
Research on the impact of digital transformational leadership on digital innovation performance

Received: 14 June 2025

Accepted: 31 December 2025

Published online: 10 January 2026

Cite this article as: Chen Z., Wang Y. & Park J. Research on the impact of digital transformational leadership on digital innovation performance. *Sci Rep* (2026). <https://doi.org/10.1038/s41598-025-34966-5>

Zhihao Chen, Yongkang Wang & Jonghyuk Park

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Research on the impact of Digital Transformational Leadership on Digital Innovation Performance

Zhihao Chen¹, Yongkang Wang^{1*}, Jonghyuk Park²

¹Graduate School, Kangnam University, Yongin, Korea

^{1*} Graduate School, Kangnam University, Yongin, Korea

²Division of Global Business Administration, Kangnam University, Yongin, Korea

*** Correspondence:**

Yongkang Wang;

1231023@kangnam.ac.kr

ABSTRACT

In the rapidly evolving digital economy, digital transformation has emerged as a crucial pathway for enterprises to achieve high-quality growth and maintain a competitive advantage. Enhancing digital innovation performance during the transformation process has become a pressing issue in both theoretical research and managerial practice. Grounded in Resource based View, this study examines the organizational transformation logic of "leader-strategy-performance" and develops a theoretical model that includes digital strategy as a mediating variable and digital transformation openness as a moderating variable. Based on data collected from 348 employees in China's manufacturing sector, the study employed structural equation modeling to test the proposed hypotheses. The results reveal that (1) digital transformational leadership significantly enhances employees' digital innovation performance; (2) digital strategy partially mediates this relationship; (3) digital transformation openness positively moderates the link between digital strategy and digital innovation performance; and (4) it also amplifies the moderated mediation effect of digital transformational leadership on digital innovation performance via digital strateqy.

Keywords: Digital transformational leadership, Digital strategy, Digital innovation performance, Digital transformation openness, Institutional theory

1. INTRODUCTION

Amid rapid advancements in digital technologies, the rise of big data, cloud

41 computing, and the Internet of Things is driving human society into a new
42 digital era^[1]. Digital transformation has become a strategic priority for
43 achieving high-quality development, and how to advance it effectively has
44 become a major concern in the business world^[2]. It is anticipated that
45 globally 85% of organizations will be digitalized and 42% will be fully
46 automated by 2027^[3]. Digital transformation is now a vital pathway for the
47 survival and long-term development of traditional enterprises. Digital
48 innovation performance is increasingly seen as a key indicator for assessing
49 the success of digital transformation^[4]. Employees as the direct participants
50 and executors of digital innovation, play a crucial role in shaping a firm's
51 overall digital innovation performance through their behavior and outcomes
52 in digital contexts^[5]. Although employee-level digital innovation performance
53 is widely acknowledged as important, the specific mechanisms shaping
54 employees' capacity to produce innovative outcomes in digital contexts
55 remain insufficiently understood. This gap highlights the need to explore how
56 organizational factors can be leveraged to enhance employee digital
57 innovation performance and facilitate successful digital transformation.

58 The Resource Based View (RBV) is a widely applied theoretical perspective
59 in strategic management. It is grounded in an "inside-out" analytical
60 framework, highlighting that a firm's long-term success originates from its
61 distinctive internal resources and capabilities. These resources encompass
62 not only tangible assets but, more critically, intangible ones such as
63 knowledge, organizational culture, and leadership, which are difficult to
64 replicate^[6]. According to the RBV, firms gain competitive advantage by
65 possessing resources and capabilities that are unique, valuable, rare, and
66 difficult to imitate^[6, 7]. In the context of digital transformation, human
67 resources remain central to managerial decision-making and strategic
68 transformation in all organizations^[8]. As individuals with distinct roles and
69 authority, leaders play a pivotal role in guiding organizational transformation
70 and development. In the digital era, transformational leaders must integrate
71 digital technologies and embody digital attributes to meet the evolving
72 demands of leadership roles and effectively lead digital transformation. As a
73 result, the concept of digital transformation leadership has emerged^[9].
74 Digital transformation leadership constitutes a unique managerial resource
75 and dynamic capability that is essential for achieving competitive advantage
76 in the digital era^[10].

77 The effective deployment of leadership capabilities in digital transformation
78 depends on strategic coordination and resource orchestration. As a core
79 element of complex enterprise management systems, digital strategy serves
80 as a comprehensive blueprint for value creation and has long been a central
81 concern in management research^[11, 12]. From the RBV, digital strategy is not
82 only a guiding framework for resource allocation but also a critical
83 mechanism through which enterprises convert diverse digital resources into
84 unique capabilities^[13]. Digital strategy acts as a bridge between leadership

85 vision and operational execution, enabling organizations to systematically
86 integrate digital technologies into their business models, processes, and
87 value propositions. The key criterion for evaluating digital innovation
88 performance is whether an enterprise can sustain or even enhance its value
89 creation capacity following transformation^[14]. Enterprises undergoing digital
90 transformation must develop new digital strategies aligned with the demands
91 of the digital age to fully harness the benefits of transformation and enhance
92 the tangible outcomes of digital innovation. However, existing research has
93 not adequately examined how digital transformational leadership translates
94 into improved employee digital innovation performance through strategic
95 pathways.

96 During the implementation of digital strategies, organizational members
97 often display diverse attitudes toward change. The success of digital
98 transformation depends not only on technology deployment and leadership
99 behaviors but also on employees psychological readiness and cognitive
100 acceptance^[15]. According to the RBV, employee's openness is a vital human
101 resource for the enterprise, and the quality of this resource directly
102 influences the effectiveness of digital transformation strategy
103 implementation. This openness reflects the extent to which organizational
104 members support digital integration, demonstrated by proactive tool
105 adoption, active participation in technological learning, and adaptation to
106 new work methods^[16]. Higher levels of openness reduce employee resistance,
107 thus improving the efficiency of digital strategy implementation and
108 strengthening the organization's ability to convert efforts into performance
109 outcomes^[17]. Therefore, incorporating digital transformation openness into
110 the analytical framework not only emphasizes the role of human factors in
111 strategy implementation but also uncovers deeper interaction mechanisms
112 within the leadership, strategy, and performance pathway.

113 Building on the foregoing discussion, this study seeks to address two central
114 research questions. First, how does digital transformational leadership
115 influence employee digital innovation performance through strategic
116 mechanisms? Second, under what conditions is this strategic pathway most
117 effective in driving employee digital innovation performance? To address
118 these questions, grounded in the RBV, this study conceptualizes digital
119 transformational leadership as a critical managerial resource that enhances
120 employee digital innovation performance by enabling the formulation and
121 effective implementation of digital strategy. Furthermore, by incorporating
122 digital transformation openness as a key boundary condition, this study
123 emphasizes the importance of employees' proactive engagement with and
124 adaptive capacity for digital transformation. By integrating these elements,
125 this study elucidates the specific strategic pathways and boundary conditions
126 through which digital transformational leadership drives employee digital
127 innovation performance.

128

129 **2. THEORY AND HYPOTHESES**130 **2.1 Resource Based View (RBV)**

131 The Resource-Based View (RBV) represents a fundamental theoretical
132 framework in strategic management that emphasizes how organizations
133 achieve competitive advantage through the strategic deployment of valuable,
134 rare, inimitable, and non-substitutable (VRIN) resources and capabilities,
135 and goes beyond mere possession to highlight resource orchestration
136 through the structuring, bundling, and leveraging of resources to create
137 value^[6, 7]. Within this framework, resources encompass not only tangible
138 assets such as financial capital and physical infrastructure, but also
139 intangible assets including knowledge, capabilities, organizational culture,
140 and leadership competencies^[18, 19]. The dynamic interplay between resource
141 accumulation, capability development, and strategic deployment determines
142 an organization's ability to create and sustain competitive advantages in
143 rapidly changing environments^[20].

144 This study develops a theoretical model based on the RBV, emphasizing the
145 pathway from digital transformation leadership to strategy and performance.
146 Within this framework, digital transformation leadership is viewed as a
147 distinctive and valuable managerial resource. As core human capital, it
148 enables firms to integrate and apply other essential resources efficiently.
149 Digital transformational leaders act as resource orchestrators by identifying
150 valuable digital resources and guiding organizational members in strategic
151 initiatives, fulfilling the VRIN criteria through their distinctive combination
152 of digital expertise and transformational competencies. Accordingly, digital
153 strategy serves as the primary mechanism through which leadership
154 transforms its capabilities into tangible outcomes. It represents the bundling
155 process in which diverse digital resources are systematically integrated into
156 coherent organizational capabilities. Digital strategy involves structured
157 planning that enables firms to leverage these resources effectively to
158 redesign business models and drive innovation. Digital transformation
159 openness is also a human resource. This proactive mindset and openness to
160 change not only enhance the efficiency of strategy execution but also
161 constitute a vital aspect of the organizational climate that determines
162 whether resources can be effectively transformed into innovation
163 performance outcomes.

164

165 **2.2 Digital Innovation Performance**

166 Digital innovation performance has emerged as a central topic in recent
167 research on corporate management and innovation, with scholars
168 systematically exploring its definition and evaluation criteria. Drucker^[21] was
169 among the first to highlight that innovation performance, in the context of
170 R&D and innovation activities, reflects an enterprise's development status
171 and future growth potential. Coombs^[22] further emphasized that innovation
172 performance is a comprehensive, outcome-oriented indicator. It captures not

173 only the inputs and outputs during the technology development phase but
174 also the knowledge, capabilities, and experience accumulated in the process,
175 making it a crucial measure of R&D effectiveness. Tierney and Farmer^[23]
176 defined innovation performance, from a product-outcome perspective, as the
177 creation of valuable products, services, or processes within a specific domain.
178 Wang and Zhang^[24] broadened the concept of innovation performance by
179 integrating digital technologies, including not only product innovation but
180 also business model innovation and organizational digital transformation.
181 While these perspectives clarify innovation performance at the
182 organizational level, they often overlook individual-level behaviors and
183 contributions. This limitation is especially relevant in the context of digital
184 transformation, where individual employee roles are increasingly vital in
185 driving organizational innovation.

186 To overcome the limitations of previous research, this study redefines
187 digital innovation performance from the viewpoint of individual employees,
188 building on the work of Janssen and Zhou^[25, 26]. Digital innovation
189 performance is conceptualized as the extent to which employees, in digital
190 work contexts, intentionally implement creative ideas, actively use digital
191 tools to demonstrate creativity and problem-solving skills, enhance their
192 competitiveness through concrete innovative behaviors, and ultimately
193 generate visible outcomes and value. This definition underscores not only
194 employee's initiative and creativity in the innovation process, but also the
195 pivotal role of digital technologies as enablers, and the strong connection
196 between individual and organizational innovation outcomes. Thus, digital
197 innovation performance extends beyond traditional dimensions such as
198 product or technological outputs. It emphasizes outcomes generated by
199 employees through knowledge integration, problem-solving, and value
200 creation in digital environments. This perspective offers substantial
201 theoretical and practical value for understanding employee behavior amid
202 digital transformation^[27].

203

204 **2.3 Digital Transformational Leadership and Digital Innovation 205 Performance**

206 As technology evolves and the external business environment continues to
207 change, the digital adaptability of organizational leaders has become an
208 increasingly critical driver of successful transformation^[3]. From the
209 perspective of individual leadership traits, digital transformational leaders
210 equipped with digital thinking can accurately anticipate technological trends,
211 define clear strategic directions and investment priorities, and guide their
212 organizations toward enhanced digital performance^[28]. These leaders inherit
213 the strengths of traditional transformational leadership, such as motivation,
214 vision-setting, and organizational empowerment while also integrating core
215 elements of digital leadership, including technological sensitivity, data-driven
216 decision-making, and agility in innovation^[29].

217 When making strategic decisions, digital transformational leaders typically
218 exhibit insightful and forward-looking judgment. This enables them to
219 identify and seize opportunities arising from digital advances, leading their
220 firms to either transform existing business models or establish entirely new
221 digital ecosystems^[30]. Digital transformational leadership influences digital
222 innovation performance through multiple interrelated mechanisms. First,
223 such leaders foster an innovation-friendly organizational climate by
224 encouraging employees to experiment, take risks, and engage in continuous
225 learning. They create a psychologically safe environment that empowers
226 employees to explore novel digital solutions and challenge existing
227 paradigms without fear of failure or punishment. Second, digital
228 transformational leaders excel in mobilizing and allocating resources,
229 ensuring that innovation initiatives have the necessary technological
230 infrastructure, financial support, and human capital required for successful
231 implementation, thereby enhancing employee innovation performance^[31].
232 Therefore, we propose the following hypothesis:
233

234 *Hypothesis 1: Digital transformational leadership is positively related to*
235 *digital innovation performance.*

237 **2.4 Digital Strategy and Digital Innovation Performance**

238 A digital strategy refers to a strategic initiative through which firms respond
239 to rapidly evolving digital environments by leveraging advanced technologies
240 such as big data, cloud computing, social media, and the Internet of Things
241 to systematically redesign their business models, product architectures, and
242 organizational operations^[12]. Digital strategy encompasses not only the
243 adoption of technological tools but, more fundamentally, the enterprise's
244 capability to achieve process automation and organizational restructuring
245 through digital technologies^[32]. At its core, digital strategy is a systematic
246 process through which organizations integrate and reconfigure digital
247 resources across key domains such as business models, value creation logic,
248 process design, and organizational management to drive transformation and
249 sustained innovation^[13]. As digital technologies become increasingly
250 prevalent, the digital transformation of traditional manufacturing firms has
251 shifted from a purely technical concern to a central issue in strategic
252 management. Digital strategy plays a pivotal role in enhancing firms' digital
253 innovation performance. First, the systematic implementation of digital
254 strategy enhances firms' capabilities to leverage technology for product
255 innovation, process optimization, and service redesign, thereby improving
256 overall innovation outcomes^[33]. Second, by restructuring organizational
257 frameworks, operational processes, and resource allocations, firms can
258 develop more agile and intelligent operational systems, thereby
259 strengthening their internal R&D capabilities and responsiveness to market
260 dynamics.

261 Moreover, a digital strategy can enhance information connectivity and
 262 promote collaborative innovation among firms and key stakeholders
 263 throughout the value chain. Digital strategy promotes collaboration between
 264 firms and external partners including suppliers, customers and research
 265 institutions^[34]. This collaboration facilitates resource integration across
 266 organizational boundaries and drives joint innovation, thereby improving
 267 digital innovation performance in products and services^[35]. This form of
 268 digital collaboration helps technology-driven firms achieve high-quality
 269 innovation outcomes in product development, service design and process
 270 optimization. Therefore, we propose the following hypothesis:
 271

272 *Hypothesis 2: Digital strategy is positively related to digital innovation
 273 performance.*

274

275 **2.5 Mediating Effect of Digital Strategy between Digital 276 Transformational Leadership and Digital innovation performance**

277 Digital innovation performance is often stimulated by technological change.
 278 However, technological advancement alone is not sufficient to ensure
 279 sustained improvements in a firm's digital innovation outcomes^[36]. During
 280 digital transformation, firms need digital transformational leaders who
 281 possess strategic vision and the capacity to drive change. These leaders must
 282 be able to coordinate comprehensive transformation across internal
 283 structures, organizational culture and the external business environment^[32].
 284 In this context, digital strategy plays a central role in a firm's digital
 285 innovation efforts. It functions not only as a structured framework for
 286 implementing digital technologies but also as a vital link that transforms
 287 innovation achievements into competitive advantage^[13].

288 Digital transformational leadership plays a pivotal role in shaping the
 289 development and implementation of a firm's digital strategy. It drives
 290 cultural change, supports process redesign, and facilitates business model
 291 restructuring, thereby improving the effectiveness of digital strategy
 292 execution^[17]. Acting as a key mediating mechanism between leadership and
 293 innovation performance, digital strategic initiatives deepen digital innovation
 294 implementation and elevate the firm's overall level of digital
 295 transformation^[33]. This process facilitates the integration of digital
 296 technologies into core business operations and enables the effective
 297 conversion of digital innovation outcomes into sustainable innovation
 298 returns.

299 In strategic practice, digital transformational leaders adopt a disruptive
 300 innovation mindset. They focus on the feasibility of strategy execution and
 301 the redesign of business logic to identify and capture new opportunities for
 302 organizational transformation^[37]. By building an innovative and adaptive
 303 digital strategy system, firms can drive fundamental changes in their
 304 organizational structures, operational models, and value creation

305 mechanisms. This enables entry into new markets, expansion of customer
 306 bases, and diversification of value co-creation channels^[38, 39]. Furthermore,
 307 by actively building and managing digital platforms and ecosystems, firms
 308 can use digital technologies to facilitate more efficient and higher-quality
 309 value interactions. This allows them to extensively share and absorb external
 310 benefits generated through digital innovation^[40, 41]. This ecosystem-oriented
 311 strategic mindset fundamentally strengthens a firm's digital innovation
 312 performance. Therefore, we propose the following hypothesis:

313

314 *Hypothesis 3: Digital strategy mediates the relationship between digital*
 315 *transformational leadership and digital innovation performance.*

316

317 **2.6 Moderating Role of Digital Transformation Openness**

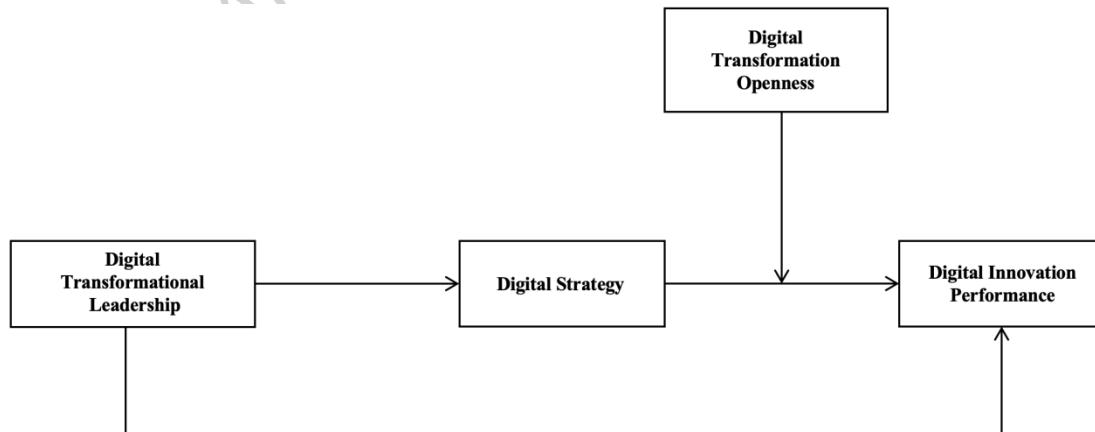
318 Digital transformation is not merely a matter of technology adoption but a
 319 comprehensive organizational change involving the restructuring of
 320 management processes, innovation of business models, adjustment of
 321 organizational structures, and reconstruction of corporate culture^[42].
 322 Therefore, the successful implementation of digital strategies depends not
 323 only on the establishment of technological infrastructure but also on
 324 organizational members' understanding and acceptance of the impacts of
 325 digital technological change^[43]. In this context, digital transformation
 326 openness is regarded as a key moderating factor influencing the
 327 effectiveness of digital strategy implementation. This concept refers to
 328 employees' positive attitudes, cognitive understanding, and behavioral
 329 intentions toward digital transformation, reflecting their psychological and
 330 behavioral acceptance and support for the integration of digital technologies
 331^[44]. Specifically, this openness manifests in employees' willingness to adopt
 332 new digital tools, actively participate in technological change, and
 333 continuously learn and adapt to the evolving digital environment^[16].

334 According to the RBV, digital transformation openness is a vital
 335 organizational resource. It shapes a firm's capacity to identify, assimilate,
 336 and apply digital knowledge. Such openness functions as a complementary
 337 asset. It increases the effectiveness of digital strategy implementation by
 338 reducing internal resistance and facilitating resource integration.
 339 Organizations with high levels of digital transformation openness tend to
 340 exhibit stronger dynamic capabilities. These capabilities allow for flexible
 341 adjustments to daily operations and processes in response to digital strategic
 342 initiatives^[45]. The moderating role of digital transformation openness aligns
 343 with a central RBV principle: the value of strategic resources is contingent
 344 on the existence of complementary assets and a supportive organizational
 345 context^[7]. When employees demonstrate greater openness to digital
 346 transformation, digital strategies are executed more effectively. This
 347 openness fosters internal conditions that support resource reconfiguration
 348 and capability development^[46], enabling employees to better leverage

349 organizational resources to produce innovative outcomes. In other words,
 350 digital transformation openness moderates the relationship between digital
 351 strategy and digital innovation performance: under conditions of high
 352 openness, digital strategies are more likely to generate tangible and valuable
 353 innovative outcomes. Therefore, we propose the following hypothesis:
 354

355 *Hypothesis 4: Digital transformation openness positively moderates the
 356 relationship between digital strategy and digital innovation performance,
 357 such that the relationship becomes stronger when digital transformation
 358 openness is high rather than low.*

359


360 **2.7 Moderated Mediating Effect**

361 Hypothesis3 and 4 together form a mediation model with moderating, which
 362 is based on the moderating mediator inference method^[47]. Digital
 363 transformation openness moderates the relationship between digital strategy
 364 and digital innovation performance. This study further predicted that digital
 365 transformation openness positively moderates the mediating effects of digital
 366 transformational leadership on digital innovation performance via digital
 367 strategy. Therefore, the following hypothesis is proposed.
 368

369 *Hypothesis 5: Digital transformation openness positively moderates the
 370 indirect effect of digital transformational leadership on digital innovation
 371 performance through digital strategy. In other words, the higher the digital
 372 transformation openness, the greater the mediating effect of digital strategy.*
 373

374 **Figure 1** shows the theoretical model developed in this study.

375

376
 377 **Figure 1** Theoretical model.
 378

379 **3. MATERIALS AND METHODS**

380 **3.1 Sample and Procedures**

381 Data for this study were collected from March 2025 to April 2025. The
 382 research sample mainly included employees from manufacturing firms that

383 are implementing digital transformation in the Shandong province of China.
 384 Shandong Province was chosen as the research sample because it is one of
 385 China's leading manufacturing hubs and a pilot region for national digital
 386 transformation initiatives. The province hosts numerous traditional
 387 manufacturing firms that actively adopt digital technologies, making it a
 388 highly representative region for examining digital transformation in China's
 389 manufacturing sector. To ensure sample authenticity, the following criteria
 390 were applied: (1) the firm has formally initiated a digital transformation plan;
 391 (2) the firm has invested in digital technologies such as big data, cloud
 392 computing, robotics, or the industrial internet; (3) the firm has implemented
 393 at least one organizational or process change related to digitalization, such
 394 as a digital supply chain or smart manufacturing). The validity of these
 395 criteria was verified using official corporate reports, website information,
 396 and confirmation from HR managers during preliminary communications.
 397 Among the 25 companies approached a total of 7 entities accorded their
 398 consent to participate in the study. A formal survey was conducted using a
 399 web-based questionnaire. Approval was guaranteed by the relevant human
 400 resource heads of the companies, who willingly participated in the surveys.
 401 This study separated the independent variables from the dependent variables
 402 in survey waves to mitigate common method bias^[48]. The questionnaire
 403 survey comprised two stages: During Time 1 (T1), employees completed
 404 questionnaires regarding a predictor variable (digital transformational
 405 leadership), a mediating variable (digital strategy), and demographic
 406 variables (age, gender, education, seniority and Years implementing DT).
 407 After a month, during Time 2 (T2), the same participants completed
 408 questionnaires regarding a moderating variable (digital transformation
 409 openness) and a dependent variable (digital innovation performance). To
 410 match the responses obtained during T1 and T2, participants were asked to
 411 enter the last four digits of their ID numbers in the questionnaires.

412 A total of 560 questionnaires were distributed in this study and 407
 413 questionnaires were collected. After filtering out incomplete responses and
 414 removing outliers, 348 valid questionnaires remained with a response rate of
 415 62.1% In terms of the sample distribution, 175 (50.29%) respondents were
 416 males and 173 (49.71%) were females. Most of the respondents were aged
 417 between 26 and 30 years (39.08% of the total survey population). The
 418 majority possessed a bachelor's degree (49.43% of the total survey
 419 population), seniority ranged mostly between 4 to 6 years (28.44% of the
 420 total survey population) and years implementing DT ranged mostly between
 421 1 to 2 years (27.30% of the total survey population) (**Table 1**). The sample
 422 size was adequate to analyze the model. Using the rule of thumb of (no. of
 423 items in questionnaire \times 5 = 24 \times 5) which is 120^[49]. Therefore, the sample
 424 of 348 is adequate because this is more than the required number of 120
 425 responses. To further assess the adequacy of our sample size beyond the
 426 item-ratio criterion, we conducted a post hoc power analysis using G*Power

427 3.1. With a significance level of 0.05, a medium effect size ($f^2 = 0.15$), and
 428 nine predictors, the analysis yielded a statistical power of 0.99. This
 429 substantially exceeds the commonly recommended threshold of 0.80,
 430 indicating that our sample of 348 respondents provides sufficient power to
 431 detect the hypothesized mediation and moderation effects.

432

433 **3.2 Measures**

434 The scales used in this study were mainly derived from mature scales used in
 435 the academic community, with proven reliability and validity in domestic and
 436 foreign studies. All scales used the 5-point rating like the Likert scale, where
 437 1 means strongly disagree and 5 means strongly agree. The specific
 438 measurement of each variable is as follows.

439

440 **3.2.1 Digital Transformational Leadership**

441 Digital transformational leadership was measured with the 6-item scale
 442 developed by Alnuaimi et al.^[9]. The items are as follows: "Our leaders inspire
 443 all members with the digital transformation plans for our organization," "Our
 444 leaders provide a clear digital transformation vision for the organization's
 445 members to follow" etc. Cronbach's alpha for this scale was 0.874.

446

447 **3.2.2 Digital Strategy**

448 Digital strategy was measured with the 4-item scale developed by Li et al.^[50].
 449 The items are as follows: "In my organization, we integrate digital technology
 450 and business strategy to attain strategic alignment with the government and
 451 other partners," "In my organization, we create a shared vision of the role of
 452 digital technology in business strategy" etc. Cronbach's alpha for this scale
 453 was 0.867.

454

455 **3.2.3 Digital Innovation Performance**

456 8-item were adapted and modified to fit the digital transformation context
 457 from previous employee innovation performance scales (Chang et al.^[51]) to
 458 measure digital innovation performance. The items are as follows: "I manage
 459 to implement my innovative ideas involving digital technologies at work," "I
 460 transform innovative ideas into useful digital applications or tools." etc.
 461 Cronbach's alpha for this scale was 0.916.

462

463 **3.2.4 Digital Transformation Openness**

464 For the measurement of digital transformation openness, 6-item were
 465 adapted from Hinduan et al.^[52]. The items are as follows: "I am very
 466 interested in using digital technologies and digital tools," "I show strong
 467 willingness to learn new knowledge and digital technologies" etc. Cronbach's
 468 alpha for this scale was 0.892.

469

TABLE 1 | Demographics of the survey respondents. (N = 348)

Variable		N	Percent		N	Percent	
			age	ge		age	ge
Gender	Male	175	50.29	Seniority	≤ 1	65	18.68
	Female	173	49.71		[1, 3]	91	26.15
Age	[20, 25]	49	14.08		[4, 6]	99	28.44
	[26, 30]	136	39.08		[7, 10]	81	23.28
	[31, 35]	94	27.01		≥ 10	12	3.45
	[36, 40]	44	12.64		≤ 1	50	14.37
	≥ 40	25	7.18	Years implementing DT	[1, 2]	95	27.30
Education	High school	10	2.87		[3, 4]	86	24.71
	Associate degree	73	20.98		[5, 6]	68	19.54
	Bachelor degree	172	49.43		≥ 6	49	14.08
	Master degree	68	19.54				
	doctoral degree	25	7.18				

470

471 **4. RESULTS**

472 All statistical analyses were conducted using IBM SPSS Statistics (Version
 473 29.0; <https://www.ibm.com/products/spss-statistics>), Mplus (Version 8.0;
 474 <https://www.statmodel.com>), and SmartPLS (Version 4.1;
 475 <https://www.smartpls.com>). Specifically, SEM was run with Mplus and
 476 SmartPLS to test reliability, validity, and model fit. To examine the
 477 hypotheses, this study performed partial least squares structural equation
 478 modelling (PLS-SEM) using SmartPLS.

479

480 **4.1 Reliability and Validity**

481 We assessed the constructs' reliability using the internal consistency
 482 measure analysis, obtaining acceptable values for Cronbach's alpha and
 483 composite reliability (CR). However, the factor loadings of items DTL6 and
 484 DTO4 in the DTL and DTO constructs were both below 0.5, falling short of
 485 the acceptable threshold^[53]. Therefore, we dropped item DTL6 and DTO4 to
 486 improve the model's internal consistency and reliability and avoid having an
 487 issue with the model. A post hoc inspection suggests that the poor
 488 performance of these items may have resulted from translation nuances or
 489 cultural interpretations, rather than from fundamental flaws in the
 490 underlying constructs. **Table 2** summarizes the results of convergent validity
 491 and internal consistency reliability. All indicators and constructs meet the
 492 required measurement criteria. Specifically, the factor loadings are all above
 493 0.759, demonstrating that indicator reliability is achieved^[54]. In addition,

494 Cronbach's alpha value of each construct ranged from 0.867 to 0.916
 495 (exceeding 0.7). The AVE values ranged from 0.630 to 0.715 (exceeding 0.5),
 496 denoting that convergent validity is also achieved^[55]. Furthermore, CR
 497 values are 0.908 to 0.932, well above the required minimum level of 0.70,
 498 thus demonstrating internal consistency^[56]. In other words, the results show
 499 that the model has good convergent validity and internal consistency.
 500

TABLE 2 | Construct Reliability and Validity

Items	Loadin g	C α	CR	AVE
DTL		0.874	0.908	0.664
Item1	0.779			
Item2	0.835			
Item3	0.840			
Item4	0.813			
Item5	0.804			
DS		0.867	0.909	0.715
Item1	0.813			
Item2	0.820			
Item3	0.895			
Item4	0.852			
DIP		0.916	0.932	0.630
Item1	0.779			
Item2	0.806			
Item3	0.780			
Item4	0.812			
Item5	0.759			
Item6	0.782			
Item7	0.828			
Item8	0.803			
DTO		0.892	0.920	0.698
Item1	0.867			
Item2	0.852			
Item3	0.803			
Item5	0.830			
Item6	0.823			

N = 348; C α , Cronbach's alpha; CR, composite reliability; AVE, average variance; DTL, digital transformational leadership; DS, digital strategy; DIP, digital innovation performance; DTO, digital transformation openness

501
 502 For discriminant validity, compared to other competition models, the
 503 theoretical four-factor model (digital transformational leadership, digital
 504 strategy, digital innovation performance, and digital transformation
 505 openness) had a better fit to the data [$\chi^2/df = 1.556$, (CFI) = 0.974, (TLI) =
 506 0.970, (RMSEA) = 0.040, and (SRMR) = 0.043 (see **Table 3**). The CFA

507 results showed that the theoretical four-factor model had satisfactory
 508 discriminant validity.
 509

TABLE 3 | Results of confirmatory factor analysis.

Models	Factor	χ^2	df	χ^2/df	RMSE	CFI	TLI	SRM
								A
								R
Four-factor model	DTL, DS, DIP, DTO	317.80	203	1.566	0.040	0.974	0.97	0.043
		2						0
Three-factor model	DTL+DS, DIP, DTO	801.33	206	3.890	0.091	0.863	0.84	0.072
		4						7
Two-factor model	DTL+DS+DIP, DTO	1322.7	208	6.360	0.124	0.744	0.71	0.103
		82						6
Single-factor model	DTL+DS+DIP+DTO	1963.6	209	9.395	0.155	0.598	0.55	0.122
		26						5

Note: N = 348; DTL, digital transformational leadership; DS, digital strategy; DIP, digital innovation performance; DTO, digital transformation openness

510
 511 Furthermore, the heterotrait-monotrait ratio of correlations (HTMT)
 512 criteria were employed to test the discriminant validity. Different
 513 recommendations exist for confirming the HTMT criterion, with the
 514 conservative criterion suggesting that the HTMT value should be below
 515 0.85^[57], and the classical criterion indicating that the HTMT value should be
 516 below 0.90^[58]. The HTMT ratio table demonstrates that all values fall within
 517 the range of 0.422 to 0.595, which is lower than the specified criterion, thus
 518 confirming discriminant validity **Table 4**.
 519

TABLE 4 | Heterotrait-monotrait ratio (N = 348).

	DIP	DTL	DS	DTO
DIP				
DTL	0.461			
DS	0.595	0.503		
DTO	0.422	0.464	0.522	

520
 521
 522 **4.2 Common Method Variance**
 523 Common method variance (CMV) may affect the empirical results because
 524 our study data were collected through self-report questionnaires. Podsakoff
 525 et al.^[59] showed that procedural and statistical techniques can be adopted
 526 for CMV. In the statistical technique, the possibility of common method bias
 527 was tested using Harman's one factor test^[60]. A principal component factor
 528 analysis with varimax rotation was used on the items of digital
 529 transformational leadership, digital strategy, digital innovation performance,
 530 and digital transformation openness. This result revealed multiple factors
 531 with eigenvalues greater than 1. The first factor accounted for 22.96% (<
 532 50%) loading, which proved the absence of CMV^[61].

533 Further, we conducted the unmeasured latent method factor^[59], to test
 534 CMV. A comparison of the latent method factor model ($\chi^2/df = 1.276$, CFI =
 535 0.977, TLI = 0.971, RMSEA = 0.040, SRMR = 0.043 and the four-factor
 536 model ($\chi^2/df = 1.566$, CFI = 0.974, TLI = 0.970, RMSEA = 0.040, SRMR =
 537 0.043) indicated no significantly changes in CFI^[62]. Thus, CMV was not a
 538 major problem for the data.

539

540 **4.3 Means and Correlations**

541 The descriptive statistics and correlation analysis results presented in Table
 542 5 indicate that digital transformational leadership is positively correlated to
 543 digital strategy ($r = 0.436$, $p < 0.05$), digital innovation performance ($r =$
 544 0.412, $p < 0.05$), and digital transformation openness ($r = 0.408$, $p < 0.05$).
 545 Digital strategy and digital transformation openness are positively correlated
 546 to digital innovation performance ($r = 0.530$, $p < 0.05$ and $r = 0.382$, $p <$
 547 0.05). The correlation between the key variables supports our hypotheses on
 548 the direct and indirect effects of digital transformational leadership on
 549 digital innovation performance.

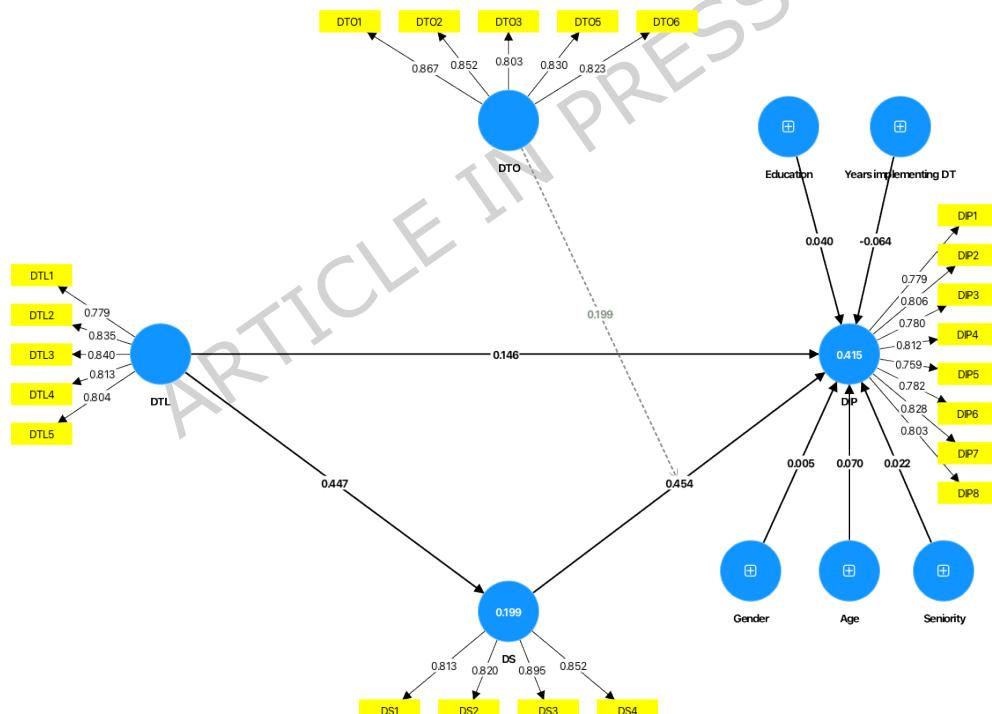
550

TABLE 5 | Means, standard deviations (SD), and correlations.

Variables	Mea	SD	1	2	3	4	5	6	7	8	9
	n										
1.Gender	1.50	0.501	1								
2.Age	2.60	1.100	-0.04 9	1							
3.Educatio n	3.07	0.897	0.049	-0.093	1						
4.Seniority	2.67	1.128	-0.09 4	0.475**	0.021	1					
5. Years	2.92	1.266	-0.00 7	-0.165*	-0.07 3	0.075	1				
6.DTL	3.77	0.751	0.056	0.042	-0.05 5	0.034	0.002	1			
7.DS	3.93	0.838	0.073	0.055	-0.02 9	0.014	0.025	0.436**	1		
8.DIP	3.91	0.758	0.034	0.142**	0.006	0.089	-0.08 8	0.412**	0.530**	1	
9.DTO	3.77	0.852	0.067	-0.024	-0.08 0	-0.03 5	-0.02 3	0.408**	0.459**	0.382* *	1

Note: N = 348; ** $p < 0.01$; * $p < 0.05$; DTL, digital transformational leadership; DS, digital strategy; DIP, digital innovation performance; DTO, digital transformation openness

551


552 **4.4 Structural Model**

553 Before testing the structural model, we first tested its collinearity.
 554 Collinearity is measured using the variance inflation factor (VIF), and, ideally,
 555 the VIF values should be close to and lower than 3^[53]. The results show that

556 all VIF values are below this threshold, suggesting no collinearity among the
 557 constructs. We also examined the R^2 value, which indicates the model's
 558 predictive power by showing the endogenous variable's variance that the
 559 exogenous variables can explain. The R^2 value for DIP (0.415) indicates that
 560 all the constructs combined explain 41.5% of the variance in DIP. The R^2
 561 value for DS is 0.199. Further, we checked the Q^2 values to assess the
 562 predictive relevance values generated by the variables. The Q^2 values for DIP
 563 (0.260) and DS (0.191) were above 0, which means that the model has
 564 predictive relevance.

565 To examine the hypotheses, bootstrapping was carried out using SmartPLS
 566 4.1 with 10000 subsamples based upon percentile bootstrapping with a
 567 two-tailed test type and a significance level of 0.05. The PLS-SEM
 568 bootstrapping approach statistically determined the structural mode
 569 coefficients representing the hypothesized relationships. Simultaneously, to
 570 ensure the robustness of the results, we included age, gender, education,
 571 seniority, and years implementing DT as control variables in the structural
 572 model assessment.

573

574

575

576

FIGURE 2 | PLS path model from SmartPLS

577

4.5 Direct Effect and Mediation Effect Testing

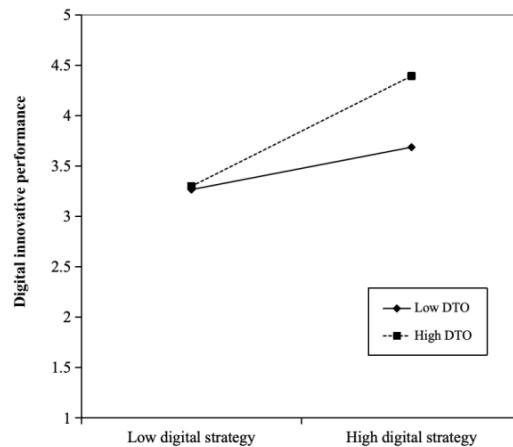
578

579

580

581

582


Figure 2 and **Table 6** portray the results of the structural path analysis. The results show that digital transformational leadership has a significant positive impact on digital innovation performance ($B = 0.146$; $p < 0.05$; 95% CI: 0.039–0.263; $T = 2.535$), supporting Hypothesis 1. And, digital strategy has a significant positive impact on digital innovation performance ($B =$

583 0.454, $p < 0.001$, 95% CI: 0.339–0.554; $T = 8.296$), supporting Hypothesis 2.
 584 Further, the results show that digital strategy significantly mediates the
 585 relationship between digital transformational leadership and digital
 586 innovation performance ($B = 0.203$, $p < 0.001$, 95% CI: 0.136–0.274; $T =$
 587 5.734). Therefore, Hypotheses 3 is supported.
 588

TABLE 6 | Hypothesis testing.

Hypotheses	Relationship	B	Std Dev	T Statistic	P-Value	LLCI	ULCI	Results
Direct effect								
	DTL -> DS	0.447	0.052	8.649	0.000	0.343	0.544	Supported
H1	DTL -> DIP	0.146	0.057	2.535	0.011	0.039	0.263	Supported
H2	DS -> DIP	0.454	0.055	8.296	0.000	0.339	0.554	Supported
Mediation effect								
H3	DTL -> DS -> DIP	0.203	0.035	5.734	0.000	0.136	0.274	Supported
Moderation effect								
H4	DTO x DS -> DIP	0.199	0.055	3.594	0.000	0.079	0.298	Supported

589
 590 **4.6 Moderating Effect Testing**
 591 We examined the moderating effect of digital transformation openness on the
 592 relationship between digital strategy and digital innovation performance. As
 593 shown in **Figure 2** and **Table 6**, the interaction between digital strategy and
 594 digital transformation openness is significantly and positively related to
 595 digital innovation performance ($B = 0.203$; $p < 0.001$; 95% CI: 0.079–0.298;
 596 $T = 3.594$), indicating that digital transformation openness positively
 597 moderates the relationship between digital strategy and digital innovation
 598 performance. Hence, Hypothesis 4 is supported. According to the
 599 suggestions of (Toothaker, 1994), this study further analyzed the moderating
 600 effect by testing the simple slopes at high and low levels of digital
 601 transformation openness, and the moderating effect diagram was drawn (see
 602 **Figure 3**).
 603

604

605 **FIGURE 3 | Moderating effect of Digital Transformation Openness on**
 606 **the relationship between Digital Strategy and Digital Innovation**
 607 **Performance.**

608

609 **4.7 Moderated Mediation Testing**

610 The index of moderated mediation^[63] presented in **Table 7** indicates the
 611 total moderated mediation effect. The effect was significant ($B = 0.105$; $p <$
 612 0.01 ; 95% CI: 0.053-0.162; $T = 3.131$), indicating that the indirect effect of
 613 digital transformational leadership on DIP through digital strategy was
 614 moderated by digital transformation openness.

615 The conditional indirect effect on the values of the moderator was
 616 calculated, namely the mean, one standard deviation above, and one
 617 standard deviation below. The results are shown in **Table 7**. The model of
 618 digital transformational leadership influencing digital innovation
 619 performance via digital strategy shows that at low levels of digital
 620 transformation openness, the mediating effect is significant ($B = 0.109$; $p <$
 621 0.01 ; 95% CI: 0.036-0.183; $T = 3.001$). At higher levels of openness, the
 622 mediating effect becomes even stronger ($B = 0.288$; $p < 0.001$; 95% CI:
 623 0.182-0.404; $T = 5.108$). The analysis results show that the higher the digital
 624 transformation openness, the stronger the mediating role of digital strategy
 625 in the relationship between digital transformational leadership and digital
 626 innovation performance, thus supporting Hypothesis 5.

627

TABLE 7 | Results of moderated mediation effect

	DTO	B	Std Dev	T Statistic	P-Value	s	
						LLCI	ULCI
DTL -> DS -> DIP	High(+1SD)	0.288	0.056	5.108	0.000	0.182	0.404
	Middle	0.199	0.038	5.242	0.000	0.128	0.275
	Low(-1SD)	0.109	0.036	3.001	0.003	0.041	0.184

Index of conditional mediation	0.105	0.033	3.131	0.001	0.053	0.162
--------------------------------	-------	-------	-------	-------	-------	-------

628

629 5. DISCUSSION

630 5.1 Discussion of findings

631 Grounded in RBV, this study develops a theoretical model incorporating
 632 mediating and moderating pathways to systematically investigate how digital
 633 transformational leadership affects firms' digital innovation performance
 634 through digital strategy, while also examining the moderating role of digital
 635 transformation openness. By conducting in-depth empirical analysis, the
 636 study validates the key hypothesized paths in the model, uncovering complex
 637 and dynamic mechanisms linking digital leadership, strategy, and
 638 performance.

639 First, the study confirms that digital transformational leadership
 640 significantly enhances firms' digital innovation performance. This finding
 641 aligns with existing literature highlighting the pivotal role of digital
 642 transformational leadership in driving organizational change. Digital
 643 transformational leaders demonstrate strong digital awareness and strategic
 644 foresight, enabling them to identify emerging technological trends,
 645 coordinate resources, and stimulate employees' digital thinking and
 646 creativity, thereby accelerating innovation speed and improving outcomes
 647 within the digital environment. From the RBV, digital transformational
 648 leadership is viewed as a rare and valuable form of human capital that allows
 649 organizations to coordinate internal capabilities and produce innovation
 650 outcomes, ultimately supporting long-term competitive advantage.

651 Second, the study reveals that digital strategy partially mediates the
 652 relationship between digital transformational leadership and digital
 653 innovation performance. This suggests that the impact of leadership on
 654 innovation outcomes is indirect and contingent upon the coordinated
 655 implementation of strategic systems and the restructuring of organizational
 656 processes. This finding aligns with Bharadwaj et al.^[13] three-layer digital
 657 strategy framework, which posits that digital technology must be embedded
 658 within business processes, organizational structure, and the value chain to
 659 translate into tangible performance outcomes. Furthermore, the study
 660 highlights that through leaders' empowerment mechanisms, digital strategy
 661 not only conveys the organization's future vision but also offers guidance and
 662 institutional support for employees' innovative activities. This mediation
 663 mechanism reflects the RBV that strategic capabilities, such as digital
 664 strategy, allow firms to reconfigure and integrate resources, thereby
 665 transforming digital potential into actual performance.

666 Third, digital transformation openness significantly moderates the
 667 relationship between digital strategy and digital innovation performance.
 668 This implies that employees' open and supportive attitudes toward change
 669 enhance the execution efficiency and outcome conversion of digital strategy.
 670 This mechanism reveals profound interactions among "leader, strategy, and

671 performance," echoing Subramaniam et al.^[64] assertion on the significant
 672 influence of "digital cognitive engagement" on innovation outcomes. The
 673 study further finds that digital transformation openness amplifies the indirect
 674 effect of digital transformational leadership on performance via the strategic
 675 pathway. Specifically, employees' attitudes not only influence strategy
 676 implementation but also magnify the indirect effectiveness of leadership.
 677 This finding underscores the crucial role of employees' proactive agency in
 678 organizational change, corroborating Vial^[65] claim that cultural elements are
 679 indispensable to digital transformation.

680 Fourth, although the moderated mediation effect was statistically
 681 significant, the effect size was relatively small. This suggests that although
 682 openness to digital transformation can enhance the positive effect of digital
 683 strategy on employees' innovative performance, the facilitating role of
 684 openness becomes more evident only when it surpasses a certain threshold.
 685

686 **5.2 Theoretical Implications**

687 First, drawing on the Resource Based View (RBV) theory^[7], this study reveals
 688 the internal mechanisms through which firms integrate and utilize digital
 689 resource portfolios to gain competitive advantage. Furthermore, the study
 690 finds that digital transformation leadership, as a unique managerial resource,
 691 is positively associated with digital innovation performance, and that digital
 692 strategy functions as a critical channel for resource orchestration within this
 693 relationship. Accordingly, this study contributes to the RBV literature by
 694 deepening our understanding of how human resources drive value creation
 695 in the context of digital transformation.

696 Second, despite extensive research on traditional transformational
 697 leadership, systematic investigations of Digital Transformational Leadership
 698 in the context of digital transformation remain limited. This study integrates
 699 theories of traditional and digital leadership to define and empirically
 700 examine the pathways through which Digital Transformational Leadership
 701 influences digital innovation performance. It emphasizes DTL's vital role in
 702 helping organizations navigate environmental uncertainty, foster technology
 703 adoption, and reshape organizational culture^[9]. The study broadens the
 704 scope of leadership theory by responding to Benitez et al. (2022)'s call for a
 705 redefinition of leadership in the digital era, while clarifying the leader's role
 706 in legitimizing organizational change^[66].

707 Third, although previous research has confirmed the positive effects of
 708 leadership behaviors on organizational performance, the underlying
 709 mechanisms driving this transformation remain insufficiently explored. This
 710 study employs digital strategy as a mediating variable, focusing on how
 711 leadership enhances performance via strategic deployment and restructuring
 712 of business processes. The study confirms Bharadwaj et al.^[13] assertion that
 713 the strategic layer constitutes a critical channel for technology-enabled
 714 performance, aligning with Alnuaimi et al.^[9] claim that strategic alignment is

715 essential for effective digital leadership.

716 Fourth, although recent years have seen growing recognition of employees' 717 subjective role in organizational change, empirical evidence on how 718 "openness" moderates the strategy-performance relationship remains 719 limited. This study introduces "digital transformation openness" as a 720 moderating variable and empirically confirms its significant impact on the 721 effectiveness of digital strategy, representing a critical manifestation of 722 employees' digital cognition and behavioral engagement^[64]. In high-openness 723 environments, digital strategies are implemented more effectively, and 724 employee collaboration is strengthened, thereby improving organizational 725 performance. This finding also addresses the theoretical gap identified by 726 Vial^[65] regarding the mechanism through which digital culture shapes 727 transformation outcomes.

728

729 **5.3 Practical Implications**

730 First, the findings indicate that managers, acting as organizational agents, 731 can influence key factors that improve digital innovation performance, 732 thereby benefiting both the organization and its employees. Management has 733 significant authority over the development and implementation of digital 734 transformational leadership capabilities. Leadership development programs 735 that emphasize digital transformation skills such as data-driven decision 736 making, digital ecosystem thinking, and technology-based empowerment can 737 better prepare managers to foster innovative digital environments. These 738 leaders can effectively navigate their teams through the complexities of 739 digital transformation and convert technological potential into tangible 740 innovation outcomes.

741 Second, the design of digital strategy systems falls within the domain of 742 management influence. Our findings highlight that digital strategy acts as a 743 key mediating mechanism through which leadership affects innovation 744 performance. Managers should develop comprehensive digital strategies that 745 extend beyond technology adoption to include systematic business model 746 transformation, process digitization, and value chain restructuring. An 747 effective approach to implementing digital strategy is to initially focus on 748 organizational processes that best align with existing digital capabilities. The 749 resulting sense of competence, clarity, and technological mastery facilitates 750 the transformation. For example, organizations with strong data analytics 751 capabilities might prioritize digital strategy elements that utilize data-driven 752 insights to drive product innovation.

753 Third, organizations should place greater emphasis on fostering an 754 innovative culture. The organizational culture for digital transformation 755 openness may take longer than structural elements (such as digital 756 infrastructure or formal digital policies) to change. In environments with 757 limited digital openness, employees are more likely to preserve existing 758 routines, as innovation often entails elevated perceived risks and

759 psychological stress. Even under strong leadership, strategic initiatives may
 760 fail to produce tangible innovation outcomes. In contrast, cultural
 761 transformation efforts are more likely to deliver meaningful outcomes only
 762 when digital openness exceeds a moderate level, such as when digital
 763 engagement and adaptive practices are deeply embedded in everyday
 764 workflows. Practitioners should evaluate the baseline level of organizational
 765 openness and tailor interventions accordingly, emphasizing capability
 766 development, psychological safety, and digital communication channels to
 767 cultivate a culture of adaptability and openness.

768

769 **5.4 Limitations and Future Research**

770 First, this study used a time lag data collection approach to reduce common
 771 method variance (CMV) and better examine causal relationships between
 772 variables across time. However, since all variables were reported by
 773 employees themselves, concerns regarding CMV may still remain. Future
 774 studies may consider using data collected from multiple time points and
 775 multiple sources. In particular, when assessing digital innovation
 776 performance, using objective indicators from company records would be
 777 helpful in mitigating CMV more effectively.

778 Second, the sample for this study was exclusively drawn from
 779 manufacturing firms located in Shandong Province, China. Although these
 780 firms vary in size and digital development maturity, the sample is still limited
 781 in terms of industrial scope and cultural context. Future research should
 782 further examine the generalizability of the findings across countries, regions,
 783 and different industry sectors. A cross-national and cross-industry
 784 comparative perspective may help explore how digital leadership influences
 785 strategic implementation and innovation performance under varying
 786 conditions, thereby enhancing the external validity and universality of the
 787 conclusions. Moreover, future studies should examine whether the
 788 effectiveness of digital transformational leadership differs across specific
 789 digital technologies, as technologies such as artificial intelligence, IoT, and
 790 blockchain may require distinct leadership responses and strategic
 791 configurations.

792 Third, although this study introduced digital transformation openness as a
 793 moderating variable and obtained initial findings, several influential
 794 contextual factors remain unaccounted for in the model. These include
 795 organizational learning capacity, corporate culture, and the maturity of
 796 technological infrastructure, all of which could significantly shape the
 797 functioning of leadership in digital contexts. Future research may expand the
 798 scope of moderating or mediating variables and construct more complex
 799 interaction models to deepen insights into the collaborative dynamics among
 800 individuals, strategy, and technology during digital transformation.

801 Fourth, although this study included several individual-level control
 802 variables, such as age, gender, education, seniority, and years of digital

803 transformation implementation, it did not incorporate potentially relevant
 804 organizational-level controls. Organizational characteristics such as firm size,
 805 R&D intensity, and market competition may also affect the adoption of digital
 806 strategies and innovation performance. However, constraints related to data
 807 availability and concerns about model over-control prevented their inclusion
 808 in this study. Future research should integrate multilevel control variables
 809 and employ hierarchical or cross-level modeling techniques to better rule out
 810 alternative explanations and enhance the robustness of findings within
 811 organizationally nested data structures.

812

813 **Data availability statement**

814 Data are available upon reasonable request from the corresponding author.

815

816 **Ethics Statement (Methods)**

817 As protection of all participants, all subjects provided informed consent
 818 before participating in this study and voluntarily made their decision to
 819 complete surveys. The protocol was approved by an institutional review
 820 board in Kangnam University of Korea. All methods were carried out in
 821 accordance with relevant guidelines and regulations.

822

823 **Author contributions**

824 CZ and YW: Writing – original draft, Writing – review & editing. JP: Writing –
 825 review & editing.

826

827 **Funding**

828 The author(s) declare that no financial support was received for the research
 829 and/or publication of this article.

830

831 **Conflict of interest**

832 The authors declare that the research was conducted in the absence of any
 833 commercial or financial relationships that could be construed as a potential
 834 conflict of interest.

835

836 **Electronic supplementary material**

837 Below is the link to the electronic supplementary material.

838 Supplementary Material S1

839

840 **6. REFERENCES**

- 841 [1]. Philip, J., Gilli, K., & Knappstein, M. Identifying key leadership
 842 competencies for digital transformation: evidence from a cross-sectoral
 843 Delphi study of global managers. *Leadersh. Organ. Dev. J.* **44**(3), 392-406.
 844 <https://doi.org/10.1108/LODJ-02-2022-0063> (2023).
- 845 [2]. Kraus, S., Jones, P., Kailer, N., Weinmann, A., Chaparro-Banegas, N., &
 846 Roig-Tierno, N. Digital transformation: An overview of the current state of

847 the art of research. *Sage Open*. **11**(3), 21582440211047576.
 848 <https://doi.org/10.1177/21582440211047576> (2021).

849 [3]. Mahroof, J., Rafi, A., & Ahmad, A. Talent Management during Digital
 850 Transformation: Role of Transformational Leadership and Resistance to
 851 Change. *Technol. Soc.* 102964.
 852 <https://doi.org/10.1016/j.techsoc.2025.102964> (2025).

853 [4]. Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. Digital innovation
 854 management. *MIS Q.* **41**(1), 223-238.
 855 <https://www.jstor.org/stable/26629644> (2017).

856 [5]. Wang, Y., Park, J., & Gao, Q. Digital leadership and employee innovative
 857 performance: the role of job crafting and person-job fit. *Front Psychol.* **16**,
 858 1492264. <https://doi.org/10.3389/fpsyg.2025.1492264> (2025).

859 [6]. Wernerfelt, B. A resource-based view of the firm. *Strat. Manag. J.* **5**(2),
 860 171-180. <https://doi.org/10.1002/smj.4250050207> (1984).

861 [7]. Barney, J. Firm resources and sustained competitive advantage. *J Manag.*
 862 **17**(1), 99-120 (1991).

863 [8]. Kane, G. The technology fallacy: people are the real key to digital
 864 transformation. *Res.-Technol. Manag.* **62**(6), 44-49.
 865 <https://doi.org/10.1080/08956308.2019.1661079> (2019).

866 [9]. AlNuaimi, B. K., Singh, S. K., Ren, S., Budhwar, P., & Vorobyev, D.
 867 Mastering digital transformation: The nexus between leadership, agility,
 868 and digital strategy. *J. Bus. Res.* **145**, 636-648.
 869 <https://doi.org/10.1016/j.jbusres.2022.03.038> (2022).

870 [10]. Madhani, P.M. Resource based view (RBV) of competitive advantage: an
 871 overview. *Resource based view: concepts and practices*, Pankaj Madhani,
 872 ed, 3-22. (2010).

873 [11]. Teece, D.J. Business models, business strategy and innovation. *Long
 874 Range Plann.* **43**(2-3), 172-194. <https://doi.org/10.1016/j.lrp.2009.07.003>
 875 (2010).

876 [12]. Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q.,
 877 Fabian, N., & Haenlein, M. Digital transformation: A multidisciplinary
 878 reflection and research agenda. *J. Bus. Res.* **122**, 889-901.
 879 <https://doi.org/10.1016/j.jbusres.2019.09.022> (2021).

880 [13]. Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. v. Digital
 881 business strategy: toward a next generation of insights. *MIS Q.* 471-482.
 882 <https://doi.org/10.25300/MISQ/2013/37:2.3> (2013).

883 [14]. Zhang, Y., Ma, X., Pang, J., Xing, H., & Wang, J. The impact of digital
 884 transformation of manufacturing on corporate performance—The
 885 mediating effect of business model innovation and the moderating effect
 886 of innovation capability. *Res. Int. Bus. Finance* **64**, 101890.
 887 <https://doi.org/10.1016/j.ribaf.2023.101890> (2023).

888 [15]. Cetindamar Kozanoglu, D., & Abedin, B. Understanding the role of
 889 employees in digital transformation: conceptualization of digital literacy
 890 of employees as a multi-dimensional organizational affordance. *J. Enterp.*

891 *Inf. Manag.* **34**(6), 1649-1672. <https://doi.org/10.1108/JEIM-01-2020-0010> (2021).

892 [16]. Khin, S., & Ho, T. C. Digital technology, digital capability and organizational performance: A mediating role of digital innovation. *Int. J. Innov. Sci.* **11**(2), 177-195. <https://doi.org/10.1108/IJIS-08-2018-0083> (2019).

893 [17]. Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., & Buckley, N. Strategy, not technology, drives digital transformation. *MIT Sloan Manag. Rev.* (2015).

894 [18]. Grant, R.M. The resource-based theory of competitive advantage: implications for strategy formulation. *Calif. Manag. Rev.* **33**(3), 114-135. <https://doi.org/10.2307/41166664> (1991).

895 [19]. Amit, R., & Schoemaker, P. J. Strategic assets and organizational rent. *Strat. Manage. J.* **14**(1), 33-46. <https://doi.org/10.1002/smj.4250140105> (1993).

896 [20]. Teece, D. J., Pisano, G., & Shuen, A. Dynamic capabilities and strategic management. *Strat. Manage. J.* **18**(7), 509-533. [https://doi.org/10.1002/\(SICI\)1097-0266\(199708\)18:7<509::AID-SMJ882>3.0.CO;2-Z](https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z) (1997).

897 [21]. Drucker, P.F. *Innovation and Entrepreneurship: Practice and Principles* (Harperbusiness). (1993).

898 [22]. Coombs, R. Core competencies and the strategic management of R&D. *R&D Manag.* **26**(4), 345-355. <https://doi.org/10.1111/j.1467-9310.1996.tb00970.x> (1996).

899 [23]. Tierney, P., & Farmer, S. M. Farmer, Creative self-efficacy: Its potential antecedents and relationship to creative performance. *Acad. Manag. J.* **45**(6), 1137-1148. <https://doi.org/10.5465/3069429> (2002).

900 [24]. Wang, S., & Zhang, H. Digital transformation and innovation performance in small-and medium-sized enterprises: A systems perspective on the interplay of digital adoption, digital drive, and digital Culture. *Systems.* **13**(1), 43. <https://doi.org/10.3390/systems13010043> (2025).

901 [25]. Janssen, O. The joint impact of perceived influence and supervisor supportiveness on employee innovative behaviour. *J. Occup. Organ. psychol.* **78**(4), 573-579. <https://doi.org/10.1348/096317905X25823> (2005).

902 [26]. Zhou, J., & George, J. M. When job dissatisfaction leads to creativity: Encouraging the expression of voice. *Acad. Manag. J.* **44**(4), 682-696. <https://doi.org/10.5465/3069410> (2001).

903 [27]. Opland, L. E., Pappas, I. O., Engesmo, J., & Jaccheri, L. Employee-driven digital innovation: A systematic review and a research agenda. *J. Bus. Res.* **143**, 255-271. <https://doi.org/10.1016/j.jbusres.2022.01.038> (2022).

904 [28]. Yoo, Y., Boland Jr, R. J., Lyytinen, K., & Majchrzak, A. Organizing for innovation in the digitized world. *Organ. Sci.* **23**(5), 1398-1408. <https://doi.org/10.1287/orsc.1120.0771> (2012).

905 [29]. Kraus, S., Durst, S., Ferreira, J. J., Veiga, P., Kailer, N., & Weinmann, A.

935 Digital transformation in business and management research: An
936 overview of the current status quo. *Int. J. Inf. Manag.* **63**, 102466.
937 <https://doi.org/10.1016/j.ijinfomgt.2021.102466> (2022).

938 [30]. Benitez, J., Arenas, A., Castillo, A., & Esteves, J. Impact of digital
939 leadership capability on innovation performance: The role of platform
940 digitization capability. *Inf. Manag.* **59**(2), 103590.
941 <https://doi.org/10.1016/j.im.2022.103590> (2022).

942 [31]. Warner, K. S., & Wäger, M. Building dynamic capabilities for digital
943 transformation: An ongoing process of strategic renewal. *Long range
944 plann.* **52**(3), 326-349. <https://doi.org/10.1016/j.lrp.2018.12.001> (2019).

945 [32]. Hess, T., Matt, C., Benlian, A., & Wiesböck, F. Options for formulating a
946 digital transformation strategy. *Mis Q. Exec.* **15**(2).
947 <https://doi.org/10.7892/boris.105447> (2016).

948 [33]. Li, L., Su, F., Zhang, W., & Mao, J. Y. Digital transformation by SME
949 entrepreneurs: A capability perspective. *Inf. Syst. J.* **28**(6), 1129-1157.
950 <https://doi.org/10.1111/isj.12153> (2018).

951 [34]. Nambisan, S., Wright, M., & Feldman, M. The digital transformation of
952 innovation and entrepreneurship: Progress, challenges and key themes.
953 *Res. policy* **48**(8), 103773. <https://doi.org/10.1016/j.respol.2019.03.018>
954 (2019).

955 [35]. Qiu, P., & Chang, B. The impact of digital transformation on open
956 innovation performance: The intermediary role of digital innovation
957 dynamic capability. *Plos one.* **20**(3), e0317785.
958 <https://doi.org/10.1371/journal.pone.0317785> (2025).

959 [36]. Yoo, Y., Henfridsson, O., & Lyytinen, K. Research commentary—the new
960 organizing logic of digital innovation: an agenda for information systems
961 research. *Inf. Syst. Res.* **21**(4), 724-735.
962 <https://doi.org/10.1287/isre.1100.0322> (2010).

963 [37]. Westerman, G., Calméjane, C., Bonnet, D., Ferraris, P., & McAfee, A.
964 Digital Transformation: A roadmap for billion-dollar organizations. *MIT
965 Center for digital business and capgemini consulting.* **1**(1-68). (2011).

966 [38]. Liu, D. Y., Chen, S. W., & Chou, T. C. Resource fit in digital
967 transformation: Lessons learned from the CBC Bank global e-banking
968 project. *Manag. Decis.* **49**(10), 1728-1742.
969 <https://doi.org/10.1108/00251741111183852> (2011).

970 [39]. Lyytinen, K., Yoo, Y., & Boland Jr, R. J. Digital product innovation within
971 four classes of innovation networks. *Inf. Syst. J.* **26**(1), 47-75.
972 <https://doi.org/10.1111/isj.12093> (2016).

973 [40]. Amit, R., & Zott, C. Crafting business architecture: The antecedents of
974 business model design. *Strat. Entrep. J.* **9**(4), 331-350.
975 <https://doi.org/10.1002/sej.1200> (2015).

976 [41]. Rudolph, C. W., Katz, I. M., Lavigne, K. N., & Zacher, H. Job crafting: A
977 meta-analysis of relationships with individual differences, job
978 characteristics, and work outcomes. *J. Vocat. Behav.* **102**, 112-138.

979 https://doi.org/10.1016/j.jvb.2017.05.008 (2017).

980 [42]. Westerman, G., Bonnet, D., & McAfee, A. *Leading digital: Turning*
981 *technology into business transformation*. Harvard Business Press. (2014).

982 [43]. Fitz, L. R., Scheeg, M., & Scheeg, J. *Information, Inspiration, Innovation-*
983 *Designing an Open Innovation Platform for SME Digital Transformation*
984 *Projects*. *Procedia Comput. Sci.* **239**, 1109-1114.
985 https://doi.org/10.1016/j.procs.2024.06.276 (2024).

986 [44]. Klein, S. P., Spieth, P., & Söllner, M. *Employee acceptance of digital*
987 *transformation strategies: A paradox perspective*. *J. Prod. Innov. Manag.*
988 **41**(5), 999-1021. https://doi.org/10.1111/jpim.12722 (2024).

989 [45]. Ortner, T., Hautz, J., Stadler, C., & Matzler, K. *Open strategy and digital*
990 *transformation: A framework and future research agenda*. *Int. J. Manag.*
991 *Rev.* https://doi.org/10.1111/ijmr.12379 (2024).

992 [46]. Peschl, A., & Schüth, N. J. *Facing digital transformation with resilience-*
993 *operational measures to strengthen the openness towards change*.
994 *Procedia Comput. Sci.* **200**, 1237-1243.
995 https://doi.org/10.1016/j.procs.2022.01.324 (2022).

996 [47]. Edwards, J. R., & Lambert, L. S. *Lambert, Methods for integrating*
997 *moderation and mediation: a general analytical framework using*
998 *moderated path analysis*. *Psychol. methods* **12**(1), 1-22.
999 https://doi.org/10.1037/1082-989X.12.1.1 (2007).

1000 [48]. Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. *Sources of method*
1001 *bias in social science research and recommendations on how to control it*.
1002 *Annu. Rev. Psychol.* **63**(1), 539-569.
1003 https://doi.org/10.1146/annurev-psych-120710-100452 (2012).

1004 [49]. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. *Statistical power*
1005 *analyses using G* Power 3.1: Tests for correlation and regression*
1006 *analyses*. *Behav. Res. methods* **41**(4), 1149-1160.
1007 https://doi.org/10.3758/BRM.41.4.1149 (2009).

1008 [50]. Li, H., Wu, Y., Cao, D., & Wang, Y. *Organizational mindfulness towards*
1009 *digital transformation as a prerequisite of information processing*
1010 *capability to achieve market agility*. *J. Bus. Res.* **122**, 700-712.
1011 https://doi.org/10.1016/j.jbusres.2019.10.036 (2021).

1012 [51]. Chang, Y.-Y., Wannamakok, W., & Lin, Y.-H. *Work conformity as a*
1013 *double-edged sword: Disentangling intra-firm social dynamics and*
1014 *employees' innovative performance in technology-intensive firms*. *Asia*
1015 *Pac. Manag. Rev.* **28**(4), 439-448.
1016 https://doi.org/10.1016/j.apmrv.2023.01.003 (2023).

1017 [52]. Hinduan, Z. R., Wilson-Evered, E., Moss, S., & Scannell, E. *Leadership,*
1018 *work outcomes and openness to change following an Indonesian bank*
1019 *merger*. *Asia Pac. J. Hum. Resour.* **47**(1), 59-78. (2009)
1020 https://doi.org/10.1177/1038411108099290.

1021 [53]. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. *When to use and how*
1022 *to report the results of PLS-SEM*. *Eur. Bus. Rev.* **31**(1), 2-24.

1023 <https://doi.org/10.1108/EBR-11-2018-0203> (2019).

1024 [54]. Henseler, J., Ringle, C. M., & Sinkovics, R. R. The use of partial least
1025 squares path modeling in international marketing, in New challenges to
1026 international marketing. Emerald Group Publishing Limited. 277-319.
1027 [https://doi.org/10.1108/S1474-7979\(2009\)0000020014](https://doi.org/10.1108/S1474-7979(2009)0000020014) (2009).

1028 [55]. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., and Tatham, R.
1029 Multivariate data analysis, in Multivariate data analysis. 785-785. (2010).

1030 [56]. Hair J. F., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. Partial least
1031 squares structural equation modeling (PLS-SEM) An emerging tool in
1032 business research. *Eur. Bus. Rev.* **26**(2), 106-121.
1033 <https://doi.org/10.1108/EBR-10-2013-0128> (2014).

1034 [57]. Tabri, N., & Elliott, C. M. Elliott, Principles and practice of structural
1035 equation modeling. *Can. Grad. J. Sociol. Criminol.* **1**(1), 59-60.
1036 <https://doi.org/10.15353/cgjsc.v1i1.3787> (2012).

1037 [58]. Henseler, J., Ringle, C. M., & Sarstedt, M. A new criterion for assessing
1038 discriminant validity in variance-based structural equation modeling. *J.*
1039 *Acad. Mark. Sci.* **43**, 115-135. <https://doi.org/10.1007/s11747-014-0403-8>
1040 (2015).

1041 [59]. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. Common
1042 method biases in behavioral research: a critical review of the literature
1043 and recommended remedies. *J. Appl. Psychol.* **88**(5), 879.
1044 <https://doi.org/10.1037/0021-9010.88.5.879> (2003).

1045 [60]. Podsakoff, P. M., & Organ, D. W. Self-reports in organizational research:
1046 Problems and prospects. *J. Manag.* **12**(4), 531-544.
1047 <https://doi.org/10.1177/014920638601200408> (1986).

1048 [61]. Woszczynski, A. B., & Whitman, M. E. The problem of common method
1049 variance in IS research, in The handbook of information systems research.
1050 IGI Global Scientific Publishing. 66-78.
1051 <https://doi.org/10.4018/978-1-59140-144-5.ch005> (2004).

1052 [62]. Cheung, G. W., & Rensvold, R. B. Rensvold, Evaluating goodness-of-fit
1053 indexes for testing measurement invariance. *Struct. Equ. Model.* **9**(2),
1054 233-255. https://doi.org/10.1207/S15328007SEM0902_5 (2002).

1055 [63]. Hayes, A.F. An index and test of linear moderated mediation. *Multivar.*
1056 *Behav. Res.* **50**(1), 1-22. <https://doi.org/10.1080/00273171.2014.962683>
1057 (2015).

1058 [64]. Subramaniam, S. N., Dorasamy, M., & Malarvizhi, C. A. N. Personality
1059 trait and employee performance in digital transformation: the mediating
1060 effect of employee dynamic capability. *Cogent Bus. Manag.* **12**(1),
1061 2448774. <https://doi.org/10.1080/23311975.2024.2448774> (2025).

1062 [65]. Vial, G. Understanding digital transformation: A review and a research
1063 agenda. *J. Strateg. Inf. Syst.* **28**(2), 118-144.
1064 <https://doi.org/10.1016/j.jsis.2019.01.003> (2019).

1065 [66]. Hinings, B., Gegenhuber, T., & Greenwood, R. Digital innovation and
1066 transformation: An institutional perspective. *Inf. Organ.* **28**(1), 52-61.

1067 <https://doi.org/10.1016/j.infoandorg.2018.02.004> (2018).
1068

ARTICLE IN PRESS