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Graph neural networks have excellent performance and powerful representation capabilities, and have 
been widely used to handle Few-shot image classification problems. The feature extraction module of 
graph neural networks has always been designed as a fixed convolutional neural network (CNN), but 
due to the intrinsic properties of convolution operations, its receiving domain is limited. This method 
has limitations in capturing global feature information and easily ignores key feature information of 
the image. In order to extract comprehensive and critical feature information, a new CA-MFE algorithm 
is proposed. The algorithm first utilizes different convolution kernels in CNN to extract multi-scale local 
feature information, and then based on the global feature extraction ability of attention mechanism, 
parallel processing of channel and spatial attention mechanism is used to extract multidimensional 
global feature information. This paper provides a comprehensive performance evaluation of the 
new model on both mini-ImageNet and tiered ImageNet datasets. Compared with the benchmark 
model, the classification accuracy has increased by 1.07% and 1.33% respectively; In the 5-way 5-shot 
task, the classification accuracy of the mini-ImageNet dataset was improved by 11.41%, 7.42%, 
and 5.38% compared to GNN, TPN, and dynamic models, respectively. The experimental results 
show that compared with the benchmark model and several representative Few-shot classification 
algorithm models, the new CA-MFE model has significant superior performance in processing few-shot 
classification data.

Image classification is an important research topic in the field of computer vision, which utilizes large-scale labeled 
samples to optimize the parameters of neural network models, thereby significantly improving the accuracy of 
image classification. The success of deep learning can be attributed to three key factors: powerful computing 
resources (such as GPUs), complex neural networks (such as CNNs, LSTMs), and large-scale datasets. However, 
due to various factors such as privacy, security, or high cost of labeling data, many application scenarios such as 
medical, satellite, and military fields cannot obtain sufficient labeled training samples; To address these issues, 
Few-shot learning (FSL)1–3 methods has been proposed.

The background of FSL methods can be traced back to 2000, when Miller et al.4 first focused on the problem 
of learning from Few-shot and proposed a Congealing algorithm. Since then, more and more people have begun 
to pay attention to FSL methods. In 2015, Koch et al.5 first introduced deep learning methods into FSL, achieving 
the transformation of FSL from non-deep models to deep models, becoming a watershed for FSL. Subsequent 
researchers fully utilized the advantages of deep learning and combined it with FSL methods, proposing methods 
such as data augmentation6, metric learning7, and meta-learning8, thus promoting the rapid development of 
FSL. Among various existing FSL methods, the method based on Graph Neural Network (GNN)9 combines the 
advantages of metric learning and meta learning. Due to its excellent performance and powerful representation 
ability in transduction settings, it is now widely used in FSL tasks.

Zheng Q et al.10 proposed MR-DCAE: a deep convolutional autoencoder based on manifold regularization for 
unauthorized broadcast recognition. By combining manifold regularization, this method enhances the feature 
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extraction capability of autoencoders in identifying illegal broadcast signals. This method effectively alleviates the 
overfitting problem in small sample scenarios. MobileViT11 is a lightweight network architecture that combines 
Transformer and MobileNet, designed to perform efficient image classification tasks in resource-constrained 
environments. Its advantage is that it can reduce the consumption of computing resources while ensuring 
accuracy. This method demonstrates the potential of lightweight networks in Few-shot learning, and the design 
concept of MobileViT inspires how to improve the efficiency of image classification tasks through lightweight 
models. Zheng Q et al.12 proposed MobileRaT, a lightweight radio Transformer method used for automatic 
modulation classification in UAV communication systems. MobileRaT is a lightweight radio Transformer 
model designed to solve the problem of automatic modulation classification in UAV communication systems. 
By utilizing the global feature extraction capability of Transformer architecture, it can efficiently handle complex 
patterns in radio signals. Zheng Q et al.13 proposed a real-time transformer discharge pattern recognition method 
based on Few-shot learning driven CNN-LSTM. This method combines CNN and LSTM networks to process 
time series and spatial features, and can accurately identify transformer discharge patterns under small sample 
conditions. It demonstrates the possibility of improving classification accuracy by combining convolutional and 
recursive neural networks with a small amount of data. Zheng Q et al.14 proposed a DropPath method based 
on the PAC-Bayesian framework for pruning 2D discriminative convolutional network. The PAC-Bayesian 
framework combines the DropPath pruning method, which can reduce the computational complexity of the 
model while maintaining network performance. This method greatly optimizes the computational efficiency of 
the model by eliminating unnecessary paths.

Currently, many graph neural network-based methods have been applied to Few-shot learning tasks. Among 
them, Edge Label Graph Neural Network (EGNN) and Hierarchical Graph Convolutional Network (HGCN) 
are two popular models15. In 2019, Kim et al.16 proposed an Edge Label Graph Neural Network (EGNN), which 
iteratively updates edge labels using intra cluster similarity and inter-cluster dissimilarity, and uses a deep neural 
network on the edge label graph to achieve Few-shot learning tasks. In 2021, Hu et al.17 proposed the Hierarchical 
Graph Convolutional Network (HGCN), which uses hierarchical graph convolution to improve the accuracy 
of node classification and provide support for it. In order to improve the stability of graph networks in semi 
supervised learning, Li et al.18 added residual networks and attention mechanisms on the basis of graph neural 
networks to enhance the information transmission capability of graph structures. HGCN adopts a hierarchical 
graph convolution structure to improve the accuracy of node classification by aggregating node information from 
different levels. However, this method has some limitations in capturing local features and complex relationships 
between nodes. HGCN has higher algorithm complexity and implementation difficulty, especially when dealing 
with small sample data. In contrast, EGNN explicitly uses an edge label update mechanism to handle the 
similarity and dissimilarity between nodes, allowing for iterative updating of edge labels in Model19. This method 
can not only better capture the local relationships between nodes, but also perform explicit clustering evolution 
in the graph structure. This clustering mechanism is particularly important in Few-shot learning because it 
can effectively enhance feature representation and classification performance under limited data conditions, 
and is easier to implement and optimize, making it more suitable for Few-shot image classification tasks20. 
Therefore, the clustering ability and edge label update mechanism of EGNN in Few-shot learning tasks make it 
more flexible, accurate, and effective in handling complex graph structured data.

In Few-shot learning tasks, graph neural networks are divided into two main modules: feature extraction 
module and graph network module. The feature extraction module is usually executed by a convolutional 
neural network (CNN)21, which extracts features from input samples. The graph network module is used to 
update the feature information of the generated graph to obtain node-to-node similarity for subsequent 
classification implementation. CNN, as an effective feature extraction network model, has been validated in 
image classification, image segmentation, object detection, and language recognition research. It achieves local 
perception by sliding filters to extract local features. Feature extraction information is crucial for graph learning 
in subsequent graph modules, but convolutional neural modules can only extract features with fixed receptive 
fields, which will result in shallow details extracted into the network, incomplete feature information acquisition. 
It ultimately affects the classification accuracy of the image by preventing subsequent graph network modules 
from effectively learning and updating through node feature information.

In order to extract deeper image feature information in graph neural networks, researchers have conducted 
corresponding studies in the fields of image classification21,22, image segmentation23,24, and target detection25.
Yao et al.21. combined a parallel structure consisting of CNN and Recurrent Neural Network (RNN) for image 
feature extraction in 2019, and introduced a special perceptron attention mechanism to unify the features 
extracted by the two different neural network structures of the model to enhance deep feature extraction. Zhang 
et al.26. proposed a parallel multi-branch TransFuse structure in 2021, which combines Transformer and CNN 
in parallel and effectively captures low-level spatial features and high-level semantic features. In 2019, a dual 
attention network (DANet) with adaptive self-attention mechanism was proposed, which improves the feature 
representation of scene segmentation by aggregating contextual dependencies based on self-attention mechanism, 
adaptively integrating local features and global dependencies in spatial and channel dimensions, and capturing 
global information. Inspired by the DANet network, a dual branch dual-attention mechanism network (DBDA) 
for hyperspectral image classification was proposed27. The network includes spectral and spatial branches that 
capture spectral and spatial features respectively, and uses channel and spatial attention mechanisms to refine the 
feature map. The fused spectral spatial features are obtained by connecting the outputs of the two branches. A 
parallel structure combines the advantages of local and global feature extraction, achieving more comprehensive 
feature representation and more efficient task processing.

Based on the advantages of CNN and attention mechanism, we propose a new CA-MFE algorithm. By 
combining local and global feature information, this method overcomes the limitations of traditional graph 
neural networks in capturing global feature information and achieves the task of multi-scale key feature 
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extraction. This algorithm utilizes different convolution kernel functions in CNN to obtain multi-scale local 
feature information, and based on the global feature extraction capabilities of attention mechanism, parallel 
processing channel, and spatial attention mechanism, extracts multidimensional global information, effectively 
extracting multidimensional global features from images. This algorithm runs a convolutional neural network 
in parallel with channel and spatial attention modules (kernel sizes of 3 × 3 and 5 × 5). CNN captures multi-scale 
local feature information through different kernel sizes, while attention mechanism extracts multidimensional 
global features from channel and spatial perspectives. By parallel fusion of two branches, the classification 
performance of the Few-shot classifier has been improved. Then, the fused feature information is constructed 
into a graph structure, and EGNN (Edge Gated Graph Neural Network) alternately updates node and edge 
features to learn the graph structure. The classifier predicts the classification results of the samples.

The experimental results show that the CA-MFE algorithm combines the advantages of deformable CNN 
and attention mechanism, significantly improving the classification performance of graph neural networks and 
promoting the classification of Few-shot images. Experiments conducted on mini-ImageNet and hierarchical 
ImageNet datasets have shown that this method is indeed superior to other representative Few-shot classification 
methods.

Related work
Deep learning method
In recent years, many deep learning methods have made significant progress in fields such as Few-shot learning, 
signal processing, and image classification. The following are some studies related to the CA-MFE model 
proposed in this paper, and some comparisons are made to highlight the advantages of the method proposed in 
this paper.

Firstly, MR-DCAE improves the feature extraction ability of illegal broadcast signal recognition through 
manifold regularization and performs well in small sample tasks. However, MR-DCAE relies on a fixed autoencoder 
structure and has limitations in multi-scale feature extraction. In contrast, the CA-MFE model proposed in this 
paper flexibly captures local and global features using multi-scale convolution kernels, and further enhances 
the global and importance of features through channel and spatial attention mechanisms, making it more 
advantageous in complex image scenes. Secondly, MobileViT achieves efficient image classification in resource 
constrained environments by combining lightweight convolutions with Transformers. Although its lightweight 
design performs well in real-time tasks, the global feature extraction of Transformer is computationally 
intensive. By using multi-scale convolution and parallel attention mechanism, the CA-MFE model not only 
maintains lightweight, but also flexibly processes multi-scale image features, demonstrating higher efficiency 
and accuracy in processing Few-shot images. In UAV (unmanned aerial vehicle) communication, MobileRaT 
uses Transformer structure for automatic modulation classification, mainly adept at processing global signals.

However, in image classification tasks, the processing of fine-grained features is relatively weak. In contrast, 
the CA-MFE model not only captures global information of images through parallel multi-scale convolution 
and attention mechanisms, but also accurately extracts local details, making it more comprehensive in Few-
shot image classification. CNN-LSTM is applied for real-time recognition of transformer discharge patterns, 
which excels in processing combinations of temporal and spatial features, but has limited performance in pure 
image classification. In contrast, the CA-MFE model is specifically designed for Few-shot image classification, 
enhancing image feature extraction capabilities through multi-scale convolution and attention mechanisms. It 
can effectively capture local and global features without increasing excessive computational burden, making it 
suitable for static image classification tasks. Finally, the DropPath pruning method in the Pac Bayes framework 
reduces the complexity of the model and improves computational efficiency. However, the CA-MFE model 
aims to optimize the utilization of computational resources through multi-scale convolution and attention 
mechanisms, ensuring low computational overhead.

In future work, CA-MFE can be further combined with pruning techniques to achieve more efficient model 
performance. In summary, the CA-MFE model proposed in this paper has significant advantages in multi-scale 
feature extraction, lightweight design, and comprehensive processing of global and local features, making it 
particularly suitable for Few-shot image classification tasks in complex scenes.

Graph neural network
Marco Gori et al.28 proposed the concept of GNN in 2005, and in 2009 Franco et al.29 defined the theoretical 
foundation of GNN, inherited and developed the GNN algorithm, as shown in Fig. 1, and made some degree 
of improvement. Kipf et al.30,31 proposed the frequency and spatial domain based on Graph Convolutional 
Networks (GCN), which for the first time simply applies the convolution operation in image processing to graph 
structured data processing. In 2018 Petar et al.32,33 proposed Graph Attention Networks (GAT), which employs 
an attention mechanism to compute the similarity between nodes as a way of learning each node’s different levels 
of importance. In 2019 Kim et al.34 proposed an edge-labeling graph neural network (EGNN), which uses intra-
cluster similarity and inter-cluster dissimilarity to iteratively update the edge labels, and a deep neural network 
was used to implement a small-sample learning task on an edge-labeled graph. In 2021 Hu et al.35 proposed 
the Hierarchical Graph Convolutional Neural Networks (HGCN) which uses hierarchical graph convolution to 
improve the accuracy of node classification and supports semi-supervised learning.

Attention mechanism
The attention mechanisms attempt to mimic the human brain and vision to process data. During visual 
observation, human beings consider the key part of the visual field space as the focused part and on the contrary 
the surroundings as the non-focused part. In other words, the attention mechanisms give higher weights to 
the relevant parts while minimizing the irrelevant parts by giving them lower weights. This allows the brain to 
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accurately and efficiently process and attend to the most important parts, rather than processing the entire view 
space. The attention mechanisms were introduced into computer vision with the aim of mimicking the human 
visual system. This attention mechanism can be viewed as a dynamic weight adjustment process based on input 
image features. By introducing the attention mechanism, neural networks are able to automatically learn and 
selectively focus on the important information in the input, improving the performance and generalization 
of the model. The attention mechanism has been highly successful in many visual tasks, including image 
classification10,36, target detection37,38, semantic segmentation24, image generation39, and multimodal tasks34,40.

We classify the attention mechanisms into six categories, including channel attention mechanisms, generating 
attention masks based on different channels and using it to select important channels, the representative network 
is the SENet model37; spatial attention mechanisms, generating spatially attentional masks and using it to select 
important spatial regions, the typical spatial attention mechanism is the STN model36; channel and spatial 
attention mechanisms, predicting the channel and spatial attention masks and selecting important features 
respectively, the representative model is CBAM41; In addition to this, there are temporal attention mechanisms, 
branching attention mechanisms and spatio-temporal attention mechanisms. The main representative models 
are shown in Fig. 2. Including SENet (a), STN (b), and CBAM (c), they all play unique roles in the classification of 
Few-shot images. Figure 2 (a): The SENet model enhances important features by introducing channel attention 
mechanism. Specifically, it compresses the global information of the feature map, then adjusts the importance of 
each channel through learned weights, and restores channel features through weighted combinations.

Fig. 2.  Structure of the main representative attention mechanism models (SENet (a), STN (b), CBAM (c).

 

Fig. 1.  Structure of the graph neural network.
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The STN model in Fig. 2 (b) achieves spatial transformation of features through local perception capability. 
It uses a localization network to generate transformation parameters, and then transforms input features to 
meet the requirements of the target task. The CBAM model in Fig. 2 (c) combines channel attention and spatial 
attention mechanisms, gradually focusing on the channel and spatial dimensions of the feature map, thereby 
effectively extracting global information and local features.

In order to improve the performance of the network for Few-shot image classification, the CNN with the 
attention mechanism were parallel fused, based on the local sensing of the CNN and the global information 
extraction characteristics of the attention mechanism to generate multi-scale feature information, and finally 
used the EGNN graph network module to realize the learning and updating of the generated nodes.

Methods
In early research on edge labeled graph neural networks (EGNN), the application of graph neural networks had 
not yet reached a mature stage due to a lack of in-depth understanding of the combination of parallel CNNs 
and attention mechanisms, as well as limitations in optimizing computational resources to improve model 
efficiency40. With the continuous deepening of research and the advancement of technology, researchers are 
gradually able to better understand the synergistic effects between these mechanisms and redefine how attention 
mechanisms are applied to graph neural networks to achieve multi-dimensional feature aggregation at the node 
and edge levels42. Therefore, although EGNN has shown excellent performance in certain specific tasks, the 
complexity and uncertainty of combining it with CNN and attention mechanisms have led to less attention 
given to this ensemble approach in previous research. By designing a new framework based on CA-EGNN, this 
paper breaks through these limitations and fully demonstrates the adaptability and innovation capabilities in the 
development of this field.

The new graph neural network model framework (CA-EGNN) for solving Few-shot classification task 
through parallel CNN with attention mechanism was shown in Fig. 3. The inputs in the figure are two parts, 
the support set and the query set, and different colors indicate different sample categories. After the learning 
and updating of the EGNN graph network module for the node similarity, a series of changes occur in the 
distances between nodes of different colors. The network as a whole consists of two main parts: the parallel 
feature extraction module based on CNN and attention (CA-MEF) and the graph neural network module based 
on edge labeling (EGNN).The CA-MEF module consists of two parallel branches, i.e., the CNN branch and the 
attention branch, in order to realize that the two branches extract local and global features of the inputs and 

Fig. 3.  Overall structure of CA-EGNN.
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merge them efficiently, and then extract the deeper information as node features; EGNN achieves similarity 
learning among nodes by alternately updating feature information of nodes and edges, and finally outputs the 
classification task of images.

The CA-MFE algorithm
Detailed detail information enhances feature representation and establishes a good feature base for feature 
mapping in advanced spatial regions. A multi-scale feature extraction module (CA-MFE) was used to obtain 
deep feature details. As shown in Fig. 4, the module consists of four different branches. 1 × 1 convolution can 
be regarded as a simple transformation for dimensionality reduction, and the serial 3 × 3 convolution and 5 × 5 
convolution after the dimensionality reduction made the feature extraction to different receptive domains to 
obtain a larger range of local details.

Another branch is the channel attention module24–37[,39,41,43,44,45 and the spatial attention module42, which 
extract the global feature information of the image from both channel and spatial aspects, respectively. Their 
structure is shown in Fig. 5. In the channel attention module, the input feature map X is first subjected to global 
pooling and average pooling in the spatial dimension, which was used to compress the spatial dimensions and 
facilitate the network to learn the channel features, then the obtained pooling results are fed into the MLP to 
learn the features of the channel dimensions as well as the importance of each channel, and finally, the outputs 
are summed up and processed by mapping of the Sigmoid function to obtain the final result X’. In the spatial 
attention module, the input feature map X is first global pooling and average pooling in the channel dimension 
to compress the channel size for subsequent spatial feature learning, then the pooled results are spliced according 
to the channel, and finally the spliced results are convolved and processed by the activation function to obtain 
the result X’.

In the overall CA-MFE module, firstly given the features of X ∈ W × H × C , X is input into 4 branches 
at the same time to generate 4 new feature maps, which have different sensory domains, and then the summing 
operation is performed on the 4 feature maps to obtain the new feature X ′ ∈ W ′ × H ′ × C′ . The network 

Fig. 5.  Channel attention module (left) and spatial attention module (right).

 

Fig. 4.  Structure of CA-MFE mode.
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architecture of the CA-MFE module is shown in Table 1, and the mathematical expression of the module can be 
expressed as Eq. (1):

	 X ′ = [H1× 1(H4× 4 (X) , H5× 5 (X)), C (X) , S (X)] , � (1)

where […] denotes the connection, Hn× n(· )denotes the n × n convolution operation, C(· )denotes the 
channel attention mechanism, and S(· ) denotes the spatial attention mechanism.

The edge labeling based graph neural network
The edge labeling graph neural network module (EGNN)15 exploits intra-cluster similarity and inter-cluster 
dissimilarity to achieve evolution of explicit clustering by iteratively updating the edge labels on the graph for 
better node similarity comparisons. The EGNN model framework is shown in Fig. 6.

The feature extraction network generates the corresponding node feature information for the input image 
and constructs a fully connected graph G = (V, E; T ), where V and E are the set of nodes and edges of the 
graph, and T is the total number of samples. G serves as the input to the graph neural network module, and in 
the node updating process, the features vl−1

i  and el−1
ij from nodes and edges of the layer l − 1 are given, and 

the node features are updated by the Neighbor aggregation of other nodes (similar and dissimilar neighbors) and 
edge features to perform the update of node features vl

i. The attention mechanism is shown in Eq. (2):

	
vl

i = f l
v(

[∑
j

∼
e

l−1
ij1 vl−1

i |
∣∣∣∑ j

∼
e

l−1
ij2 vl−1

i

]
; θ l

v

)
. � (2)

Fig. 6.  The EGNN model framework.

 

Output size EGNN CA-EGNN

41 × 41
[

Conv, 3 × 3,64, Padding 1
Max pool, 2 × 2

] [
Conv, 3 × 3,64, Padding 1

Max pool, 2 × 2

]

20 × 20
[

Conv, 3 × 3,96, Padding 1
Max pool, 2 × 2

] [
Conv, 3 × 3,96, Padding 1

Max pool, 2 × 2

]

10 × 10
[

Conv, 3 × 3,128, Padding 1
Max pool, 2 × 2

] [
CA − MF E, 128
Max pool, 2 × 2

]

5 × 5
[

Conv, 3 × 3, 256, Padding 1
Max pool, 2 × 2

] [
CA − MF E, 256
Max pool, 2 × 2

]

1 × 1 FC,128 FC,128

Table 1.  Architecture of EGNN and CA-EGNN feature extraction modules. Significant values are in bold.
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Where f l
v  denotes the node feature transformation network, which consists of aggregation layer, connection 

layer and MLP layer with the parameter θ l
v .

According to the newly updated node features then the edge features are updated by regaining the similarity 
and dissimilarity between each pair of nodes, combining the previous edge’s feature values and the updated 
similarity and dissimilarity to update the features of each edge, which is expressed by the following formula:

	

−
e

i

ij1 =
fl

e(vl
i,vl

j ;θ l
e)el−1

ij1∑
k

fl
e(vl

i
,vl

k
;θ l

e)el−1
ik1 /

(∑
k

el−1
ik1

) , � (3)

	

−
e

i

ij2 =
(1−fl

e(vl
i,vl

j ;θ l
e))el−1

ij2∑
k

(1−fl
e(vl

i
,vl

k
;θ l

e))el−1
ik2 /

(∑
k

el−1
ik2

) , � (4)

Where f l
e denotes the metric network for calculating similarity with the parameter set to θ l

e, which consists of 
four 1 × 1 convolutional modules, a linear layer and an activation function.

Finally, the final obtained edge labeling information is used to classify and predict the query set nodes by 
Softmax classifier. Algorithm 1 demonstrates the overall algorithm process of CA-EGNN.

Algorithm 1.  The CA-EGNN.

Result and discussion
Problem definition
Few-shot classification is the process of learning a classifier with only a small number of training samples for 
each data category. Where each Few-shot classification task T contains two parts, the support set S (a set of input 
samples that have labels, similar to a training set) and the query set Q (a set of unlabeled samples that serves to 
evaluate the learned classifier, similar to a test set). When the support set S contains N classes of samples with K 
labeled samples in each class, the problem is called an N-way K-shot classification problem.

During the training and testing process, Few-shot classification tasks generally use scene training (episode 
training) mechanism. That is, N categories are randomly selected from each set, K labeled samples are extracted 
from each category to form the support set S, and the remaining small number of samples from each category 
form the query set Q. Then, the model is trained on the support set S, and the prediction loss of the query set 
Q is optimized through parameter updates until the results converge. This is the training process of one set. 
Figure 7 shows the N-way K-shot Few-shot learning image task, where green represents the support set and 
purple represents the query set.

Experimental data and setup
In order to verify the validity and applicability of the proposed model, we conduct validation experiments using 
two public datasets, mini-ImageNet, and tiered-ImageNet, as shown in Table 2. mini-ImageNet11 was a small-
sample dataset proposed by the authors in 2016 in the context of the Matching networks network model, and was 
extracted from the original of the ILSVRC-2012 dataset. All are RGB color images with a size of 84 × 84 pixels, 
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and 100 different categories of images are extracted with 600 samples per category. The set used for training, 
validation and testing according to the ratio of 64:16:20, where the three sample sets were not duplicated 
with each other. tiered-ImageNet12 on the other hand was proposed in 2018 in the context of meta-learning 
networks for semi-supervised learning, and similarly to the mini-ImageNet dataset, it was also extracted as a 
subset from the ILSVRC-2012. It extracts 34 hyper-categories (Categories), and each hyper-category contains 
10 ~ 30 subcategories (Classes) ranging from 10 to 30, totaling 608 subcategories. Each subcategory has a varying 
number of images, totaling 779,165 images. Unlike the mini-ImageNet dataset, the tiered-ImageNet dataset is 
much larger in size, and the dataset division takes into account the category hierarchy of ImageNet by dividing 
the extracted super-classes into 20 super-classes (351 sub-classes) as the training set, 6 super-classes (97 sub-
classes) as the validation set, and 8 super-classes (160 sub-classes) as the test set, and the average number of 
images in each class is 1281, while ensuring that there is no crossover between the three datasets.

For the above two datasets, we had performed a 5-way 5-shot standard Few-shot learning setup. The 
experiment was trained using the Adam optimizer, with the initial learning rate set to 5 × 10 − 4 and the weight 
decay factor to 10 − 6. The small batch size of the task for meta-training in the experiment was set to 40. For the 
mini-ImageNet dataset, the learning rate will decay by 0.1 after every 15,000 iterations, while the learning rate 
will decay by 0.1 after every 30,000 iterations because the tiered-ImageNet is a larger dataset than the mini-
ImageNet, which requires more iterations to converge.

Result and analysis of CA-MFE
The proposed CA-EGNN network model for the Few-shot image classification task, we had compared its 
classification results would be compared with several most commonly used Few-shot image classification models 
on mini-ImageNet and tiered-ImageNet datasets from two aspects.

Different transduction settings
Depending on the transductive setup13, the models are classified into the following three types: non-
Transductive means that each query sample prediction was performed separately; Transductive means that all 
query samples were processed and predicted simultaneously in a single graph; and BatchNorm can be thought 
of as transformational inference at test time, using query batch statistics instead of global batch normalization 
parameters.

The experimental task of 5-way 5-shot is carried out by the above three ways, and the experimental results 
are shown in Tables 3 and 4, which show that the CA-EGNN network improves the classification accuracy by 
1.02% over the EGNN under transductive inference on mini-ImageNet dataset, and improves the accuracy by 

Datasets Training set Validation set Test set Total

Mini-ImageNet
Classes 64 16 20 100

Image 38,400 9600 12,000 60,000

Tiered-ImageNet

Categories 20 6 8 34

Classes 351 97 160 608

Image 448,695 124,261 206,209 779,165

Table 2.  Experimental assignments of mini-ImageNet, tiered-ImageNet dataset categories and image.

 

Fig. 7.  Illustration of the few-shot learning image classification task.
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5.28%,1.61%, and 1.17% over the Reptile, GNN, and EGNN models in non-transductive inference. In the tiered-
ImageNet dataset, the classification accuracy under transductive inference is improved by 0.46% over EGNN, 
and the accuracy in non-transductive inference is improved by 5.85%, 2.42%, and 1.33% over Reptile, MAML, 
and EGNN models. The experimental results show that the new CA-EGNN network exhibits better classification 
results relative to other Few-shot classification networks in both mini-ImageNet and tiered-ImageNet dataset 
classification tasks, and its accuracy has achieved a good improvement.

Different modules for feature extraction
The CA-MFE improves the feature extraction module for the original four-layer convolutional neural network 
composition of graph neural networks, so we implement the network in various types of Few-shot image 
classification networks with convolutional neural network as the base network on mini-ImageNet and tiered-
ImageNet datasets with 5-way 1-shot and 5-way 5- shot classification tasks, and their experimental results are 
shown in Tables 5 and 6. CA-EGNN demonstrates better classification accuracy regardless of the classification 
task and the dataset. Among them, it improves 11.41%, 7.42%, and 5.38% in the 5-way 5-shot task over GNN, 
TPN, and Dynamic, respectively. 8%, 2.8%, and 2.21% in the 5-way 1-shot task over GNN, TPN, and Dynamic, 
respectively. In contrast, CA-EGNN has more obvious accuracy improvement under the 5-way 5-shot task. 
In the case of a large number of sample images in the input query set, CA-MFE is able to extract richer and 
more critical feature information, and efficiently complete the learning of graph similarity measure in the graph 
network module, resulting in a more obvious improvement in the final classification accuracy compared to the 
5-way 1-shot.

Semi-supervised few-shot learning results
In real life, a large amount of data is often unlabeled and only a small portion of data is labeled. Semi-supervised 
learning is to combine labeled and unlabeled data to make full use of the information in the unlabeled data to 

Model Trans. 5-way 5-shot

Reptile NO 66.47

Prototypical net NO 69.67

MAML NO 69.89

EGNN NO 70.98

CA-EGNN NO 72.31

MAML BN 70.30

Reptile BN 71.03

Relation Net BN 71.31

MAML YES 70.83

TPN YES 72.58

EGNN YES 80.15

CA-EGNN YES 80.61

Table 4.  Classification accuracy of tiered-ImageNet dataset under different transduction settings. Significant 
values are in bold.

 

Model Trans. 5-way 5-shot

Matching networks NO 55.30

Reptile NO 62.74

Prototypical net NO 65.77

GNN NO 66.41

EGNN NO 66.85

CA-EGNN NO 68.02

MAML BN 63.11

Reptile BN 65.99

Relation Net BN 67.07

MAML YES 66.19

TPN YES 69.43

TPN(Higher K) YES 69.86

EGNN YES 76.37

CA-EGNN YES 77.39

Table 3.  Classification accuracy of mini-ImageNet dataset under different transduction settings. Significant 
values are in bold.
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improve the generalization ability of the model. In the semi-supervised setup, the project team uses a 5-way 
5-shot iterative setup for training experiments on the mini-ImageNet dataset with 20%, 40%, and 60% proportion 
of labeled data, and the labeled samples are balanced across categories, with the same number of labeled and 
unlabeled samples across all categories. 20% labeled setup has 1 labeled sample and 1 unlabeled sample for 
each category. samples contain 1 input with labeled samples and 4 inputs with unlabeled samples; 40% labeled 
setup contains 2 inputs with labeled samples and 3 inputs with unlabeled samples per category; 60% labeled 
setup contains 3 inputs with labeled samples and 2 inputs with unlabeled samples per category; the specific 
experimental results are shown in Table 7. In the case of sparse labeled data, CA-EGNN still demonstrates good 
classification results compared to the benchmark model.

We had conducted two sets of ablation experiments on the mini-ImageNet dataset to validate the effectiveness 
of the CA-EGNN model by changing the Attention Mechanism module and adjusting the network layer where 
the CA-MFE module is located to conduct Few-shot image classification experiments.

Table 7.  Classification accuracy of mini-ImageNet dataset with different proportions of labeled samples 
ablation experiment.

 

Model Backbone network 5-way 1-shot 5-way 5-shot

Relation net Conv 54.31 71.22

MAML Conv 51.83 70.83

Proto net Conv 53.48 72.64

TPN Conv 59.61 72.58

EGNN Conv – 80.15

CA-EGNN CA-PFE 61.11 80.61

Table 6.  Classification accuracy of tiered-ImageNet dataset for different classification tasks. Significant values 
are in bold.

 

Model Backbone network 5-way 1-shot 5-way 5-shot

Matching net Conv 43.67 54.71

Relation net Conv 50.21 64.65

MAML Conv 49.56 56.17

Proto net Conv 49.26 64.78

Dynamic Conv 56.13 72.01

GNN Conv 50.34 65.98

TPN Conv 55.54 69.97

EGNN Conv – 75.78

CA-EGNN CA-PFE 58.34 77.39

Table 5.  Classification accuracy of mini-ImageNet dataset for different classification tasks. Significant values 
are in bold.
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Adjustment of attention mechanisms
The new CA-MFE model uses channel and spatial attention mechanisms in parallel to realize the extraction 
of global feature information of Few-shot images, however, the composition of different forms of attention 
mechanisms will affect the efficiency of image extraction, in order to verify which combination of attention 
mechanisms can make the Few-shot classification better, we compared four structures of Spatial Attention 
Mechanism Only (SAM), Channel Attention Mechanism Only (CAM), spatial attention mechanism and channel 
attention mechanism serial (Serial S&C), and spatial attention mechanism and channel attention mechanism 
parallel (Parallel S&C) in the EGNN base network, and the results are shown in Table 8.

The experimental results show that the combination of parallel attention mechanisms in the 5-way 5-shot 
task improves the accuracy by 1.51% and 1.16% over the individual attention mechanisms, respectively, and 
also improves the accuracy by 0.87% compared to the serial attention structure. It can be seen that the parallel 
module of spatial and channel attention mechanisms can better capture the global information in the image as a 
way to improve the overall classification accuracy.

Adjustment of the CA-MFE network layer
The original feature extraction network of EGNN consists of four convolutional modules, and the project team 
replaces the original convolutional modules with CA-MFE modules, replacing the convolutional modules 
with different layers will affect the final classification results of the model, in order to verify which module 
replacement can better improve the classification accuracy of Few-shot, the project team carries out experiments 
on the replacement of CA-MFE modules according to the CA-MFE modules as shown in Fig. 8, with the Few-
shot classification task with the EGNN network, and the final experimental results are shown in Table 9.

The experimental results show that the different number of CA-MFE modules and the number of layers in 
which they are located affect the final classification effect, in which the best classification effect is achieved when 
replacing the last two layers of convolutional blocks in the original model, and the classification accuracy is 2% 
higher than the average value of the other models.

Experiment

Model

1 2 3 4 5

5-way 
5-shot 66.95 68.02 66.28 67.02 66.55

Table 9.  Classification results for different layers of CA-MFE. Significant values are in bold.

 

Fig. 8.  Model of different network layers where CA-MFE is located.

 

Experiment

Model

SAM CAM Serial S&C Parallel S&C

5-way 
5-shot 66.51 66.86 67.15 68.02

Table 8.  Classification results under different combinations of attention mechanisms. Significant values are in 
bold.
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CA-EGNN shows better classification accuracy than other models on mini-ImageNet and tiered-ImageNet 
datasets. This indicates that the performance of the new model has been improved, which may lead to better 
classification results in practical applications. The ablation experiment shows that introducing attention 
mechanism and parallel processing of CNN can significantly improve the classification performance of the 
model. This indicates that the structural design of the new model is reasonable and may be more practical in 
practical applications. Due to its excellent performance in Few-shot classification tasks, the CA-EGNN model 
can be applied in many fields such as medical image diagnosis, satellite image classification, and military target 
recognition. These fields often face the problem of scarce labeled data, so the application of new models will have 
higher practical value. The experimental results show that this method has significant advantages in processing 
Few-shot classification data, ultimately promoting the development of Few-shot learning. The research results 
of this paper provide new ideas and methods for Few-shot learning. Helps promote further development in this 
field.

Conclusions
To address the problem of Few-shot image classification in graph neural networks, where feature extraction 
has limitations in capturing global features, we propose a parallel multi-branch feature extraction method (CA-
MFE algorithm) based on CNN and attention mechanism. By introducing multi-scale convolution kernels and 
parallel channel space attention mechanisms, the CA-MFE model can extract multidimensional features from 
both local and global perspectives, significantly improving classification performance. This design utilizes CNN 
to obtain multi-scale local features through different convolution kernels, as well as global features extracted 
through spatial and channel attention mechanisms, and combines the above two parts in parallel to achieve rich 
and critical feature information acquisition. Experiments on mini-ImageNet and hierarchical ImageNet datasets 
show that compared to traditional base models, the CA-MFE model improves classification accuracy by 1.07% 
and 1.33%, respectively. In addition, in the 5-way 5-shot task, CA-MFE showed excellent performance under 
different inference settings, especially in the case of a large number of query samples, where CA-MFE significantly 
improved classification accuracy. This proves that the model can effectively combine the advantages of CNN and 
attention mechanism in Few-shot image classification, significantly improving classification accuracy.

Implement the CA-MFE algorithm for Few-shot image classification by adding multiple feature extraction 
models, integrating attention mechanism into CNN. Although it improves classification accuracy, it inevitably 
has increased the number of model parameters, and the computational complexity of the algorithm to some 
extent. Therefore, in order to reduce the number of model parameters, improve the learning rate, and shorten 
the learning process of the model, the research team is preparing to use lightweight model frameworks, 
model pruning, and other methods to make the model easier to use in practical applications. Meanwhile, the 
combination of lightweight network technology with more Few-shot learning methods such as MR-DCAE, 
MobileViT, and MobileRaT may provide new directions for improving model performance.

In addition, we will consider integrating meta-learning mechanisms to further improve the generalization 
ability in Few-shot learning. Future work will focus on optimizing the structure of feature extraction networks to 
reduce computational complexity and improve classification efficiency, such as introducing lightweight designs 
(e.g. separable convolutions). At the same time, multimodal information fusion will be a key direction for 
improving model performance, exploring how to further improve the robustness and adaptability of the model 
in complex environments is also an important topic for future research. Finally, enhancing the interpretability 
of the model will make it more transparent and noise resistant in practical applications. These optimizations 
the structure of the feature extraction network will further enhance the value and efficiency of the CA-MFE 
algorithm in Few-shot image classification in future.

Data availability
The data that support the findings of this study are openly available in the papers Vinyals, O., Blundell, C., et al.38 
"Matching Networks for One Shot Learning" and Triantafillou, E. et al.46 "Meta-Learning for Semi-Supervised 
Few-Shot Classification". 
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