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Understanding how cyanobacterial blooms emerge from biological processes requires models 
that account for both rapid physiological adjustments and slower nutrient dynamics. In this study, 
we analyze a cyanobacterial-phosphorus model using dynamic simulation, quasi-steady-state 
approximation (QSSA), single-parameter sensitivity analysis, and global uncertainty propagation. 
Comparisons between the full model and QSSA show that while QSSA can reproduce the rapid 
equilibrium of the internal phosphorus quota, it systematically overestimates dissolved phosphorus 
during periods of high external loading because it ignores short-term biomass-nutrient feedbacks. 
Sensitivity analyses reveal threshold-like transitions in biomass behavior for initial biomass and 
growth rate. The model abruptly shifts from low steady state biomass to one in which biomass grows 
rapidly. In a broader parameter set, the model indicates two qualitatively distinct long-term states. 
A low-biomass, light-limited state and a high-biomass, bloom-prone state reflect the existence of a 
bifurcated structure in the ecological dynamics. Uncertainty analysis confirms the coexistence of two 
distinct dynamical states including rapid collapse to a low-biomass state and sustained convergence 
toward a high-biomass attractor under combinations of growth capacity, light availability, and nutrient 
loading. Partial rank correlation analysis identifies growth rate and light attenuation as dominant 
controls on bloom magnitude, while nutrient storage parameters exert secondary influence. This study 
indicates that cyanobacterial model can experience ecological bifurcations, where small changes in 
environmental or physiological conditions shift the ecosystem between alternative stable states. 
Therefore, we show a vital characteristic of such models by combining fast–slow analysis, sensitivity 
analysis, and global uncertainty propagation which is crucial for studying eutrophication and designing 
effective nutrient management strategies.
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Blooming of cyanobacteria is becoming more of a concern for worldwide aquatic ecosystems. Nutrient 
enrichment, along with climate change, is increasing cyanobacteria and their impact1. Toxic blooms decrease 
water quality, deplete oxygen, disrupt aquatic food webs, and increase the cost of water treatment. They also 
threaten human health and the health of entire ecosystems2,3. Negative economic impacts due to cyanobacterial 
harmful algal blooms (CHABs) include loss of recreational and tourism opportunities, and the health risks 
CHABs pose when water used for irrigation of crops is contaminated4,5. CHAB formation and persistence are 
usually dependent on the availability of nutrients, especially phosphorus, which is often the key limiting nutrient 
in freshwater systems6,7. However, the relationship between nutrient availability and CHABs dynamics is more 
complex than simply considering the effect of external nutrient concentrations. Cyanobacteria have internal 
nutrient storage systems that enable them to grow even when external nutrient levels appear low8. This feature 
provides the potential for rapid development of algal blooms and eutrophication in aquatic environments. This 
process is influenced by intracellular nutrient quotas, referring to the ratio of internal nutrient content to cellular 
biomass, which can change significantly based on environmental conditions9,10.

Stoichiometry can help explain links between nutrient–growth relationships in ecological systems11,12. This 
is particularly relevant for phytoplankton dynamics, integrating cellular processes such as nutrient acquisition 
and storage with growth and competitive dominance13,14. It highlights that organisms do not passively absorb 
nutrients but flexibly adjust their internal composition, modifying growth and ecological success. Recent research 
in stoichiometric models advances simplistic constant nutrient ratios toward flexible internal quotas and variable 
uptake rates13,15. These developments improve understanding of transient dynamics in bloom formation, where 
rapid changes in internal nutrient concentration allow sudden growth under favorable conditions16,17. Multi-
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scale analysis has been useful in characterizing parameter regimes supporting rapid blooms, and in describing 
lags between uptake, growth, and nutrient depletion7.

Integrating internal phosphorus quota dynamics and external nutrient availability is essential for 
understanding CHAB formation. The Droop model links internal nutrient quotas to growth rate, and remains 
foundational in phytoplankton modeling, emphasizing internal nutrient storage as the ultimate constraint while 
uptake depends on both external concentration and cellular quota18–20. Nevertheless, much remains unknown 
about nutrient–algal interactions in CHABs. The spatial-temporal dynamics of these interactions are often 
poorly represented. Internal quota regulation operates on hours-to-days scales, whereas ecosystem nutrient 
cycles evolve seasonally or annually. This mismatch in timescales is central to the challenge.

Recent experimental work highlights further complexities that must be integrated into coupled models. 
Multiple timescales generate behavioral complexity, including oscillations and abrupt shifts between 
equilibria21–23. Understanding these dynamics is fundamental for predicting bloom timing and designing 
interventions, as management actions can produce very different outcomes depending on system state24,25. 
Mathematical tools such as sensitivity analysis and multi-scale techniques provide promising routes to identify 
parameter thresholds underlying rapid transitions26. From a management perspective, coupled models which 
incorporates internal phosphorus dynamics outperform traditional models by considering lag times caused by 
nutrient reductions, addressing internal loading, and assessing intervention impacts27,28.

Our literature review reveals that most cyanobacteria–phosphorus models have focused on equilibrium 
behavior, single deterministic trajectories, or steady-state nutrient–biomass relationships in lake ecology. As a 
result, comparatively little attention has been given to how fast physiological processes (such as internal nutrient 
storage and growth) interact with slow ecosystem-scale nutrient dynamics to shape transient behavior, regime 
selection, and long-term system outcomes, specifically under realistic parameter uncertainty. In addition, 
quasi–steady-state reductions do not explicitly account for evaluating how the removal of fast transients alters 
nutrient–biomass feedbacks. Therefore, it remains unclear whether commonly used mechanistic models can 
reveal distinct regime changes, or how sensitive such regimes are to growth capacity, light limitation, and 
nutrient loading.

In this study, we address this gap by combining full dynamic simulations, fast–slow analysis, sensitivity 
experiments, and global uncertainty propagation in a physiologically structured cyanobacteria–phosphorus 
model. Rather than focusing solely on equilibrium solutions, we examine transient dynamics across a broad 
parameter space. This approach reveals the presence of alternative biomass regimes from low-biomass to bloom-
prone or high-biomass states suggesting bifurcation-like behavior driven by interactions between growth, light 
availability, and nutrient supply. By identifying the processes that govern regime selection and quantifying how 
uncertainty propagates through the system, this work provides new mechanistic insight into threshold behavior 
in cyanobacterial bloom dynamics and highlights the importance of timescale interactions in eutrophication 
modeling.

Methodology
Ecological modeling framework
To investigate the ecological dynamics of cyanobacteria and phosphorus under seasonal forcing, the mechanistic, 
stoichiometric model based on cell-quota formulation was used9,18. The model represents the coupled dynamics 
of algal biomass B(gC m−3), internal cellular phosphorus quota Q(gP g−1C), and dissolved inorganic 
phosphorus P (gP m−3) within a well-mixed epilimnion layer of depth zm (m).

The dimensional model equations are:

	
dB

dt
= B [µ (Q, B) − ν r − kf ]� (1)

	
dQ

dt
= ρ (P, Q) − µ (Q, B)Q� (2)

	
dP

dt
= I (t) − kf P − Bρ (P, Q)� (3)

where t is time (days), µ (Q, B) is the specific growth rate 
(
d−1)

, ρ (P, Q) is the phosphorus uptake rate (
gP g−1C d−1)

, ν r  is the respiration/mortality rate 
(
d−1)

, kf = D/zm is the flushing rate 
(
d−1)

, I (t) is 
the external phosphorus load 

(
gP m−3d−1)

, modeled as a sinusoidal function to represent seasonal variability.
The growth rate depends on the internal quota Q:

	
µ (Q, B) =

{
r

(
1 − Qm

Q

)
h (B) , Q > Qm

0, Q ≤ Qm
� (4)

where r is the maximum specific growth rate (d⁻¹), and Qm is the minimum subsistence quota (gP g⁻¹C). 
The light limitation function h (B) represents vertical light attenuation due to background turbidity and self-
shading24:

	
h (B) = 1

zmKT (B) ln
(

H + Iin

H + Iine−KT (B)zm

)
� (5)
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	 KT (B) = Kbg + kB� (6)

where Kbg
(
m−1)

 is the background light extinction, k
(
m2g−1C

)
 is the specific light attenuation by 

biomass, Iin is incident irradiance ( µ mol m−2s−1), and H  is the half-saturation constant for light limitation 
( µ mol m−2 s−1)

.
The phosphorus uptake rate follows a Michaelis–Menten form with an upper quota limitation:

	
ρ (P, Q) = ρ m

P

M + P

(
1 − Q

QM

)
� (7)

where ρ m is the maximum uptake rate 
(
gP−1 C d−1)

, M  is the half-saturation constant for phosphorus 
uptake ( gP m−3), and QM  is the maximum internal quota ( gP g−1C).

The external phosphorus load I (t) is defined as a seasonal sinusoid:

	
I (t) = Imean + AIsin

(
2π t

Tp

)
� (8)

where Imean
(
gP m−3d−1)

 is the annual mean load, AI  is its amplitude, and Tp is the annual period (days).

Quasi–steady state analysis (QSSA)
The cyanobacterial–phosphorus system exhibits processes on disparate timescales. Fast variables including 
B and Q controlled by rapid physiological responses (growth and uptake). However, a slow variable like P is 
influenced by external forcing and cumulative biomass feedbacks28.

The QSSA assumes that B and Q reach a local steady state relative to the slower dynamics of P . Setting 
dB/dt = dQ/dt = 0 in Eqs. (1) and (2) yields:

	 0 = B (µ (Q, B) − ν r − kf )� (9)

	 0 = ρ (P, Q) − µ (Q, B)Q� (10)

The first equation gives a condition for equilibrium growth:

	 µ (Q, B) = ν r + kf � (11)

which can be substituted into the second to obtain Q* (P ). Combining Eqs. (4)-(8) gives an implicit relation 
between Q and P :

	
ρ m

P

M + P

(
1 − Q

QM

)
= Q (ν r + kf )� (12)

Equation (12) can be solved numerically for Q* (P ). The steady biomass B* is obtained from Eq. (11) and the 
light limitation function h (B):

	

h
(
B*)

= ν r + kf

r
(

1 − Qm

Q*(P )

) � (13)

Substituting B* (P ) and Q* (P ) into the slow equation for P  yields a one-dimensional slow manifold:

	
dP

dt
= I (t) − kf P − B* (P ) ρ

(
P, Q* (P )

)
� (14)

This reduced form allows analytical inspection of phosphorus persistence and sensitivity to seasonal load 
variation without simulating full three-variable dynamics.

Sensitivity analysis
To evaluate the response of the system to initial conditions and key physiological parameters, a local–global 
sensitivity analysis was performed. We varied initial biomass B0

(
0.01 − 100gC m−3)

 and initial phosphorus 
P0

(
0.1 − 1gP m−3)

 in logarithmic steps, solving Eqs. (1)-(3) for 730 days. Sensitivity was quantified by the 
elasticity of peak biomass to initial value:

	
SB0 = ∆ ln (peakB)

∆ ln (B0) � (15)
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Four key parameters were analyzed: the growth rate (rs), uptake rate (ρ m), and nutrient states (B and 
P ). Each parameter (pi) was altered by ± 20% around its nominal value while others were fixed, and the 
normalized sensitivity coefficient was computed:

	
SX

pi
= pi

X

∂ X

∂ pi
≈ pi

X

X (pi + ∆ pi) − X (pi − ∆ pi)
2∆ pi

� (16)

where X  denotes an output metric (peak B, mean B, or final P) and X  is its baseline value. The analysis was 
implemented numerically using centered finite differences.

Uncertainty analysis
To propagate parametric uncertainty through the ecological model, a Latin Hypercube Sampling (LHS) 
approach was used29. The uncertain parameters were sampled from prescribed probability distributions. For 
each ensemble member i, the model (Eqs. 1–3) was integrated over t ∈ [0,730] days using ODE15s. Output 
statistics such as peak biomass, final biomass, mean biomass over the last year, time to bloom, and time to 
periodic steady-state were extracted.

Let p(i) = [r, ρ m, Qm, QM , k, Kbg, M, AI ](i) denote the parameter vector of run i. The ensemble means 
and quantile envelopes were computed as:

	
X (t) = 1

N

∑
N
i=1 X(i) (t) , Xp,q (t) = Quantilep,q

({
X(i) (t)

}N

i=1

)
� (17)

for percentiles p = 5, q = 95.
Partial rank correlation coefficients (PRCC) between ranked inputs and outputs were used to assess global 

sensitivities26:

	
PRCCj,k = corr

(
rxj −

′
rxj , ryk −

′
ryk

)
� (18)

where rxj  and ryk  are rank-transformed variables and hats denote residuals from multiple linear regressions 
excluding the jth variable. Significant PRCC values ( | PRCC | > 0.3, p < 0.05) identify dominant parameters 
affecting model responses.

Model parameters and simulation
We used MATLAB 2012 to solve deferential equations with ODE15s. Table  1 shows all the parameters and 
sources used to simulate the full dynamic model.

Results and discussion
At first step, the dynamic behaviors of biomass B(t), internal phosphorus quota Q(t), and dissolved phosphorus 
P(t) are simulated in two forms of the full three-variable ODE system and the quasi–steady-state approximation 
(QSSA) for one 365 days under a sinusoidal external phosphorus input (Fig. 1).

The full ODE simulation shows a rapid decline in cyanobacterial biomass during the first 40 days, decreasing 
from an initially high value (1 g C m⁻³) to a very low equilibrium state (0.2 g C m⁻³). The QSSA biomass trajectory 
is essentially flat at this low equilibrium value throughout the year. This occurs because the QSSA assumes that 

Symbol Parameter Unit Nominal value Range Source

r Max. growth rate d⁻¹ 1 0.5–2.0.5.0 Reynolds9; Jöhnk et al24.

Qm Min. quota gP g⁻¹C 0.004 0.002–0.008 Droop18; Huisman et al1.

QM Max. quota gP g⁻¹C 0.04 0.02–0.06 Droop18

νr Respiration/mortality d⁻¹ 0.35 0.2–0.5 Reynolds9

Kbg Background light extinction m⁻¹ 0.3 0.2–0.6 Jöhnk et al24.; Staehr et al30.

k Self-shading coefficient m² g⁻¹C 0.4 × 10⁻³ 0.0002 − 0.0008 Jöhnk et al24.

Iin Incident irradiance µmol m⁻² s⁻¹ 300 200–500 Sterner & Elser31

H Light half-saturation µmol m⁻² s⁻¹ 120 100–200 Huisman et al1.

ρm Max. uptake rate gP g⁻¹C d⁻¹ 1 0.5–2.0.5.0 Reynolds9

M Half-sat. const. for uptake gP m⁻³ 1.5 × 10⁻³ 0.0005 − 0.003 Salmaso32

D Water inflow rate m d⁻¹ 0.02 0.01–0.05 Field estimates

zm Mixed-layer depth m 7 5–10 Local monitoring

kf Flushing rate D/zₘ d⁻¹ 0.0029 0.001–0.007 Computed

AI Forcing amplitude gP m⁻³ d⁻¹ 0.77 0.3–1.0.3.0 Seasonal load data

Imean Mean forcing gP m⁻³ d⁻¹ 0.77 0.3–1.0.3.0 Seasonal load data

Tp Forcing period days 365 一 Annual cycle

Table 1.  Model parameters and sources.
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biomass instantaneously equilibrates to conditions determined by the slowly varying phosphorus concentration. 
The full model reveals a short fast transient driven by rapid physiological turnover in B and Q, whereas the QSSA 
explicitly removes these transients. The internal quota Q(t) in the full ODE simulation, quickly increases toward 
the upper physiological bound QM and remains at this maximum throughout almost the entire simulation. 
This saturation of the quota arises due to the external phosphorus and a fast uptake relative to growth (high ρm 
compared to µ). The QSSA reproduces this behavior almost exactly. Because the quota is a fast variable, it rapidly 
adjusts to the slow state of phosphorus availability.

The greatest discrepancy between the two modeling approaches is in the dissolved phosphorus P(t). In the 
dynamic model, phosphorus shows a gradual increase through the year, rising from near zero to roughly 180 mg 
m⁻³ by day 200. This slow accumulation reflects the balance between external loading and weak uptake by the 
biomass. However, the QSSA solution produces a much stronger seasonal oscillation, with peak phosphorus 
concentrations exceeding 500 mg m⁻³. The reason is that in the reduced QSSA system, biomass is held at its 
equilibrium, which changes only slowly. During periods of high external loading, the reduced biomass has 
insufficient uptake, and phosphorus rises more dramatically. After approximately day 200, both curves begin to 
converge as the phosphorus load decreases and the influence of uptake becomes more linear. This overestimation 
of phosphorus indicates a well-known effect of QSSA reductions. By removing transient biomass responses, the 
system underestimates the short-term feedback of algae on phosphorus, leading to exaggerated P excursions.

Sensitivity analysis
We performed a group of simulations of the cyanobacteria–phosphorus model based on varied initial biomass 
on a logarithmic grid from 0.01 to 1 gC m⁻³. All other parameters and initial conditions are fixed. For each run 
we recorded the full time series of B(t), P(t), and Q(t) as well as the steady-state time. These steady times are 
marked as colored symbols on the time-series (Fig. 2). All trajectories for B collapse toward a common low steady 
biomass (0.266 g C m⁻³) after an initial transient. For small B0, the system shows a slow decay and long transient 
(many tens of days) before settling. For B0 less than 0.26 gC m⁻³ the peak biomass is essentially insensitive to B0 

Fig. 1.  Simulation results for the full three-variable ODE system and the QSSA for 365 days.
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(the curve is flat and near zero), meaning the system’s early dynamics do not amplify small initial biomass into 
large blooms. When initial biomass is small, uptake capacity Bρ(P, Q) is small, therefore dissolved phosphorus 
accumulates driven by external loading before biomass can respond.

Quota rapidly saturates (fast variable), but growth µ(Q, B) remains small because B is small. Therefore, system’s 
transient is governed by the slow P accumulation and biomass cannot amplify. Also, the local elasticity of peak 
biomass with respect to B0 is zero in this regime. Practically, doubling B0 results essentially no change in peak 
biomass. For larger B0, some trajectories show a short transient before converging and biomass monotonically 
declines toward the same attractor.

The initial B0 is the maximum for each run and consequently the measured peak increases with B0. This is 
because a large initial biomass instantaneously provides uptake capacity and hence can temporarily depress P. In 
addition, other processes (respiration, flushing, light limitation) relax biomass downward to the attractor. There 
is no sustained positive feedback to maintain the large initial biomass: it is a transient seed. Elasticity rises toward 
1 in this case. In other words, peaks scale roughly proportionally with B0. The final biomass at the end varies only 
in the third or fourth decimal place (around 0.2662 gC m⁻³) over the entire range of B0. This means that despite 
large differences in early transient peaks, all trajectories converge to the same long-term attractor.

Fig. 2.  Summary diagnostics computed for each run include peak biomass, final biomass, the local elasticity of 
peak biomass with respect to B0, and steady-state time.
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Figure 3 indicates that the biomass remains low and approaches the steady-state for low r slowly. Quotas 
rapidly saturate to QM, and phosphorus steadily accumulates because uptake is weak relative to input and flushing. 
For intermediate r, the trajectories show longer, sometimes oscillatory transients. Biomass can temporarily 
change before settling. The biomass steady marker moves right for some higher growth rates. As r increases, 
biomass often starts high and decays to the same attractor. The uptake is rapid and phosphorus levels remain 
lower (or rise less) than for small r. The growth rate r adjusts how quickly cells convert internal quota to biomass 
(µ = r(1 − Qm/Q)h(B)). When r is small, uptake is not translated rapidly into biomass and P accumulates leads to 
B stays low. When r is large, uptake can be consumed quickly, which transiently increases uptake capacity (but 
other losses still drive the long-term attractor).

Peak biomass is nearly constant at very low r, then there is an abrupt change around a critical r (about 1 d⁻¹). 
Therefore, it can be seen that there are two regimes. A low-r regime where the system cannot intensify biomass 
(peaks insensitive to r), and a regime around the critical r where dynamics change qualitatively.

The sharp change indicates a nonlinear response where small increases in r near that critical value produce 
large changes in observed peak biomass. Elasticity with respect to P0 is near zero for low r. It will be negative and 
large in magnitude across the transition. This indicates that once the system is in the sensitive band, increases in 
r reduce the measured peak P. Elasticity with respect to B is near zero for low r and rises steeply in the threshold. 
Small changes in r lead to changes in peak biomass (elasticity > 1). The cyanobacterial respiration νr is varied 
across the range 0.05–0.6 d⁻¹. For each value, the full three-state model is performed. Figure 4 present the time 
series B(t), P(t), and Q(t) with summary of other metrics.

All state variables rapidly decline from the initial value and reach to a very similar low equilibrium (0.26 
gC m⁻³). As νr increases the early transient downfalls quickly but the time of steady-state condition (the red 
markers) moves to larger times. Dissolved P increases slowly during the simulation due to external loading and 
the relatively low uptake capacity. Q equilibrates extremely fast and is nearly saturated for all νr values. Increasing 

Fig. 3.  Effect of varying growth rate r. For every simulation the red, black, and green markers show the time 
when biomass B first attains the steady.
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respiration shifts the timescale on which biomass relaxes to the attractor but does not cause qualitatively different 
time series shapes. Increasing νr surges the loss term in the biomass equation, reducing net growth potential 
(µ − νr − kf). Lower net growth reduces long-term biomass and thus the cumulative phosphorus uptake capacity. 
The observed small decrease in Pmax and Pfinal with increasing νr indicates the net system response is that a 
higher loss rate actually slightly reduces P accumulation. The elasticity of P is negative across the range and its 
absolute magnitude increases as νr grows. A 1% increase in νr at high loss rates is associated with several percent 
decrease in Pmax. The elasticity of B is approximately zero across the domain. Peak biomass does not respond (in 
proportional terms) to changes in νr as the initial value is the peak.

Uncertainty analysis
We applied uncertainty analysis in eight model parameters including maximum growth rate r, maximum 
P-uptake ρm, minimum quota Qm, maximum quota QM, algal self-shading coefficient k, background light 
attenuation Kbg, P half-saturation M, and seasonal P loading amplitude AI using a Latin-hypercube. For each 
ensemble member the three-state model was simulated in 2 years with ODE15s. Summaries were computed 
as the sample median and the 5–95% quantile envelope. Global sensitivities of scalar outputs to inputs were 
evaluated with Partial Rank Correlation Coefficients (PRCCs). Figure 5 describes the principal results.

The uncertainty analysis reveals two fundamentally different attractor pathways for biomass. For most 
parameter samples, biomass has a rapid collapse during the first 20–40 days. It reaches a low steady-state around 
0.2 − 0.3 gC m− 3 with the 5–95% envelope. In this condition, the regime corresponds to light limitation (high 
k or Kbg), insufficient physiological capacity (low r or low ρm), or strong losses. Another trend can be seen as 
high-biomass convergence. Here, the subset of simulations indicates the opposite behavior. Biomass does not 
decline. Instead, B increases over time from its initial value. Trajectories converge toward a high steady-state 
value, exceeding B = 1 gC m− 3. This corresponds to parameter combinations where growth capacity is strong 

Fig. 4.  B(t), P(t), and Q(t) for the sampled νr values. The eight subplots show how these metrics change across 
the νr.
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(high r), light limitation is weak (low k and low Kbg), uptake is large (ρm), and seasonal P loading amplitude AI 
is high. These conditions allow cyanobacteria to maintain positive net production.

The phosphorus increases continuously over the two-year simulation and the 5–95% envelope widens 
with time as external loading accumulates. This indicates that while biomass uncertainty decreases over time, 
uncertainty in dissolved P increases. The Peak biomass histogram indicates that in most simulations, the initial 
value is the peak. It means that changing the set of parameters leads to lower steady state biomass concentration. 
The final biomass distribution is narrow, indicating that almost all parameter combinations converge to similar 
final B values by the end of the simulation window. The time required for biomass to reach steady behavior 
exhibits a broader distribution. Many simulations settle within a range of 10–100 days, but a non-negligible 
fraction require much longer. This reflects parameter combinations that weaken the fast-stabilizing feedback 
(e.g., high loss rates or strong light attenuation) and therefore slow convergence.

The PRCC bar chart quantifies partial correlations between each input parameter and the output peak 
biomass. Statistically significant and practically important correlations can be inferred where absolute PRCC 
is large (conventionally |PRCC|>0.3) and p-values are small. PRCC for r is positive and strong (0.35). Higher 
growth rate increases the peak biomass. This is expected when physiological growth capacity is larger. ρm is slight 
negative which means that greater uptake capacity reduces the available external phosphorus, which tends to 
lower peak biomass. This implies strong uptake efficiency decreases bloom magnitude.

PRCC for Qm is weak negative presenting a higher minimum quota reduces specific growth (1 − Qm/Q 
becomes smaller), thereby decreasing peak biomass. Similarly, QM is small negative. It shows that slightly larger 
storage capacity has a minor negative association with peak biomass. This effect is small and likely parameter-
interaction dependent. Larger self-shading reduces light penetration and growth, substantially reducing peak 
biomass. Thus, k is strongly negative and is one of the most influential parameters. like k, higher background 
turbidity lowers light availability and strongly reduces peak biomass (Kbg is strongly negative). Its magnitude is 
comparable to k and thus both light-related parameters dominate negative sensitivity. Increasing M raises the 
external P level needed to saturate uptake. It reduces uptake efficiency at low P and allows larger peaks. Stronger 
seasonal loading increases available P and thereby peak biomass (moderate positive PRCC).

Biological perspective
The full cyanobacteria–phosphorus model reveals an early transient that is absent from the quasi–steady-state 
approximation. When initialized with relatively high biomass, cyanobacteria rapidly decline during the first 
30–40 days, after which biomass stabilizes at a low state. Biologically, this initial collapse reflects the mismatch 
between uptake capacity and environmental constraints. Although internal phosphorus quota increases quickly 
due to rapid uptake, growth remains limited by light attenuation, respiration, and flushing losses. As a result, 
stored phosphorus cannot be efficiently converted into new biomass, leading to a net decline.

The QSSA removes this transient entirely by assuming that biomass instantaneously adjusts to the slowly 
varying nutrient environment. While this assumption indicates the fast equilibration of internal quota, it 

Fig. 5.  Uncertainty analysis of the cyanobacteria–phosphorus model. Simulations (100 runs) show biomass 
B(t) and phosphorus P(t) with median and 5–95% envelopes (shading). Histograms summarize peak biomass, 
final biomass, and time to steady behavior. Partial rank correlation coefficients identify the dominant 
parameters.

 

Scientific Reports |         (2026) 16:4702 9| https://doi.org/10.1038/s41598-025-34967-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


suppresses the short-term feedback between biomass and phosphorus uptake. Consequently, QSSA simulations 
exaggerate dissolved phosphorus accumulation during periods of high external loading, because the temporary 
uptake capacity provided by transient biomass is effectively ignored. From a biological perspective, this implies 
that reduced models may overestimate nutrient concentrations during bloom onset or collapse phases, even if 
long-term averages are well captured.

Varying the initial biomass over two orders of magnitude reveals a striking contrast between short-term 
sensitivity and long-term resilience. This ecologically indicates that small cyanobacteria concentrations do not 
necessarily trigger blooms, even under favorable nutrient inputs. In contrast, when initial biomass is large, it 
immediately provides substantial uptake capacity and transiently suppresses dissolved phosphorus. However, this 
advantage is short-lived. Light limitation, respiration, and flushing rapidly reduce biomass, and all trajectories 
ultimately converge to the same low seasonal attractor. In this regime, the initial biomass simply defines the peak 
value, and elasticity approaches unity.

Changing the maximum growth rate reveals a nonlinear transition in system behavior. Biologically, this 
behavior reflects an ecological threshold. A minimum physiological growth capacity is required for cyanobacteria 
to exploit available nutrients. Below this threshold, blooms cannot form regardless of nutrient supply. Near the 
threshold, the system becomes highly sensitive to environmental variability, consistent with observed interannual 
bloom variability in lakes with similar nutrient loads.

In contrast to growth rate, increasing cyanobacterial respiration does not alter the qualitative structure of 
biomass trajectories. Instead, it modifies the rate at which the system approaches equilibrium. From a biological 
perspective, respiration acts as a damping mechanism that weakens population resilience without changing the 
ecological regime. This suggests that management actions increasing loss processes (e.g., grazing, flushing) may 
delay bloom recovery but are unlikely to shift the system into an alternative stable state on their own.

The PRCC analysis identifies light attenuation and growth rate as the dominant controls on peak biomass. 
Parameters governing light availability employ strong negative influence, confirming that light limitation remains 
a primary constraint on cyanobacterial blooms even in nutrient-rich systems. Growth rate exerts a strong 
positive influence, reinforcing the importance of physiological traits and temperature-dependent processes. 
Nutrient uptake parameters affect phosphorus accumulation rather than biomass amplification, highlighting a 
separation between drivers of bloom intensity and drivers of nutrient cycling.

Conclusion
This study applies to understand how a cyanobacteria–phosphorus model behaves under realistic environmental 
forcing, and how its predictions respond to uncertainty in ecological parameters and initial conditions. By 
combining dynamical analysis, sensitivity analysis, and global uncertainty propagation, we aimed to reveal not 
only what the model predicts, but how it behaves and which processes govern its. The comparison between 
the full ODE system and the QSSA reduction provided the first clear insight. Although the QSSA captured 
fast physiological equilibrium of the internal phosphorus quota, it systematically misrepresented the transient 
interactions between biomass and nutrients. The full model presented a rapid 40-day decline in biomass followed 
by slow re-equilibration driven by the interplay of uptake, growth, and light limitation. QSSA, by construction, 
removed this transient entirely, holding biomass too close to its long-term equilibrium. As a result, the reduced 
system exaggerated dissolved phosphorus excursions because it did not account for short-lived but ecologically 
important feedbacks between biomass and nutrient uptake. This mismatch highlights that while QSSA is valuable 
for long-term or equilibrium analyses, transient dynamics in eutrophication processes cannot be safely ignored 
when management-relevant time horizons (weeks to months) are considered.

The single-parameter sensitivity analyses acknowledges that small variations in initial conditions or growth 
parameters can lead to qualitatively different transient behaviors. Varying the initial biomass showed that the 
system is robust in the long run but early responses depend strongly on initial conditions. When initial biomass 
is small, the system behaves passively. In this regime, elasticity of peak biomass with respect to the initial biomass 
was essentially zero. For example, doubling the initial concentration barely altered the bloom. Peak biomass 
scaled roughly proportionally with B₀, and elasticity approached one. But none of these initial differences 
changed the long-term outcome. Varying the growth rate r revealed the presence of threshold-like behaviors. 
At low r, biomass remained at low values and the peaks were insensitive to changes in growth rate. However, 
around a critical value, the model showed a sharp transition where small increases in r caused large changes in 
the biomass peak. This nonlinear response is characteristic of trophic thresholds, where systems switch abruptly 
between low and high biomass states. In contrast, the respiration parameter νr changes the time scale rather than 
the trend. As respiration increases, biomass initially decreases more rapidly and then tends toward a steady state.

The uncertainty analysis combined all these findings and revealed a key conclusion. The model allows for two 
distinct regimes depending on the combination of physiological and environmental parameters. Most parameter 
sets produced a clear outcome (low biomass after the initial decline) that was consistent with the results of the 
sensitivity analyses. But a smaller subset of simulations showed that biomass steadily increased toward a steady-
state of high biomass of more than 1 gC/m3. This bifurcation naturally arises from interactions between light 
limitation, growth capacity, nutrient uptake, and phosphorus loading. In other words, the model predicts that 
lakes can be in a clear-water state or in a bloom-prone state, depending on the confluence of environmental forces 
and physiological characteristics. Soluble phosphorus behaved differently. The uncertainty increased over time 
as phosphorus accumulated in the system at rates dependent on the parameters. PRCC-based analysis helped 
explain why two regimes of low-biomass and high-biomass are established. Growth rate and light limitation 
parameters recognized as the key controls on peak biomass. Severe light attenuation significantly reduced 
growth. Uptake parameters shaped soluble phosphorus trends but played a secondary role in determining peak 
biomass. Together, these results suggest that light availability and physiological growth potential are key levers 
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governing biomass growth, while nutrient uptake kinetics and the external load primarily influence long-term 
phosphorus accumulation.

The findings of this study suggest that management interventions should be based on a careful assessment of 
the effectiveness of nutrient control scenarios, taking into account the dynamics and the possibility of biomass 
concentrations reaching different steady state concentrations as small changes in some parameters can lead 
to drastic changes in the state of the system. Finally, this simulation and uncertainty analysis demonstrate 
both the flexibility and fragility of cyanobacterial systems. The possibility of two steady states of low and high 
cyanobacterial concentrations in the system should be seriously considered in devising an effective plan.

Several limitations in the present framework should be acknowledged. The model is spatially homogeneous 
and therefore does not take into account vertical stratification, or sediment–water interactions that are known to 
influence cyanobacterial dynamics in real lakes. Important biological processes such as grazing, internal nutrient 
loading from sediments, and explicit temperature dependence are also omitted. In addition, the emergence of 
alternative biomass regimes is identified numerically through transient dynamics and sensitivity patterns rather 
than by formal bifurcation analysis. These limitations point toward future work, including the extension of the 
model to stratified or spatially explicit systems, incorporation of temperature- and food-web processes. Coupling 
such mechanistic models with long-term monitoring data may further enable early detection of regime shifts 
and improve the predictability of algal bloom.

Data availability
All data generated or analyzed during this study are included in this published article.
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