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Ecosystem services provided by terrestrial biomes, such as moisture recycling and carbon assimilation, 
are crucial components of the water, energy, and biogeochemical cycles. These biophysical 
processes are influenced by climate variability driven by distant ocean-atmosphere interactions, 
commonly referred to as teleconnections. This study aims to identify which teleconnections most 
significantly affect key biophysical processes in South America’s two largest biomes: The Amazon 
and Cerrado. Using 20 years of monthly data on Precipitation (P), Evapotranspiration (ET), Gross 
Primary Productivity (GPP), and Ecosystem Water Use Efficiency (EWUE), alongside data from six 
teleconnections (Antarctic Oscillation - AAO, Atlantic Multidecadal Oscillation - AMO, Oceanic Niño 
Index - ONI, Atlantic Meridional Mode - AMM, North Atlantic Oscillation - NAO, and Pacific Decadal 
Oscillation - PDO), we developed a multivariate linear model to assess the relative importance of each 
teleconnection. Additionally, time-lagged Spearman correlations were used to explore relationships 
between biophysical variables and teleconnections. Our findings indicate that the AMO exerts the 
strongest influence across all studied variables. Furthermore, ONI and AMM significantly impact 
precipitation in the northern Amazon, with a 3-month lag in ONI showing positive correlations with 
ET and GPP. In contrast, a 3-month lag in AMO negatively influences GPP in the southern Amazon and 
Cerrado, though positive correlations with EWUE were observed in the same region. These insights 
highlight the complex and regionally varied impacts of teleconnections on South America’s largest 
biomes.
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Terrestrial ecosystems play a key role in the global water and carbon cycle, and the largest natural global flow of 
carbon is through absorption via photosynthesis1,2. The ecological functions of terrestrial ecosystems are mainly 
reflected in evapotranspiration and Gross Primary Production (GPP)3. GPP refers to the total amount of carbon 
fixed by autotrophs per unit area and time in photosynthesis4,5. Worldwide, terrestrial GPP flux corresponds to 
more than 100 billion tons of carbon annually, mostly in tropical forests and savannahs2. Therefore, terrestrial 
GPP is a fundamental variable for understanding the atmosphere-biosphere interactions and the global carbon 
cycle, which directly impact and are impacted by climate change. GPP depends on the health of vegetation and 
the availability of water and energy6,7.

As one of the largest consuming components of water resources, Evapotranspiration (ET) plays a crucial role 
in connecting hydrological processes and ecosystems on the Earth’s surface and is an important parameter for 
evaluating heat and water exchange in the soil-surface-atmosphere continuum3. However, these exchanges vary 
in space and time within the same biome8,9. Furthermore, ET is coupled to carbon assimilation through GPP, 
forming the two dominant processes in the global water and carbon cycles10. Changes in vegetation photosynthesis 
relative to water use are captured by the ratio of Gross Primary Productivity (GPP) to evapotranspiration (ET), 
known as Ecosystem Water Use Efficiency (EWUE)11. The EWUE reflects how efficiently an ecosystem converts 
water into biomass through photosynthesis, providing insights into its capacity to maintain productivity under 
varying water availability conditions12. The Precipitation (P), GPP, ET, and, consequently, EWUE serve as key 
indicators of environmental changes.

These metrics reflect shifts in ecosystem functioning, water cycle dynamics, and plant productivity, providing 
insights into how ecosystems respond to climate variability, water availability, and land-use changes. This is 
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especially useful in South America’s two largest biomes, where there is anthropogenic pressure (deforestation, 
fires, land grabbing and others) resulting in a loss of biodiversity and ecosystem services13,14. In addition, natural 
climate variability such as ENSO, which drives extreme events, puts even more pressure on ecosystem services.

Changes in energy and water availability affect photosynthetic rates and carbon fixation. These variations 
in the water and energy balance are also associated in a non-trivial way with ocean-atmosphere couplings, by 
which climate anomalies can be related to each other at large distances, such as teleconnections15,16.

Teleconnections control atmospheric dynamics through changes in heat and momentum flux, modulating 
weather conditions17,18. Consequently, teleconnections affect GPP variations over more than 80% of the global 
vegetated area, with emphasis on El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), 
and the Atlantic Multidecadal Oscillation (AMO)19–21.

Each teleconnection’s importance can vary regionally. For example, the AMO and NAO, located in the 
Atlantic, control the variability of GPP and P in China22,23. Similarly, the Pacific, through the PDO, strongly 
influences these variables in the USA24,25 emphasize that interactions and teleconnections drive the variability of 
various ecosystem services worldwide. However, correlating these indices with environmental variables presents 
challenges, as the relationships are not always direct or significant16.

Considering the results of global analysis of teleconnections in the two larger biomes of South America, ENSO 
shows a negative correlation with GPP in northeastern Cerrado and in central and northeastern Amazon, and 
a possible positive correlation in the northern Amazon (depending on the study), with different lag time19,21,26 
observed weak but significant correlations (−0.2) between precipitation and ENSO in the northern Amazon, 
with a lag time of up to 4 months. Similarly16, identified positive precipitation anomalies in the Cerrado during 
spring under AMM conditions, corresponding to a lag of 7 months. AMO and ENSO were observed to be the 
two main teleconnections that affect GPP in the Amazon and Cerrado biomes with lag time between 3 and 
6 months, mainly due to the influence on temperature20. ENSO also stands out as the main teleconnection 
impacting the leaf area index (GPP driver) in the eastern Amazon and Cerrado25. However, these studies often 
overlook the regional specificity of teleconnections, meaning that ocean-atmosphere interactions closer to the 
study area may exert a more pronounced influence or provide faster feedback on environmental variables such 
as GPP, ET, and P. This localized impact can result in stronger correlations between nearby teleconnections and 
ecosystem responses, which may differ from the effects of more distant global patterns15,20,25.

To individualize the coupled effects of various phenomena, it is possible to use relative importance, which 
can be extracted from various machine learning-based methods, such as Random Forest, Lindeman Merenda 
and Gold model (LMG), Shapley Additive exPlanations model (SHAP) and others. For example27, used Random 
Forest to identify the main drivers of secondary forest growth in the Amazon28 used the SHAP model and 
random forest to quantify the importance of drivers of ecosystem sensitivity in China23 used LMG to identify 
which teleconnections are most important in controlling the hydroclimatic variables of the Indochina Peninsula. 
Therefore, this article addresses the following question: What teleconnection has the greatest influence on the 
variability of P, ET, GPP, and EWUE in the Amazon and Cerrado biomes at a watershed scale?

Results
Climatology of precipitation and biophysical variables
The spatial distribution of the precipitation and biophysical (GPP, ET, and EWUE) variables follows a 
predominant northwest-southeast climatic pattern, except for the ET, as shown in Fig.  1. The average 
climatological characteristics of precipitation (Fig. 1A), evapotranspiration (Fig. 1B), GPP (Fig. 1C) and EWUE 
(Fig. 1D), reflect the energy regime and the prevailing weather systems in South America (SA), as described by16, 
and more precisely in the Amazon Basin9. For example, the northern and northwestern regions of the Amazon 
have the highest rainfall (~ 3000 mm). In comparison, the lowest rainfall values (~ 1300–1700 mm) are observed 
in the southern transition between the Amazon and the Cerrado and in the east of the Cerrado.

Regarding ET (Fig. 1B), the highest ET values ​​(~ 1000–1900 mm) are distributed across the northern Amazon, 
in the northeastern Amazon-Cerrado transition and in parts of the south-southeastern Amazon. The lowest ET 
rates (< 400–600 mm) are mainly observed in the Cerrado, in the southern Amazon and in the Andes Mountain.

The GPP (Fig.  1C) shows a similar northwest-southeast spatial pattern to precipitation. The lowest 
concentration of carbon assimilation (~ 150–280 ktC/km2/year) is in the Cerrado biome (east of the basins), and 
lower GPP values (< 150 ktC/km2/year) are concentrated in the same places with minimum ET, and low EWUE, 
highlighting the scarcity of biomass.

The central portion and northern parts of the Amazon, in addition to the Cerrado, hold intermediate values 
(~ 0.36–0.48 ktC mm−1 H2O) of EWUE (Fig. 1D). In comparison, lower values of EWUE (< 0.23 ktC mm−1 H2O) 
are found in most of the Cerrado basins, especially in the northeastern sector. The northwest of the Amazon 
shows the best water use efficiency (> 0.48 ktC mm−1 H2O). This indicates low ecosystem water use efficiency 
in the Amazon ecosystem and the Cerrado in general. This reveals that the ecosystem uses water in various 
hydroclimatological and biogeochemical processes and not just for plant growth, as observed by29. Furthermore, 
the evapotranspiration product used here does not partition evaporation (soil surface and canopy interception) 
from vegetation transpiration.

The watersheds in G1 show a seasonal contrast with those in other groups (Fig. 1E). The highest values of 
EWUE and P in G1 are in April and May, and the lowest are in September and October. For the other groups, the 
biophysical variables (except for EWUE4) have their highest values at the end of summer and beginning of fall 
in the Southern Hemisphere (SH) (Feb-Mar) and the lowest between August and September, which is the end of 
winter and beginning of spring in the SH.

All groups presented a high positive significant (Fig. 1F) correlation (> 0.7) between GPP and ET. The highest 
correlation was observed in group 4. GPP and P’s correlation varies from − 0.07 in G1 to 0.64 in G4. The best 
correlations for EWUE were with P and ET, as EWUE2 and P2 (0.66) and EWUE1 and ET1(−0.8). Significant 
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Fig. 1.  Long-term spatial pattern of annual Precipitation (P) (A); Evapotranspiration (B); Gross Primary 
Productivity (GPP) (C); Ecosystem Water Use Efficiency (EWUE) (D); (E) Land cover change and normalized 
seasonal variability of P [blue line], ET [green line], GPP [orange line] and EWUE [grey line] by watershed 
group [e.g. G1, group 1, see methods] (F); Spearman correlation between the monthly precipitation and 
biophysical variables by watershed group, where the abbreviation of the variable followed by the number 
indicates the average of the variable for the group [e.g. P1 average monthly precipitation of the watersheds in 
group 1]; Size of the circle indicates the strength of the correlations (α < 0.05), blank spaces indicate that the 
correlation is not statistically significant. The map was created with ArcGIS Desktop 10.8.1 ​(​​​h​t​t​p​​s​:​/​/​s​u​​p​p​o​r​t​.​​e​s​r​i​
.​c​​o​m​/​e​n​​-​u​s​/​p​a​​t​c​h​e​s​-​​u​p​d​a​t​e​​s​/​2​0​2​4​/​a​r​c​g​i​s​-​d​e​s​k​t​o​p​-​1​0​-​8​-​1​-​g​e​n​e​r​a​l​-​c​o​m​p​o​n​e​n​t​-​u​p​d​a​t​e​s​-​p​a​t​c​h​​​​​)​.​​​​
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correlations were also observed for the same variable between different groups, with the highest values ​​observed 
between P1 and ET3 (0.7), P3 and ET1 (−0.7), ET2 and GPP3 (0.8), ET4 and P2 (0.7) and EWUE1 and GPP2 
(0.7). All correlations and their significance can be seen in Table 1 of the supplementary document.

Contributions of teleconnections to biophysical variables
After applying the LMG algorithm to assess the individual contribution of each teleconnection to precipitation 
and the biophysical variables (Fig.  2), we found that the AMO emerged as the dominant global contributor 
across all variables studied. Notably, its influence was strongest on P2 (16.1%), ET4 (18.5%), and GPP2 and 
GPP4 (17.8% and 18.6%, respectively), highlighting its significant impact on both water and carbon cycle 
processes. The PDO emerges as the second most influential teleconnection, particularly in groups 2 and 4. Its 
effect is notable on ET2 (5%), GPP2 (4.5%), ET4 (4.2%), GPP4 (3.2%), and EWUE4 (4.9%), underscoring its 
significant role in regulating both water and carbon dynamics within these specific groups. In addition, NAO 
and AAO also contribute to the variability of precipitation and biophysical indicators. Where, NAO contributes 
more to group 4 (P4, 3.3%; ET and GPP4 equally with 3.5%) and group 2 (P2, 4.5%). On the other hand, the 
greatest AAO contributions are in group 4 (ET4, 1.8%; GPP4, 1.6%; and EWUE4, 1.3%), group 3 (GPP3, 1.7%), 
and group 2 (ET2, 1.3%).

Important contributions from ONI and AMM were found in the precipitation of Amazon P1 (13.90% and 
13.60%, respectively). ONI also stands out for ET1 (2.6%) and EWUE1 (3.5%) compared to AMM for the same 
(1.2% and 0.8, respectively) variables. On the other hand, AMM was more important (0.9%) than ONI (0.5%) for 
GPP1. ONI and AMM exhibit important contributions in several groups such as P3 (2% and 1.7%), ET1 (2.6% 
and 1.2%), EWUE1 (3.5% and 0.8%), EWUE4 (1.1% and 0.9) and GPP3 (10.5% and 3.5%). Despite this, ONI did 
not make a strong contribution to GPP in the other groups. This result does not imply that ENSO lacks influence 
in these regions but rather highlights that teleconnections with longer life cycles, such as the AMO, tend to have 
a more pronounced impact than the shorter-lived ONI. This suggests that certain teleconnections’ persistence 
and extended effects may overshadow those with more transient patterns.

Fig. 2.  Relative importance of the teleconnections that control the variability of the monthly timeseries of the 
precipitation and biophysical indicators in the four basin groups based on LMG values. The figure was created 
with R 4.3.1 (https://cran.r-project.org/).
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Time-lagged effects of teleconnections on precipitation and biophysical variables
For the time-lag analysis, the focus is on the teleconnections with the greatest relative importance (ONI, AMM 
and AMO). In general, the correlations between AMO (Fig. 3) and the variables three months ahead are more 
intense than those just one month later. For the one-month lag time, the correlation between AMO and P 
(Fig. 3a) varies from negative (−0.10 to −0.34) in the northwest (in basins located in G1) to positive (0.10 to 
0.24) in the south (in basins located in G2 and G3). Between AMO and GPP the correlation varies from positive 
in the northeast (including most basins in G3, from 0.25 to 0.34) to negative (−0.1 to −0.24) in the south of the 
Amazon and Cerrado (including basins in G2 and G4). In the case of ET, 87% of the basins showed significant 
correlations with AMO (Fig. 3n). With a one-month lag, most basins in groups 1, 2 and 3 had positive (up to 
0.34) correlations, while basins in group 4 and parts of group 2 showed negative correlations. As for EWUE, only 
3% of the basins showed positive correlations with AMO in group 4. However, in groups 1 and 2, 30% of the 
basins showed negative (−0.35 to −0.44) correlations.

The correlations between AMO and the variables three months ahead are more intense than those of just 
one month later. For the 6-month lag time, most basins with significant correlations show the opposite direction 
to that observed with a 1-month lag time, for all variables analyzed. For example, the G3 basins start to show a 
negative correlation between GPP and AMO. In other words, while an increase in AMO indicates an increase in 
GPP in these basins in the following month, there is no significant influence on GPP three months later and, more 
surprisingly, it also indicates a reduction in GPP in these basins 6 months later. Spatially, the predominant north 
(positive) - south (negative) correlation pattern is evident (Fig. 3g,h). G4 basins show correlations predominantly 
ranging from − 0.35 to −0.44, while most G2 basins exhibit correlations between − 0.25 and − 0.34. In G3, only 
three basins have significant correlations, reaching up to −0.24. Conversely, G1 basins primarily display positive 
correlations, with values up to 0.24, although two basins in this group show negative correlations.

Regarding the AMM (Fig. 4), 90% of the basins showed significant negative correlations (Fig. 4n) with P 
at the 1st lag. especially in the central, southern and northeastern parts of Amazonia (part of G1 and G3) and 

Fig. 3.  Spearman correlation between AMO, precipitation and biophysical variables, for time lags of 1, 3 and 
6 months (a–l), where columns are time lags and rows are biophysical variables [e.g., (a) is the correlation 
between P and AMO with a 1-month lag; (b) is the correlation between P and AMO with a 3-month lag]; 
(m) distribution of groups of watersheds; (n) is the percentage of watersheds with significant correlations for 
each variable in the three lags; and (o) Spearman correlation by cluster. The hitching identifies which case a 
particular watershed exhibits no statistical significance (α > 0.05) in the correlation. The map was created with 
ArcGIS Desktop 10.8.1 ( ​h​t​t​p​s​:​​/​/​s​u​p​p​​o​r​t​.​e​s​​r​i​.​c​o​​m​/​e​n​-​u​​s​/​p​a​t​c​​h​e​s​-​u​p​​d​a​t​e​s​​/​2​0​2​4​/​a​r​c​g​i​s​-​d​e​s​k​t​o​p​-​1​0​-​8​-​1​-​g​e​n​e​r​a​
l​-​c​o​m​p​o​n​e​n​t​-​u​p​d​a​t​e​s​-​p​a​t​c​h​​​​​)​.​​​​
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also in the Cerrado (G4), while 3% of the basins showed positive correlations in northern Amazonia (Fig. 4a). 
The percentage of significant basins drops to 60% in the 3rd lag-time (AMM-P, Fig. 4b), where most of the 
correlations were negative in G1 and G3, while G4 showed positive correlations.

At the 6th time lag 98% of the basins showed significant correlations between P and AMM, with a 
predominance of positive correlations in the south and northeast of the Amazon and also in the Cerrado, while 
in the north of the Amazon negative correlations were more evident. ET shows an opposite pattern to P with 
a lag of one month, where we obtained positive correlations in most of the G1 and G3 basins, this pattern is 
maintained in the 3rd lag-time for G1, but changes with a 6-month lag, where G1, G2 and G3 show negative 
correlations between ET and AMM and G4 shows positive correlations.

As for GPP at the 1st lag, 80% of the basins (Fig. 4n) showed negative correlations (<−0.45) in the south of 
the Amazon and in the Cerrado (G2 and G4). However, the basins in the north and northeast (G1 and G3, 3%) 
showed positive correlations of up to 0.34. With a lag of three months, the percentage of basins with significant 
correlations is reduced to 70%, where G1 predominates with positive correlations and G2 and G3 with negative 
correlations with AMM. The pattern is reversed in lag-6 (Fig.  4i), with G1 and G3 basins showing negative 
correlations (up to −0.44), while G2 and G4 showed positive correlations (0.24 to 0.44).

With a one-month lag between EWUE and AMM (Fig.  4j) we found predominantly (72%) negative 
correlations (<−0.45) in G1, G2 and G3, while G4 showed positive correlations between 0.24 and 0.34. At the 3rd 
lag, only 53% of the basins showed significant correlations, with the northern Amazon having predominantly 
negative correlations, while the southern Amazon and Cerrado (G2 and G4) had positive correlations (up to 
0.24). With a six-month lag, positive correlations predominated in all groups, with G1, G2 and G3 showing the 
highest correlations (up to 0.44). In contrast, the basins of G4 and the northwest of G1 had negative correlations.

The ONI (Fig. 5) has no significant correlation with the analyzed variables (P, ET, GPP, and EWUE) for the 
following month in almost all of the 65 5th order river basins of the studied area. The exception was two basins 
in the western Amazon with a positive correlation between ONI and P. For a time, lag of three months, the 

Fig. 4.  Spearman correlation between AMM, precipitation and biophysical variables, for time lags of 1, 3 and 
6 months (a–l), where columns are time lags and rows are biophysical variables [e.g., (a) is the correlation 
between P and AMO with a 1-month lag; (b) is the correlation between P and AMO with a 3-month lag]; 
(m) distribution of groups of watersheds; (n) is the percentage of watersheds with significant correlations for 
each variable in the three lags; and (o) Spearman correlation by cluster. The hitching identifies which case a 
particular watershed exhibits no statistical significance (α > 0.05) in the correlation. The map was created with 
ArcGIS Desktop 10.8.1 ​(​​​h​t​t​p​​s​:​/​/​s​u​​p​p​o​r​t​.​​e​s​r​i​.​c​​o​m​/​e​n​​-​u​s​/​p​a​​t​c​h​e​s​-​​u​p​d​a​t​e​​s​/​2​0​2​4​/​a​r​c​g​i​s​-​d​e​s​k​t​o​p​-​1​0​-​8​-​1​-​g​e​n​e​r​a​l​-​c​
o​m​p​o​n​e​n​t​-​u​p​d​a​t​e​s​-​p​a​t​c​h​​​​​)​.​​​​
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influence of ONI in the region increases (Fig. 5n), with most basins of the northern Amazon (located in G1 and 
G3 groups) presenting positive correlation (0.1 to 0.24) between ONI and ET and GPP. This influence is reduced 
when a six-month time lag is applied. For P and EWUE, some basins in the middle Amazon show a negative 
correlation between ONI and P and EWUE for the three-month time lag, and this influence is amplified for more 
basins in the northern Amazon, mostly in G1, when a six months interval is considered.

Discussion
Around the world, research on the effects of teleconnections on biophysical variables is growing, such as25,30–32. 
However, research typically focuses on drought indices caused by ENSO and its impacts on precipitation or 
potential evapotranspiration that would lead to agricultural deficits. However, other teleconnections influence 
ecosystem services, hydroclimatic and energy regimes, and teleconnections usually interact with each other, 
causing even greater impacts. We analyzed four variables and six teleconnections in the largest biomes in South 
America and found that even within the same biome, there is significant spatial and temporal variability in 
biophysical variables (Fig.  1). For instance, the highest GPP is concentrated in the northwestern Amazon, 
coinciding with the region of highest rainfall (Fig. 1A,C). However, it is not a hotspot for evapotranspiration 
(ET) (Fig. 1B). The lower ET in this area, despite high GPP, results in elevated ecosystem water use efficiency 
(EWUE). The lower ET in this region is explained by the high cloudiness28, making net radiation at the surface 
the main driver of evapotranspiration throughout the year9.

In addition, ET in the Cerrado has strong stomatal control due to the high vapor pressure deficit (VPD), 
which is why the decrease in ET and GPP is less abrupt (Fig. 1E) in G4 compared to the other groups. These 
aspects were observed by33 when he investigated the differences between evaporation, transpiration and GPP 
in the Amazon, Cerrado and Pantanal biomes34. Observed that, during the transition from the rainy to the dry 
season in a forest in southern Amazonia, the structural characteristics of the canopy played a more significant 

Fig. 5.  Spearman correlation between ONI, precipitation and biophysical variables, for time lags of 1, 3 and 
6 months (a–l), where columns are time lags and rows are biophysical variables [e.g., (a) is the correlation 
between P and AMO with a 1-month lag; (b) is the correlation between P and AMO with a 3-month lag]; 
(m) distribution of groups of watersheds; (n) is the percentage of watersheds with significant correlations for 
each variable in the three lags; and o) Spearman correlation by cluster. The hitching identifies which case a 
particular watershed exhibits no statistical significance (α > 0.05) in the correlation. The map was created with 
ArcGIS Desktop 10.8.1 ( ​h​t​t​p​s​:​​/​/​s​u​p​p​​o​r​t​.​e​s​​r​i​.​c​o​​m​/​e​n​-​u​​s​/​p​a​t​c​​h​e​s​-​u​p​​d​a​t​e​s​​/​2​0​2​4​/​a​r​c​g​i​s​-​d​e​s​k​t​o​p​-​1​0​-​8​-​1​-​g​e​n​e​r​a​
l​-​c​o​m​p​o​n​e​n​t​-​u​p​d​a​t​e​s​-​p​a​t​c​h​​​​​)​.​​​​
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role in controlling transpiration than direct water restrictions. This is due to the fact that the trees have stable 
water reserves even during the dry season.

Regions of lower EWUE in the south-east of the Amazon and in the Cerrado correspond mainly to the lower 
amount of biomass and high evapotranspiration characteristic of this region. This result agrees with35 in a global 
description and27 in their discussions of the Brazilian Amazon. The correlations observed between different 
groups of biophysical variables, such as between P2 and GPP4, or ET3 and EWUE2, indicate a possible spatial 
dependence, and it can be explained by hydrological memory in soil moisture8,9,36,37, atmospheric moisture 
transport and precipitation recycling9,34,35,37. Furthermore, these processes help to clarify the temporal lags 
(Figs. 3, 4 and 5) between the onset of teleconnection cycles and the responses of biophysical variables. For 
example, during an El Niño event, until the event has fully matured (with the descending branch of the Walker 
cell covering the northern and northeastern South America)38 with a vertical forcing inhibiting deep convection 
and thus decreasing precipitation in parts of G1, G2 and G3. This climatic condition was only identified with 
greater impact at a 3-month lag. Or in a negative AMM event, with the intensification of the northeast trade 
winds, which favors ET with a one-month lag.

Our results agree partially with20, who analyzed the effects of teleconnections on global carbon fluxes. 
However, these authors do not mention the removal of autocorrelation in their time series. The authors also 
identified AMO as the main teleconnection modulating GPP in the southern portion of the Amazon and in the 
Cerrado. On the other hand, we disagree with the results where, according to20, ONI assumes the role of the main 
modulator of GPP in the northern portion of the Amazon. In our results, AMM and AMO assume a leading role 
in the variability of the GPP in this region, since the AMM dominates the seasonal cycle of precipitation and 
evapotranspiration, while the AMO dominates the interdecadal balance, since both teleconnections modulate 
the transport of moisture and energy in the Amazon by displacing the ascending branch of the Hadley cell 
further north in the region. This displacement helps in the greater input of convective energy, added to the trade 
winds that drive ET3 (Fig. 6E), which explains the seasonal correlations between ET3 and AMO.

In addition, due to the tropospheric bridge between the Atlantic and Pacific oceans39, the positive phase of 
AMO intensifies the Walker circulation40, strengthening the Choco Jet in the coast of Colombia41 and weakening 
the SACZ over the Brazilian Cerrado42. This explains the positive seasonal correlation between the EWUE and 
the AMO in the Cerrado during summer and spring (Fig. 6C).

In agreement with our results25 founds that AMM modulates the LAI in the Amazon and Cerrado, which 
may explain its impact in GPP observed here. Physical explanations of teleconnections and their interactions 
with some hydroclimatic processes are discussed in depth by24,37–40,43–45.

Regarding the time lag (Figs.  3, 4 and 5), most of the variables are inversely proportional to the main 
teleconnections studied, for example in the 1st lag-time (Fig. 3) between P and AMM or GPP and AMO, or 
even in the 3-month lag (Fig. 4) between AMO and EWUE or ONI and P. Our results partially agree with46, 
where the authors evaluate the influence of ONI on hydrological processes in the eastern Amazon (equivalent 
to a part of G2 region in our study). The authors found negative and significant correlations between ONI and 
precipitation up to the 8th lag-time, and also positive correlations between this teleconnection and the reference 
evapotranspiration. Unlike46, we did not find significant correlations with ONI and P in most basins/groups 
for various lag times, but we agree with the authors regarding ET. These findings make physical sense, wherein 
a positive (negative) El Niño (La Niña) ONI event, negative (positive) precipitation anomalies are expected in 
this region and, therefore, greater (less) solar radiation input to the surface, which leads to a positive correlation 
between ONI and ET (this also repeats for GPP), as seen in Figs. 4 and 5.

Corroborating our results19, in a global analysis, found positive correlations between ENSO and GPP in the 
northern and western portions of the Amazon for the 3-month lag time and positive correlations in the same 
area for the 6-month lag time and negative correlations in the eastern portion of the Amazon with Cerrado, 
equivalent to our G3.

Although we do not present strong relationships with ENSO in our results, its influence on the Amazon and 
Cerrado is undeniable, especially in the last extreme events in the region, such as the droughts of 199847; 200544; 
201048; 201649; 202250 or the floods of 2009 and 201240,51, respectively. However, these ENSO events were coupled 
with AMM, which confirms the importance of this teleconnection for the region, as well as strengthening the 
theory that the entire Earth system is connected (Fig. 6A), such as the tipping points52. Seasonally in the Amazon, 
this relationship between precipitation and ENSO is more visible (Fig. 6D), especially in summer (mature phase 
of the event) and spring (dry season), as observed by16.

As in25 we found a greater number of significant correlations (Figs. 3, 4 and 5) between AMM, AMO and 
biophysical variables than with ONI, for example. These teleconnections are known to affect the precipitation 
over South America due to their impacts on ITCZ meridional displacement and Hadley cell circulation16,45. An 
example is the positive correlations in the northern regions (G1 and G3) of the Amazon with AMM and ET in 
the 1st (Fig. 4e) lag-time, while in the southern portion of the Amazon and in the Cerrado (G2 and G4), these 
correlations are negative for these two variables. That is, these correlations occur because during the positive 
phase of AMM the ITCZ moves northward and moisture from the Atlantic Ocean is directed to northern 
Amazon, at same time that ascending branch of Hadley cell is more located over the north Amazon, favoring the 
convection. The moisture and convection are reduced in the southern Amazon during this phase of AMM45, and 
with this there is a greater entry of radiation into the surface, which raises the temperature, triggering the ET-
GPP biophysical feedback53, which helps to explain the GPP2-AMM seasonal correlation observed in (Fig. 6B), 
with stronger correlation 6 months after the AMM maturation phase.

On the other hand, during the negative phase of AMM the ITCZ and ascending branch of Hadley cell moves 
more southward, and moisture from the Atlantic Ocean is direct to southern Amazon, where convection is 
favored, as well as favoring the occurrences of South Atlantic Convergence zone over the Cerrado region. 
The moisture and convection are reduced in the northern Amazon during this phase of AMM45. In addition 
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to the impact of AMM on the precipitation, providing more water for evapotranspiration, the impact of this 
teleconnection on convection also affect the gas exchange and, consequently, carbon assimilation7,27,53. All these 
impacts trigger impacts on the interannual and seasonal cycle of biophysical variables analyzed here. However, it 
is also important to mention that the region G1 also include part of southern Amazon, and therefore, is affected 
in a more complex way at each stage of AMM.

Climate change is expected to amplify extreme events driven by teleconnections, impacting ecosystem 
services globally, although there is no consensus on the intensification of events like ENSO54. However, these 
future impacts can be observed, for instance, deforestation under CMIP6 scenarios could reduce biomass by up 
to 5.1% in the Amazon and 3.8% in the Congo55, while global GPP may rise to 120,097 Pg C by 2100 under SSP5-
8.5 scenarios56. Teleconnections already influencing ecosystems around the world, such as the AMM modulating 
the LAI (GPP driver) in regions such as northern Amazonia, subequatorial Africa and central Siberia25.

Our results have limitations based on the products used that combine satellite estimates, modeling and in situ 
data (P, ET and GPP). Although these data are widely used around the world, there are uncertainties associated 
with the assimilation of in situ data with rainfall estimates in the infrared channel by CHIRPS or in the accuracy 
of the MODIS LAI product that supports ET estimates. Another limiting factor is the time series of biophysical 
data (20 years), which does not cover all the long-duration phases of teleconnections such as the AMO and 
PDO. Finally, we should be aware that the long-term terrestrial carbon fluxes simulated by PML-V2 still have 
uncertainties due to parameterization deficiencies and the scarcity of flux towers to improve the calibration 
of terrestrial ecosystem models. For this reason, we recommend using multiple data sources in future studies 
for P (e.g., IMERG-GPM, 3B43-TRMM, PERSIANN-CCS and CMORPH), ET (e.g., PML, GLEAM, SEBAL 
and METRIC) and GPP (e.g., MOD17A2H, VODCA2GPP, TRENDY-v7). In the supplementary material (Table 

Fig. 6.  Chord-Diagram (A) which shows the interconnections between the biophysical variables and the 
teleconnections for each group (i.e. P1, GPP2, ET3, EWUE4). The colors in gray show the correlations between 
the biophysical variables; Red shows the correlations with ONI; Light green are the correlations with AMM; 
Blue shows the correlations with AMO; Orange are the correlations with PDO; Purple are the correlations with 
AAO and Cyan are the correlations with NAO. (B) Expansion of the correlation between GPP2 and AMM; (C 
and E) are the correlations between AMO and EWUE4 and ET3, respectively; (D) are the correlations between 
P1 and ONI. The figure was created with R 4.3.1 (https://cran.r-project.org/).
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S1), we provide a set of P, ET, and GPP products used globally and provide a discussion of the accuracy of the 
products used.

The overview of dominant global and regional teleconnections presented here offers valuable guidance 
for selecting the most relevant teleconnection patterns when studying local and regional ecosystem services, 
particularly in two of the world’s most critical biodiversity hotspots: The Amazon and the Cerrado. This 
information is also useful for stochastic forecasting in carbon sink dynamics (such as reforestation efforts) and 
mitigating extreme weather events’ impacts on agricultural activities.

For instance, a 6-month lag in the AMO can indicate potential evapotranspiration (ET) deficits in southern 
Amazon and Cerrado regions—key areas for Brazil’s agricultural production. Similarly, a 3-month ONI lag can 
signal decreased precipitation in the south of Amazon. The AMM, with the same 3-month lag, also tends to 
enhance carbon assimilation in the northern Amazon, providing critical insights for managing carbon sinks and 
ecosystem services in response to climate variability.

Data and methods
Study area
The study area (Fig.  7) comprises the Amazon and Cerrado biomes. The Amazon encompasses 9 countries, 
holds the largest territorial extension (~ 7.5 million km²) of tropical forest in the world, and is home to more 
than 40 million inhabitants, with emphasis on 385 indigenous peoples57. Its hydroclimatic characteristics vary 
spatially, with average annual precipitation of 2,200 mm.year−158, of which around 20% is regionally recycled 
by evapotranspiration (varying between 15% and 25% in different Amazonian subregions and seasons of the 

Fig. 7.  Location of the Amazon and Cerrado biomes; elevation and division of these biomes into 5th order 
hydrographic basins; and grouping of these watersheds into four groups of same GPP. The map was created 
with ArcGIS Desktop 10.8.1 ​(​​​h​​​​t​t​p​s​​:​/​​/​​s​​u​​p​p​o​r​​t​.​e​​s​​r​​i​.​c​​o​​m​/​e​​n​​​​-​​u​s​/​​p​​a​t​c​h​​e​​s​-​​u​p​d​a​t​e​s​/​2​0​2​4​/​a​r​c​g​i​s​-​d​e​s​k​t​o​p​-​1​0​-​8​-​1​-​g​e​n​e​
r​a​l​-​c​o​m​p​o​n​e​n​t​-​u​p​d​a​t​e​s​-​p​a​t​c​h​​​​​)​.​​​​
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year), and the rest of evapotranspiration and oceanic moisture are transported downwind to the La Plata Basin, 
mainly37. Moreover, the hydroclimatic characteristics of this biome, located in the Earth’s largest watershed, is 
responsible for the world’s largest streamflow: 206 × 10 m³.s−159,60.

The Cerrado biome (Brazilian tropical savannah) is a biodiversity hotspot, with the most diverse flora of 
any savannah in the world61. The biome covers approximately 2 million km2, which corresponds to 24% of the 
Brazilian territory62, and covers an area of water recharge for important aquifers and rivers in South America 
and for the generation of hydroelectric energy in Brazil63. The predominant climate is tropical savannah, 
characterized by two well-defined seasons (monsoon regime), and average annual precipitation of ~ 1480 mm.
year−164,65. In the bordering regions, the climate transitions to a hot semi-arid condition (Northeast), a tropical 
monsoon climate (West), and a temperate climate (South)66.

Teleconnections
We analyzed six globally important climate variabilities (ENSO, PDO, AMO, AMM, AAO and NAO), as 
shown in Table 1. Monthly data for the 6 teleconnections indices are obtained from the National Oceanic and 
Atmospheric Administration (NOAA).

It is also important to mention that the periodicity of AMO (50–88 years74) and PDO (50–70 years68) are 
longer than the time series used in this study (20 years). However, at same time that the indexes about these 
two climatic variabilities are calculated at monthly time scale68,70, these variables also have quasi-oscilations on 
shorter time scales75.

Gross primary production (GPP)
We used monthly GPP data between 2001 and 2020 from the Penman-Monteith-Leuning V2 model 
(PML-V229,76). The PML-V2 product uses the Penman-Monteith evapotranspiration equation modified by77, 
changing the surface conductance formulation considering soil and canopy water losses and using a biophysical 
canopy conductance model that combines GPP with canopy transpiration76. The version 2 is improved 
by incorporating the vapor pressure deficit constraint into the GPP, which is then used to constrain canopy 
conductance and transpiration.

The product has high accuracy compared with global ground observations, although it can underestimate 
GPP in rainforests29. Furthermore, the PML-V2 GPP can be considered more improved than the MOD17 GPP 
product because the MODIS ET and GPP algorithms are not coupled, that is, one product is independent of the 
other, when in fact the GPP is strongly dependent on stomatal conductance29,76. PLM-V2 products are calibrated 
and validated using flow tower data from FLUXNET2015, and specific results for a tower in the Amazon reveal 
superior performance (RMSE = 1.17) of PLM compared to GPP of MOD17A2H (RMSE = 4.34)29. Furthermore, 
global comparisons78–81 demonstrate the good performance of PML.

Evapotranspiration (ET)
Evapotranspiration data were obtained using the MOD16A2 product, based on the Penman-Monteith 
evapotranspiration equation82. This product integrates land cover (MOD12Q1), albedo (MCD43), LAI, 
photosynthetically active radiation fraction (MOD15A2), and meteorological data reanalysis83 to obtain 
potential and actual evapotranspiration with 500 m resolution every 8 days. MOD16A2 evapotranspiration data 
is available at Google Earth Engine and was integrated monthly from 2001 to 2020 according to GPP data. This 
evapotranspiration product is widely used and has already been validated and tested for the Amazon84,85 and 
Cerrado86,87 in addition to the transition between biomes88. Catchment-mean ET values from this product is 
strongly correlated with ET from the catchment-balance for the Amazon89.

Monthly water use efficiency (WUE) was calculated as the ratio of GPP and ET and represents the amount of 
carbon gained by water unit used11. It is commonly called Ecosystem Water Use Efficiency (EWUE) due to the 
change in vegetation’s photosynthesis rate in relation to the use of water90.

Precipitation (P)
We used the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS v2.0)91. The algorithm 
combines weather station data and incorporates satellite information to represent sparsely measured locations, 
and daily, pentad, and monthly precipitation estimates of 0.05° infrared estimates of Cold Cloud Duration from 
1981 to present. The monthly average from 2001 to 2020 with 0.05° of spatial resolution was obtained from 
Google Earth Engine. The product was developed for trend analysis and seasonal drought monitoring and had 

Region Teleconnection Description Reference

Pacific
ONI Three month running mean of NOAA ERSST.V5 SST anomalies in the Niño 3.4 region (5 N-5 S, 120–170 W). 67

PDO 1st Empirical Orthogonal Function of North Pacific SST and Sea Level Pressure anomalies (100°E–100°W, 20–65°N). 68

Atlantic
AMM 2nd principal component of tropical Atlantic SST anomalies and the zonal and meridional components of wind 

(70°W–20°E, 30°S–30°N).
69

AMO Average SST anomalies for the North Atlantic (80°W–0°E, 0–60°N). 70

Atmosphere
AAO 1st leading mode from the EOF analysis of monthly mean height anomalies at 700-hPa poleward of 20°S. 71,72

NAO 1st principal component of sea level pressure anomalies over the North Atlantic (90°W–20°E, 20–80°N) 73

Table 1.  Detailed information about the analyzed indexes of climate variability (teleconnections) analyzed.
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presented a great performance in representing monthly precipitation throughout the Brazilian Amazon and 
parts of Cerrado92–95. We leave a detailed review on all the products used and their accuracy for our study area 
in the supplementary material.

Statistical analysis
Time lag and clustering.

The first step in processing the data was to remove autocorrelation from the time series, especially from the 
teleconnections. According to96, as the teleconnections interact with each other, their signal is usually loaded 
with biases that can often lead researchers to unexpected results. We therefore used the differentiation method 
to remove autocorrelation from our time series according to Eqs. 1 and 2. This procedure was carried out using 
the Pandas library97 on Google Colab.

	 Yt = (1 − B)d(1 − b = Bs)DXt� (1)

being d the order of the first differencing component, s is the period of the seasonal component, D is the order 
of the seasonal component, and B is the lag operator defined by:

	 BXt = Xt−1� (2)

The values ​​of (d, D) can be chosen in an interactive process, or as a function of Autocorrelation and Partial 
Autocorrelation (ACF, PACF). s is 12 for monthly data with annual seasonality and 0 when there is no seasonality.

The standardized anomaly (Eq. 3) of the biophysical variables was also calculated so that correlations could be 
made in time lag with the anomalies of the teleconnections without autocorrelation. After all the data treatments 
on the variables (teleconnections, precipitation and biophysical variables), Spearman’s correlation was carried 
out with a time lag of 1, 3 and 6 months between teleconnections, precipitation and biophysical variables for 
each basin and for each cluster. These time lags were selected because they obtained the best correlations with 
statistical significance. In addition, these lags correspond to the average time of development, maturation and 
dissipation of some teleconnections, such as ENSO and AMM (with the exception of AMO and PDO). These 
aspects have been previously discussed by98–104

	
SA = Xt − X̄

σ
� (3)

being SA the standardized anomaly, Xt is the value of the biophysical variable for a time t, here it is the monthly 
value of the biophysical variable, P for example. X̄  is the average of the biophysical variable for the study period, 
that is 20 years, and σ is the standard deviation of the biophysical variable for the same study period.

Due to the number of river basins to be studied, we used K-means clustering to group the basins with the 
same GPP pattern (Fig. 7) and thus reduced the 59 basins to 4 groups (G1 = 26, G2 = 12, G3 = 8, G4 = 19) of 
basins. Finally, we performed correlation products (Spearman, with significance level α = 0.05) of the groups 
of biophysical variables with each other and between the teleconnections; these processes were carried out in 
R using the factoextra and corrplot packages105, respectively. From this point onwards (display of correlation 
results, relative importance and Lag-time) we call GPP1, GPP2, GPP3 and GPP4 the GPP of groups 1, 2, 3 and 
4. The same for ET, P and EWUE.

Finally, we applied the Kruskal-Wallis non-parametric statistical tests for k samples, the Steel-Dwass-
Critchlow-Fligner paired multiple comparisons test and the Kolmogorov-Smirnov test to confirm that all the 
data series (biophysical, precipitation and teleconnections) were properly transformed into series without 
autocorrelation and that the K-means groupings really did form consistent and independent groups. In 
addition, we constructed ACF graphs for time lags of up to 6 months for the teleconnections and groupings of 
the biophysical variables and precipitation. The Kruskal-Wallis test allows us to identify whether the samples 
come from the same population, while the Kolmogorov-Smirnov test indicates whether the distribution of 
the two samples is the same, while the Steel-Dwass-Critchlow-Fligner test shows whether there are significant 
differences between the time series. All the statistics were carried out at a significance level of 0.05 and the 
graphical and tabular results can be found in the supplementary material.

Regression analysis and relative importance.
To assess the influence of ocean-atmosphere teleconnections on biophysical variables (P, ET, GPP, and 

EWUE), we first establish a relationship between these biophysical variables (Y) and the ocean-atmosphere 
indices (X) from Table 1 using a regression model according to106. Here, X represents each index within the set 
S, denoted as Xj, J ∈ S:

	
Y = α0 +

∑
j∈S

αjXj � (4)

being α0 and αj  unknown intercept and regression coefficients. When the coefficients are estimated (α̂0 and α̂j

), the fitted variable ˙̂
Y  can be written as:

	
Ŷ = α̂0 +

∑
j∈S

α̂jXj � (5)

The coefficient of determination, R2, measures the proportion of variation in Y  that is explained by the variables 
X in the regression model, which is usually used to evaluate the goodness of fit of the model. It is written as:
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R2(S) =

∑n

i−1 (Ŷi − Ȳ )
2

∑n

i=1 (Yi − Ȳ )2 � (6)

To identify the most significant variables for the Y variable, relative importance analysis is applied, i.e., which 
teleconnection is most important for the biophysical variables. This approach involves decomposing the R2 to 
assess the individual contributions of each independent variable to the total R2. In a model with independent 
variables in the data set S, the explanation of the variance of the dependent variable is R2(S). By adding 
independent variable Xk  to the regression model for set S, the R2 of Xk  can be written as:

	 R2 ({Xk} |S) = R2 ({Xk} | ∪ S) − R2 (S)� (7)

Considering the effects of the orderings of the correlated variables that entered the model, the R2 of Xk  in order 
r (denoted as set Sr) can be written as:

	 seqR2 ({Xk} |Sr) = R2 ({Xk} | ∪ Sr) − R2 (Sr)� (8)

Based on Eq. (9), the Lindeman Merenda and Gold (LMG) method107 was used; this LMG method is an average 
of all possible orderings of correlated variables.

	
LMGXk = 1

p!
∑

rpermutation
seqR2 ({Xk} |Sr)� (9)

being p the number of independent variables X, and r denotes r-permutation, i.e., r = 1, 2, …, p.
In this way we know which independent variables (teleconnections) have the greatest influence on the 

biophysical variables for each group of river basins. This approach has been used in applications around the 
world, e.g.23, investigated the impacts of teleconnections on hydrometeorological variables in five river basins in 
Southeast Asia27; used the random forest machine learning algorithm to classify the most important variables in 
the carbon sink process in secondary forests in the Amazon.

Data availability
The original data used in this study are all publicly available from their sources: P ​(​​​h​t​t​p​​s​:​/​/​d​e​​v​e​l​o​p​e​​r​s​.​g​o​o​​g​l​e​.​c​o​
m​/​e​a​r​t​h​-​e​n​g​i​n​e​/​d​a​t​a​s​e​t​s​/​c​a​t​a​l​o​g​/​U​C​S​B​-​C​H​G​_​C​H​I​R​P​S​_​D​A​I​L​Y​​​​​)​; GPP ​(​​​h​t​t​p​​s​:​/​/​d​e​​v​e​l​o​p​e​​r​s​.​g​o​o​​g​l​e​.​c​o​m​/​e​a​r​t​h​-​e​
n​g​i​n​e​/​d​a​t​a​s​e​t​s​/​c​a​t​a​l​o​g​/​C​A​S​_​I​G​S​N​R​R​_​P​M​L​_​V​2​_​v​0​1​8​​​​​) and ET ​(​​​h​t​t​p​​s​:​/​/​d​e​​v​e​l​o​p​e​​r​s​.​g​o​o​​g​l​e​.​c​o​m​/​e​a​r​t​h​-​e​n​g​i​n​e​/​d​
a​t​a​s​e​t​s​/​c​a​t​a​l​o​g​/​M​O​D​I​S​_​0​6​1​_​M​O​D​1​6​A​2​​​​​) for Teleconnection (https://psl.noaa.gov/data/climateindices/list/). In 
addition, the raw data used in this study by watershed is available at: ​(​​​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​6​0​8​4​/​m​9​.​f​i​g​s​h​a​r​e​.​2​8​0​0​
9​0​8​2​​​​​)​.​​

Code availability
The computer codes that support the analysis carried out in this article (relative importance) are available on 
request from the corresponding author. The codes for extracting the biophysical data (GPP, ET and P), as well 
as the code for extracting the autocorrelation and running the lag-time correlations can be found at ​(​​​h​t​t​p​s​:​/​/​g​i​t​
h​u​b​.​c​o​m​/​o​l​i​v​e​i​r​a​s​e​r​r​a​o​​​​​)​, via the [Lag-Time] and [Biophysical-data] repositories.
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