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This research paper presents an advanced AI-driven hybrid power quality management system for 
electrical railways that addresses critical challenges in 25 kV AC traction networks through a novel 
integration of single-phase PV-UPQC with ANN-Lyapunov control architecture. The system effectively 
manages voltage unbalance exceeding 2%, high THD, voltage variations of ± 10%, and poor power 
factor through a dual-approach methodology combining ANN-based reference signal generation 
with Lyapunov optimization, enabling dynamic parameter tuning and real-time load adaptation. 
MATLAB/Simulink simulations validate the system’s superior performance, demonstrating significant 
improvements, including voltage unbalance reduction from 1.5 to 0.8%, THD reduction below 1%, 
unity power factor correction, 40% faster dynamic response, and DC link voltage regulation within 
± 2%, while maintaining 95% overall system efficiency. Integrating ANN-based shunt and series APF 
control, Lyapunov optimization, and PV integration establishes a robust framework for enhanced 
energy efficiency and power quality management in modern railway systems.
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This research introduces the first Lyapunov optimization for UPQC control parameters in railway applications 
and provides an effective power quality enhancement with maximum system stability. That is why the investigated 
method of integrating PV systems with UPQC through AI-based control is one of the most innovative and 
prospective solutions for sustainable power quality management in electrified railways. Railway electrification 
has become more popular worldwide to reduce fossil fuel use and emissions. However, it presents technical 
issues regarding power quality since traction loads are single-phase, nonlinear, with regenerative braking1. This 
leads to issues such as voltage unbalances, harmonics, voltage sag/swell, and poor power factor in the three-
phase utility grid supplying the traction substations2,3. Earlier methods of controlling these problems have 
included special traction transformers, passive filters, and static var compensators (SVCs). Conventional power 
quality mitigating equipment such as passive filters and SVCs have their limitations – they take a long time to 
respond to PQ disturbances, occupy considerable physical space that is difficult to accommodate, and are known 
to cause resonance issues with the power systems. Conventional active power filters, on the other hand, suffer 
from limited response time and varied levels of Compensation; this is the case with new advanced active power 
filters that utilize power electronics to compensate for disturbances in less time. With advancements in power 
electronics, active power filters (APFs) have emerged as a superior solution for improving power quality4. The 
unified power quality conditioner (UPQC) is an APF-based custom power device that integrates shunt and 
series compensation5. It can simultaneously act as a harmonic isolator between the load and supply, a voltage 
regulator at the load terminal, and a reactive power compensator for power factor correction6. A few studies 
have investigated the application of UPQC for railway power quality enhancement7. However, the control of 
UPQC is quite complex, as it requires fast and accurate reference generation under dynamic load conditions. 
Conventional methods based on instantaneous reactive power (IRP) theory are limited8. Recently, artificial 
intelligence (AI) techniques like fuzzy logic, artificial neural networks (ANNs), adaptive neuro-fuzzy, etc., have 
shown promise for APF control due to their robustness, adaptability, and nonlinearity9.
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Moreover, the control parameters need to be optimally tuned to ensure system stability and desired 
performance. Lyapunov optimization is a powerful technique that can maximize a utility function subject to 
stability constraints10. It has been successfully applied to power system control and energy management11. 
Lyapunov control functions are extended to handle state constraints and obstacles while ensuring system 
stability and equilibrium through nonsmooth complete CLF formulation33. However, its application to power 
quality control in railways has yet to be explored in UPQC. The energy storage systems enhance the AI-based 
UPQC model by providing faster response to load variations, better DC link voltage stability, and improved 
power factor correction through energy buffering capabilities.

Figure 1 illustrates the typical configuration of a 25 kV AC traction system with power quality challenges. 
Table 1 compares the features and limitations of various power quality mitigation methods. This paper proposes 
a novel AI-based hybrid control for a single-phase UPQC using Lyapunov optimization to improve power 
quality in electrified railway systems.

Integration of hydrogen refuelling stations with power and gas networks, using renewable energy and storage 
systems, enables efficient operation with minimal grid dependency while maintaining system constraints and 
generating significant profits32. Power quality issues in railway electrification systems have become increasingly 
important with the growing adoption of high-speed rail and power electronic converters in locomotives. 
Several studies have investigated the application of unified power quality conditioners (UPQCs) to mitigate 
power quality problems in railway systems. Wang et al.8 proposed a predictive direct control strategy for UPQC 
based on power angle control to improve compensation performance. Their approach combined direct control 
with finite control set model predictive control to achieve faster dynamic response and lower steady-state error. 
Simulation results demonstrated improved harmonic suppression and reactive power compensation compared 

Fig. 1.  Configuration of a 25 kV AC traction system.
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to conventional control methods. Xu et al.14 developed a power quality management strategy for high-speed 
railway traction power supply systems using a modular multilevel converter-based railway power conditioner 
(MMC-RPC). Their strategy applied a hierarchical control paradigm for voltage regulation, negative-sequence 
Compensation, and harmonic filtering. Onboard field tests on a 350 km/h high-speed railway line confirmed 
the approach’s efficacy in enhancing power quality depending on different traction load scenarios. In their work, 
Kaleybar et al.15 designed an active railway power quality compensator for a 2 × 25 kV high-speed line due to 
unbalanced load problems in the AC rail methods. The proposed compensator used a new control algorithm to 
regulate the currents from the 25 kV systems and supply the needed reactive Power. The actual hard-in-the-loop 
tests showed that the voltage unbalance and the level of harmonic distortion were considerably decreased. Wei 
et al.1,16 proposed an optimal control for railway power static conditioners to enhance the power capacity. Their 
approach utilized a multi-objective framework for compensation performance and device stress consideration 
without compromising with each other.

Case studies on a metro system showed improved voltage profile and power factor with the optimized 
control. Sun et al.17 proposed a hybrid compensation method combining active and passive elements for a more 
comprehensive solution. The active compensator used an artificial neural network-based controller to generate 
reference signals, while passive filters provided additional harmonic attenuation. Experimental results on a scaled-
down 25 kV AC railway system demonstrated superior performance compared to conventional methods. Recent 
work by Wang et al.18 explored the application of power angle control for UPQC in railway electrification. Their 
approach enabled flexible power flow control between series and shunt converters to optimize Compensation 
under varying load conditions. Simulation studies on a 2 × 25 kV system showed improved voltage regulation 
and current balancing capabilities. The current model addresses parameter uncertainties through the adaptive 
capabilities of the ANN-Lyapunov hybrid control system. The Lyapunov optimization technique inherently 
handles uncertainties in traction load characteristics, grid voltage fluctuations, and power electronic device 
parameters by continuously updating control parameters in real time. The system adapts to variations through 
dynamic updating of ANN weights and real-time parameter estimation. However, the model could be enhanced 
by incorporating stochastic modeling of load variations, implementing robust estimation techniques for system 
parameters, and developing probabilistic power quality indices to better account for uncertainties in railway 
power systems.

These studies highlight the potential of advanced control and optimization techniques to enhance UPQC 
performance and improve railway power quality. However, further research is needed to address challenges 
like real-time adaptation, coordination with existing protection systems, and integration with renewable energy 
sources at traction substations.

The main contributions are:

	1.	� Development of an integrated ANN-based control system for shunt and series APF reference generation in 
single-phase UPQC.

	2.	� Implementation of Lyapunov optimization for UPQC control parameters to maximize power quality while 
maintaining system stability.

	3.	� Detailed modeling of AC traction system components including locomotive and signaling loads in MAT-
LAB/Simulink.

	4.	� Validation of superior performance compared to conventional IRP-based control through comprehensive 
simulation studies.

	5.	� Achievement of improved voltage balance (VUF of 0.8% vs. 1.5%), reduced harmonics, and unity power 
factor correction.

Mitigation Method Features Limitations

Unified Power Quality Conditioner 
(UPQC)11

Simultaneously resolves current and voltage-related power quality issues Complex configuration and control

Improved control strategies allow for higher-quality power production.

Solar PV Integration with Grid12
Utilizes novel adaptive controllers for voltage-sensitive loads Requires coordination with other devices like OLTC and 

SVC for effective voltage regulation

Employs regulation strategies to mitigate voltage fluctuations

Distribution Static Compensator 
(DSTATCOM)12

Utilizes voltage controller for improved performance13 Efforts in optimal placement and sizing have been limited

Stochastic optimal planning considers uncertainties in loads and solar 
irradiance.

Efficient allocation for unbalanced distribution networks 
needs further research.

Active Power Filter (APF)
Mitigates power quality issues in grid integration of wind and PV systems Requires proper design and control for effective 

performance

Phase coordinate-based APF effective for harmonic mitigation.

Dynamic Voltage Restorer (DVR) Enhances voltage sag in grid-connected hybrid PV-wind power system Integration with smart grids and microgrids needs 
further research

Improved power converters enhance performance and reduce cost.

Table 1.  The features and limitations of various power quality mitigation methods.
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Research gaps
Technical limitations

	1.	� Need for real-time adaptation mechanisms to handle varying traction load conditions.
	2.	� Lack of coordination frameworks with existing protection systems.
	3.	� Limited exploration of integration with renewable energy sources at traction substations.

Implementation challenges

	1.	� Complex configuration and control requirements for UPQC systems.
	2.	� Optimal placement and sizing considerations for unbalanced distribution networks remain underexplored.
	3.	� Insufficient research on efficient allocation strategies for power quality devices in railway networks.

The paper is structured as follows: Sect.  2 outlines the railway system configuration and UPQC structure. 
Section 3 details the proposed ANN-based control scheme with Lyapunov optimization. Section 4 presents and 
analyses simulation results. Section 5 analyse the case Study Results and Sect. 6 concludes with critical findings. 
This organization provides a comprehensive overview of the AI-based hybrid power quality control system for 
electrical railways, covering system design, control methodology, performance evaluation, and final insights. 
Table 2. Shows comparative analysis of the advantages between the proposed AI-based UPQC system and recent 
research:

Proposed AI-based control Scheme with Lyapunov optimization
The proposed ANN-based control scheme with Lyapunov optimization for single-phase railway UPQC 
comprises fundamental extraction using SOGI, shunt, and series APF control with ANNs, PWM generation, and 
Lyapunov optimization21. This approach enables fast, accurate reference signal generation and optimal tuning of 
control parameters for improved power quality22. The catenary voltage vtand load current ilwaveforms and their 
fundamental components vt1ail1re sensed and extracted using second-order generalized integrators (SOGI). 
This avoids needing a complex phase-locked loop (PLL) and makes the control frequency adaptive. Shunt APF 
control generates the reference compensating current i∗

shfor the shunt VSI. An ANN is trained to estimate the 
extracted load current harmonics ilhand reactive componentilril1s. Then, the reference is calculated as:

	 i∗
sh = ilh + ilr − iloss� (1)

whereiloss is the shunt inverter loss component to maintain the DC link voltage constant against losses. It is 
estimated using a PI controller whose gains are tuned by Lyapunov optimization. Shunt APF ANN estimates 
the harmonic and reactive components of the load current. The shunt APF ANN has a three-layer architecture. 
The input layer consists of 3 neurons representing the fundamental frequency, magnitude, and load current 
phase. The hidden layer contains ten neurons with hyperbolic tangent activation functions. The output layer 
has two neurons estimating harmonic current and reactive current components. Series APF control generates 
reference compensating voltage using an ANN to estimate voltage harmonics and unbalance components from 
the fundamental catenary voltagev∗

se for the series VSI. Another ANN is used to estimate the voltage harmonics 
vthand unbalanced componentvtuvt1s. The source voltage can be expressed as:

	 vs = vt1 + vth + vtu� (2)

vt1 is the fundamental component
vth  represents harmonic components
vtu represents unbalance components
Desired Load Voltage The desired load voltage should contain only the fundamental components:

	 vL = vt1� (3)

Feature Proposed AI-UPQC System Recent Research Works

Control Strategy ANN with Lyapunov optimization for both shunt and series APF control NARMA-L2 Controller and PI Controller with Adaptive Lizard 
Algorithm5

Power Quality Improvement Reduces THD below 1%, VUF from 1.5–0.8%, Unity power factor 
correction

Only partial improvement in THD and power factor using 
conventional methods5

Response Time 40% faster dynamic response with optimized control Limited by fixed algorithm configurations5

Adaptability Real-time adaptation to varying load conditions using AI-driven control Requires initial configuration and manual parameter tuning5

Implementation Complexity Plug-and-play capability with model-free control Complex configuration requirements and control parameter settings31

Integration Capability Compatible with renewable energy sources and smart grid systems Limited integration capabilities with modern power systems29

Cost Effectiveness Reduced maintenance costs and improved energy efficiency (95%) Higher operational costs due to fixed control algorithms30

Stability Enhanced system stability through Lyapunov optimization Stability issues under varying load conditions29,34

Table 2.  Comparative analysis of the advantages between the proposed AI-based UPQC system and recent 
research.
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Compensation Voltage: The series APF must inject a voltage that makes:

	 vL = vs + v*
se� (4)

Final Derivation Substituting and solving for v*
se :

	 vt1 = (vt1 + vth + vtu) + v*
se� (5)

	 v*
se= vt1 − (vt1 + vth + vtu)� (6)

The reference is computed as:

	 v*
se = vt1 − vth − vtu� (7)

This compensation voltage eliminates harmonics and voltage unbalance at the load terminal.
This ensures that a pure sinusoidal voltage appears across the load terminal.
Figure 2 illustrates the flowchart of an advanced control strategy for power quality improvement using Artificial 

Neural Networks (ANNs) and Lyapunov optimization. The process begins by measuring load current and supply 
voltage and extracting fundamental components using the Second Order Generalized Integrator (SOGI). ANNs 
generate shunt and series Active Power Filters (APFs) reference signals. Control errors are computed and used 
to update parameters via Lyapunov optimization, which aims to maximize a utility function while ensuring 
system stability. Based on these optimized parameters, the system generates PWM switching signals for shunt 
and series inverters. This adaptive control loop continues until the end of the control cycle, constantly adjusting 
to maintain optimal power quality. The ANN weights are adapted by Lyapunov optimization to minimize 
the voltage distortion. The Series APF ANN estimates voltage harmonics and unbalanced components. Its 
architecture consists of an input layer with three neurons (fundamental frequency, magnitude, and phase of 
supply voltage), a hidden layer with eight neurons using sigmoid activation, and an output layer with two 
neurons (estimated harmonic voltage and unbalance voltage). The Shunt and Series APF ANNs are trained 
offline using the Levenberg-Marquardt backpropagation algorithm. The training dataset comprises simulated 
railway load current and voltage waveforms under various operating conditions. This approach enables fast 
and accurate reference signal generation without the need for complex signal processing, enhancing the overall 
performance of the UPQC control system. PWM generation compares sensed shunt APF current and series 
APF voltage with their respective references. The resulting errors are processed through hysteresis controllers to 
generate switching pulses for shunt and series VSIs. Lyapunov optimization selects the hysteresis band to limit 
switching frequency. This approach ensures accurate tracking of reference signals while optimizing the UPQC’s 
switching performance.

mathematical equations for processes in the flowchart Fig. 2 are given as:
1. Load current and supply voltage measurement:

	 i (t) , v (t)

I (t) is the load current, and v(t) is the supply voltage.
2. Extract fundamental components using SOGI (Second Order Generalized Integrator):

	 s (t) = 0.5 × (i (t) + f (i (t)))� (8)

Where s(t) is the extracted fundamental component, ((i (t) + f (i (t))))representing the SOGI filtering 
function.

Reference Signal Generation.
3. Generate reference signals using trained Artificial Neural Networks (ANNs):

	 s = ANN (trainingdata)� (9)

Where s is the generated reference signal.
4. Compute control errors:

	 e (t) = r (t) − y (t)� (10)

Where e(t) is the error, r(t) is the reference signal, and y(t) is the measured output.
5. Update control parameters via Lyapunov optimization:

	 δ = Lyapunov (e)

Where \delta represents the updated control parameters based on the Lyapunov function of the error.
PWM Signal Generation.
6. Generate PWM switching signals:

	 Vpwm = modulate (s) � (11)

Vpwm is the PWM voltage output, and s is the reference signal.
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Optimization.
7. Maximize utility function:

	 U (x) = maxf (x)� (12)

Where U(x) is the utility function to be maximized.
8. Ensure system stability:
This would involve checking the Lyapunov stability conditions, which can be represented as:

	 V (x) > 0, V̇ (x) < 0

Fig. 2.  ANN-Based Adaptive Power Filter Control with Lyapunov Optimization for Power Quality 
Enhancement.
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Where V(x) is a Lyapunov function candidate and \dot{V}(x) is its time derivative.

	 e (t) = yref (t) − yactual (t) � (13)

dV
dt

< 0 (Lyapunov stability criterion)

	 u (t) = f(ANNoutput, e(t), Lyapunov optimization)� (14)

Lyapunov optimization parameters
The Lyapunov optimization technique is used to tune the control parameters of the PV-UPQC system in real-
time, ensuring optimal power quality improvement and system stability. Table 3 Parameters used for Lyapunov 
Optimization and the Lyapunov optimization parameters mathematical equations are given as:

	1.	� Lyapunov function:

	 V (x) = 0.5(x12 + x22 + x32)� (15)

where x1, x2, and x3 are state variables representing errors in voltage, current, and DC link voltage, respectively.

	2.	� Control law:

	 u = −k1x1 − k2x2 − k3 � (16)

where k1, k2, k3 are positive gains.

	3.	� Stability condition:

	 dV/dt = −k1x12 − k2x22 − k3x32 < 0� (17)

	4.	� Optimization step sizes: γ1, γ2 for updating control gains.

The gains are updated using:

	 ki(t + 1) = ki (t) − γ i × ∂ V/∂ ki� (18)

These parameters are tuned to minimize the Lyapunov function derivative, ensuring system stability while 
optimizing power quality metrics like THD, VUF, and power factor.

Feedforward neural network architecture with two layers
Figure 3 shows a feedforward neural network architecture with two layers. Each layer contains a bias (b) and 
weight (w) component. The inputs are summed with the bias and then processed through an activation function 
(represented by the curved line in Layer 10 and the straight line in Layer 2). This structure allows for nonlinear 
transformations of the input data, enabling the network to learn complex patterns and relationships between 
inputs and outputs.

Figure  4 illustrates the performance of a power quality control system using Lyapunov optimization and 
artificial neural networks (ANN). The graph shows the Lyapunov function converging and stabilizing over 
TimeTime, indicating system stability. Initially, there are large oscillations, but these quickly dampen, settling to 
a steady state after about 0.2 s.

The bottom graph displays the Total Harmonic Distortion (THD) over TimeTime. It shows initial fluctuations 
before stabilizing around 1%, demonstrating effective harmonic mitigation. The final THD is 0.9870, and the 
Final Lyapunov Function Value is 2137391.9092.

Methodology
The proposed system employs a dual-control strategy integrating ANN-based reference signal generation with 
Lyapunov optimization.

Parameter Description Value

γ 1shunt Lyapunov optimization step size for Kpshunt 0.001

γ 2shunt Lyapunov optimization step size for Kishunt 0.0001

γ 1series Lyapunov optimization step size for Kpseries 0.0005

γ 2series Lyapunov optimization step size for Kiseries 0.00005

Kpshunt Initial proportional gain for shunt APF (optimized) 0.1

Kishunt Initial integral gain for shunt APF (optimized) 0.01

Kpseries  (initial) Initial proportional gain for series APF (optimized) 0.05

Kiseries  (initial) Initial integral gain for series APF (optimized) 0.005

Table 3.  Parameters used for Lyapunov optimization.
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System configuration
Railway traction system
This study considers a typical 25kV, 50Hzsingle-phase AC railway traction system, as shown in Fig.  5. The 
parameters used for this research are given in the Appendix.

It consists of the following main components:

	1)	� Three-phase utility grid supply.

Fig. 3.  Feedforward neural network architecture.
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	2)	� Traction substation with transformer, circuit breaker, and isolator.
	3)	� Overhead catenary system.
	4)	� Rail return circuit.
	5)	� Locomotives with onboard transformers and power converters.
	6)	� Signaling and auxiliary loads.

The single-phase traction loads draw large unbalanced currents from two phases of the three-phase grid, leaving 
the third phase underutilized19. This causes voltage unbalance, often exceeding the limit of 2% stipulated by 
IEEE-519 standard20. Additionally, the power electronic converters in locomotives generate harmonics, while 
the signaling and auxiliary loads contribute to poor power factors.

Figure  5 illustrates the flowchart of the UPQC control system with Lyapunov optimization. It outlines 
measuring load current and supply voltage, extracting fundamental components, generating reference signals 
using ANNs, computing control errors, updating parameters via Lyapunov optimization, and generating PWM 
switching signals. The adaptive control loop maximizes power quality improvement while ensuring system 
stability.

PV-UPQC structure
The single-phase UPQC is connected at the secondary side of the traction substation between the catenary 
and rail, as shown in Fig. 6. It has two back-to-back voltage source inverters (VSIs) sharing a standard DC link 
capacitor:

A shunt Active Power Filter (APF), a series APF, a DC link capacitor, and a ripple filter comprise the single-
phase railway Unified Power Quality Conditioner (UPQC). The shunt APF injects compensatory currents in 
parallel with traction loads via a matching transformer for harmonic elimination, reactive power compensation, 
and grid-drawn current balance. A transformer-connected series APF maintains balanced and sinusoidal 

Fig. 4.  Performance of a power quality control system.

 

Scientific Reports |         (2025) 15:2641 9| https://doi.org/10.1038/s41598-025-85393-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


voltage at the load terminal. The DC link capacitor stores energy, providing power disparities between the shunt 
and series APFs while maintaining DC voltage. The ripple filter smoothest compensated output waveforms by 
absorbing high-frequency switching ripples from Voltage Source Inverters (VSIs). This UPQC configuration 
offers railway applications reduced DC link voltage and kVA rating due to the shared capacitor, faster response to 
current and voltage-related power quality issues, and flexibility in placement for localized Compensation at the 
substation or near the locomotive. However, the main challenge lies in adequately coordinating the shunt and 
series APFs to achieve the desired objectives under varying traction load conditions. As discussed, this motivates 
the need for an intelligent and adaptive control strategy with optimal tuning.

Traction load characteristics
The 25  kV AC traction system exhibits distinct load characteristics, significantly impacting power quality 
parameters. The dynamic nature of traction loads creates unique challenges for power quality management. For 
the load profile Analysis, the traction load demonstrates nonlinear characteristics with rapid variations in power 
demand. The system voltage ( Vs) and current ( Is) relationship can be expressed as:

	 Ptraction = VsIscosφ � (19)

Cosφ  represents the power factor, typically 0.78 to 0.85 under normal operating conditions.
For power quality parameters, the power quality metrics observed in the traction system include Voltage 

Imbalance Factor (VUF): 1.5—2%, Total Harmonic Distortion (THD): 4.52% for voltage, Current harmonics: 
25.95% before Compensation, and Voltage variations: ±10% from nominal value.

For load variation affects the PV array characteristics under different irradiation conditions (1.1, 0.5, and 
0.1 kW/m²) demonstrate the system’s capability to handle load variations: Maximum current output: 140 A at 
1.1 kW/m², Peak power generation: ~100 kW at optimal voltage, and operating voltage range: 0–1400 V.

The Lyapunov function convergence pattern shows the system’s dynamic response to load variations, with 
an initial stabilization period of 0–2 s, steady-state operation of 2–4 s, load variation response of 4–8 s, and 
Recovery phase of 8–10 s.

The UPQC control system manages these characteristics through:

	1.	� Real-time fundamental component extraction.
	2.	� Parallel processing of shunt and series APF controls.
	3.	� ANN-based harmonic estimation.

Fig. 5.  Railway Electrification System Schematic.
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	4.	� Lyapunov optimization for stability maintenance.This comprehensive approach ensures robust power quality 
improvement under varying traction load conditions while maintaining system stability and performance 
metrics within acceptable ranges.

Control system design
ANN-based reference generation
The proposed system employs artificial neural networks for both shunt and series APF control to generate 
optimal reference signals for improving power quality.

The Network Architecture of the ANN structure consists of three layers: the input layer processes normalized 
voltage and current signals, the hidden layer contains 10 neurons with hyperbolic tangent activation, and the 
Output layer generates reference signals for Compensation.

The mathematical representation of the ANN output can be expressed as:

	
y (k) =

∑
n
i=1 wiφ (vi (k))� (20)

where wi  represents synaptic weights, φ  is the activation function, vi (k)  is the input vector and n is the 
number of neurons

Training Algorithm The network employs backpropagation with Levenberg-Marquardt optimization:

	 Training Algorithm ∆ w = [JT J + µ I]−1JT e� (21)

where: J is the Jacobian matrix, µ  is the learning rate and e is the error vector
Reference Signal Generation For shunt APF control:

	1.	� Current harmonic extraction.
	2.	� Reactive power compensation.
	3.	� Reference current calculation:

Fig. 6.  Schematic diagram of PV-UPQC Structure.
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	 iref = ih + iq � (22)

For series APF control:

	1.	� Voltage harmonic detection.
	2.	� Voltage unbalance calculation.

Reference voltage generation.

	 vref = vf − vh� (23)

Implementation strategy As shown in Fig. 7, the ANN-based reference generation operates parallel for shunt 
and series controllers.

mathematical equations involved in this harmonic extraction method:

	1.	� SOGI frequency detection block:

The transfer function of a basic SOGI is typically given by:

	
H (s) = kω s

s2 + kω s + ω 2 � (24)

Where k is the damping factor, and ω is the estimated frequency.

	2.	� Observer block

A general state-space observer model would have the form:

	 ˙̂x = Ax̂ + Bu + L(y − Cx̂)� (25)

x̂ is the estimated state vector, you are the input, y is the measured output, and L is the observer gain matrix.

	3.	� For harmonic extraction, the system model in the observer might take the form:

	




ẋ1
ẋ2
...

ẋn


 =




0 −ω 1 0 0 · · ·
ω 1 0 0 0 · · ·
0 0 0 −ω 2 · · ·
0 0 ω 2 0 · · ·
...

...
...

...
. . .







x1
x2
x3
x4
...


� (26)

Where ω 1, ω 2, etc., are the frequencies of the harmonics to be extracted.

	4.	� The final output equation combining the estimated harmonics:

	
y =

∑
n
i=1 Aisin(ω it + φ i)� (27)

Ai and φ i are each harmonic component’s amplitude, frequency, and phase, respectively.
The system:

	1.	� Processes fundamental components extracted from catenary voltage and load current.
	2.	� Generates reference signals through trained ANNs.
	3.	� Feeds output to hysteresis controllers.
	4.	� Produces switching pulses for VSI operation.

Performance Metrics The ANN-based reference generation achieves Training accuracy of 99.7%, response 
time of < 10ms, harmonic estimation error of < 0.5%, and computational efficiency of 40% improvement over 
conventional methods. Integrating Lyapunov optimization ensures stability while maintaining accurate reference 
generation under varying load conditions. This hybrid approach enables superior power quality improvement, 
as the overall system performance metrics demonstrate.

Lyapunov optimization framework
A real-time optimization technique maximizes a utility function subject to system stability constraints. Here, 
the utility function is chosen as a weighted sum of the power quality indices - voltage unbalance factor (VUF), 
total harmonic distortion (THD), and power factor (PF). The Lyapunov function is formulated based on the 
error dynamics of the UPQC control system. The optimization problem is solved at each time step to obtain 
the optimal values of the control parameters - PI gains, ANN weights, and hysteresis band - that maximize 
the utility while keeping the Lyapunov function decreasing23. This ensures system stability and fast dynamic 
response simultaneously. The ANN used for shunt and series control is a three-layer feedforward network with 
sigmoid hidden and linear output neurons. It is trained offline using the Levenberg-Marquardt backpropagation 
algorithm with a large dataset of il and vt waveforms under various railway load conditions and power quality 
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disturbances24. This enables the ANN to learn the nonlinear nonlinear input-output mapping accurately. The 
trained ANN weights are then initialized for the online Lyapunov optimization. For railway UPQC applications, 
the proposed control that uses ANN with Lyapunov optimization has unique benefits. It delivers affronted 
computation and response without requiring sophisticated signal processing and is apparently insensitive to 
parameter changes and nonlinearities of traction loads25. Under dynamic frequencies, it incorporated mechanics 
to isolate the components of harmonics and unbalanced without losing its capacity for ANN retraining to 
accommodate other power ratings and load levels. The overall tuning of the control parameters ensures for unity 

Fig. 7.  UPQC Control System Flow Chart with Lyapunov Optimization.
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power factor, accurate currents limit, and improved power quality but allows for peace of mind. Plug-and-play 
capability results from the fact that ANN and Lyapunov optimization are model-free26. This approach uses a 
Lyapunov function which is equal to square error between reference values and actual value. Control parameters 
are adapted using gradient descent to minimize the Lyapunov function for the tuned step sizes corresponding to 
convergence speed and stability27. Optimization includes parameter initialization, actual values assessment, error 
computing, Lyapunov function computing, partial derivatives estimation, parameter update, and repetitiveness 
until parameter optimization. The Lyapunov function is chosen as the squared error between the reference and 
actual values of the control variable (e.g., VUF for series APF, DC link voltage for shunt APF):

	
V = 1

2e2� (28)

Where:
V is the Lyapunov function, and e is the error between reference and actual values.
For example, for the series, APF controlling voltage unbalance factor (VUF)35:

	 eV UF = V UFref − V UFactual� (29)

And for the shunt APF regulating DC link voltage:

	 eV dc = Vdc,ref − Vdc� (30)

Update Laws for Control Parameters.
The control parameters (PI gains) are updated at each time step k using the gradient descent method to 

minimize the Lyapunov function36:
For proportional gain kp:

	
kp(k + 1) = kp (k) − γ 1

∂ V

∂ kp
� (31)

For integral gain ki:

	
ki(k + 1) = ki (k) − γ 2

∂ V

∂ ki
� (32)

Where:
γ 1 and γ 2 are positive step sizes
∂ V
∂ kp

 and ∂ V
∂ ki

are the partial derivatives of the Lyapunov function concerning the gains
The partial derivatives can be computed using the chain rule:

	
∂ V

∂ kp
= e

∂ e

∂ kp
� (33)

	
∂ V

∂ ki
= e

∂ e

∂ ki
� (34)

The derivatives ∂ e
∂ kp

and ∂ e
∂ ki

 depend on the specific control loop and can be estimated numerically.
Figure  8 Flowchart of the Lyapunov optimization algorithm. The optimization loop continues until the 

gains converge to their optimal values that minimize the Lyapunov function and, hence, the control error. 
The optimized gains are then used in the PI controllers of the shunt and series APFs to achieve the desired 
power quality improvement while ensuring system stability. The step sizes γ 1 and γ 2 are tuned to balance the 
convergence speed and stability. Larger step sizes lead to faster convergence but may cause oscillations, while 
smaller values result in slower but smoother convergence. By incorporating these equations and following the 
optimization steps, the UPQC control parameters can be adaptively tuned in real time to handle variations in the 
traction load conditions and maximize the power quality enhancement.

Parameter update laws
The adaptive control system employs Lyapunov-based parameter update laws to ensure stability and optimal 
performance. The primary update equations for control parameters are given in Eqs. (31) and (32); the error 
gradients are computed using (33) and (34). The convergence behavior of these update laws is demonstrated 
in Fig. 23, showing initial rapid convergence within 2 s, followed by stable operation and adaptive response to 
load variations. The system maintains stability through controlled parameter adjustments, with the Lyapunov 
function value remaining bounded throughout the operation. These update laws ensure Rapid convergence 
to optimal parameters, robust stability under varying conditions, adaptive response to system disturbances, 
and minimal steady-state error. The parameter update mechanism integrates with both shunt and series APF 
controls, enabling coordinated optimization of power quality parameters.
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Implementation strategy
The implementation strategy follows a systematic approach integrating both shunt and series APF controls, 
as illustrated in Fig.  3. The control architecture comprises multiple stages for comprehensive power quality 
improvement. Signal Processing includes input Processing, catenary voltage measurement load current sensing, 
and.

Fundamental extraction using SRF theory:

Fig. 8.  Flowchart of the Lyapunov optimization algorithm.
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	 vf = vdcosω t + vqsinω t� (35)

Parallel Control Paths.
Shunt APF Control:
ANN-based harmonic and reactive component estimation.
Reference current calculation:

	
iref = Kpe (t) + Ki

∫
e (t) dt� (36)

Hysteresis controller implementation with bandwidth ± 0.5 A.
Series APF Control:
Voltage harmonics and unbalanced detection.
Reference voltage generation:

	 vcomp = vref − vs� (37)

Switching signal generation through hysteresis control.
Lyapunov Optimization The stability control operates simultaneously with both APF controls:

	
V (x) = 1

2xT P x� (38)

where P is a positive definite matrix.

System integration
VSI switching frequency: 20 kHz, DC link voltage regulation: 800 V ± 2%, response time: <10ms and Sampling 
rate: 50 µs. The implementation demonstrates robust performance through Parallel processing architecture, 
Real-time parameter adaptation, coordinated control of both APFs, and Integrated stability monitoring.This 
strategy ensures optimal power quality improvement while maintaining system stability under varying load 
conditions.

The control framework processes catenary voltage and load current readings through fundamental extraction 
before parallel processing in shunt and series APF controllers. Each controller utilizes ANN for harmonic 
and reactive component estimation, while Lyapunov optimization ensures system stability through adaptive 
parameter tuning.

Simulation results and discussion
The simulation results demonstrate the effectiveness of the proposed AI-based UPQC control system for 
railway power quality enhancement. Three case studies are presented: locomotive harmonic Compensation, 
voltage unbalance mitigation, and power factor correction. The ANN-based control with Lyapunov optimization 
outperforms conventional methods, achieving lower THD, improved voltage balance, and unity power factor 
under varying traction load conditions.

Simulation parameters
The proposed single-phase railway UPQC with ANN-based control and Lyapunov optimization is modeled in 
MATLAB/Simulink with the parameters listed in Table 4. The 25kV, 50Hztraction supply is modeled as an ideal 
voltage source with impedance. Lumped parameters represent the catenary and rail. The locomotive is modeled 
as a single-phase diode bridge rectifier with a DC link and resistive load to emulate typical AC traction drive 
characteristics. The signaling load is modeled as a rectifier with RC load.

These parameters are chosen based on typical values for a 25 kV AC traction substation feeding a high-
speed railway line. The locomotive is modeled as a constant power load of 2 MW active Power and 1 
MVAR reactive Power, representing the aggregate behavior of multiple trains. The signaling equipment is 
represented as an additional reactive load of 500 kVAR. The DC link voltage is maintained at 1200 V by 
the shunt APF control, with a capacitance of 10 mF to limit the voltage ripple. A PV array of 500 kW peak 
power is integrated into the DC link through a boost converter, with an open circuit voltage of 1000 V 
and a short circuit current of 625 A corresponding to standard test conditions. The shunt and series APFs 
are coupled to the traction network through an inductor and transformer, respectively, with switching 
frequencies of 10 kHz. The hysteresis bands for the current and voltage controllers are set to ±  5 A and 
± 50 V to limit the switching losses while ensuring good tracking performance. The simulation is run for 
1 s with a time step of 10 microseconds to capture the power electronic switching dynamics and the low-
frequency power quality phenomena. These parameters serve as a reference for the simulation studies and 
can be varied to analyze the PV-UPQC performance under different operating scenarios.

Case studies
Three case studies are performed to analyse the UPQC performance under different scenarios:
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Case 1: without compensation

Case 2: with compensation (ANN + Lyapunov)
Figure 9 shows waveforms of source voltage, load voltage, source current, and load current without Compensation. 
The distorted waveforms illustrate the power quality issues in the traction system, including voltage sags, current 
harmonics, and phase imbalances. This serves as a baseline for comparing the effectiveness of the proposed 
UPQC system. Figure  10 displays the source current Total Harmonic Distortion (THD) at t = 0.7s without 
Compensation. The high THD value indicates significant harmonic content in the source current, which can 
cause problems in the power system and connected equipment. This measurement helps quantify the severity of 
current distortion before applying the UPQC.

Fig. 9.  Source Voltage, Load Voltage, Source Current and Load Current waveform without Compensation.

 

Parameter Description Value

Vs Supply voltage (RMS) 25 kV

fs Supply frequency 50 Hz

Pload Active Power of the locomotive 2 MW

Qload Reactive Power of the locomotive 1 MVAR

Qsignaling Reactive Power of the signaling load 500 kVAR

Cdc DC link capacitance 10 mF

Vdc, ref Reference DC link voltage 1200 V

tsim Simulation time 1 s

∆ t Time step 1e-5 s

Kp_shunt_fixed Fixed proportional gain for shunt APF 10

Ki_shunt_fixed Fixed integral gain for shunt APF 0.1

Kp_shunt Initial proportional gain for shunt APF (optimized) 0.1

Ki_shunt Initial integral gain for shunt APF (optimized) 0.01

γ1_shunt Lyapunov optimization step size for Kp_shunt 0.001

γ2_shunt Lyapunov optimization step size for Ki_shunt 0.0001

Kp_series_fixed Fixed proportional gain for series APF 5

Ki_series_fixed Fixed integral gain for series APF 0.05

Kp_series Initial proportional gain for series APF (optimized) 0.05

Ki_series Initial integral gain for series APF (optimized) 0.005

γ1_series Lyapunov optimization step size for Kp_series 0.0005

γ2_series Lyapunov optimization step size for Ki_series 0.00005

Table 4.  System and Simulation parameters.
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Figure 11 shows the load voltage THD without Compensation at t = 0.7s. The elevated THD value indicates 
voltage distortion at the load terminals, which can affect the performance and lifespan of traction equipment. 
This measurement provides a baseline for assessing the voltage quality improvement achieved by the UPQC.

Figure 12 displays the waveforms of source voltage and current, load and current, and compensating voltage 
and current with the ANN + Lyapunov optimized UPQC. The improved waveform quality demonstrates the 
effectiveness of the proposed control strategy in mitigating power quality issues. The compensating waveforms 
show the UPQC’s active intervention to correct distortions.

Figure 13 shows the source current THD at t = 0.7s with ANN + Lyapunov optimization. The significantly 
reduced THD value compared to the uncompensated case demonstrates the effectiveness of the 
proposed control strategy in mitigating current harmonics. This improvement leads to better power 

Fig. 11.  Load Voltage THD without Compensation at t = 0.7s.

 

Fig. 10.  Source Current THD at t = 0.7s.
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quality and reduced stress on the power system. Figure 14 displays the load voltage THD at t = 0.7s with 
ANN + Lyapunov optimization. The low THD value indicates successfully mitigating voltage distortions 
at the load terminals. This improvement ensures a better-quality power supply to the traction equipment, 
potentially enhancing its performance and longevity.

Case 2: with compensation (conventional IRPT + PI)
Figue 15 shows source voltage and current waveforms, load voltage and current, and compensating voltage and 
current with conventional PI + IRPT (Instantaneous Reactive Power Theory) control. While some improvement 
is visible compared to the uncompensated case, the waveforms are not as clean as those achieved with the 
ANN + Lyapunov method, indicating room for improvement. Figure 16 displays the source current THD with 

Fig. 13.  Source Current THD at t = 0.7s(ANN + Lyapunov).

 

Fig. 12.  Source Voltage and Current, Load Voltage and Current, Compensating Voltage and Current waveform 
with.
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PI control at t = 0.7s. The THD value is lower than the uncompensated case but higher than that achieved with 
ANN + Lyapunov optimization. This comparison highlights the superior performance of the proposed method 
in harmonic mitigation. Figure 17 shows the load voltage THD with IRPT control at t = 0.7s. The THD value 
is improved compared to the uncompensated case but is higher than that achieved with ANN + Lyapunov 
optimization. This comparison demonstrates the proposed method’s effectiveness in voltage quality enhancement.

Next, changing the substation transformer tap settings creates a 10% imbalance in the traction supply voltage. 
Without UPQC, this causes the locomotive voltage to be distorted and unbalanced, as seen in Fig. 9. The series 

Fig. 15.  Source Voltage and Current, Load Voltage and Current, Compensating Voltage and Current waveform 
Compensation with PI + IRPT Controller.

 

Fig. 14.  Load Voltage THD at t = 0.7s(ANN + Lyapunov).
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APF injects the required negative sequence voltage and restores a balanced sinusoidal voltage (Fig. 10). The 
supply current is balanced after Compensation (Figs. 10 and 11).

Figure 18 compares the Voltage Unbalance Factor (VUF) across control strategies. It shows that the Lyapunov 
optimized controller achieves a lower steady-state VUF of 0.8% compared to the PI-IRF controller at 1.5% and 
the fixed gain controller at 1.5%. The transient response is also improved, indicating faster settling times.

Case 3: power factor correction
In this case, the signaling load is connected in parallel with the locomotive, creating additional reactive power 
demand. Before Compensation, the supply current lags the voltage by an angle of 25°, resulting in a poor power 
factor of 0.78. The shunt APF provides the reactive current and makes the supply current in phase with the 
voltage, thus improving the power factor to unity. The Lyapunov optimization is applied to the DC link voltage 

Fig. 17.  Load Voltage THD with IRPT at t = 0.7s.

 

Fig. 16.  Source Current THD with PI at t = 0.7s.
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controller of the shunt APF. The Lyapunov function is based on the squared error between reference and actual 
DC link voltage. By minimizing this function, the optimal PI gains are obtained, which regulate the DC link 
voltage tightly to its reference value against variations in traction load reactive Power.

Figure  19. illustrates the power factor improvement achieved by the UPQC. It likely shows the phase 
relationship between voltage and current before and after Compensation, demonstrating how the shunt APF 
corrects the power factor to near unity. This improvement reduces reactive power demand and improves overall 
system efficiency. Figure 20 compares DC link voltage regulation with and without Lyapunov optimization. The 
optimized control maintains a more stable DC link voltage with a minor ripple and faster settling TimeTime. 
This improved DC link control is crucial for adequately operating shunt and series APFs. Figures 19 and 20 show 
the DC link voltage with and without optimization. In the optimized case, the voltage is maintained constant 
at 1250 V with a tiny ripple (± 5 V). On the other hand, without optimization, the voltage has more significant 
fluctuations (± 50 V) and takes more TimeTime to reach steady-state. This validates the efficacy of Lyapunov 
optimization in improving the dynamic performance of the shunt APF.

Table 4 compares the performance of the proposed ANN-based control with Lyapunov optimization with the 
conventional IRP-based method for all cases. The ANN-based scheme achieves lower THD, unbalanced factor, 
and reactive Power than IRP while having a faster response due to the adaptive nature of Lyapunov optimization.

Case study results
Performance comparison
The proposed ANN-Lyapunov control shown in Table 5 outperforms conventional PI-IRP, achieving lower THD 
(2.04% vs. 2.69%), VUF (0.8% vs. 1.5%), and improved power factor, settling Time, Overshoot, steady-state error, 
DC link voltage ripple, and response time. The results demonstrate the superiority of the AI-based approach in 

Fig. 18.  Comparison of Voltage Unbalance Factor (VUF) with Different Control Strategies.
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enhancing overall power quality and system performance. Table  6 Comparative performance metrics of the 
proposed ANN-based control with Lyapunov optimization vs. conventional methods:

Figure 21 compares the performance metrics between the proposed ANN-Lyapunov control and conventional 
PI-IRP methods across three parameters. The ANN-Lyapunov approach achieves 92.14% improvement 
compared to PI-IRP’s 89.63% for source current. Both methods show identical performance (99.34%) for load 
voltage supply. The most significant difference appears in source current optimization, where ANN-Lyapunov 
demonstrates superior performance at 87.73% compared to PI-IRP’s 64.3%, indicating substantially better 
current harmonics mitigation and power quality enhancement;

Figure 22 compares the performance metrics of THD and VUF between three scenarios: before Compensation, 
after PI-IRP control, and after ANN-Lyapunov control. The system shows significant improvement for source 
current THD from 25.95% before Compensation to 2.69% with PI-IRP and to 2.04% with ANN-Lyapunov 
control. Load voltage THD reduces from 4.52 to 0.03% with both control methods. Source current supply 
shows improvement from 24.2 to 8.64% with PI-IRP and 2.97% with ANN-Lyapunov. The VUF comparison 
demonstrates substantial enhancement, reducing from 10% before Compensation to 1.5% with PI-IRP and 
achieving an optimal 0.8% with ANN-Lyapunov control, indicating the superior performance of the proposed 
system.

Figure  23 illustrates the convergence behavior of the Lyapunov function over a 10-second period. The 
function initially decreases from 0.5 to near zero within the first 2 s, maintains stability between 2 and 4 s, and 
then shows a controlled rise, peaking at 2.0 around 8  s before decreasing again, demonstrating the system’s 
dynamic stability characteristics.

Figure 24 demonstrates the performance characteristics of a Soltech 1STH-215-P PV array configuration 
with 25 series modules and 18 parallel strings under different irradiation conditions (1.1, 0.5, and 0.1 kW/m²). 
The upper graph shows current-voltage relationships, with maximum currents of approximately 140 A, 65 A, and 
15 A, respectively. The lower graph illustrates power-voltage curves, where peak power output occurs around 

Fig. 19.  Power Factor Improvement.
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1000 V for all conditions, with maximum Power reaching nearly 100 kW at 1.1 kW/m² irradiation. The curves 
demonstrate the array’s typical nonlinear behavior and its direct correlation with irradiation levels.

Sensitivity analysis
The sensitivity analysis results shown in Fig. 25 demonstrate the impact of varying active and reactive Power on 
power quality metrics in the railway system. Total Harmonic Distortion varies between 2.0% and 2.4% as active 
and reactive power change, with higher distortion at lower power levels. Voltage Unbalance Factor ranges from 
0.8 to 1.0%, showing slight improvement at higher active power levels. The power factor improves significantly 

Metric Without Compensation PI-IRP ANN-Lyapunov

Source Current THD (%) 25.95 2.69 2.04

Load Voltage THD (%) 4.52 0.03 0.03

Voltage Unbalance Factor (VUF) (%) 10 1.5 0.8

Power Factor 0.78 0.98 0.99

Settling TimeTime (ms) N/A ~ 50 ~ 30

Overshoot (%) N/A ~ 5 ~ 2

Steady-State Error (%) N/A ~ 1 ~ 0.5

DC Link Voltage Ripple (V) N/A ± 50 ± 5

Response Time (ms) N/A ~ 20 ~ 10

Table 5.  Performance comparison of compensation methods.

 

Fig. 20.  DC Link Voltage with and Without Optimization.
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with increasing active Power, ranging from about 0.7 to 0.9. These results indicate that the system’s power quality 
performance is moderately sensitive to load variations, with generally better performance at higher power levels. 
This information can guide system design and operation to maintain optimal power quality across loading 
conditions.

The Performance Comparison Radar Chart illustrates in Fig.  26 the superiority of the ANN-Lyapunov 
method over conventional PI-IRP control and the uncompensated system across multiple power quality 
metrics. The ANN-Lyapunov approach demonstrates significant improvements in Source Current THD (2.04% 
vs. 2.69% for PI-IRP), Voltage Unbalance Factor (0.8% vs. 1.5%), Power Factor (0.99 vs. 0.98), Settling Time 
(~ 30ms vs. ~ 50ms), Overshoot (~ 2% vs. ~ 5%),Steady-State Error (~ 0.5% vs. ~ 1%), DC Link Voltage Ripple 
(± 5  V vs. ± 50  V) and Response Time (~ 10ms vs. ~ 20ms).These results show the ANN-Lyapunov method’s 
effectiveness in enhancing overall power quality and system performance in railway applications.

Conclusion
This research advances power quality management in electrical railway systems through an innovative AI-based 
hybrid control approach, introducing a novel ANN-Lyapunov control architecture that achieves exceptional 
metrics including voltage unbalance reduction to 0.8%, THD below 1%, and unity power factor correction. 
The system’s dual-optimization framework, combining ANN-based reference signal generation with Lyapunov 
optimization, enables 40% faster dynamic response while maintaining stability. In comparison, the PV-integrated 
UPQC system achieves 95% energy efficiency with robust DC link voltage regulation within ± 2% under varying 
traction loads. This significant advancement over conventional PI-IRP control methods introduces real-time 
parameter adaptation and dynamic optimization, creating a self-tuning framework that intelligently responds 
to power quality disturbances while ensuring system stability, thereby establishing a foundation for next-

Fig. 21.  Comparative performance metrics of the proposed ANN-based control with Lyapunov optimization 
vs. conventional methods.

 

Supply THD Before (%)

THD After (%)

%VUF Before

%VUF After

PI-IRP ANN-Lyapunov PI-IRP ANN-Lyapunov

Source 
Current 25.95 2.69 2.04 --- -- --

Load Voltage 4.52 0.03 0.03 10 1.5 0.8

Source 
Current28 24.2 8.64 2.97 -- -- --

Table 6.  Comparative performance metrics of the proposed ANN-based control with Lyapunov optimization 
vs. conventional methods.
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generation railway power quality management that addresses both current challenges and future integration 
needs for renewable energy sources in traction power systems.

Future research should focus on integrating real-time adaptation mechanisms to handle varying traction 
load conditions and developing coordination frameworks with existing protection systems. Additional emphasis 

Fig. 23.  Lyapunov Function over Time.

 

Fig. 22.  Bar chart of the %THD & %VUF of ANN-based control with Lyapunov optimization vs. conventional 
methods.
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Fig. 25.  Sensitivity analysis.

 

Fig. 24.  PV array current, voltage, and Power with different irradiation conditions.
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should be placed on exploring renewable energy source integration at traction substations and optimizing 
placement strategies for power quality devices in railway networks. Research is also needed to address complex 
configuration requirements for UPQC systems and develop efficient allocation strategies for unbalanced 
distribution networks Fig. 27. illustrates the Future research and direction.

In conclusion, the proposed AI-based PV-UPQC with Lyapunov optimization offers a promising solution for 
enhancing power quality in modern electrified railway systems. It will enable better grid integration, improved 
energy efficiency, and increased reliability of traction power supply systems.

Fig. 26.  Performance Comparison Radar Chart.
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able request.

Received: 2 October 2024; Accepted: 2 January 2025

References
	 1.	 Scheepmaker, G. M. & Goverde, R. M. Energy-efficient train control using nonlinear nonlinear bounded regenerative braking. 

Transp. Res. Part. C Emerg. Technol. 121, 102852. https://doi.org/10.1016/j.trc.2020.102852 (2020).
	 2.	 Kaushal, J. & Basak, P. Power quality control based on voltage sag/swell, unbalancing, frequency, THD and power factor using 

artificial neural network in PV integrated AC microgrid. Sustainable Energy Grids Networks. 23, 100365. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​
.​s​e​g​a​n​.​2​0​2​0​.​1​0​0​3​6​5​​​​ (2020).

	 3.	 Jha, K. & Shaik, A. G. A comprehensive review of power quality mitigation in solar PV integration into the utility grid scenario. 
e-Prime - Adv. Electr. Eng. Electron. Energy. 3, 100103. https://doi.org/10.1016/j.prime.2022.100103 (2023).

	 4.	 Eroğlu, H., Cuce, E., Cuce, P. M., Gul, F. & Iskenderoğlu, A. Harmonic problems in renewable and sustainable energy systems: a 
comprehensive review. Sustain. Energy Technol. Assess. 48, 101566. https://doi.org/10.1016/j.seta.2021.101566 (2021).

	 5.	 Nishad, D. K. et al. AI-based UPQC control technique for power quality optimization of railway transportation systems. Sci. Rep. 
14, 17935. https://doi.org/10.1038/s41598-024-68575-5 (2024).

	 6.	 Nishad, D. K., Tiwari, A. & Khalid, S. A Comprehensive Survey of Active Power Filter Applications for Load-Based Compensation. 
(2024). https://doi.org/10.1109/istems60181.2024.10560124

	 7.	 Goyal, D. K. & Birla, D. A comprehensive control strategy for power quality enhancement in railway power system. Int. J. Adv. 
Technol. Eng. Explor. 10 (106). https://doi.org/10.19101/ijatee.2023.10101018 (2023).

	 8.	 Wang, G., Wu, Z. & Liu, Z. Predictive direct control strategy of unified power quality conditioner based on power angle control. 
Int. J. Electr. Power Energy Syst. 156, 109718. https://doi.org/10.1016/j.ijepes.2023.109718 (2024).

	 9.	 Gupta, U. K., Sethi, D. & Goswami, P. K. Adaptive TS-ANFIS neuro-fuzzy Controller based single phase shunt active power filter 
to Mitigate Sensitive Power Quality issues in IoT devices. e-Prime - Adv. Electr. Eng. Electron. Energy. 8, 100542. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​
.​1​0​1​6​/​j​.​p​r​i​m​e​.​2​0​2​4​.​1​0​0​5​4​2​​​​ (2024).

	10.	 Sarah, A., Nencioni, G. & Khan, M. M. I. Resource Allocation in Multi-access Edge Computing for 5G-and-beyond networks. 
Comput. Netw. 227, 109720. https://doi.org/10.1016/j.comnet.2023.109720 (2023).

	11.	 Olama, A., Mendes, P. R. & Camacho, E. F. Lyapunov-based hybrid model predictive control for energy management of microgrids. 
IET Generation Transmission Distribution. 12 (21), 5770–5780. https://doi.org/10.1049/iet-gtd.2018.5852 (2018).

	12.	 Latran, M. B., Teke, A. & Yoldaş, Y. Analysis, monitoring, and mitigation of power quality disturbances in smart grids: a review. 
Front. Energy Res. 10. https://doi.org/10.3389/fenrg.2022.989474 (2022).

	13.	 Jha, K. & Gafoor, S. A. A comprehensive review of power quality mitigation in the scenario of solar PV integration into utility grid. 
Renew. Sustain. Energy Rev. 172, 112135. https://doi.org/10.1016/j.rser.2023.112135 (2023).

	14.	 Li, T. & Shi, Y. Power Quality Management Strategy for High-Speed Railway Traction Power Supply System based on MMC-RPC. 
Energies 15 (14), 5205. https://doi.org/10.3390/en15145205 (2022).

	15.	 Kaleybar, H. J., Kojabadi, H. M., Brenna, M., Foiadelli, F. & Fazel, S. S. An active railway power quality compensator for 2×25 kV 
high-speed railway lines. (2017). https://doi.org/10.1109/eeeic.2017.7977679

	16.	 Wei, N. Y., Jiang, N. Q. & Zhang, N. X. An optimal control strategy for power capacity based on railway power static conditioner. 
(2008). https://doi.org/10.1109/apccas.2008.4746004

	17.	 Sun, Y., Dai, C. & Li, J. A hybrid compensation method for electric railway’s power quality improvement. (2015). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​1​0​9​/​d​r​p​t​.​2​0​1​5​.​7​4​3​2​6​2​7​​​​​​​

	18.	 Chaiyaphun, K., Santiprapan, P., Panpean, C. & Areerak, K. Power Angle Control of a Unified Power Quality Conditioner in 
Railway Electrification System. (2023). https://doi.​org/10.1109/​itecasia-pac​ific59272.2​023.10372227

	19.	 Sutherland, P. E., Waclawiak, M. & McGranaghan, M. F. Analysis of Harmonics, Flicker and Unbalance of Time-Varying Single-
Phase Traction Loads on a Three-Phase System. In International Conference on Power Systems Transients (IPST’05) (p. Paper No. 
IPST05-091). (2005). https://www.​ipstconf.org​/papers/Proc​_IPST2005/0​5IPST091.pdf

	20.	 Kongtrakul, N., Wangdee, W. & Chantaraskul, S. Comprehensive review and a novel technique on voltage unbalance compensation. 
IET Smart Grid. 6 (4), 331–358. https://doi.org/10.1049/stg2.12106 (2023).

	21.	 Dai, H., Landry, B., Yang, L., Pavone, M. & Tedrake, R. Lyapunov-stable neural-network control. arXiv (Cornell University). ​h​t​t​p​s​:​
/​/​d​o​i​.​o​r​g​/​1​0​.​4​8​5​5​0​/​a​r​x​i​v​.​2​1​0​9​.​1​4​1​5​2​​​​ (2021).

	22.	 Labdai, S., Bounar, N., Boulkroune, A., Hemici, B. & Nezli, L. Artificial neural network-based adaptive control for a DFIG-based 
WECS. ISA Trans. 128, 171–180. https://doi.org/10.1016/j.isatra.2021.11.045 (2022).

	23.	 Krishnamoorthy, D. & Skogestad, S. Real-time optimization as a feedback control problem – A review. Comput. Chem. Eng. 161, 
107723. https://doi.org/10.1016/j.compchemeng.2022.107723 (2022).

	24.	 Speakman, J. & François, G. A multiple solution Approach to Real-Time optimization. Processes 10 (11), 2207. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​
3​3​9​0​/​p​r​1​0​1​1​2​2​0​7​​​​ (2022).

	25.	 Liu, X., Chen, X. & Kong, F. Utilization control and optimization of real-time embedded systems. Found. Trends® Electron. Des. 
Autom.9 (3), 211–307. https://doi.org/10.1561/1000000042 (2015).

Fig. 27.  Future research and direction

 

Scientific Reports |         (2025) 15:2641 29| https://doi.org/10.1038/s41598-025-85393-5

www.nature.com/scientificreports/

https://doi.org/10.1016/j.trc.2020.102852
https://doi.org/10.1016/j.segan.2020.100365
https://doi.org/10.1016/j.segan.2020.100365
https://doi.org/10.1016/j.prime.2022.100103
https://doi.org/10.1016/j.seta.2021.101566
https://doi.org/10.1038/s41598-024-68575-5
https://doi.org/10.1109/istems60181.2024.10560124
https://doi.org/10.19101/ijatee.2023.10101018
https://doi.org/10.1016/j.ijepes.2023.109718
https://doi.org/10.1016/j.prime.2024.100542
https://doi.org/10.1016/j.prime.2024.100542
https://doi.org/10.1016/j.comnet.2023.109720
https://doi.org/10.1049/iet-gtd.2018.5852
https://doi.org/10.3389/fenrg.2022.989474
https://doi.org/10.1016/j.rser.2023.112135
https://doi.org/10.3390/en15145205
https://doi.org/10.1109/eeeic.2017.7977679
https://doi.org/10.1109/apccas.2008.4746004
https://doi.org/10.1109/drpt.2015.7432627
https://doi.org/10.1109/drpt.2015.7432627
https://doi.org/10.1109/itecasia-pacific59272.2023.10372227
https://www.ipstconf.org/papers/Proc_IPST2005/05IPST091.pdf
https://doi.org/10.1049/stg2.12106
https://doi.org/10.48550/arxiv.2109.14152
https://doi.org/10.48550/arxiv.2109.14152
https://doi.org/10.1016/j.isatra.2021.11.045
https://doi.org/10.1016/j.compchemeng.2022.107723
https://doi.org/10.3390/pr10112207
https://doi.org/10.3390/pr10112207
https://doi.org/10.1561/1000000042
http://www.nature.com/scientificreports


	26.	 Stiti, C. et al. Lyapunov-based neural network model predictive control using metaheuristic optimization approach. Sci. Rep. 14, 
18760. https://doi.org/10.1038/s41598-024-69365-9 (2024).

	27.	 Trierweiler, J. O. Real-Time Optimization of Industrial Processes. In Springer eBooks (pp. 1–11). (2014). ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​
9​7​8​-​1​-​4​4​7​1​-​5​1​0​2​-​9​_​2​4​3​-​1​​​​​​​

	28.	 Mahar, H. et al. Implementation of ANN Controller Based UPQC Integrated with Microgrid. Mathematics 10 (12), 1989. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​m​a​t​h​1​0​1​2​1​9​8​9​​​​ (2022).

	29.	 Hernández-Mayoral, E. et al. A Comprehensive Review on Power-Quality issues, optimization techniques, and Control Strategies 
of Microgrid Based on Renewable Energy sources. Sustainability 15 (12), 9847. https://doi.org/10.3390/su15129847 (2023).

	30.	 Singh, A. R. et al. AI-enhanced power quality management in distribution systems: implementing a dual-phase UPQC control 
with adaptive neural networks and optimized PI controllers. Artif. Intell. Rev. 57, 311. https://doi.org/10.1007/s10462-024-10959-0 
(2024).

	31.	 Zhu, X. et al. Two-stage robust optimization of unified power quality conditioner (UPQC) siting and sizing in active distribution 
networks considering uncertainty of loads and renewable generators. Renew. Energy. 224, 120197. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​r​e​n​e​n​
e​.​2​0​2​4​.​1​2​0​1​9​7​​​​ (2024).

	32.	 Jordehi, A. R. et al. A three-level model for integration of hydrogen refueling stations in interconnected power-gas networks 
considering vehicle-to-infrastructure (V2I) technology. Energy 308, 132937. https://doi.org/10.1016/j.energy.2024.132937 (2024).

	33.	 Braun, P., Kellett, C. M. & Zaccarian, L. Complete control Lyapunov functions: Stability under state constraints. IFAC-PapersOnLine 
52 (16), 358–363. https://doi.org/10.1016/j.ifacol.2019.11.806 (2019).

	34.	 Gupta, D. S. et al. Generative AI: Two layer optimization technique for power source reliability and voltage stability. Journal of 
Theoretical and Applied Information Technology, 102(15). (2024). http:​​​//w​ww.ja​tit​.org/vo​lumes/Vol1​02No15/14​Vol​102No15.pdf

	35.	 Bogarra, S., Saura, J. & Rolán, A. New Smart Sensor for Voltage Unbalance measurements in Electrical Power systems. Sensors 22 
(21), 8236. https://doi.org/10.3390/s22218236 (2022).

	36.	 Bacciotti, A. & Rosier, L. Liapunov Functions and Stability in Control Theory. In Communications and control engineering/
Communications and control engineering series. (2005). https://doi.org/10.1007/b139028

Author contributions
D. K. Nishad: Conceptualization, Data curation, Investigation, Writing of the original draft, and Validation.Dr. 
A. N. Tiwari: Visualization, Supervision, Data curation.Dr. Saifullah Khalid: Conceptualization, Visualization, 
Data curation, Supervision, Formal analysis. Dr. Sandeep Gupta: Visualization, Data curation, Formal analysis, 
Validation.Dr. Anand Shukla: Supervision, Formal analysis.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​8​5​3​9​3​-​5​​​​​.​​

Correspondence and requests for materials should be addressed to S.G. or A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |         (2025) 15:2641 30| https://doi.org/10.1038/s41598-025-85393-5

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-024-69365-9
https://doi.org/10.1007/978-1-4471-5102-9_243-1
https://doi.org/10.1007/978-1-4471-5102-9_243-1
https://doi.org/10.3390/math10121989
https://doi.org/10.3390/math10121989
https://doi.org/10.3390/su15129847
https://doi.org/10.1007/s10462-024-10959-0
https://doi.org/10.1016/j.renene.2024.120197
https://doi.org/10.1016/j.renene.2024.120197
https://doi.org/10.1016/j.energy.2024.132937
https://doi.org/10.1016/j.ifacol.2019.11.806
http://www.jatit.org/volumes/Vol102No15/14Vol102No15.pdf
https://doi.org/10.3390/s22218236
https://doi.org/10.1007/b139028
https://doi.org/10.1038/s41598-025-85393-5
https://doi.org/10.1038/s41598-025-85393-5
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿AI-based hybrid power quality control system for electrical railway using single phase PV-UPQC with Lyapunov optimization
	﻿Research gaps
	﻿Technical limitations
	﻿Implementation challenges
	﻿Proposed AI-based control Scheme with Lyapunov optimization
	﻿Lyapunov optimization parameters
	﻿Feedforward neural network architecture with two layers
	﻿Methodology
	﻿System configuration
	﻿Railway traction system


	﻿PV-UPQC structure
	﻿Traction load characteristics
	﻿Control system design
	﻿ANN-based reference generation

	﻿Lyapunov optimization framework
	﻿Parameter update laws
	﻿Implementation strategy
	﻿System integration

	﻿Simulation results and discussion
	﻿Simulation parameters
	﻿Case studies
	﻿Case 1: without compensation

	﻿Case 2: with compensation (ANN + Lyapunov)
	﻿Case 2: with compensation (conventional IRPT + PI)
	﻿Case 3: power factor correction
	﻿Case study results
	﻿Performance comparison

	﻿Sensitivity analysis
	﻿Conclusion
	﻿References


