship between physiological parameters and perceived stress due
to MIST manipulations, Spearman's correlation (rho) was estimated between changes in
physiological parameters (MIST-REST) and SUDS levels (post-pre MIST) measured
before and during or after MIST. Furthermore, Spearman's correlation was also estimated
between the variation of physiological parameters during MIST and MGT with respect to
REST and the corresponding variation of cortisol levels in terms of percentage variation

to-t12

from baseline computed as 100* 0

Additionally, with the aim of understanding whether a combination of the analyzed
parameters can provide a clear distinction between REST and the three cognitive tasks,
we applied a multivariable analysis considering the parameters showing significant
variations across tasks. Specifically, we first evaluated Pearson’s correlation between
indices to exclude highly correlated pairs of features (|Pearson’s r| > 0.75) and normalized
(z-score) the remaining ones. The features from all participants were used to train three
binary Random Forest (RF) models with 100 estimators and leave-one-subject-out cross-
validation. The procedure was repeated 100 times, using different random seeds. Models
were trained to distinguish the following condition pairs: REST vs MIST, REST vs MGT,
and REST vs VS. We preferred this approach to a multinomial classification because our
goal was not obtaining a model able to separate the specific experimental conditions we
examined but, rather, to determine which set of features better allows to distinguish each
kind of task from the resting state and explain possible reasons behind that. To evaluate
model performance, classification accuracy was computed and averaged across procedure
repetitions.

Since the aim of this analysis was to identify a set of features that, combined, may better
characterize the observed physiological responses, we applied the Shapley (SHAP)4!
approach to analyze feature importance for the three described models, thereby
explaining the contribution of the most relevant features.

3. RESULTS

The assessment of the initial stress level as measured by the PSS, POMS, and SUDS
showed homogeneous starting levels for the two groups. Specifically, the CONTROL
group reported a mean response (between 1 to 5) to PSS of 3.11 (SD=0.35) and a mean
response (between 1 to 5) to POMS of 2.17 (SD=0.44), while the STRESS group reported
a mean PSS of 3.05 (SD=0.33) and a mean POMS of 2.08 (SD=0.46). As for the initial
SUDS levels on a scale from 0 to 100, CONTROL group indicated a mean of 33.6 (SD =
20.5), the STRESS group indicated a mean level of 28.9 (SD = 19.1).

The non-parametric Wilcoxon signed rank test was applied to test whether the Cortisol
concentrations collected at t1 and t2 varied significantly with respect to t0. Cortisol
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concentrations collected at t1 (ALL : median =0.26 pg/dL, IQR =0.20 ng/dL; CONTROLS:
median =0.27 pg/dL, IQR =0.14 pg/dL; STRESS: median =0.25 png/dL, IQR =0.22 ng/dL)
and t2 (ALL : median =0.25 pg/dL, IQR =0.20 pg/dL; CONTROLS: median =0.24 pg/dL,
IQR =0.16 pg/dL; STRESS: median =0.28 pg/dL, IQR =0.28 pg/dL) did not show any
significant variation with respect to baseline values at t0 (ALL : median =0.26 pg/dL, IQR
=0.16 ng/dL; CONTROLS: median =0.26 pg/dL, IQR =0.14 png/dL; STRESS: median =0.26
ng/dL, IQR =0.21 pg/dL), neither considering the whole population (t1-t0: p= 0.349, r
<0.001; t2-t0: p=0.123, r =0.004), neither considering the STRESS (t1-t0: p= 0.202,
r=0.008; t2-t0: p=0.147, r=0.014) and the CONTROL group (t1-t0: p=0.886, r =0.014; t2-
t0: p=0.523, r=0.006) separately.

3.1. Heart Rate Variability parameters

Table I reports median, 25™, and 75 percentile values of all the HRV indexes, for the
entire sample and the two groups separately. While a general decreasing trend from REST
to all the other conditions is observable for the three time domain parameters, Friedman'’s
test identified significant differences only for meanRR and stdRR when the complete
sample was considered (meanRR p<0.001; stdRR p=0.004; RMSSD p=0.121). Concerning
the mean RR interval duration, post-hoc analysis with Bonferroni’s correction showed a
significantly decreased value from REST to MIST (p=0.0091, r=0.468) and to MGT
(p=0.0111, r=0.473), and an increase from MIST to VS (p=0.0431, r=0.435). A
significant decrease with moderate effect size was also observed for the stdRR from REST
to all the other protocol phases (Rest to MIST, p<0.001!, r=0.498; Rest to MGT,
p=0.0231, r=0.455, and Rest to VS, p=0.0231, r=0.415).

Interestingly, repeating the analysis for the two groups separately revealed different
modulations shown in Fig.3 (a) and (b). Specifically, in the CONTROL group, Friedman’s
test detected statistically significant differences for the meanRR (p=0.033) and stdRR
(p=0.008) parameters, not for RMSSD (p =0.121). In the STRESS group, only meanRR
showed significant variations (p=0.002). Pairwise corrected comparisons for the
CONTROL group identified a significant increase in meanRR from MGT to VS phases (p
= 0.0367, r=0.620) and significant decreases in stdRR from REST to both MIST
(p=0.0071, r=0.576) and MGT (p=0.0491, r=0.560). In the STRESS group, instead, the
mean RR interval significantly decreased from REST to MIST (p=0.002 !, r=0.672) and to
MGT (p=0.019!, r=0.616) phases. This different behavior is also confirmed by the
significant difference (with small effect size) between the two groups in terms of AmeanRR
observed in the MIST task (MIST-REST, p=0.03, r=0.273), as depicted in Fig.3 (c).

The frequency-domain analysis based on the univariate AR model to estimate LF and HF
powers and the corresponding normalized values showed a decreasing, yet not significant,
trend for LF, HF and LF/HF, mostly due to a decrease in total power of the HRV signal
during the three tasks with respect to REST, while we observed unchanged normalized
powers.

Table I:Linear HRV parameters in time and frequency domain (median and
25th-75th percentiles values). Symbols identify statistical differences: *
different from REST; # different from MIST; § different from MGT.
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Considering the bivariate analysis for the whole sample, PNCOH and PCOH showed a
decreasing trend going from REST to task conditions, while the ratio PNCOH/PCOH
increased. These trends were found significant according to the Friedman’s test (PNCOH
p<0.001; PCOH p<0.001; PNCOH/PCOH p<0.001) and the post-hoc Bonferroni-corrected
analysis was performed. Specifically, significant decreases in PNCOH were observed
between REST and all the tasks with mainly moderate effect size (Rest to MIST,
p<0.0011, r=0.540; Rest to MGT, p=0.0181, r=0.359, Rest to VS, p<0.001 1, r=0.453),
while no differences were found among the three tasks. Similar results were obtained for
PCOH (RSA index) with larger effect size (Rest to MIST, p<0.001 1, r=0.590; Rest to MGT,
p<0.0011!, r=0.682, Rest to VS, p<0.001!, r=0.668), while the ratio significantly
increased in the same tasks reporting from moderate to large effect sizes (Rest to MIST,
p=0.035T1, r=0.392; Rest to MGT, p<0.001 T, r=0.536; Rest to VS, p<0.001 1T, r=0.562).
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Fig. 3. HRV parameters showing significant modulations (Friedman’s Test p<0.05).
Panels (a) and (b) show the median, 25th and 75th percentiles values of time domain
parameters, respectively the mean RR and the std RR, for the two groups in each
protocol phase. Panel (c) represents the variation of the mean RR during MIST with
respect to Rest for STRESS in red and CONTROLS in blue. * Indicates a significant
difference p = 0.03). Panels (d), (e) and (f) display the median, 25th and 75th
percentiles values of frequency domain parameters estimated using the bivariate
approach, respectively the power not coherent with respiration, the RSA estimation
and their ratio.

These results are confirmed at the single-group level. For the CONTROL group, the
Friedman'’s test highlighted the presence of significant variations among tasks in PNCOH
(p=0.012), PCOH (p<0.001), and PNCOH/PCOH (p=0.043). In particular, only the
PNCOH decrease during VS with moderate effect size survived to Bonferroni’s correction
(Restto VS, p =0.01371, r=0.488), the PCOH significantly decreased in all the tasks with

14



466
467
468
469
470
471
472
473
474
475
476
477
478
479

480
481
482
483
484
485
486
487
488
489
490
491

492
493
494

respect to REST with large effect size (Rest to MIST, p=0.00331, r=0.612; Rest to MGT,
p=0.00071, r=0.733, Rest to VS, p=0.00011, r=0.636), while their ratio significantly
increased only in VS with respect to REST (p=0.0264 1, r=0.584). The same differences
were more marked in the STRESS group, particularly for the PINCOH/PCOH parameter
(Friedman'’s test: PNCOH p=0.010; PCOH p<0.001; PNCOH/PCOH p<0.001). More in
detail, after p-values corrections, significant decreases in PNCOH were observed during
MIST (p=0.0141, r=0.524) and VS with respect to REST (p=0.0351, r=0.402) and for
PCOH, again, from REST to MIST (p=0.002 1!, r=0.591), MGT (p=0.0021, r=0.679), and
VS (p=0.0021, r=0.707), while no differences were found among cognitive tasks. The
STRESS group also showed an increase in PNCOH/PCOH for all the tasks with respect to
REST (Rest to MIST, p = 0.0471, r=0.461; Rest to MGT, p<0.001 T, r=0.598; Rest to VS,
p =0.0071, r=0.535). The distribution of these parameters are shown in Fig.3 (d), (e)
and (f).

In the frequency domain, there were no significant differences among the groups.

Table II reports median, 25, and 75t percentile values for the nonlinear HRV indexes
for the whole population and the two groups separately. SamEn was found to be
significantly affected by the protocol phase for the entire sample and for each group (All:
p<0.0001, CONTROL: p<0.001, STRESS: p<0.001). On the entire sample, after p-values
correction, we found a significant increase in SamEn during all tasks with respect to REST
conditions with an effect size from moderate to large (Rest to MIST, p<0.001 1, r=0.539;
Rest to MGT, p=0.0221, r=0.359; Rest to VS, p<0.0011, r=0.710) and during VS
compared to MGT (p=0.028 1). Analyzing the groups separately, we notice a significant
increase in SamkEn in both cases, from REST to MIST and from REST to VS (CONTROL.:
Rest to MIST, p=0.013T, r=0.572, Rest to VS, p<0.0011, r=0.661; STRESS: Rest to
MIST, p=0.0091, r=0.514; REST to VS, p<0.0011, r=0.750). No differences were
observed between the two groups.

Table II Nonlinear HRV parameters in time and frequency domain (median and
25th-75th percentile values). Symbols identify statistical differences: * different
from REST; # different from MIST; § different from MGT.

ALL CONTROL STRESS
REST MIST MGT VS REST MIST MGT VS REST MIST MGT VS

SD1 med | 0.017 0.018 0.017 0.020 | 0.021 0.019 0.017 0.022 | 0.016 0.015 0.016 0.018
25!11

0.013- 0.010- 0.011- 0.012-| 0.014- 0.012- 0.011- 0.014- | 0.011- 0.009- 0.010- 0.011-
0.029 0.029 0.028 0.027 | 0.031 0.028 0.029 0.030 | 0.023 0.029 0.026 0.024

75th
SD2 med | 0.066 0-036 0:055 0.057 | ,;5 0.058 0.053

25[11

0.056 0.067 | 0.064 0.054 0.056

0.051- 0.043- 0.044- 0.045- | 0.054- 0.044- 0.044- 0.046- | 0.046- 0.040- 0.045- 0.042-

7;}7,] 0.086 0.071 0.072 0.077 | 0.091 0.072 0.076 0.082 | 0.083 0.068 0.071 0.071

SD1
/SD  med| 0280 9311 9201 03391 0592 0336 0202 0398 0253 0204 0289 0306
2
25[11
>" 1 0.239- 0.253- 0.236- 0.265- | 0.249- 0.274- 0.246- 0.266- | 0.229- 0.220- 0.225- 0.262-
oaw | 0341 0396  0.403 0.423 | 0.351 0404 0366 0432 | 0307 0391 0430 0.362
Sem  med | 1239 1409 1328 130414086 1907 1402 13%2 | 1208 MM 1226 197
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2'? 1.030- 1.239- 1.116- 1.257-| 1.142- 1.316- 1.165- 1.303-| 1.013- 1.045- 0.998- 1.144-
75t 1.398 1.649 1.528 1.694 | 1.525 1.658 1.525 1.781 | 1.347 1.646 1534 1.569

a med | 1.392 1.295 1.340 1.222 | 1.385 1.276 1.330 1.190 | 1.457 1.407 1.351 1.320

h
2? 1.186- 1.112- 1.091- 1.079-| 1.133- 1.156- 1.091- 1.074-| 1.239- 1.094- 1.072- 1.092-
75th 1.505 1.495 1.526 1.442 | 1.500 1.481 1.522 1.350 | 1.518 1.538 1.528 1.443

ar med | 0.808 0.770 0.837 0.802 | 0.787 0.747 0.801 0.800 | 0.831 0.776 0.870 0.828
25[11

0.686- 0.634- 0.734- 0.645- | 0.661- 0.638- 0.737- 0.677- | 0.722- 0.619- 0.714- 0.637-

7;)_”1 0.929 0.908 0936 0.983 | 0.892 0.899 0.949 0.955 | 1.011 0.908 0.930 0.988

The extracted DFA indices did not show any significant differences. As for the recurrence
plot analysis, the SD1 was not affected by the protocol phases for both the whole sample
and the group-wise analysis. SD2 showed a general decrease from REST to all the other
protocol phases, while the SD1/SD2 ratio increased. Specifically, considering the
complete sample (Friedman’s test p<0.001), the SD2 decrease was significant for each
protocol phase with respect to REST (Rest to MIST, p<0.0011, r=0.539; Rest to MGT,
p=0.041, r=0.460; Rest to VS, p=0.0071, r=0.451), while in the CONTROL group, after
correction for multiple comparisons, the difference was significant only between REST
and MIST (p=0.0131, r=0.604) as for the STRESS group (p=0.026, r=0.465). The ratio
SD1/SD2, instead, increased during the tasks with respect to REST (Friedman test: ALL:
p<0.001, CONTROL: p=0.035, STRESS: p=0.006). Specifically, for the entire sample, the
increase was significant for both MIST (p=0.0111, r=0.457) and VS with respect to REST
(p<0.001 1, r=0.537), whereas separating the two groups, only VS showed a higher value
than the REST condition for both groups (CONTROL: p=0.02, r=0.500, STRESS: p=0.003,
r=0.598).

3.2. Respiration parameters

From the thoracic belt signal, we estimated the mean interval between consecutive
breaths (meanBB) and their variability (stdBB) for each protocol phase, reported in Table
III. Considering the overall sample, Friedman’s test identified statistically significant
differences due to task effect for both the indexes (meanBB p<0.001, stdBB p<0.001).
Specifically, both the parameters significantly decreased from REST to MIST, MGT, and
VS (meanBB: Rest to MIST, p<0.0011, r=0.703; Rest to MGT, p<0.001 !, r=0.688, Rest
to VS, p<0.0011, r=0.750; stdBB: Rest to MIST, p=0.0011, r=0.540; Rest to MGT,
p=0.0021, r=0.538, Rest to VS, p<0.001 |, r=0.643), while no differences were observed
among the three tasks after Bonferroni’s correction.

Similar patterns were found in the two groups, where Friedman’s test reported significant
variations (CONTROL: meanBB p<0.001, stdBB p<0.001; STRESS: meanBB p<0.001,
stdBB p<0.001), which were confirmed by the post-hoc analysis with correction for
multiple comparisons. The meanBB was significantly decreased during MIST, MGT, and
VS with respect to REST for both the CONTROL (Rest to MIST, p<0.001 !, r=0.713; Rest
to MGT, p=0.0031!, r=0.761; Rest to VS, p<0.0011, r=0.833) and the STRESS group
(Rest to MIST, p<0.001!, r=0.700; Rest to MGT, p=0.0351, r=0.613; Rest to VS,
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p<0.0011, r=0.676). As for the variability of the respiratory period, a significant decrease
was observed from REST to MIST (p=0.0361, r=0.516) and to VS (p<0.001!, r=0.677)
in the CONTROL group, while the decrease in the STRESS group was significant from
REST to MGT (p=0.01!, r=0.535) and to VS (p<0.001!, r=0.623) only. For the
respiratory parameters, no statistical differences were observed between experimental
groups.

3.3. EDA parameters

The activation parameters of interest extracted from the phasic component of the EDA
signal are reported in Table III as median values and 25-75% percentiles and
represented in Fig.4. Concerning the whole sample, Friedman'’s test revealed a significant
effect of the protocol phases for all three parameters (nSCR p<0.001; SCR p<0.001 and
AmpSum p<0.001). Post-hoc Bonferroni-corrected analysis showed a significant
difference between each of the three tasks and the REST condition. Specifically, a
significant increase in nSCR was observed during MIST (p<0.001 1, r=0.566), MGT (p =
0.0421, r=0.393), and VS (p<0.001 T, r=0.589). As for SCR, significant increases were
observed during all the tasks with respect to REST with mostly large effect size (REST to
MIST, p<0.0011, r=0.802; REST to MGT, p=0.0021, r=0.527; and REST to VS,
p<0.001T, r=0.693) and in VS with respect to MGT (MGT to VS, p=0.0011, r=0.562),
suggesting decreased activation during MGT, even if non-significant when compared to
MIST. Similar results were obtained analyzing the AmpSum index (REST to MIST,
p<0.0011, r=0.802; REST to VS, p<0.001 1, r=0.698; REST to MGT, p=0.005T, r=0.540;
MGT to VS, p<0.001 T, r=0.550).
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Fig.4: Median, 25th and 75th percentiles values for the EDA derived parameters in
each protocol phase for the STRESS and the CONTROL group. The nSCR is reported
in number per minute (npm), the SCR and the AmpSum are represented in
normalized units (N.U.).

Table III Respiration variability metrics and EDA derived phasic parameters (median
and 25th-75th percentiles values). Symbols identify statistical differences: * different
from REST; # different from MIST; § different from MGT

ALL CONTROL STRESS

MG
T

Respiration REST MIST VS REST MIST MGT VS REST MIST MGT VS
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Regarding the single-group level analysis, the CONTROL group showed significant
variations in all the analyzed parameters (nSCR p=0.001; SCR p<0.001 and AmpSum
p<0.001). Interestingly, the number of SCR peaks increased significantly only during the
VS task compared to the REST condition (p<0.001 T, r=0.655). Anyway, the mean SCR
and AmpSum significantly increased from REST to MIST (SCR p=0.0011, r=0.833;
AmpSum p=0.002T1, r=0.829), from REST to VS (both with p<0.001, r=0.829 and
r=0.813), but also from MIST to VS (SCR p=0.0361, r=0.432, AmpSum p=0.049T,
r=0.431) and from MGT to VS (both with p<0.001, r=0.737 and r=0.729). Of note, the
SCR also increases in MGT with respect to the REST phase (p=0.0361, r=0.544).

The STRESS group showed a similar pattern, but with a more pronounced response to the
MIST task, as expected. Friedman’s test again detected significant trends due to the
different protocol phases (nSCR p=0.017; SCR p<0.001 and AmpSum p<0.001). A
significant increase in terms of nSCR was observed only from REST to MIST (nSCR
p=0.0011, r=0.690) and to VS (p=0.0251, r=0.495). Similarly, significantly increased
SCR and AmpSum were observed from REST to MIST (p<0.001 1T, r=0.771 both indices)
and from REST to VS (p<0.001 T, r=0.532 and r=0.556 respectively). No differences were
reported among the three cognitive tasks.

Comparing parameter changes with respect to the REST condition between groups, a
significant difference with moderate effect size was found for both SCR (p=0.006,
r=0.353) and AmpSum (p=0.008, r=0.340) indexes during the VS tasks. Specifically, a
more pronounced increase in activation was observed in the CONTROL group.

3.4. Correlation analysis

Correlations were investigated among physiological parameters that were significantly
modulated by the protocol phases and the perceived stress level (SUDS scale). Changes
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in SUDS, from before to after the MIST task, were found negatively correlated with the
modulation of the mean RR interval duration, both across the whole sample ( p=0.005,
Spearman’s rho=-0.355) and in the STRESS group (p=0.009, Spearman’s rho=-0.464),
but not in the control group. This suggests an increase in heart rate (i.e., decrease in mean
RR interval) associated with an increased perceived stress. All the other parameters were
not significantly correlated with SUDS changes.

As for the cortisol level, one subject was removed because it resulted in an outlier (larger
than mean +3*std). However, no significant correlation was found between any of the
physiological parameters and cortisol level variation in t; and t, with respect to to.

3.5. Multivariable analysis

Fig. 5 summarizes the main results for the multivariable analysis. Nine features were
considered: nSCR, AmpSum, MeanRR, MeanBB, RSA index, PNCOH/PCOH, SamEn, and
SD1/SD2. Fig.5.A shows the classification cross-validation accuracy of each binary model.
In line with the univariate results, both the MIST and the VS task obtained moderate
separation accuracy (MIST: 0.75%0.014, VS: 0.78+0.015), while the MGT was more
difficult to separate from the REST condition, with an average accuracy of 0.68+0.018.
Since moderate differences emerged in the behaviors observed in the two groups, these
results were obtained by training the models on the whole sample to maximize the number
of available observations.

Fig.5.B shows the results of Shapley analysis, pointing out the averaged importance of
individual features (absolute Shapley values were considered for comparison) in each
model. It is interesting to note that, depending on the task to be distinguished from REST,
the contribution of each physiological parameter may change. Specifically, the EDA phasic
parameter AmpSum highly contributes to distinguishing each task from REST.

19



608

609
610
611
612
613
614

615
616
617
618
619
620

621

622
623
624
625
626
627
628
629
630
631

A) Accuracy B) Feature importance

g RESTvs MIST @ RESTvs MGT @ RESTvs VS
REST vs VS + 5 i
T B
o 041 § ?
o
REST vs MGT -|- E o o § o
o 005 ¥ o 0 oF o
REST vs MIST + 3 % Q.
g 0 L L 1 1 1 1 ] L 1
T
. . . . @ & ot P O & o
™
0 0.2 0.4 06 08 e o \,\\?G P @ 0'\“6 ° P ?\\c’
accuracy la © W )
o
C) Three-dimensional space representation
* REST * REST * REST
b MIST « MGT . VS
4 6
2 g 4
m
3 0 2 2 Q
o 2 § é
E 0
.-42 2
2

Fig. 5. Multivariable analysis results. A) Mean and standard deviation of accuracy values
for the three binary models. B) Mean and standard deviation of feature importance
obtained from SHAP analysis, represented in order of descending importance considering
the mean of the three tasks. C) Scatter plots showing data distribution for each pair of
conditions (REST vs MIST, REST vs MGT, and REST vs VS) in the three-dimensional space
represented by the three most important features for each model.

From the HRV domain, the RSA index contributed to both MIST and MGT classification
against REST, while SamEn was crucial for both MIST and VS. In the case of MGT, the
PNCOH/PCOH was indicated as the most important feature. Finally, the mean distance
between consecutive breaths (meanBB) contributed to VS classification. Fig.5.C displays
three-dimensional scatterplots built using the three most important features for each
mental task as indicated by the SHAP evaluation.

4, Discussion

In the current study, we investigated the ANS responses in a sample of healthy adults
during an acute mental stress and cognitive stimulation protocol, analyzing a set of
physiological parameters comprising cardiovascular, electrodermal, and respiratory
activity. While the effect of acute mental stress and cognitive tasks has been largely
investigated in recent literature28.11.13.14 results often appear conflicting depending on
different factors, such as the study population, experimental protocol, and parameter
estimation approach. Moreover, most of the previous literature has focused on HRV
parameters, sometimes including EDA analysis, while respiratory activity is often
overlooked. A second aim of the study was to understand if a different level of initially
induced acute stress could affect the ANS responses throughout the experimental
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protocol. Therefore, the sample was randomly divided into two groups, one undergoing
the original MIST and the other performing the same task in a less challenging modality.
We also explored possible relationships between physiological parameters and
psychometric as well as biochemical results. Finally, to identify a possible combination of
parameters that could better characterize the response to each protocol condition, an RF-
based multivariable analysis was also performed.

Our results confirmed that most of the physiological parameters included in the analysis
were modulated by cognitive tasks, and depending on their characteristics and origins,
their modulations possibly reflected different ANS response components. Regarding the
HRYV, in the whole group a decrease of the mean and the standard deviation of the RR
intervals supported the hypothesis of a shift towards a sympathetic prevalence induced
by mental stress, as previously reported8?. It is worth noting that, considering the two
groups separately, the meanRR was found significantly reduced during MIST only for the
STRESS group, while in the CONTROL group, even if a decrease was observed, this was
not significant, probably because of a larger variability. On the contrary, the stdRR
significantly decreased only for the CONTROL group, but the decrease was not significant
in the experimental group. Nevertheless, the two parameters, even if the significance
resulted ‘group specific’, showed expected modulations, in line with the literature and the
study hypothesis.

Interestingly, the RMSSD parameter, which has been described as one of the most
sensitive indicators of acute stress®, did not show any significant modulation in our
experiment. Similarly, frequency-domain HRV features were not considerably affected by
the proposed protocol when estimated without considering the contribution of respiration,
as also reported in the literature?947, When disentangling the contribution of respiratory
activity from the HRV signal, the task effect was significant, with a decreased RSA index
suggesting withdrawal or deactivation of the parasympathetic (vagal) nervous system
(PNS), in preparation for a demanding situation2?. Nevertheless, this result should be
interpreted also considering the observed changes in the respiration period (meanBB),
which also modulate HRV parameters. In fact, the RSA index, when directly derived from
the HF of the HRV spectrum, may be misinterpreted as a direct measure of vagal tone>!.
In our case, the use of the bivariate AR analysis mitigates this caveat by identifying the
contribution of the respiration to the HRV spectrum at frequencies outside the expected
HF range?0. These results underscore the importance of integrating respiratory activity
in frequency-domain HRV analysis, since breathing modulates HR and HRV1!9. Besides the
frequency domain approaches, to learn more about RSA possible interpretation, new
advanced tools have been developed able to estimate RSA and its dynamic52.

Linear HRV parameters were found sensitive to mental activities compared to the REST
condition, but their changes were similar across the three tasks (MIST, MGT, and VS).
Concerning the analysis of the HRYV, it is worth noting that we used a 4-minute segment
of RR time series to estimate both linear and nonlinear parameters. Although the
reliability of estimates using at least 3 minutes of signals has been demonstrated in the
literaturel4, we acknowledge that results related to LF power should be carefully
considered since only a few cycles of the lowest LF frequency were captured.
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Nonlinear HRV parameters, in particular SD2, SD1/SD2, and sample entropy, were also
found sensitive to task manipulation. However, the interpretation of these parameters is
not straightforward, and contrasting results have been reported in the literature. For
example, while Pereiral3 and Castaldo!# found a significant SD1 increase, other works
reported decreases in short-term variability related to mental stress*’, which resembles
our results more closely, although such a decrease was not significant in our case
(Friedman’s p=0.121). As for the SD2 parameter, the literature and our results
consistently suggest a significant decrease in long-range variability under stress and
mental load?? .

The SD1/SD2 ratio, which significantly increased primarily during VS tasks in our case,
has rarely been investigated in relation to mental stress. However, an increase in its value
has been associated with the activation of the sympathetic nervous system, which is
consistent with our hypothesis and results#®53, As for the SamEn index, in line with the
results reported by Brugnera® and Hao?’, a significant increase in HRV complexity and
irregularity under stress was identified. Although this index is widely used in literature,
its interpretation in relation to ANS activity is still debated. To shed light on this, Lewis
and Short>* measured the SamEn of the RR series during different levels of physical
exercise. They reported an increase in signal complexity during exercise and a reduction
during recovery. The authors concluded that changes in SamEn could be related to
alterations in ANS control. In agreement with this interpretation, we speculate that an
increase in SamEn, and therefore in signal irregularity, may also reflect a change in ANS
control in the present study. Interestingly, the nonlinear parameters were differently
modulated by the three tasks; specifically, a stronger change was observed during the
MIST and VS phases compared to the REST, whereas the MGT was characterized by a
lower variation. This pattern became particularly evident when analyzing the STRESS and
CONTROL groups separately.

Concerning the analysis of EDA, we focused on its phasic component, as less affected by
possible environmental factors and sensor wearing time. The three phasic indices were
highly coherent and very sensitive to the different tasks; specifically, a strong sympathetic
activation was evident during MIST and VS, as suggested by an increase in all the EDA
parameters. Conversely, a return to almost initial levels was observed during MGT. In
general, these results confirmed the close relationship between EDA and cognitive
load?23.55,

Additionally, a multivariable, RF-based analysis, followed by a feature importance
evaluation, was performed on the entire sample to explore which combination of the
considered parameters best characterizes the physiological response to each task relative
to the resting condition. While the separation accuracy was only moderate in every case,
ranging from an average of 0.68 for MGT to 0.78 for VS, some features clearly emerged
as the most useful for classification. Specifically, AmpSum, RSA index, and SamEn were
fundamental for separating the MIST condition from REST; AmpSum, PNCOH/PCOH, and
RSA index were the most important features in the case of MGT; finally, AmpSum, SamEn,
and MeanBB mostly contributed to the VS classification. Overall, the results of our
multivariable analysis corroborate the physiological characterization of the responses to
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the proposed tasks provided by the univariable non-parametric statistics discussed above.
In particular, they emphasize the importance of specific parameter combinations that
should be prioritized when evaluating acute stress or mental activity, which may vary
depending on the specific task of interest. Moreover, they suggest that a multimodal
approach can provide a more complete view of the physiological mechanisms underlying
stress and attention, given that most of those combinations were found to include features
extracted from different signals.

When the two groups were analyzed separately, similar modulations of the ANS
parameters were found. In fact, only a few parameters exhibited significant differences
between groups, specifically the mean RR interval and the EDA phasic parameters. Even
so, we were able to confirm the different effects of the two MIST implementations based
on the stronger mean RR decrease (heart rate increase) for the STRESS group during
MIST and the stronger relationship between this parameter and the variation in the
perceived stress (SUDS score), which was not significant for the CONTROL group.
Interestingly, also the phasic EDA activity was differently modulated in the two groups.
In fact, a stronger, but non-significant activation during MIST was observed in the
STRESS group, while, surprisingly, the CONTROL group showed a significantly higher
activation during the attention test (VS task), while the experimental group was less
activated. This result may suggest a long-lasting effect of the acute mental stress induced
by the MIST on the STRESS group, who seemed to perceive the VS task as ‘less
demanding’ due to the initial stress manipulation, while for controls, VS could be
considered the first truly demanding task. In addition, in line with previous studies
suggesting that acute stress exposure improves general alertness and cognitive control>S,
our results might indicate that the increased alertness in the STRESS group also reflects
a lower need for additional autonomic activation during the attention task.

The current study has some limitations that need to be disclosed and properly discussed.
First, since the participants receiving stress manipulation were led to believe they would
be rewarded based on their performance, we could not implement a crossover protocol
and randomize the order of the proposed tasks. Thus, it could be questioned whether our
results were influenced by the time the sensors were worn. However, aside from the tonic
level of the EDA, which was excluded from the analysed parameters for this very reason,
the other parameters exhibited modulation patterns consistent with the manipulation of
the ANS. In particular, parameters principally reflecting sympathetic activation (nSCR,
SCR, and AmpSum) were differently modulated by the three tasks, indicating a higher
activation for the MIST and VS, while a balanced response was observed for most of the
HRV parameters, suggesting an interplay between sympathetic and parasympathetic
activation. Still, we cannot entirely exclude the presence of a task sequence effect in our
results, which may have influenced the effect size of the differences observed between
protocol conditions.

Second, our experimental sample was highly heterogeneous in terms of professional
background. Thus, the arithmetic exercises proposed in the MIST task were simpler for
participants who were accustomed to working with numbers and more challenging for
others, increasing the inter-subject variability in perceived stress, even within groups.
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This variability may have reduced the possibility of identifying significant differences
between the experimental groups. Indeed, some controls verbally reported a highly
perceived frustration after the ‘control’ MIST, while some STRESS participants did not
respond as expected, either in terms of ANS modulation or according to psychometric
indicators. Future studies may include at least two stress-inducing tasks belonging to
different psychological domains (e.g., social, cognitive), as proposed in>8°9, to possibly
observe more specific stress responses. However, while this limitation could be attributed
to the MIST task, our study enabled different ANS responses to be identified, which could
help to improve our understanding of the specific nature of stress induced by cognitive
tasks. It is also worth mentioning that stress responses may be influenced by individual
vulnerability or resilience to stressors, which cannot be estimated a priori without tracing
the profile of each participants response at baseline*. Therefore, further research aimed
at better understanding the effect of acute stress should include a pre-experiment
assessment of the included participants to understand their vulnerability/resilience to
stressors.

Finally, a third important limitation concerns the collection of cortisol data using saliva
samples, which led to a negative result, since no clear modulations in cortisol
concentration were detected, in contrast with our hypothesis. A possible reason is related
to the short time delay between the task execution and the collection of the cortisol
samples, that we based on previous literature3?, but that, in our case, may have been too
short for complete cortisol release, preventing the detection of significant variations in
the metabolic response. Therefore, future study designs, including metabolomic sample
collection, should consider longer time intervals between tasks and between each task
and the collection of the cortisol sample, to ensure that the metabolomic response has
been completely activated. As an alternative, other faster biochemical mediators, such as
amylase and chromogranin A°’can be considered. To further interpret our negative results
with cortisol data, the relation between salivary cortisol responses and other factors that
were not controlled in our protocol but that have been associated with cortisol responses
should also be mentioned. Among these, gender, social factors, personality, and personal
habits, such as smoking, diet, and alcohol consumption, may influence the individual
response to acute stress and the associated metabolic activity®®. A direct influence is
exerted by endogenous sex hormone levels, depending on the phase of the female
menstrual cycle®?, and the circadian rhythm5°. Therefore, future studies should take into
consideration all these factors as much as possible. Specifically, when female individuals
of reproductive age are included, the hormonal phase should also be recorded to
strengthen the interpretation of metabolic results.

5. Conclusion

This study presents a multimodal ANS analysis for characterizing physiological responses
to a stimulation protocol based on randomized acute stress manipulation in two groups of
healthy adults for a total of 60 participants. Specifically, linear (in both time and frequency
domains) and nonlinear HRV indices from ECG, phasic activation features from EDA, and
respiratory activity analysis provided an effective characterization of the physiological
modulations in response to cognitive tasks under different stress manipulation. Our
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findings further support the importance of integrating information from respiratory
activity for a better interpretation of the frequency-domain analysis of the HRV.
Particularly, the current study illustrates how parameters from various biosignals and
physiological domains are modulated by mental stress, supporting the need for
multimodal approaches to improve understanding of acute mental stress in practical
applications.

References

1.

10.

11.

12.

Tervonen, J. et al. Personalized mental stress detection with self-organizing map: From
laboratory to the field. Comput Biol Med 124, (2020).

Reali, P., Brugnera, A., Compare, A. & Bianchi, A. M. Efficacy of Time- and Frequency-
Domain Heart Rate Variability Features in Stress Detection and Their Relation with Coping
Strategies. in /FMBE Proceedings vol. 76 209-216 (Springer, 2020).

Vancheri, F., Longo, G., Vancheri, E. & Henein, M. Y. Mental Stress and Cardiovascular
Health—Part L. Journal of  Clinical  Medicine = vol. 11 Preprint at
https://doi.org/10.3390/jcm11123353 (2022).

McEwen, B. S. & Akil, H. Revisiting the Stress Concept: Implications for Affective Disorders.
The journal of Neuroscience 40, 12-21 (2020).

Immanuel, S., Teferra, M. N., Baumert, M. & Bidargaddi, N. Heart Rate Variability for
Evaluating Psychological Stress Changes in Healthy Adults: A Scoping Review.
Neuropsychobiology 82, 187-202 (2023).

Berretz, G., Packheiser, J., Kumsta, R., Wolf, O. T. & Ocklenburg, S. The brain under stress—
A systematic review and activation likelihood estimation meta-analysis of changes in BOLD
signal associated with acute stress exposure. Neuroscience and Biobehavioral Reviews vol.
124 89-99 Preprint at https://doi.org/10.1016/j.neubiorev.2021.01.001 (2021).

Szabo, Y. Z., Slavish, D. C. & Graham-Engeland, J. E. The effect of acute stress on salivary
markers of inflammation: A systematic review and meta-analysis. Brain, Behavior, and
Immunity vol. 88 887-900 Preprint at https://doi.org/10.1016/j.bbi.2020.04.078 (2020).

Brugnera, A. et al. Heart rate variability during acute psychosocial stress: A randomized
cross-over trial of verbal and non-verbal laboratory stressors. International journal of
Psychophysiology 127, 17-25 (2018).

Ernst, H. et al. Assessment of the human response to acute mental stress-An overview and a
multimodal study. PLoS One 18, (2023).

Lucini, D., Norbiato, G., Clerici, M. & Pagani, M. Hemodynamic and Autonomic Adjustments
to Real Life Stress Conditions in Humans. Hypertension 39, 184-188 (2002).

Brugnera, A. et al Cortical and cardiovascular responses to acute stressors and their
relations with psychological distress. /nternational journal of Psychophysiology 114, 38-46
(2017).

Malik, M. Heart Rate Variability. Annals of Noninvasive Electrocardiology 1, 151-181 (1996).

25



843
844

845
846
847

848
849
850

851
852

853
854

855
856

857
858

859
860
861

862
863
864

865
866

867
868

869
870

871
872
873
874

875
876

877
878
879

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Pereira, T., Almeida, P. R., Cunha, ]J. P. S. & Aguiar, A. Heart rate variability metrics for fine-
grained stress level assessment. Comput Methods Programs Biomed 148, 71-80 (2017).

Castaldo, R., Montesinos, L., Melillo, P., James, C. & Pecchia, L. Ultra-short term HRV
features as surrogates of short term HRV: a case study on mental stress detection in real
life. BMC Med Inform Decis Mak 19, 12 (2019).

Lucini, D., Di Fede, G., Parati, G. & Pagani, M. Impact of Chronic Psychosocial Stress on
Autonomic Cardiovascular Regulation in Otherwise Healthy Subjects. Hypertension 46,
1201-1206 (2005).

Hernando, A. et al. Inclusion of Respiratory Frequency Information in Heart Rate Variability
Analysis for Stress Assessment. /EEE ] Biomed Health Inform 20, 1016-1025 (2016).

Nicolo, A., Massaroni, C., Schena, E. & Sacchetti, M. The Importance of Respiratory Rate
Monitoring: From Healthcare to Sport and Exercise. Sensors 20, 6396 (2020).

Homma, I. & Masaoka, Y. Breathing rhythms and emotions. Exp Physiol 93, 1011-1021
(2008).

Hayano, J. & Yuda, E. Pitfalls of assessment of autonomic function by heart rate variability.
J Physiol Anthropol 38, 3 (2019).

Reali, P. et al. Assessing stress variations in children during the strange situation procedure:
comparison of three widely used respiratory sinus arrhythmia estimation methods. Physiol
Meas 42, 085007 (2021).

Menuet, C. et al Redefining respiratory sinus arrhythmia as respiratory heart rate
variability: an international Expert Recommendation for terminological clarity. Nat Rev
Cardiol (2025) d0i:10.1038/s41569-025-01160-z.

Benedek, M. & Kaernbach, C. A continuous measure of phasic electrodermal activity. J
Neurosci Methods 190, 80-91 (2010).

Polo, E. M. et al Comparative Assessment of Physiological Responses to Emotional
Elicitation by Auditory and Visual Stimuli. /EEE J Transl Eng Health Med 12, 171-181 (2024).

Tian, Y. et al. Physiological Signal Analysis for Evaluating Flow during Playing of Computer
Games of Varying Difficulty. Front Psychol 8, (2017).

Feng, Y. X., Tang, T. B. & Ho, E. T. W. Phasic Electrodermal Activity Indicates Changes in
Workload and Affective States. in 2021 International Conference on Intelligent Cybernetics
Technology & Applications (ICICyTA) 133-137 (IEEE, 2021).
doi:10.1109/ICICyTA53712.2021.9689112.

Zhou, Y. et al. Inference-enabled tracking of acute mental stress via multi-modal wearable
physiological sensing: A proof-of-concept study. Biocybern Biomed Eng 44, 771-781 (2024).

Giorgi, A. et al. Wearable Technologies for Mental Workload, Stress, and Emotional State
Assessment during Working-Like Tasks: A Comparison with Laboratory Technologies.
Sensors 21, 2332 (2021).

26



880
881
882

883
884

885
886

887
888
889

890
891
892

893
894
895

896
897

898
899
900

901
902

903
904
905

906
907
908

909
910
911

912
913

914
915
916

917
918

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Rodriguez-Arce, J., Lara-Flores, L., Portillo-Rodriguez, O. & Martinez-Méndez, R. Towards
an anxiety and stress recognition system for academic environments based on physiological
features. Comput Methods Programs Biomed 190, (2020).

Zhu, L. et al. Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and
Machine Learning. /EEE J Biomed Health Inform 27, 2155-2165 (2023).

Gedam, S. & Paul, S. A Review on Mental Stress Detection Using Wearable Sensors and
Machine Learning Techniques. /EEE Access 9, 84045-84066 (2021).

Steffen, P. R. Using the Research Domain Criteria as a framework to integrate
psychophysiological findings into stress management and psychotherapy interventions.
Frontiers in Neuroergonomics 4, (2023).

Dedovic, K. et al. The Montreal Imaging Stress Task: Using Functional Imaging to
Investigate the Effects of Perceiving and Processing Psychosocial Stress in the Human Brain.
J Psychiatry Neuroscivol. 30 (2005).

Pruessner, J. C. et al. Deactivation of the Limbic System During Acute Psychosocial Stress:
Evidence from Positron Emission Tomography and Functional Magnetic Resonance Imaging
Studies. Biol Psychiatry 63, 234-240 (2008).

Tom, S. M., Fox, C. R., Trepel, C. & Poldrack, R. A. The Neural Basis of Loss Aversion in
Decision-Making Under Risk. Science (1979) 315, 515-518 (2007).

Chandrasekhar Pammi, V. S. et al Neural loss aversion differences between depression
patients and healthy individuals: A functional MRI investigation. Neuroradiol J 28, 97-105
(2015).

Pan, J. & Tompkins, W. J. A Real-Time QRS Detection Algorithm. /EEE Trans Biomed Eng
BME-32, 230-236 (1985).

Reali, P., Lolatto, R., Coelli, S., Tartaglia, G. & Bianchi, A. M. Information Retrieval from
Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation
and Breath-Extraction Techniques at Different Sampling Rates. Sensors 22, 1428 (2022).

Baselli, G., Porta, A., Rimoldi, O., Pagani, M. & Cerutti, S. Spectral decomposition in
multichannel recordings based on multivariate parametric identification. /EEE Trans Biomed
Eng 44, 1092-1101 (1997).

Faes, L. et al. Information decomposition in the frequency domain: a new framework to study
cardiovascular and cardiorespiratory oscillations. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 379, (2021).

Porta, A. et al. Categorizing the Role of Respiration in Cardiovascular and Cerebrovascular
Variability Interactions. /EEE Trans Biomed Eng 69, 2065-2076 (2022).

Guede-Fernandez, F., Fernandez-Chimeno, M., Ramos-Castro, J. & Garcia-Gonzalez, M. A.
Driver Drowsiness Detection Based on Respiratory Signal Analysis. /EEE Access 7, 81826-
81838 (2019).

Bianchi, A. et al. Spectral analysis of heart rate variability signal and respiration in diabetic
subjects. Med Biol Eng Comput 28, 205-211 (1990).

27



919
920
921

922
923

924
925
926

927
928
929

930
931

932
933

934
935

936
937

938
939
940

941
942
943

944
945
946

947
948

949
950
951
952

953
954

955
956
957

46.

52.

56.

57.

Cerutti, S. et al. Compressed spectral arrays for the analysis of 24-hr heart rate variability
signal: Enhancement of parameters and data reduction. Computers and Biomedical
Research 22, 424-441 (1989).

Faes, L. et al. Causal transfer function analysis to describe closed loop interactions between
cardiovascular and cardiorespiratory variability signals. Bio/ Cybern 90, 390-399 (2004).

Widjaja, D., Caicedo, A., Vlemincx, E., Van Diest, I. & Van Huffel, S. Separation of
Respiratory Influences from the Tachogram: A Methodological Evaluation. PLoS One 9,
el101713 (2014).

Baselli, G., Cerutti, S., Civardi, S., Malliani, A. & Pagani, M. Cardiovascular variability
signals: towards the identification of a closed-loop model of the neural control mechanisms.
IEEE Trans Biomed Eng 35, 1033-1046 (1988).

Hao, T., Zheng, X., Wang, H., Xu, K. & Chen, S. Linear and nonlinear analyses of heart rate
variability signals under mental load. Biomed Signal Process Control 77, 103758 (2022).

Henriques, T. et al. Nonlinear methods most applied to heart-rate time series: A review.
Entropyvol. 22 Preprint at https://doi.org/10.3390/e22030309 (2020).

Ramshur, J. T. J. Design, Evaluation, and Application of Heart Rate Variability Analysis
Software (HRVAS). (University of Memphis, 2010).

Fritz, C. O., Morris, P. E. & Richler, J. J. Effect size estimates: Current use, calculations, and
interpretation. J Exp Psychol Gen 141, 2-18 (2012).

Grossman, P. & Taylor, E. W. Toward understanding respiratory sinus arrhythmia: Relations
to cardiac vagal tone, evolution and biobehavioral functions. Bio! Psychol 74, 263-285
(2007).

Ghibaudo, V., Granget, J., Dereli, M., Buonviso, N. & Garcia, S. A Unifying Method to Study
Respiratory Sinus Arrhythmia Dynamics Implemented in a New Toolbox. eNeuro 10,
ENEURO.0197-23.2023 (2023).

Rahman, S., Habel, M. & Contrada, R. J. Poincaré plot indices as measures of sympathetic
cardiac regulation: Responses to psychological stress and associations with pre-ejection
period. International Journal of Psychophysiology 133, 79-90 (2018).

Lewis, M. J. & Short, A. L. Sample entropy of electrocardiographic RR and QT time-series
data during rest and exercise. Physiol Meas 28, 731-744 (2007).

Realij, P., Cosentini, C., Carvalho, P. de, Traver, V. & Bianchi, A. M. Towards the development
of physiological models for emotions evaluation. in 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 110-113
(IEEE, 2018). doi:10.1109/EMBC.2018.8512236.

Qi, M. & Gao, H. Acute psychological stress promotes general alertness and attentional
control processes: An ERP study. Psychophysiology 57, (2020).

Jantaratnotai, N., Rungnapapaisarn, K., Ratanachamnong, P. & Pachimsawat, P. Comparison
of salivary cortisol, amylase, and chromogranin A diurnal profiles in healthy volunteers. Arch
Oral Bio/ 142, 105516 (2022).

28



958
959
960

961
962

963
964

965

966
967
968
969
970
971

972
973
974
975
976
977
978
979

980
981
982

983

984
985
986
987

988

58. Kudielka, B. M., Hellhammer, D. H. & Wist, S. Why do we respond so differently? Reviewing
determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology
34, 2-18 (2009).

59. Wolfram, M., Bellingrath, S. & Kudielka, B. M. The cortisol awakening response (CAR) across
the female menstrual cycle. Psychoneuroendocrinology 36, 905-912 (2011).

60. Martel, J. et al. Effects of light, electromagnetic fields and water on biological rhythms.
Biomed j 48, 100824 (2025).

Funding

The research is carried out within MUSA - Multilayered Urban Sustainability Action -
project, funded by the European Union - NextGenerationEU, under the National Recovery
and Resilience Plan (NRRP) Mission 4 Component 2 Investment Line 1.5: Strenghtening
of research structures and creation of R&D “innovation ecosystems”, set up of “territorial
leaders in R&D”

Author contributions: SC: Conceptualization, Methodology, Formal analysis,
Data curation, Writing—original draft, Writing—review & editing; MDT:
Conceptualization, Formal analysis, Data curation, Writing—original draft,
Writing—review & editing; PR: Methodology, Software, Writing—original draft,
Writing—review & editing; RAG: Conceptualization, Supervision, Funding
acquisition, Writing—review & editing; AMB: Conceptualization, Project
administration; Supervision, Methodology, Funding acquisition, Writing—review
& editing;

Data availability statement. The datasets generated and analysed during the
current study could be obtained from the corresponding author on reasonable
request.

Competing Interest Statement. Authors have no conflict of interest to report.

Ethics statement. I ensure that all procedures were performed in compliance
with relevant laws and institutional guidelines and have been approved by the
institutional committee of Politecnico di Milano (opinion n°12/2024). Informed
consent was obtained for experimentation with human subjects.

29



