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Fast-slow dynamicsina
cyanobacteria—phosphorus model
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Understanding how cyanobacterial blooms emerge from biological processes requires models

that account for both rapid physiological adjustments and slower nutrient dynamics. In this study,

we analyze a cyanobacterial-phosphorus model using dynamic simulation, quasi-steady-state
approximation (QSSA), single-parameter sensitivity analysis, and global uncertainty propagation.
Comparisons between the full model and QSSA show that while QSSA can reproduce the rapid
equilibrium of the internal phosphorus quota, it systematically overestimates dissolved phosphorus
during periods of high external loading because it ignores short-term biomass-nutrient feedbacks.
Sensitivity analyses reveal threshold-like transitions in biomass behavior for initial biomass and
growth rate. The model abruptly shifts from low steady state biomass to one in which biomass grows
rapidly. In a broader parameter set, the model indicates two qualitatively distinct long-term states.

A low-biomass, light-limited state and a high-biomass, bloom-prone state reflect the existence of a
bifurcated structure in the ecological dynamics. Uncertainty analysis confirms the coexistence of two
distinct dynamical states including rapid collapse to a low-biomass state and sustained convergence
toward a high-biomass attractor under combinations of growth capacity, light availability, and nutrient
loading. Partial rank correlation analysis identifies growth rate and light attenuation as dominant
controls on bloom magnitude, while nutrient storage parameters exert secondary influence. This study
indicates that cyanobacterial model can experience ecological bifurcations, where small changes in
environmental or physiological conditions shift the ecosystem between alternative stable states.
Therefore, we show a vital characteristic of such models by combining fast-slow analysis, sensitivity
analysis, and global uncertainty propagation which is crucial for studying eutrophication and designing
effective nutrient management strategies.

Keywords Algal bloom model, Quasi-steady-state approximation, Sensitivity analysis, Uncertainty
propagation

Blooming of cyanobacteria is becoming more of a concern for worldwide aquatic ecosystems. Nutrient
enrichment, along with climate change, is increasing cyanobacteria and their impact!. Toxic blooms decrease
water quality, deplete oxygen, disrupt aquatic food webs, and increase the cost of water treatment. They also
threaten human health and the health of entire ecosystems*>. Negative economic impacts due to cyanobacterial
harmful algal blooms (CHABs) include loss of recreational and tourism opportunities, and the health risks
CHABs pose when water used for irrigation of crops is contaminated®>. CHAB formation and persistence are
usually dependent on the availability of nutrients, especially phosphorus, which is often the key limiting nutrient
in freshwater systems®’. However, the relationship between nutrient availability and CHABs dynamics is more
complex than simply considering the effect of external nutrient concentrations. Cyanobacteria have internal
nutrient storage systems that enable them to grow even when external nutrient levels appear low®. This feature
provides the potential for rapid development of algal blooms and eutrophication in aquatic environments. This
process is influenced by intracellular nutrient quotas, referring to the ratio of internal nutrient content to cellular
biomass, which can change significantly based on environmental conditions>!°.

Stoichiometry can help explain links between nutrient-growth relationships in ecological systems'"!2. This
is particularly relevant for phytoplankton dynamics, integrating cellular processes such as nutrient acquisition
and storage with growth and competitive dominance!>!. It highlights that organisms do not passively absorb
nutrients but flexibly adjust their internal composition, modifying growth and ecological success. Recent research
in stoichiometric models advances simplistic constant nutrient ratios toward flexible internal quotas and variable
uptake rates'>!°. These developments improve understanding of transient dynamics in bloom formation, where
rapid changes in internal nutrient concentration allow sudden growth under favorable conditions!®!”. Multi-
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scale analysis has been useful in characterizing parameter regimes supporting rapid blooms, and in describing
lags between uptake, growth, and nutrient depletion’.

Integrating internal phosphorus quota dynamics and external nutrient availability is essential for
understanding CHAB formation. The Droop model links internal nutrient quotas to growth rate, and remains
foundational in phytoplankton modeling, emphasizing internal nutrient storage as the ultimate constraint while
uptake depends on both external concentration and cellular quota'®-2°, Nevertheless, much remains unknown
about nutrient-algal interactions in CHABs. The spatial-temporal dynamics of these interactions are often
poorly represented. Internal quota regulation operates on hours-to-days scales, whereas ecosystem nutrient
cycles evolve seasonally or annually. This mismatch in timescales is central to the challenge.

Recent experimental work highlights further complexities that must be integrated into coupled models.
Multiple timescales generate behavioral complexity, including oscillations and abrupt shifts between
equilibria?-?%. Understanding these dynamics is fundamental for predicting bloom timing and designing
interventions, as management actions can produce very different outcomes depending on system state?»?°.
Mathematical tools such as sensitivity analysis and multi-scale techniques provide promising routes to identify
parameter thresholds underlying rapid transitions?®. From a management perspective, coupled models which
incorporates internal phosphorus dynamics outperform traditional models by considering lag times caused by
nutrient reductions, addressing internal loading, and assessing intervention impacts®”?.

Our literature review reveals that most cyanobacteria-phosphorus models have focused on equilibrium
behavior, single deterministic trajectories, or steady-state nutrient-biomass relationships in lake ecology. As a
result, comparatively little attention has been given to how fast physiological processes (such as internal nutrient
storage and growth) interact with slow ecosystem-scale nutrient dynamics to shape transient behavior, regime
selection, and long-term system outcomes, specifically under realistic parameter uncertainty. In addition,
quasi-steady-state reductions do not explicitly account for evaluating how the removal of fast transients alters
nutrient-biomass feedbacks. Therefore, it remains unclear whether commonly used mechanistic models can
reveal distinct regime changes, or how sensitive such regimes are to growth capacity, light limitation, and
nutrient loading.

In this study, we address this gap by combining full dynamic simulations, fast-slow analysis, sensitivity
experiments, and global uncertainty propagation in a physiologically structured cyanobacteria—phosphorus
model. Rather than focusing solely on equilibrium solutions, we examine transient dynamics across a broad
parameter space. This approach reveals the presence of alternative biomass regimes from low-biomass to bloom-
prone or high-biomass states suggesting bifurcation-like behavior driven by interactions between growth, light
availability, and nutrient supply. By identifying the processes that govern regime selection and quantifying how
uncertainty propagates through the system, this work provides new mechanistic insight into threshold behavior
in cyanobacterial bloom dynamics and highlights the importance of timescale interactions in eutrophication
modeling.

Methodology
Ecological modeling framework
To investigate the ecological dynamics of cyanobacteria and phosphorus under seasonal forcing, the mechanistic,
stoichiometric model based on cell-quota formulation was used®!8. The model represents the coupled dynamics
of algal biomass B(gC m™?), internal cellular phosphorus quota Q(gP g~ 'C), and dissolved inorganic
phosphorus P(gP m~?) within a well-mixed epilimnion layer of depth z_ (m).

The dimensional model equations are:

dB

2 = BL@B) vk 0
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where ¢ is time (days), p (Q, B) is the specific growth rate (d_l), o (P, Q) is the phosphorus uptake rate
(gP g 'C d_l), v r is the respiration/mortality rate (d_l), ks = D/zp, is the flushing rate (d_l), I(t)is
the external phosphorus load ( gPm™3d7! ), modeled as a sinusoidal function to represent seasonal variability.

The growth rate depends on the internal quota Q:

_ Qm
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where r is the maximum specific growth rate (d™!), and @, is the minimum subsistence quota (gP g 'C).
The light limitation function h (B) represents vertical light attenuation due to background turbidity and self-
shading®*:

(5)
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Kr (B) = Kbg+kB (6)

where Ky (m_l) is the background light extinction, k (ng_l(J) is the specific light attenuation by

biomass, iy is incident irradiance ( x mol m~2s71), and H is the half-saturation constant for light limitation
(pmolm™2 s71).

The phosphorus uptake rate follows a Michaelis-Menten form with an upper quota limitation:

p(P,Q>=pmMZP(1—§M) o)

where p,, is the maximum uptake rate (gP_1 C d_l) , M is the half-saturation constant for phosphorus

uptake (gP m ™), and Qs is the maximum internal quota (gP g~'C).
The external phosphorus load I () is defined as a seasonal sinusoid:

1 (t) = Imean + Assin <2”) (8)
Tp

where Imean (gP m73d71) is the annual mean load, A; is its amplitude, and T}, is the annual period (days).

Quasi-steady state analysis (QSSA)
The cyanobacterial-phosphorus system exhibits processes on disparate timescales. Fast variables including
B and Q controlled by rapid physiological responses (growth and uptake). However, a slow variable like P is
influenced by external forcing and cumulative biomass feedbacks?®.

The QSSA assumes that B and @ reach a local steady state relative to the slower dynamics of P. Setting
dB/dt = dQ/dt = 0 in Egs. (1) and (2) yields:

0=B(u(Q B)—vr—Fky) ©)
O:p(P7Q)_/’L(Q7B)Q (10)
The first equation gives a condition for equilibrium growth:

which can be substituted into the second to obtain Q" (P). Combining Egs. (4)-(8) gives an implicit relation
between @ and P:

P
PmM_i_P(l—QQM)—Q(UT—ka) (12)

Equation (12) can be solved numerically for Q" (P). The steady biomass B is obtained from Eq. (11) and the
light limitation function h (B):

* o vV + k‘f
nE) == (13
" Q@ (P)
Substituting B" (P) and Q" (P) into the slow equation for P yields a one-dimensional slow manifold:
dpP * x
o= I(t)—ksP—B (P)p (P,Q (P)) (14)

This reduced form allows analytical inspection of phosphorus persistence and sensitivity to seasonal load
variation without simulating full three-variable dynamics.

Sensitivity analysis

To evaluate the response of the system to initial conditions and key physiological parameters, a local-global
sensitivity analysis was performed. We varied initial biomass Bo (0.01 — 100gC m73) and initial phosphorus
Po (0.1 — 1gP m_3) in logarithmic steps, solving Egs. (1)-(3) for 730 days. Sensitivity was quantified by the

elasticity of peak biomass to initial value:

_ Alln(peakB)

S50 = ~ATn (Bo) (15)
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Four key parameters were analyzed: the growth rate (rs), uptake rate (p,,), and nutrient states (B and
P). Each parameter (p;) was altered by =+ 20% around its nominal value while others were fixed, and the
normalized sensitivity coefficient was computed:

x_pidX _piX(pi+Ap)—X(pi—Ap)

< ~ L 16
P Xop X 2A p; (16)

where X denotes an output metric (peak B, mean B, or final P) and X is its baseline value. The analysis was
implemented numerically using centered finite differences.

Uncertainty analysis
To propagate parametric uncertainty through the ecological model, a Latin Hypercube Sampling (LHS)
approach was used”. The uncertain parameters were sampled from prescribed probability distributions. For
each ensemble member 4, the model (Egs. 1-3) was integrated over ¢ € [0,730] days using ODE15s. Output
statistics such as peak biomass, final biomass, mean biomass over the last year, time to bloom, and time to
periodic steady-state were extracted.

Let pt9 = =1[rp m» Qm, Qum, k, Kng, M, A 1]( denote the parameter vector of run 7. The ensemble means
and quantile envelopes were computed as:

_ % Z N ox® (1), Xp,q (t) = Quantile, , ({X“) (t)}j-\;) (17)

for percentiles p = 5, ¢ = 95.
Partial rank correlation coefficients (PRCC) between ranked inputs and outputs were used to assess global
sensitivities2®:

PRCC; , = corr (rzj - 7/“1‘7,,1"% - ;yk> (18)

where 7, and Ty are rank-transformed variables and hats denote residuals from multiple linear regressions
excludmg the j* variable. Significant PRCC values ( | PRCC | > 0.3, p < 0.05) identify dominant parameters
affecting model responses.

Model parameters and simulation
We used MATLAB 2012 to solve deferential equations with ODE15s. Table 1 shows all the parameters and
sources used to simulate the full dynamic model.

Results and discussion
At first step, the dynamic behaviors of biomass B(t), internal phosphorus quota Q(t), and dissolved phosphorus
P(t) are simulated in two forms of the full three-variable ODE system and the quasi-steady-state approximation
(QSSA) for one 365 days under a sinusoidal external phosphorus input (Fig. 1).

The full ODE simulation shows a rapid decline in cyanobacterial biomass during the first 40 days, decreasing
from an initially high value (1 g C m™) to a very low equilibrium state (0.2 g C m~*). The QSSA biomass trajectory
is essentially flat at this low equilibrium value throughout the year. This occurs because the QSSA assumes that

Symbol | Parameter Unit Nominal value | Range Source

r Max. growth rate d! 1 0.5-2.0.5.0 Reynolds’; Johnk et al*%.
Q, Min. quota gPg’'C 0.004 0.002-0.008 Droop'®; Huisman et al'.
Qy Max. quota gPg'C 0.04 0.02-0.06 Droop'®

v, Respiration/mortality d 0.35 0.2-0.5 Reynolds’

Kbg Background light extinction | m™ 0.3 0.2-0.6 Johnk et al?4; Staehr et al®’.
k Self-shading coefficient m?g’'C 0.4x107 0.0002-0.0008 | Johnk et al?.

L, Incident irradiance pmol m™s™ | 300 200-500 Sterner & Elser®!

H Light half-saturation pmol m™s™' | 120 100-200 Huisman et al'.

P Max. uptake rate gPg’Cd' |1 0.5-2.0.5.0 Reynolds’

M Half-sat. const. for uptake | gP m™ 1.5x107? 0.0005-0.003 | Salmaso™

D Water inflow rate md™! 0.02 0.01-0.05 Field estimates

z. Mixed-layer depth m 7 5-10 Local monitoring

k; Flushing rate D/zn d 0.0029 0.001-0.007 Computed

Aj Forcing amplitude gPm>d* 077 0.3-1.0.3.0 Seasonal load data

mean Mean forcing gPm>d? 077 0.3-1.0.3.0 Seasonal load data

T, Forcing period days 365 - Annual cycle

Table 1. Model parameters and sources.
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Fig. 1. Simulation results for the full three-variable ODE system and the QSSA for 365 days.

biomass instantaneously equilibrates to conditions determined by the slowly varying phosphorus concentration.
The full model reveals a short fast transient driven by rapid physiological turnover in B and Q, whereas the QSSA
explicitly removes these transients. The internal quota Q(t) in the full ODE simulation, quickly increases toward
the upper physiological bound Q,; and remains at this maximum throughout almost the entire simulation.
This saturation of the quota arises due to the external phosphorus and a fast uptake relative to growth (high p
compared to ). The QSSA reproduces this behavior almost exactly. Because the quota is a fast variable, it rapidly
adjusts to the slow state of phosphorus availability.

The greatest discrepancy between the two modeling approaches is in the dissolved phosphorus P(t). In the
dynamic model, phosphorus shows a gradual increase through the year, rising from near zero to roughly 180 mg
m™ by day 200. This slow accumulation reflects the balance between external loading and weak uptake by the
biomass. However, the QSSA solution produces a much stronger seasonal oscillation, with peak phosphorus
concentrations exceeding 500 mg m™. The reason is that in the reduced QSSA system, biomass is held at its
equilibrium, which changes only slowly. During periods of high external loading, the reduced biomass has
insufficient uptake, and phosphorus rises more dramatically. After approximately day 200, both curves begin to
converge as the phosphorus load decreases and the influence of uptake becomes more linear. This overestimation
of phosphorus indicates a well-known effect of QSSA reductions. By removing transient biomass responses, the
system underestimates the short-term feedback of algae on phosphorus, leading to exaggerated P excursions.

Sensitivity analysis

We performed a group of simulations of the cyanobacteria—phosphorus model based on varied initial biomass
on a logarithmic grid from 0.01 to 1 gC m™>. All other parameters and initial conditions are fixed. For each run
we recorded the full time series of B(t), P(t), and Q(t) as well as the steady-state time. These steady times are
marked as colored symbols on the time-series (Fig. 2). All trajectories for B collapse toward a common low steady
biomass (0.266 g C m™) after an initial transient. For small B, the system shows a slow decay and long transient
(many tens of days) before settling. For B less than 0.26 gC m™® the peak biomass is essentially insensitive to B
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Fig. 2. Summary diagnostics computed for each run include peak biomass, final biomass, the local elasticity of
peak biomass with respect to B, and steady-state time.

(the curve is flat and near zero), meaning the system’s early dynamics do not amplify small initial biomass into
large blooms. When initial biomass is small, uptake capacity Bp(P, Q) is small, therefore dissolved phosphorus
accumulates driven by external loading before biomass can respond.

Quota rapidly saturates (fast variable), but growth p(Q, B) remains small because B is small. Therefore, system’s
transient is governed by the slow P accumulation and biomass cannot amplify. Also, the local elasticity of peak
biomass with respect to B, is zero in this regime. Practically, doubling B, results essentially no change in peak
biomass. For larger B, some trajectories show a short transient before converging and biomass monotonically
declines toward the same attractor.

The initial B is the maximum for each run and consequently the measured peak increases with B This is
because a large initial biomass instantaneously provides uptake capacity and hence can temporarily depress P. In
addition, other processes (respiration, flushing, light limitation) relax biomass downward to the attractor. There
is no sustained positive feedback to maintain the large initial biomass: it is a transient seed. Elasticity rises toward
1 in this case. In other words, peaks scale roughly proportionally with B,. The final biomass at the end varies only
in the third or fourth decimal place (around 0.2662 gC m™) over the entire range of B,. This means that despite
large differences in early transient peaks, all trajectories converge to the same long-term attractor.
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Figure 3 indicates that the biomass remains low and approaches the steady-state for low r slowly. Quotas
rapidly saturate to Q, ;, and phosphorus steadily accumulates because uptake is weak relative to input and flushing.
For intermediate r, the trajectories show longer, sometimes oscillatory transients. Biomass can temporarily
change before settling. The biomass steady marker moves right for some higher growth rates. As r increases,
biomass often starts high and decays to the same attractor. The uptake is rapid and phosphorus levels remain
lower (or rise less) than for small r. The growth rate r adjusts how quickly cells convert internal quota to biomass
(u=r(1-Q,/Qh(B)). When r is small, uptake is not translated rapidly into biomass and P accumulates leads to
B stays low. When r is large, uptake can be consumed quickly, which transiently increases uptake capacity (but
other losses still drive the long-term attractor).

Peak biomass is nearly constant at very low r, then there is an abrupt change around a critical r (about 1 d™*).
Therefore, it can be seen that there are two regimes. A low-r regime where the system cannot intensify biomass
(peaks insensitive to r), and a regime around the critical r where dynamics change qualitatively.

The sharp change indicates a nonlinear response where small increases in r near that critical value produce
large changes in observed peak biomass. Elasticity with respect to P is near zero for low r. It will be negative and
large in magnitude across the transition. This indicates that once the system is in the sensitive band, increases in
r reduce the measured peak P. Elasticity with respect to B is near zero for low r and rises steeply in the threshold.
Small changes in r lead to changes in peak biomass (elasticity > 1). The cyanobacterial respiration v, is varied
across the range 0.05-0.6 d™'. For each value, the full three-state model is performed. Figure 4 present the time
series B(t), P(t), and Q(t) with summary of other metrics.

All state variables rapidly decline from the initial value and reach to a very similar low equilibrium (0.26
gC m™). As v_increases the early transient downfalls quickly but the time of steady-state condition (the red
markers) moves to larger times. Dissolved P increases slowly during the simulation due to external loading and
the relatively low uptake capacity. Q equilibrates extremely fast and is nearly saturated for all v_values. Increasing
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Fig. 3. Effect of varying growth rate r. For every simulation the red, black, and green markers show the time
when biomass B first attains the steady.
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Fig. 4. B(t), P(t), and Q(t) for the sampled v, values. The eight subplots show how these metrics change across
thev.

respiration shifts the timescale on which biomass relaxes to the attractor but does not cause qualitatively different
time series shapes. Increasing v, surges the loss term in the biomass equation, reducing net growth potential
(u—v_—k). Lower net growth reduces long-term biomass and thus the cumulative phosphorus uptake capacity.
The observed small decrease in P and P, with increasing v_indicates the net system response is that a
higher loss rate actually slightly reduces P accumulation. The elasticity of P is negative across the range and its
absolute magnitude increases as v_grows. A 1% increase in v_at high loss rates is associated with several percent
decreasein P . The elasticity of B is approximately zero across the domain. Peak biomass does not respond (in
proportional terms) to changes in v_as the initial value is the peak.

Uncertainty analysis

We applied uncertainty analysis in eight model parameters including maximum growth rate r, maximum
P-uptake p_, minimum quota Q_, maximum quota Q,,, algal self-shading coefficient k, background light
attenuation K, , P half-saturation M, and seasonal P loading amplitude AI using a Latin-hypercube. For each
ensemble member the three-state model was simulated in 2 years with ODE15s. Summaries were computed
as the sample median and the 5-95% quantile envelope. Global sensitivities of scalar outputs to inputs were
evaluated with Partial Rank Correlation Coefficients (PRCCs). Figure 5 describes the principal results.

The uncertainty analysis reveals two fundamentally different attractor pathways for biomass. For most
parameter samples, biomass has a rapid collapse during the first 20-40 days. It reaches a low steady-state around
0.2-0.3 gC m~2 with the 5-95% envelope. In this condition, the regime corresponds to light limitation (high
k or Kbg), insufficient physiological capacity (low r or low p_), or strong losses. Another trend can be seen as
high-biomass convergence. Here, the subset of simulations indicates the opposite behavior. Biomass does not
decline. Instead, B increases over time from its initial value. Trajectories converge toward a high steady-state
value, exceeding B=1 gC m~>. This corresponds to parameter combinations where growth capacity is strong
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Fig. 5. Uncertainty analysis of the cyanobacteria—-phosphorus model. Simulations (100 runs) show biomass
B(t) and phosphorus P(t) with median and 5-95% envelopes (shading). Histograms summarize peak biomass,
final biomass, and time to steady behavior. Partial rank correlation coefficients identify the dominant
parameters.

(high r), light limitation is weak (low k and low Kbg), uptake is large (p,_ ), and seasonal P loading amplitude A,
is high. These conditions allow cyanobacteria to maintain positive net production.

The phosphorus increases continuously over the two-year simulation and the 5-95% envelope widens
with time as external loading accumulates. This indicates that while biomass uncertainty decreases over time,
uncertainty in dissolved P increases. The Peak biomass histogram indicates that in most simulations, the initial
value is the peak. It means that changing the set of parameters leads to lower steady state biomass concentration.
The final biomass distribution is narrow, indicating that almost all parameter combinations converge to similar
final B values by the end of the simulation window. The time required for biomass to reach steady behavior
exhibits a broader distribution. Many simulations settle within a range of 10-100 days, but a non-negligible
fraction require much longer. This reflects parameter combinations that weaken the fast-stabilizing feedback
(e.g., high loss rates or strong light attenuation) and therefore slow convergence.

The PRCC bar chart quantifies partial correlations between each input parameter and the output peak
biomass. Statistically significant and practically important correlations can be inferred where absolute PRCC
is large (conventionally |PRCC|>0.3) and p-values are small. PRCC for r is positive and strong (0.35). Higher
growth rate increases the peak biomass. This is expected when physiological growth capacity is larger. p _ is slight
negative which means that greater uptake capacity reduces the available external phosphorus, which tends to
lower peak biomass. This implies strong uptake efficiency decreases bloom magnitude.

PRCC for Q_ is weak negative presenting a higher minimum quota reduces specific growth (1-Q_/Q
becomes smaller), thereby decreasing peak biomass. Similarly, Q,; is small negative. It shows that slightly larger
storage capacity has a minor negative association with peak biomass. This effect is small and likely parameter-
interaction dependent. Larger self-shading reduces light penetration and growth, substantially reducing peak
biomass. Thus, k is strongly negative and is one of the most influential parameters. like k, higher background
turbidity lowers light availability and strongly reduces peak biomass (K, is strongly negative). Its magnitude is
comparable to k and thus both light-related parameters dominate negative sensitivity. Increasing M raises the
external P level needed to saturate uptake. It reduces uptake efficiency at low P and allows larger peaks. Stronger
seasonal loading increases available P and thereby peak biomass (moderate positive PRCC).

Biological perspective
The full cyanobacteria—phosphorus model reveals an early transient that is absent from the quasi-steady-state
approximation. When initialized with relatively high biomass, cyanobacteria rapidly decline during the first
30-40 days, after which biomass stabilizes at a low state. Biologically, this initial collapse reflects the mismatch
between uptake capacity and environmental constraints. Although internal phosphorus quota increases quickly
due to rapid uptake, growth remains limited by light attenuation, respiration, and flushing losses. As a result,
stored phosphorus cannot be efficiently converted into new biomass, leading to a net decline.

The QSSA removes this transient entirely by assuming that biomass instantaneously adjusts to the slowly
varying nutrient environment. While this assumption indicates the fast equilibration of internal quota, it
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suppresses the short-term feedback between biomass and phosphorus uptake. Consequently, QSSA simulations
exaggerate dissolved phosphorus accumulation during periods of high external loading, because the temporary
uptake capacity provided by transient biomass is effectively ignored. From a biological perspective, this implies
that reduced models may overestimate nutrient concentrations during bloom onset or collapse phases, even if
long-term averages are well captured.

Varying the initial biomass over two orders of magnitude reveals a striking contrast between short-term
sensitivity and long-term resilience. This ecologically indicates that small cyanobacteria concentrations do not
necessarily trigger blooms, even under favorable nutrient inputs. In contrast, when initial biomass is large, it
immediately provides substantial uptake capacity and transiently suppresses dissolved phosphorus. However, this
advantage is short-lived. Light limitation, respiration, and flushing rapidly reduce biomass, and all trajectories
ultimately converge to the same low seasonal attractor. In this regime, the initial biomass simply defines the peak
value, and elasticity approaches unity.

Changing the maximum growth rate reveals a nonlinear transition in system behavior. Biologically, this
behavior reflects an ecological threshold. A minimum physiological growth capacity is required for cyanobacteria
to exploit available nutrients. Below this threshold, blooms cannot form regardless of nutrient supply. Near the
threshold, the system becomes highly sensitive to environmental variability, consistent with observed interannual
bloom variability in lakes with similar nutrient loads.

In contrast to growth rate, increasing cyanobacterial respiration does not alter the qualitative structure of
biomass trajectories. Instead, it modifies the rate at which the system approaches equilibrium. From a biological
perspective, respiration acts as a damping mechanism that weakens population resilience without changing the
ecological regime. This suggests that management actions increasing loss processes (e.g., grazing, flushing) may
delay bloom recovery but are unlikely to shift the system into an alternative stable state on their own.

The PRCC analysis identifies light attenuation and growth rate as the dominant controls on peak biomass.
Parameters governing light availability employ strong negative influence, confirming that light limitation remains
a primary constraint on cyanobacterial blooms even in nutrient-rich systems. Growth rate exerts a strong
positive influence, reinforcing the importance of physiological traits and temperature-dependent processes.
Nutrient uptake parameters affect phosphorus accumulation rather than biomass amplification, highlighting a
separation between drivers of bloom intensity and drivers of nutrient cycling.

Conclusion

This study applies to understand how a cyanobacteria—phosphorus model behaves under realistic environmental
forcing, and how its predictions respond to uncertainty in ecological parameters and initial conditions. By
combining dynamical analysis, sensitivity analysis, and global uncertainty propagation, we aimed to reveal not
only what the model predicts, but how it behaves and which processes govern its. The comparison between
the full ODE system and the QSSA reduction provided the first clear insight. Although the QSSA captured
fast physiological equilibrium of the internal phosphorus quota, it systematically misrepresented the transient
interactions between biomass and nutrients. The full model presented a rapid 40-day decline in biomass followed
by slow re-equilibration driven by the interplay of uptake, growth, and light limitation. QSSA, by construction,
removed this transient entirely, holding biomass too close to its long-term equilibrium. As a result, the reduced
system exaggerated dissolved phosphorus excursions because it did not account for short-lived but ecologically
important feedbacks between biomass and nutrient uptake. This mismatch highlights that while QSSA is valuable
for long-term or equilibrium analyses, transient dynamics in eutrophication processes cannot be safely ignored
when management-relevant time horizons (weeks to months) are considered.

The single-parameter sensitivity analyses acknowledges that small variations in initial conditions or growth
parameters can lead to qualitatively different transient behaviors. Varying the initial biomass showed that the
system is robust in the long run but early responses depend strongly on initial conditions. When initial biomass
is small, the system behaves passively. In this regime, elasticity of peak biomass with respect to the initial biomass
was essentially zero. For example, doubling the initial concentration barely altered the bloom. Peak biomass
scaled roughly proportionally with B,, and elasticity approached one. But none of these initial differences
changed the long-term outcome. Varying the growth rate r revealed the presence of threshold-like behaviors.
At low 1, biomass remained at low values and the peaks were insensitive to changes in growth rate. However,
around a critical value, the model showed a sharp transition where small increases in r caused large changes in
the biomass peak. This nonlinear response is characteristic of trophic thresholds, where systems switch abruptly
between low and high biomass states. In contrast, the respiration parameter v_changes the time scale rather than
the trend. As respiration increases, biomass initially decreases more rapidly and then tends toward a steady state.

The uncertainty analysis combined all these findings and revealed a key conclusion. The model allows for two
distinct regimes depending on the combination of physiological and environmental parameters. Most parameter
sets produced a clear outcome (low biomass after the initial decline) that was consistent with the results of the
sensitivity analyses. But a smaller subset of simulations showed that biomass steadily increased toward a steady-
state of high biomass of more than 1 gC/m®. This bifurcation naturally arises from interactions between light
limitation, growth capacity, nutrient uptake, and phosphorus loading. In other words, the model predicts that
lakes can be in a clear-water state or in a bloom-prone state, depending on the confluence of environmental forces
and physiological characteristics. Soluble phosphorus behaved differently. The uncertainty increased over time
as phosphorus accumulated in the system at rates dependent on the parameters. PRCC-based analysis helped
explain why two regimes of low-biomass and high-biomass are established. Growth rate and light limitation
parameters recognized as the key controls on peak biomass. Severe light attenuation significantly reduced
growth. Uptake parameters shaped soluble phosphorus trends but played a secondary role in determining peak
biomass. Together, these results suggest that light availability and physiological growth potential are key levers
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governing biomass growth, while nutrient uptake kinetics and the external load primarily influence long-term
phosphorus accumulation.

The findings of this study suggest that management interventions should be based on a careful assessment of
the effectiveness of nutrient control scenarios, taking into account the dynamics and the possibility of biomass
concentrations reaching different steady state concentrations as small changes in some parameters can lead
to drastic changes in the state of the system. Finally, this simulation and uncertainty analysis demonstrate
both the flexibility and fragility of cyanobacterial systems. The possibility of two steady states of low and high
cyanobacterial concentrations in the system should be seriously considered in devising an effective plan.

Several limitations in the present framework should be acknowledged. The model is spatially homogeneous
and therefore does not take into account vertical stratification, or sediment-water interactions that are known to
influence cyanobacterial dynamics in real lakes. Important biological processes such as grazing, internal nutrient
loading from sediments, and explicit temperature dependence are also omitted. In addition, the emergence of
alternative biomass regimes is identified numerically through transient dynamics and sensitivity patterns rather
than by formal bifurcation analysis. These limitations point toward future work, including the extension of the
model to stratified or spatially explicit systems, incorporation of temperature- and food-web processes. Coupling
such mechanistic models with long-term monitoring data may further enable early detection of regime shifts
and improve the predictability of algal bloom.
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