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Single-cell profiling transcriptomic
reveals cellular heterogeneity and
cellular crosstalk in breast cancer
lymphatic node, bone, and brain
metastases
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Breast cancer is the most common malignant tumor in the world, and its metastasis is the main cause
of death in breast cancer patients. However, the differences between primary breast cancer tissue

and lymphatic node, bone, and brain metastases at the single-cell level are not fully understood. We
analyzed the microenvironment heterogeneity in samples of primary breast cancer (n=4), breast
cancer lymphatic node metastasis (n=4), breast cancer brain metastasis (n=3), and breast cancer

bone metastasis (n=2) using single-cell sequencing data from the GEO database. The malignant
epithelial cells were characterized by InferCNV algorithm. The cell-cell communication was analyzed
using CellChat package. The biological function of cell subpopulations was analyzed using gene set
variation analysis. The expression of STMN1 was analyzed using immunohistochemical staining. The
proportion of pCAFs in breast cancer was explored using multispectral immunohistochemical staining.
We identified seven cell clusters in primary and metastatic breast cancer (Lymphatic node, brain, and
bone metastases) by analyzing single-cell transcriptomic profiles. T-NK and B cells dominated breast
cancer with lymphatic node metastasis, whereas fibroblasts were prevalent in brain metastases and
primary breast cancer. We identified five T cells (T memory, CD8+T cells, regulatory T cells, natural
killer cells, CD4 +T cells), three B cells (naive B cells, memory B cells, plasma B cells), and five cancer-
associated fibroblasts (CAFs) subpopulations (Smooth muscle cells (SMC), pericyte, antigen-presenting
CAFs (apCAFs), proliferative CAFs (pCAFs), and matrix CAFs (mCAFs)). Notably. pCAFs dominated
breast cancer with lymphatic node, bone, and brain metastasis. Furthermore, we identified four
malignant epithelial cell subpopulations: GO, G1, G2, and G3. The G2 cell population exhibited strong
invasion ability, it can differentiate into G3 with strong proliferative ability and proliferation-related G1
cell population after metastasis. Cell-cell communication demonstrated an interaction between pCAFs
and metastasis-associated malignant epithelial cells. Finally, we discovered that in advanced breast
cancer, the proportion of pCAF increased and was associated with a poor prognosis of breast cancer.
This study elucidated the potential cellular origins and drivers of breast cancer metastases to lymphatic
nodes, brain, and bone, utilizing single-cell transcriptomic profiles. Furthermore, it demonstrated that
increased pCAFs were associated with advanced breast cancer and a poor prognosis.
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Breast cancer is a heterogeneous disease involving genetic and environmental factors!. The global breast cancer
statistics report shows that in 2022, there were an estimated 2.3 million new cases and 665,684 deaths worldwide
in 2022, making it the second most prevalent malignant tumor worldwide?. New therapies for breast cancer
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have been released in recent years, including targeted therapy and immunotherapy, opening up new horizons
for the treatment of breast cancer patients’. However, breast cancer is frequently diagnosed only after metastasis
has occurred. Generally, the prognosis of breast cancer is poor because it starts as a local disease and can spread
to lymphatic nodes? or distant organs such as bones® and brain®, which presents significant challenges for the
treatment of breast cancer. Thus, understanding the mechanisms of breast cancer metastasis may help develop
targeted therapies against metastasis.

The TME is composed of immune cells and non-immune cells such as CAFs, adipocytes, and endothelial
cells. These different TME components play a role in cancer initiation, progression, metastasis, and treatment
resistance in breast cancer’®. In breast cancer, different metastatic sites have different levels of immune cell
enrichment. Compared with primary breast tumors (PT), bone metastases (OM) have greater neutrophil
infiltration, whereas lymphatic node metastases (LM) have fewer macrophages’. In breast cancer, the TME
shows infiltration of PD-L1-amplified CD8+T cells!’. CAFs within the TME can remodel the extracellular
matrix (ECM), and play an important role in the interaction between tumor cells and surrounding cells'!.
CAF is associated with the clinicopathological characteristics of tumors and plays an important role in the
pathogenesis of tumors!2. For example, in breast cancer, tumor cells co-cultured with CAFs exhibit increased
expression of IL-6 and IL-8, resulting in increased invasiveness and angiogenic capacity!’®. CAFs exhibit
significant heterogeneity in breast cancer and display different expression levels of various molecules and
biological behaviors in different metastatic parts of breast cancer!®. In metastatic breast cancer, bone metastases
are characterized by significant upregulation of stromal PDPN, FSP1, and PDGFRa, lung metastases show a
notable increase in interstitial PDGFRp expression, and liver metastases exhibit reduced interstitial levels of
FSP1 and PDGFRa"”. Furthermore, different subtypes of CAFs in axillary lymphatic nodes drive breast cancer
metastasis via complementary mechanisms!®. Therefore, exploring the molecular pathways and intercellular
crosstalk in breast cancer with distinct metastasis may help to gain insights into the mechanisms of breast cancer
development and metastasis, and provide new targets and strategies for breast cancer treatment.

In recent years, the heterogeneity of in situ breast cancer and the mechanisms underlying the development of
metastasis have been increasingly reported. For instance, Hou et al. have documented the cellular heterogeneity
present in ductal subtype breast cancer, highlighting the differential gene expressions and biological functions
between Type 1 and Type 2 ductal epithelial cells'”. Additionally, Sanjaya et al. have identified several mechanisms
that contribute to lymph node and liver metastasis in breast cancer, including loss of differentiation, epithelial-
to-mesenchymal transition, and autophagy'®. However, these studies did not specifically investigate the cell-cell
interactions within the TME of breast cancer. To fill this gap, we analyzed the cellular composition of the TME
of patients with breast cancer LM, brain metastasis (BM), and OM using single-cell RNA sequencing (scRNA-
seq) data. We focused on the main cell types, including T cells, B cells, and CAFs, and their related biological
functions. In addition, we analyzed the interaction between proliferative CAFs (pCAFs) and other cells and
explored the role of pCAFs in the prognosis of breast cancer patients. These findings will provide important
evidence to support the diagnosis, treatment, and molecular mechanisms of metastasis in breast cancer.

Materials and methods

Data sources

The scRNA-seq datasets GSE225600, GSE186344, and GSE190772 of breast cancer were downloaded from the
GEO (https://www.ncbi.nlm.nih.gov/) database. GSE225600 included 4 PT and 4 breast cancer LM samples.
GSE186344 and GSE190772 datasets contained 3 breast cancer BM samples and 2 breast cancer OM samples,
respectively. Bulk RNA-seq data and clinical information of breast cancer were downloaded from The Cancer
Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/) database.

ScRNA-seq data quality control and cell annotation

Transcripts were mapped to the human reference genome (GRCh38) using Cell Ranger V6.1.2. SCRNA-
seq data was processed using Seurat v4.1.1'%, and cells with higher than 10% mitochondrial content, higher
than 5% hemoglobin content, and less than 200 and more than 20,000 expressed genes were removed. Data
normalization, cell clustering, and dimensional reduction were performed using the Seurat package?. The
“FindVariableFeatures” function was utilized to select 2,000 highly variable genes from the corrected expression
matrix. Subsequently, the principal component analysis was conducted using the “RunPCA” function, retaining
the top 20 principal components for further analysis. After correcting batch effects by “RunHarmony” function
in the harmony package, cells were clustered using the “FindClusters” function (resolution 0.7). The nonlinear
dimensionality reduction was performed using the “‘RunUMAP” function?!. Cell clusters were annotated using
common cell mark genes based on the cellmark2.0 database®2.

Single-cell differential gene analysis and functional enrichment analysis

The differentially expressed genes (DEGs) between different groups were identified using “FindMarkers” in the
Seurat package, based on the |avg_log2FC|>0.3 and adjusted p value <0.05. The DEGs were then subjected to
Gene ontology (GO, including Biological Process (BP), Molecular Function (MF), and Cellular Component
(CC) analysis) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. The significantly
enriched pathways were screened using p <0.05, and the top 30 GOs and 20 KEGG pathways were presented.

Gene set variation analysis (GSVA)

The gene set variation analysis (GSVA) package in R was used to analyze the most enriched hallmark pathways
for each cell in primary and metastatic tumor samples drawing data from the Molecular Signature Database
(https://www.gsea-msigdb.org/gsea/msigdb/ index.jsp). The differences in pathway enrichment scores between
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different cell clusters were calculated using the “limma” package. P<0.05 indicated that the pathway was
differentially enriched by the two groups.

Transcription factor analysis

To calculate regulon specificity scores (RSS) for fibroblast subpopulations, SCENIC analysis was performed
using pySCENIC Python software package. The co-expression modules of transcription factors (TFs) and their
target genes were identified using GRNBoost2. RcisTarget was used to analyze the genes in each co-expression
module to identify transcription factor binding motifs. The AUCell package was used to assess the activity of
regulons in each cell. The R package “ggplot” was used to draw a scatter plot showing the RSS of each fibroblast
subpopulation, marking the top 5 regulators.

Identification of malignant cells

Based on single-cell gene expression and chromosome sequencing data, the inferCNV v1.6.0 package [https://gi
thub.com/broadinstitute/inferCNV] in R language was used to distinguish malignant epithelial cells (ECs) from
non-malignant ECs. The settings for the inferCNV analysis are as follows: cutoff=0.1, cluster by groups = TRUE,
and hidden markov model (HMM)=TRUE). To minimize false positives in copy number variation (CNV)
inference, we employed the default Bayesian latent mixture model to assess the posterior probability of variants
in each cell, utilizing a threshold of 0.5. Then, the CNV scores of all genes were hierarchically clustered on
ECs and reference cells (T-NK cells) by k-means algorithm. Finally, the subclusters with relatively higher CNV
scores were considered malignant cells. To illustrate tumor clonality and evolution, the “sub-cluster” model was
further applied to classify malignant cells into 8 clusters based on different CNV patterns generated by HMM.
Each CNV was annotated as a gain or loss of p-arm or q-arm based on chromosome cell banding information.
Subclones containing identical arm-level CN'Vs were merged to construct an evolutionary tree. Uphyloplot2 was
used to visualize evolutionary phylogenetic dendrograms to represent subclonal CNV structures. There are at
most 8 branches at the end of the tree, and less than 5% of the cells will not be output to the graph.

Trajectory analysis

Trajectory analysis was performed using the Monocle 2 package to reveal epithelial cell differentiation trajectories.
An integrated expression matrix with batch effects removed was used as input data, and unit trajectories and
evolutionary orders were inferred using default parameters. Highly variable genes associated with cell trajectories
were identified using the graph_test function.

Cell-cell interactions

The CellChat package was used to predict and visualize biologically relevant cell-to-cell communications.
Specifically, the createCellChat function was employed to generate a CellChat object. Subsequently, annotate
the objects with labels and identify the overexpressed genes. The communication probabilities were inferred
using the computeCommunProb function, and the intercellular communication for each specific cell signaling
pathway was predicted using the computeCommunProbPathway function.

Survival analysis

The patients were categorized into high and low-expression groups using the R package “survminer”, with the
optimal index serving as the cutoff value. Kaplan-Meier (KM) survival analysis was employed to assess the
overall survival (OS) of patients in both the high and low-expression groups, and comparisons were made using
a two-sided log-rank test.

Multispectral immunohistochemical (mIHC) staining

Breast cancer tissues were obtained from The Fourth Hospital of Hebei Medical University. Detailed patient
information is shown in Table S1. ITGAV (Proteintech, 27096-1-AP) and POSTN (Proteintech, 66491-1-Ig)
were used as primary antibodies.

Immunofluorescence staining was performed using AlphaTSA Multiplex IHC Kit (AXT37100031, Alphaxbio)
according to the manufacturer’s instructions. Briefly, the tissue chip was dewaxed and hydrated using xylene
and alcohol washing, and then antigen retrieval and sealing were performed. Sections were then blocked and
incubated with primary and secondary antibodies, followed by fluorescent staining. Finally, cell nuclei were
counterstained with DAPI and enclosed in Mounting Medium. ZEN (v3.1) software was used for film reading.

Immunohistochemical (IHC) staining

Formalin-fixed, paraffin-embedded tissue blocks were serially cut into 4-pm-thick sections, which were dewaxed
in xylene and rehydrated through ethanol solutions. For antigen retrieval, slides were microwaved with citrate
buffer (pH 6.0) for 10 min. The slides were then incubated with a primary antibody (Proteintech, 11157-1-AP)
at 4 °C overnight. The slides were then incubated with secondary antibodies (Abcam, ab288151) for 1 h at room
temperature, and then developed using the Ultravision DAB Plus Substrate Detection System (Thermo Fischer
Scientific, TA-125-QHDX) at room temperature, then hematoxylin stained, dehydrated, and coverslipped.

Statistical analysis

The chi-square test was applied to categorical variables for comparison between two groups. The Mann-Whitney
U test was used to compare categorical variables and non-normally distributed variables between two groups,
while the Kruskal-Wallis test was used to compare multiple groups. All statistical analyses were performed using
R software v 4.0.5, and a two-sided P value <0.05 was considered statistically significant.
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Results

Single-cell transcriptional landscape of primary and metastatic breast cancer

We obtained a total of 58,504 cells from breast cancer samples, among which 18,159, 16,800, 21,723, and 1822
cells were collected from PT, LM, BM, and OM, respectively. After dimensionality reduction and unsupervised
cell clustering, these cells were clustered into 29 clusters (Fig. 1A). The clusters were annotated with marker
genes and identified 7 cell clusters, including T-natural killer (NK) cells, B plasma cells, myeloid cells, fibroblast,
epithelial, endothelial, and astrocyte (Fig. 1B and D, Table S2). LM samples had a relatively high proportion
of T-NK and B cells. Fibroblasts accounted for more in BM and PT samples, but less in LM and OM samples.
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Fig. 1. Single-cell transcriptional landscape of primary and metastatic breast cancer. (A), A UMAP diagram
showing the cell clusters. (B), Cell annotation results. (C), UMAP showing the origin of cells. (D), The
expression of marker genes in different cell clusters. (E), The proportion of seven cell clusters in primary,
lymphatic node, brain, and bone metastatic samples. (F), The fraction of seven cell types in primary and
metastatic samples. (G), Differentially expressed genes between primary and metastatic samples in seven cell
clusters. PT: Primary tumor; BM: brain metastases; LM: lymphatic node metastases; OM: bone metastases;
MT: metastases tumor.
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Epithelial cells accounted for more in BM, OM, and PT samples, but less in LM samples (Fig. 1E). Next, we
compared the difference in cell proportions between PT and all MT samples and found that epithelial cells
were the major cell differences in TME between PT and MT samples (Fig. 1F). In addition, we also analyzed
the differentially expressed genes between PT and MT samples in different cell types and found that the
upregulated genes (such as SCGB1D2, TNFAIP3, TIMP1, DCN, CALD1) in MT samples were closely related
to inflammation and matrix remodeling (Fig. 1G). The upregulated genes in PT samples were closely related
to metastasis (IGFBP7, CXCR4, VIM), regulation of the immune response and TME (IGFBP7, TIMP1, MGP,
CD69), and inflammation (CXCR4, TNFAIP3) of breast cancer (Fig. 1G).

Identification of major T and B cell types

We conducted a comprehensive analysis of T and B cells utilizing single-cell transcriptomes. A total of 18,504
T-NK cells were regrouped and categorized into T-memory, CD8+T cells, Treg, NK cells, and CD4+T cells
based on marker gene expression (Fig. 2A and B, Table S2). Among these cell types, CD8+ T cells represented
the largest proportion of the BM samples, while Treg cells accounted for the largest proportion of the PT samples
(Fig. 2C). GSVA results showed that T-NK cells in MT samples significantly activated DNA repair, oxidative
phosphorylation, and WNT-beta-catenin signaling pathways; while T-NK cells in PT samples significantly
activated interferon-gamma response, complement, and IL2-STATS5 signaling pathways (Fig. 2D). The CD8+T
cell subset in MT samples significantly activated oxidative phosphorylation, DNA repair, and MYC-targets-v1
signaling pathways, while the CD8+ T cell subset in PT samples significantly activated TNF-alpha signaling via
NF-«B, hypoxia, and interferon-gamma response pathways (Figure S1B).

A total of 4029 B cells were re-grouped and divided into naive B, memory B, and plasma B cells according to
marker gene expression (Fig. 2E and F, Table S2). As shown in Fig. 2G, the predominant cell type in LM, OM,
and PT samples was naive B cells. The GSVA results showed that B cells in the MT sample significantly activated
allograft rejection, MYC-targets-vl, KRAS signaling-up signaling, and B cells in the PT sample significantly
activated metabolism-related pathways, such as xenobiotic metabolism, glycolysis, apoptosis (Fig. 2H). Naive
B cells in MT samples significantly activated allograft rejection, oxidative phosphorylation, DNA repair, and
interferon- ALPHA response pathways, while naive B cells in PT samples significantly activated apoptosis, TNFA
signaling via NF-kB, and inflammatory response pathways (Figure S1G).

Identification of major fibroblast types

The GSVA results indicated that fibroblasts in MT samples significantly activated oxidative phosphorylation,
DNA repair, coagulation, and glycolysis pathways. In contrast, fibroblasts in PT samples significantly activated
G2M-checkpoint, TNFA signaling via NF-kB, and KRAS signaling DN pathways (Fig. 3A). We re-clustered 7,317
fibroblasts and identified 5 subgroups based on their marker genes: smooth muscle cells (SMC, MYH11), pericyte
(FRZB), antigen-presenting cancer-associated fibroblasts (apCAFs, HLA-DRB1), pCAFs (TOP2A), and matrix
CAFs (mCAFs, MMP11) (Fig. 3B and C). GO and KEGG enrichment analysis showed that these subgroups
were closely associated with responses to mechanical stimuli, reactive oxygen genes, epithelial cell proliferation,
immune system function, and cell migration (Figure S2). As illustrated in Fig. 3D and E, the proportion of
pericytes and mCAFs was significantly higher in BM and OM samples, respectively, when compared to PT
samples. Differential gene expression analysis of each fibroblast subpopulation revealed that in the mCAFs
subpopulation (Fig. 3F), APOD and CTHRCI were significantly upregulated in MT samples compared to PT
samples. Similarly, in the pCAFs subpopulation, STMN1 and CENPF were significantly upregulated in the MT
samples (Fig. 3F, MT vs. PT). Furthermore, we identified ETV1 and E2F2 as the key regulatory transcription
factors for the mCAFs and pCAFs subpopulations, respectively (Fig. 3G). These findings suggested that mCAFs
and pCAFs subpopulations might play a role in the metastasis of breast cancer.

Identification of malignant ECs

To identify the clonal structure and cellular origin of malignant cells, we analyzed CNV and clonality of ECs
from PT, BM, OM, and LM samples using the inferCNV algorithm. A total of 521, 1,2519, 795, and 30 malignant
ECs were identified in the PT (Fig. 4A), BM (Fig. 4B), OM (Fig. 4C), and LM (Fig. 4D) samples, respectively.
Loss of chromosomal regions 13q and 7q was observed in malignant ECs from branch J of the PT, BM, OM,
and LM samples (Fig. 4A and C). Copy number losses of 115 genes located on chromosomes 7 and 13 were
shared among subclonal cell populations with 13q and 7q gains in PT and BM samples (Fig. 4E). Copy number
losses of 37 genes located on these chromosomes were identified in subclonal cell populations with 13q and 7q
gains in the PT and OM samples (Fig. 4F). Subclonal cell populations with 13q and 7q gains in LM samples are
shown in Figure S3A. Venn plots indicated that 23 gene copy number variations were shared between the BM
and OM samples (Fig. 4G). Of these 23 genes, the high expression of SBDS, POR, YWHAG, and MDH2 was
closely correlated with the prognosis of breast cancer (Figure S3B, p <0.05). The proportion of malignant ECs
was significantly higher in OM and BM samples compared to PT and LM samples (Fig. 4H and I).

Identification of major malignant ECs

Subsequently, we re-clustered 13,865 malignant ECs in the PT and MT samples and identified 4 subclusters: GO,
G1, G2, and G3 (Fig. 5A). The G2 subcluster accounts for more of the PT, LM, and OM samples, while the GO
subgroup accounts for more of the BM samples (Fig. 5B and C). GSVA result showed that G1 subcluster was
significantly activated MYC-targets-V1, MYC-targets-V2, and E2F-targets pathways (Fig. 5D). G2 subcluster
was significantly activated epithelial-mesenchymal transition and hedgehog signaling pathways (Fig. 5D).
G3 subcluster was significantly activated G2M-checkpoint, oxidative phosphorylation, and reactive oxygen
species pathways (Fig. 5D). We analyzed the cancer stem cell (CSC) marker genes?>~%5, the characteristic genes
associated with tumor proliferation ability?®?’, and the characteristic genes related to tumor migration ability
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Fig. 2. T and B cell repopulation. (A), T cell repopulation results. (B), The expression of marker genes

in different T cell types. (C), The proportion of T cell types in primary, lymphatic node, brain, and bone
metastatic samples. (D), Gene set variation analysis (GSVA) reveals differences in hallmark pathways of
T-NK cells in primary tumor (PT) and metastasis (MT) samples. (E), (B) cell repopulation results. (F), The
expression of marker genes in different B cell types. (G), The proportion of B cell types in primary, lymphatic
node, brain, and bone metastatic samples. (H), Gene set variation analysis (GSVA) reveals differences in
hallmark pathways of B cells in primary tumor (PT) and metastasis (MT) samples. PT: Primary tumor; BM:
brain metastases; LM: lymphatic node metastases; OM: bone metastases; MT: metastases tumor.

in each subpopulation?®?. The results indicated that the G2 subpopulation exhibited high expression levels
of stemness and migration-related genes, while the G3 subpopulation demonstrated elevated expression of
proliferation-related genes (Fig. 5E and G), suggesting that G2 cells have an EMT-induced CSC phenotype.
Moreover, the pseudotime trajectory axis showed dynamic properties and heterogeneity of malignant epithelial
cells (Fig. 5H). Specifically, G3 cells with an EMT-induced CSC phenotype were initially observed, followed by
G2 cells exhibiting proliferative characteristics. Dormancy-like tumor GO and proliferation-associated G1 cells
were located in separate trajectory branches, indicating distinct differentiation states. We also found that genes
that were gradually highly expressed from pre-branch to cell fate2 significantly activated the MYC-targets-V1
and oxidative phosphorylation pathways, and G1 cells were located in cell fate2 at the end of the differentiation
trajectory (Fig. 5H and J). The invasion score of G2 cells was elevated during the early stages of pseudo-time and
gradually declined over time, while the proliferation score of G3 cells peaked in the middle stages of pseudo-
time. In summary, G2 stem cells exhibiting strong invasive capabilities may represent malignant cells with
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tumor.
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enhanced metastatic potential. Following metastasis, these cells can differentiate into G3 cells, which possess
robust proliferative abilities, and proliferation-related G1 cells. GO cells, which are associated with dormant
tumors, are terminally differentiated cells (Fig. 5K).

Cell-cell interactions

Next, we analyzed the interaction between various subpopulations of fibroblasts and malignant cells in PT
samples, and found that pCAFs had the largest number of interactions with other cells (Fig. 6A). The above
results indicated that G2 cells were metastasis-related malignant epithelial cells. Thus, we analyzed significant
cell-cell interaction pathways using CellChat to investigate the cell-to-cell interaction pathway between G2 cells
and pCAFs, and discovered that KITL-KIT was found to be present only in the cellular communication of
PCAFs to G2 cells, suggesting that KITL-KIT was identified as a significant interaction pair between pCAFs
and G2 cells (Fig. 6B), and the corresponding pathway being the KIT signaling pathway. The only cells involved
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Fig. 6. Cell-cell interaction in primary samples. (A), Heat map showing the number of interactions between
CAFs and cancer cell subpopulations. (B), The interaction between CAFs and cancer cell subpopulations is
regulated by ligand pairs. (C), Chord diagram demonstrate cell-cell interactions involving the KIT signaling
pathway. (D), The expression of KITL and KIT in different cell types. (E), The situation of each cell signaling
network in the KIT signaling pathway. (F), Chord diagram demonstrate cell-cell interactions involving
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Cell signaling networks in the VISFATIN signaling pathway.
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in this pathway are pCAFs and G2 cells (Fig. 6C). Notably, KITL was only expressed in pCAFs cells, while its
receptor KIT was only expressed in G2 cells (Fig. 6D). These results suggested that pCAFs increased the invasion
and metastasis capabilities of G2 tumor cells by binding to its receptor KIT through KITL (Fig. 6E). Moreover,
we analyzed the expression of KITL (KITLG) and KIT in various cell types from PT (Figure S4A) and MT
(Figure S4B) samples. Our findings indicated that KITLG was highly expressed exclusively in pCAFs of PT,
while other cell types exhibited minimal to no expression. Conversely, KIT was predominantly expressed in the
G2 subpopulation of malignant cells in PT; notably, the G2 subpopulation of malignant cells in MT samples did
not express KIT, and the remaining cells showed minimal to no expression. Furthermore, we examined cell-cell
interactions between fibroblast subpopulations and malignant cell subpopulations in MT samples and found
no evidence of a KITL-KIT ligand-receptor pair. Additionally, we assessed the expression of KITL (KITLG)
and KIT in PT and MT samples from TCGA breast cancer datasets, revealing that KITL (KITLG) expression
was lower in PT samples. In contrast, KIT expression was higher in PT samples (Figure S4C, S4D); however,
the statistically insignificant difference may be attributed to the limited number of metastatic samples analyzed
(only six cases). These results suggested that the expression of KIT in the G2 subpopulation of malignant cells
diminished at the metastasis site, leading to a reduction in the functional regulation mediated by the KITL-KIT
ligand-receptor pair.

The regulatory receptor-ligand pair for pCAFs in G2 cells was NAMPT-(ITGA5 +ITGB1), corresponding to
the pathway VISFATIN (Fig. 6B). Cells that regulate pCAFs through the VISFATIN pathway include GO, G3,
mCAFs, and SMC, among which G2 cells are the most likely (Fig. 6F). Moreover, NAMPT was expressed in a
variety of cells, while ITGA5 was only expressed in pCAFs (Fig. 6G). These findings suggested that G0, G2, G3,
mCAF, and SMC bind to pCAFs receptors (ITGA5 +ITGB1) through NAMPT to regulate the function of pCAFs
(Fig. 6H).

Increased pCAFs were associated with advanced breast cancer and poor prognosis

To demonstrate the clinical relevance of pCAFs in breast cancer, we analyzed the impact of the marker gene
STMNI1 in pCAFs on the prognosis of breast cancer patients. Our findings indicated that high expression
levels of STMN1 were associated with a poor prognosis in breast cancer (Fig. 7A). Subsequently, we performed
IHC staining on samples from both early and advanced breast cancer and observed that STMN1 was highly
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expressed in advanced breast cancer samples (Fig. 7B). To further investigate the influence of pCAFs on breast
cancer prognosis, we analyzed the pCAFs score in TCGA breast cancer samples, revealing that samples with
elevated pCAFs scores exhibited significantly worse survival outcomes (Fig. 7C). Additionally, mIHC results
demonstrated an increased proportion of pCAFs cells (a-SMA + STMN1+) in late-stage samples (Fig. 7D). These
results indicated that increased pCAFs were associated with advanced breast cancer and poor prognosis.

Discussion

Distant metastasis to lymphatic nodes, brain, and bone is the leading cause of breast cancer death and is
associated with poor prognosis. In the current study, we have provided a comprehensive cellular landscape of
breast cancer metastases to these different sites. Our findings have revealed unique characteristics of tumor
cells and uncovered the regulatory role of pCAFs by metastatic malignant epithelial cells in breast cancer.
Furthermore, we also found that increased pCAFs were associated with advanced breast cancer and a poor
prognosis. These findings will provide important evidence to support the diagnosis, treatment, and molecular
mechanisms of metastasis in breast cancer.

Within the TME, T cells, B cells, NK cells, and other types of lymphocytes play an important role in the
progression of cancer®®. In TNBC, compared to the immunosuppressive microenvironment of HER2 + breast
cancer, triple-negative breast cancer had a higher proportion of Tregs and CD8 + T cell depletion, accompanied
by more plasma cells®. We found that breast cancer patients with BM had significantly more CD8+T cells and
significantly fewer B cells than breast cancer patients with LM and OM. This finding provides a new perspective
for us to understand the immune microenvironment under different transfer modes. A high proportion of
CD8+T cells often signifies that the TME is in an “inflammatory state,” which may contribute to the inhibition of
tumor growth and spread. Research demonstrated that the proportion of CD8 + T cells was significantly elevated
in kataegic breast BM, which might reflect an enhanced immune system response in these tumors>2. In addition,
higher proportion of CD8+T cells was observed in smaller breast cancer BM, suggesting that an immune
response might be initiated during the early stages of breast cancer BM; however, as the tumor progresses, the
mechanisms of immune evasion might increasingly prevail®>. Zou et al. reported that the infiltration of NK and
CD8+T cells was higher in breast cancer with live metastasis compared to breast cancer with MB3%. After tumor
liver metastasis occurs, the liver microenvironment changes, resulting in the “retention” of systemic CD8+ T
cells in the liver and their apoptosis, thus evading the body’s anti-tumor immunity and immunotherapy™.
Together, these findings suggested that the increase in CD8 + T cells observed in breast cancer BM might suggest
a sustained immune response from the patient that inhibited tumor progression; however, this elevation could
also be associated with T cell exhaustion, which inhibited the immune response and consequently facilitated
tumor immune escape.

GSVA results indicated that T-NK cell subsets significantly activated different signaling pathways in
PT and MT samples, and these pathways were closely related to the biological behavior of tumors and the
TME. Oxidative phosphorylation is the primary pathway through which cells generate energy (ATP) via the
mitochondrial respiratory chain. It has been reported that in breast cancer with LM samples, the oxidative
phosphorylation pathway was significantly activated, indicating that metastatic breast cancer cells may rely more
on aerobic respiration to meet their energy needs to support their growth and invasion capabilities*. Aberrant
activation of the Wnt signaling pathway is a critical driver of breast cancer recurrence and progression. Studies
indicated that activation of the Wnt/p-catenin signaling pathway can promote the proliferation and migration
of breast cancer cells, thereby accelerating tumor growth and metastasis*’. IFN-y is a type II interferon mainly
produced by activated T cells and NK cells. In HER2 + breast cancer, tumor-infiltrating natural killer cells (TI-
NK) produce CCL5 and IFN-y when activated, thereby triggering an effective anti-tumor immune response™.
IFNy can promote anti-tumor immune responses through multiple mechanisms, including directly inhibiting
tumor cell proliferation, promoting tumor cell apoptosis, and enhancing the anti-tumor activity of T cells*. In
the present study, T-NK cells in MT samples significantly activated oxidative phosphorylation and WNT-beta-
catenin signaling pathways; while T-NK cells in PT samples significantly activated interferon-gamma response
signaling pathways. These findings suggest that studying oxidative phosphorylation and activation of the WNT-
[-catenin signaling pathway in PT samples may provide insights into developing therapeutic strategies for breast
cancer metastasis.

Previous studies have shown that CAF cells play an essential role in the process of tumor invasion and
metastasis. The GSVA results indicated that fibroblasts in MT samples significantly activated oxidative
phosphorylation and glycolysis pathways. In contrast, fibroblasts in PT samples significantly activated G2M-
checkpoint pathways. It has been reported that during the evolvement of the early dissemination of breast
cancer, the early-disseminated cancer cell cluster undergoes a transition between glycolysis and oxidative
phosphorylation and tends to distribute along the tumor border®, suggesting that oxidative phosphorylation
may play an important role in lymph node metastasis. The G2/M DNA damage checkpoint prevents cells with
genomic DNA damage from entering mitosis (M phase). Inhibition of the G2/M checkpoint can disrupt the
DNA damage response in cancer cells, allowing them to divide despite the presence of DNA damage, which
exacerbates genomic instability and can lead to cell apoptosis?®-*2. Therefore, investigating the activation of
various pathways, including oxidative phosphorylation and the G2/M DNA checkpoint, in MT and PT samples
may yield valuable insights for the treatment and development of therapeutic strategies against breast cancer
metastasis.

Furthermore, mCAFs were elevated in OM, and pCAFs were increased in breast cancer with LM, BM, and
OM compared to PT. It has been demonstrated that mCAFs could enhance the growth and metastasis of breast
cancer®. In comparison to PT samples, mCAFs exhibited higher expression levels of APOD and CTHRCI1,
whereas pCAFs demonstrated increased expression of STMN1 and CENPF in MT samples. Elevated levels of
APOD and CTHRCI in breast cancer have been associated with poor prognosis***>, suggesting that mCAFs
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may be correlated with unfavorable outcomes in breast cancer. STMNT1 is a protein linked to cancer metastasis,
and its expression in breast cancer correlates with tumor metastasis and chemotherapy resistance?. Additionally,
overexpression of CENPF was associated with poor prognosis in breast cancer with BM and might promote
tumor BM by activating the PI3K-AKT-mTORCI signaling pathway?’. In the present study, we found that
increased pCAFs were associated with advanced breast cancer and poor prognosis. These findings suggested
that higher levels of pCAFs might correlated with the metastasis of breast cancer.

Communication between CAFs and cancer cells promotes tumor metastasis®. Cell-cell communication
demonstrated an interaction between pCAFs and metastasis-associated malignant ECs. Notably, we found that
KITL was expressed in pCAFs cells, while its receptor KIT was expressed in metastasis-associated malignant
ECs. KIT is a receptor tyrosine kinase that activates signaling cascades involved in biological processes such
as cell proliferation, differentiation, migration, and survival by binding to stem cell binding factors (SCE,
also known as KITL)¥. The c-Kit/KitL signaling pathway is also implicated in cell migration/mobilization®.
Accordingly, pCAFs might increase the invasion and metastasis capabilities of malignant ECs by binding to
its receptor KIT through KITL in metastatic breast cancer. In addition, the regulatory receptor-ligand pair for
pCAFs in malignant ECs was NAMPT-(ITGA5 + ITGB1), corresponding to the VISFATIN pathway. It has been
reported that VISFATIN/NAMPT has catabolic and pro-inflammatory properties that induce an inflammatory
phenotype of fibroblasts in rheumatoid arthritis®! and promote chondrocyte apoptosis and extracellular matrix
degradation in osteoarthritis®>>3. Moreover, the main receptors of the VISFATIN pathway, ITGA5 and ITGBI,
exhibited a positive association with chondrogenic marker genes and a negative correlation with osteogenic
marker genes®®. In this study, [ITGAS5 was expressed in pCAFs in breast cancer and pCAFs were increased in
breast cancer with OM, indicating that malignant ECs might regulate the function of pCAFs through NAMPT
binding to pCAFs receptors (ITGA5+ITGB1), thereby promoting BM of breast cancer.

The study presented provides a comprehensive analysis of the single-cell transcriptional landscape in primary
and metastatic breast cancer, offering valuable insights into the cellular heterogeneity and interactions within
the tumor microenvironment. However, it has its limitations and areas for improvement. Frist, single-cell
sequencing technologies, while powerful, can introduce technical noise and variability. Future studies could
benefit from incorporating multiple replicates or using complementary technologies to validate the results.
Secondly, the study identifies key cell-cell interactions, but the complexity of the tumor microenvironment
suggests that additional interactions and regulatory mechanisms may be at play. Further exploration of the
immune contexture, including other cell types and their interactions, could provide a more complete picture.
Finally, while the study provides insights into potential therapeutic targets, such as pCAFs, the direct translation
of these findings into clinical applications requires further investigation, including preclinical testing and clinical
trials.

Conclusion

In summary, this study elucidated the potential cellular origins and drivers of breast cancer metastases to
lymph nodes, the brain, and bone, utilizing single-cell transcriptomic profiles. Five subpopulations of CAFs
were identified, with mCAFs and pCAFs potentially playing significant roles in the metastasis of breast cancer.
Additionally, a subpopulation of malignant ECs with strong invasive capabilities was identified, which can
differentiate into malignant ECs exhibiting robust proliferative abilities. Further investigations revealed a strong
interaction between pCAFs and metastasis-related malignant ECs in breast cancer. Finally, we found that the
proportion of pCAF increased in advanced breast cancer and was associated with a poor prognosis of breast
cancer. These findings have implications for understanding the metastatic process, identifying novel therapeutic
targets, and stratifying patients with breast cancer for more personalized treatment strategies.

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/Supplementary Material . All data are available from the
TCGA database (https://xenabrowser.net/datapages/) and GEO (https://ncbi.nlm.nih.gov/geo/) database within
the article. GEO database under accession number GSE225600, GSE186344, and GSE190772.
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