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Breast cancer is the most common malignant tumor in the world, and its metastasis is the main cause 
of death in breast cancer patients. However, the differences between primary breast cancer tissue 
and lymphatic node, bone, and brain metastases at the single-cell level are not fully understood. We 
analyzed the microenvironment heterogeneity in samples of primary breast cancer (n = 4), breast 
cancer lymphatic node metastasis (n = 4), breast cancer brain metastasis (n = 3), and breast cancer 
bone metastasis (n = 2) using single-cell sequencing data from the GEO database. The malignant 
epithelial cells were characterized by InferCNV algorithm. The cell-cell communication was analyzed 
using CellChat package. The biological function of cell subpopulations was analyzed using gene set 
variation analysis. The expression of STMN1 was analyzed using immunohistochemical staining. The 
proportion of pCAFs in breast cancer was explored using multispectral immunohistochemical staining. 
We identified seven cell clusters in primary and metastatic breast cancer (Lymphatic node, brain, and 
bone metastases) by analyzing single-cell transcriptomic profiles. T-NK and B cells dominated breast 
cancer with lymphatic node metastasis, whereas fibroblasts were prevalent in brain metastases and 
primary breast cancer. We identified five T cells (T memory, CD8 + T cells, regulatory T cells, natural 
killer cells, CD4 + T cells), three B cells (naïve B cells, memory B cells, plasma B cells), and five cancer-
associated fibroblasts (CAFs) subpopulations (Smooth muscle cells (SMC), pericyte, antigen-presenting 
CAFs (apCAFs), proliferative CAFs (pCAFs), and matrix CAFs (mCAFs)). Notably. pCAFs dominated 
breast cancer with lymphatic node, bone, and brain metastasis. Furthermore, we identified four 
malignant epithelial cell subpopulations: G0, G1, G2, and G3. The G2 cell population exhibited strong 
invasion ability, it can differentiate into G3 with strong proliferative ability and proliferation-related G1 
cell population after metastasis. Cell-cell communication demonstrated an interaction between pCAFs 
and metastasis-associated malignant epithelial cells. Finally, we discovered that in advanced breast 
cancer, the proportion of pCAF increased and was associated with a poor prognosis of breast cancer. 
This study elucidated the potential cellular origins and drivers of breast cancer metastases to lymphatic 
nodes, brain, and bone, utilizing single-cell transcriptomic profiles. Furthermore, it demonstrated that 
increased pCAFs were associated with advanced breast cancer and a poor prognosis.
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Breast cancer is a heterogeneous disease involving genetic and environmental factors1. The global breast cancer 
statistics report shows that in 2022, there were an estimated 2.3 million new cases and 665,684 deaths worldwide 
in 2022, making it the second most prevalent malignant tumor worldwide2. New therapies for breast cancer 
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have been released in recent years, including targeted therapy and immunotherapy, opening up new horizons 
for the treatment of breast cancer patients3. However, breast cancer is frequently diagnosed only after metastasis 
has occurred. Generally, the prognosis of breast cancer is poor because it starts as a local disease and can spread 
to lymphatic nodes4 or distant organs such as bones5 and brain6, which presents significant challenges for the 
treatment of breast cancer. Thus, understanding the mechanisms of breast cancer metastasis may help develop 
targeted therapies against metastasis.

The TME is composed of immune cells and non-immune cells such as CAFs, adipocytes, and endothelial 
cells. These different TME components play a role in cancer initiation, progression, metastasis, and treatment 
resistance in breast cancer7,8. In breast cancer, different metastatic sites have different levels of immune cell 
enrichment. Compared with primary breast tumors (PT), bone metastases (OM) have greater neutrophil 
infiltration, whereas lymphatic node metastases (LM) have fewer macrophages9. In breast cancer, the TME 
shows infiltration of PD-L1-amplified CD8 + T cells10. CAFs within the TME can remodel the extracellular 
matrix (ECM), and play an important role in the interaction between tumor cells and surrounding cells11. 
CAF is associated with the clinicopathological characteristics of tumors and plays an important role in the 
pathogenesis of tumors12. For example, in breast cancer, tumor cells co-cultured with CAFs exhibit increased 
expression of IL-6 and IL-8, resulting in increased invasiveness and angiogenic capacity13. CAFs exhibit 
significant heterogeneity in breast cancer and display different expression levels of various molecules and 
biological behaviors in different metastatic parts of breast cancer14. In metastatic breast cancer, bone metastases 
are characterized by significant upregulation of stromal PDPN, FSP1, and PDGFRα, lung metastases show a 
notable increase in interstitial PDGFRβ expression, and liver metastases exhibit reduced interstitial levels of 
FSP1 and PDGFRα15. Furthermore, different subtypes of CAFs in axillary lymphatic nodes drive breast cancer 
metastasis via complementary mechanisms16. Therefore, exploring the molecular pathways and intercellular 
crosstalk in breast cancer with distinct metastasis may help to gain insights into the mechanisms of breast cancer 
development and metastasis, and provide new targets and strategies for breast cancer treatment.

In recent years, the heterogeneity of in situ breast cancer and the mechanisms underlying the development of 
metastasis have been increasingly reported. For instance, Hou et al. have documented the cellular heterogeneity 
present in ductal subtype breast cancer, highlighting the differential gene expressions and biological functions 
between Type 1 and Type 2 ductal epithelial cells17. Additionally, Sanjaya et al. have identified several mechanisms 
that contribute to lymph node and liver metastasis in breast cancer, including loss of differentiation, epithelial-
to-mesenchymal transition, and autophagy18. However, these studies did not specifically investigate the cell-cell 
interactions within the TME of breast cancer. To fill this gap, we analyzed the cellular composition of the TME 
of patients with breast cancer LM, brain metastasis (BM), and OM using single-cell RNA sequencing (scRNA-
seq) data. We focused on the main cell types, including T cells, B cells, and CAFs, and their related biological 
functions. In addition, we analyzed the interaction between proliferative CAFs (pCAFs) and other cells and 
explored the role of pCAFs in the prognosis of breast cancer patients. These findings will provide important 
evidence to support the diagnosis, treatment, and molecular mechanisms of metastasis in breast cancer.

Materials and methods
Data sources
The scRNA-seq datasets GSE225600, GSE186344, and GSE190772 of breast cancer were downloaded from the 
GEO (https://www.ncbi.nlm.nih.gov/) database. GSE225600 included 4 PT and 4 breast cancer LM samples. 
GSE186344 and GSE190772 datasets contained 3 breast cancer BM samples and 2 breast cancer OM samples, 
respectively. Bulk RNA-seq data and clinical information of breast cancer were downloaded from The Cancer 
Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/) database.

ScRNA-seq data quality control and cell annotation
Transcripts were mapped to the human reference genome (GRCh38) using Cell Ranger V6.1.2. ScRNA-
seq data was processed using Seurat v4.1.119, and cells with higher than 10% mitochondrial content, higher 
than 5% hemoglobin content, and less than 200 and more than 20,000 expressed genes were removed. Data 
normalization, cell clustering, and dimensional reduction were performed using the Seurat package20. The 
“FindVariableFeatures” function was utilized to select 2,000 highly variable genes from the corrected expression 
matrix. Subsequently, the principal component analysis was conducted using the “RunPCA” function, retaining 
the top 20 principal components for further analysis. After correcting batch effects by “RunHarmony” function 
in the harmony package, cells were clustered using the “FindClusters” function (resolution 0.7). The nonlinear 
dimensionality reduction was performed using the “RunUMAP” function21. Cell clusters were annotated using 
common cell mark genes based on the cellmark2.0 database22.

Single-cell differential gene analysis and functional enrichment analysis
The differentially expressed genes (DEGs) between different groups were identified using “FindMarkers” in the 
Seurat package, based on the |avg_log2FC|>0.3 and adjusted p value < 0.05. The DEGs were then subjected to 
Gene ontology (GO, including Biological Process (BP), Molecular Function (MF), and Cellular Component 
(CC) analysis) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. The significantly 
enriched pathways were screened using p < 0.05, and the top 30 GOs and 20 KEGG pathways were presented.

Gene set variation analysis (GSVA)
The gene set variation analysis (GSVA) package in R was used to analyze the most enriched hallmark pathways 
for each cell in primary and metastatic tumor samples drawing data from the Molecular Signature Database 
(https://www.gsea-msigdb.org/gsea/msigdb/ index.jsp). The differences in pathway enrichment scores between 
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different cell clusters were calculated using the “limma” package. P < 0.05 indicated that the pathway was 
differentially enriched by the two groups.

Transcription factor analysis
To calculate regulon specificity scores (RSS) for fibroblast subpopulations, SCENIC analysis was performed 
using pySCENIC Python software package. The co-expression modules of transcription factors (TFs) and their 
target genes were identified using GRNBoost2. RcisTarget was used to analyze the genes in each co-expression 
module to identify transcription factor binding motifs. The AUCell package was used to assess the activity of 
regulons in each cell. The R package “ggplot” was used to draw a scatter plot showing the RSS of each fibroblast 
subpopulation, marking the top 5 regulators.

Identification of malignant cells
Based on single-cell gene expression and chromosome sequencing data, the inferCNV v1.6.0 package ​[​​​h​t​t​p​s​:​/​/​g​i​
t​h​u​b​.​c​o​m​/​b​r​o​a​d​i​n​s​t​i​t​u​t​e​/​i​n​f​e​r​C​N​V​​​​​] in R language was used to distinguish malignant epithelial cells (ECs) from 
non-malignant ECs. The settings for the inferCNV analysis are as follows: cutoff = 0.1, cluster by groups = TRUE, 
and hidden markov model (HMM) = TRUE). To minimize false positives in copy number variation (CNV) 
inference, we employed the default Bayesian latent mixture model to assess the posterior probability of variants 
in each cell, utilizing a threshold of 0.5. Then, the CNV scores of all genes were hierarchically clustered on 
ECs and reference cells (T-NK cells) by k-means algorithm. Finally, the subclusters with relatively higher CNV 
scores were considered malignant cells. To illustrate tumor clonality and evolution, the “sub-cluster” model was 
further applied to classify malignant cells into 8 clusters based on different CNV patterns generated by HMM. 
Each CNV was annotated as a gain or loss of p-arm or q-arm based on chromosome cell banding information. 
Subclones containing identical arm-level CNVs were merged to construct an evolutionary tree. Uphyloplot2 was 
used to visualize evolutionary phylogenetic dendrograms to represent subclonal CNV structures. There are at 
most 8 branches at the end of the tree, and less than 5% of the cells will not be output to the graph.

Trajectory analysis
Trajectory analysis was performed using the Monocle 2 package to reveal epithelial cell differentiation trajectories. 
An integrated expression matrix with batch effects removed was used as input data, and unit trajectories and 
evolutionary orders were inferred using default parameters. Highly variable genes associated with cell trajectories 
were identified using the graph_test function.

Cell-cell interactions
The CellChat package was used to predict and visualize biologically relevant cell-to-cell communications. 
Specifically, the createCellChat function was employed to generate a CellChat object. Subsequently, annotate 
the objects with labels and identify the overexpressed genes. The communication probabilities were inferred 
using the computeCommunProb function, and the intercellular communication for each specific cell signaling 
pathway was predicted using the computeCommunProbPathway function.

Survival analysis
The patients were categorized into high and low-expression groups using the R package “survminer”, with the 
optimal index serving as the cutoff value. Kaplan-Meier (KM) survival analysis was employed to assess the 
overall survival (OS) of patients in both the high and low-expression groups, and comparisons were made using 
a two-sided log-rank test.

Multispectral immunohistochemical (mIHC) staining
Breast cancer tissues were obtained from The Fourth Hospital of Hebei Medical University. Detailed patient 
information is shown in Table S1. ITGAV (Proteintech, 27096-1-AP) and POSTN (Proteintech, 66491-1-Ig) 
were used as primary antibodies.

Immunofluorescence staining was performed using AlphaTSA Multiplex IHC Kit (AXT37100031, Alphaxbio) 
according to the manufacturer’s instructions. Briefly, the tissue chip was dewaxed and hydrated using xylene 
and alcohol washing, and then antigen retrieval and sealing were performed. Sections were then blocked and 
incubated with primary and secondary antibodies, followed by fluorescent staining. Finally, cell nuclei were 
counterstained with DAPI and enclosed in Mounting Medium. ZEN (v3.1) software was used for film reading.

Immunohistochemical (IHC) staining
Formalin-fixed, paraffin-embedded tissue blocks were serially cut into 4-µm-thick sections, which were dewaxed 
in xylene and rehydrated through ethanol solutions. For antigen retrieval, slides were microwaved with citrate 
buffer (pH 6.0) for 10 min. The slides were then incubated with a primary antibody (Proteintech, 11157-1-AP) 
at 4 °C overnight. The slides were then incubated with secondary antibodies (Abcam, ab288151) for 1 h at room 
temperature, and then developed using the Ultravision DAB Plus Substrate Detection System (Thermo Fischer 
Scientific, TA-125-QHDX) at room temperature, then hematoxylin stained, dehydrated, and coverslipped.

Statistical analysis
The chi-square test was applied to categorical variables for comparison between two groups. The Mann-Whitney 
U test was used to compare categorical variables and non-normally distributed variables between two groups, 
while the Kruskal-Wallis test was used to compare multiple groups. All statistical analyses were performed using 
R software v 4.0.5, and a two-sided P value < 0.05 was considered statistically significant.
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Results
Single-cell transcriptional landscape of primary and metastatic breast cancer
We obtained a total of 58,504 cells from breast cancer samples, among which 18,159, 16,800, 21,723, and 1822 
cells were collected from PT, LM, BM, and OM, respectively. After dimensionality reduction and unsupervised 
cell clustering, these cells were clustered into 29 clusters (Fig. 1A). The clusters were annotated with marker 
genes and identified 7 cell clusters, including T-natural killer (NK) cells, B plasma cells, myeloid cells, fibroblast, 
epithelial, endothelial, and astrocyte (Fig. 1B and D, Table S2). LM samples had a relatively high proportion 
of T-NK and B cells. Fibroblasts accounted for more in BM and PT samples, but less in LM and OM samples. 

Fig. 1.  Single-cell transcriptional landscape of primary and metastatic breast cancer. (A), A UMAP diagram 
showing the cell clusters. (B), Cell annotation results. (C), UMAP showing the origin of cells. (D), The 
expression of marker genes in different cell clusters. (E), The proportion of seven cell clusters in primary, 
lymphatic node, brain, and bone metastatic samples. (F), The fraction of seven cell types in primary and 
metastatic samples. (G), Differentially expressed genes between primary and metastatic samples in seven cell 
clusters. PT: Primary tumor; BM: brain metastases; LM: lymphatic node metastases; OM: bone metastases; 
MT: metastases tumor.
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Epithelial cells accounted for more in BM, OM, and PT samples, but less in LM samples (Fig. 1E). Next, we 
compared the difference in cell proportions between PT and all MT samples and found that epithelial cells 
were the major cell differences in TME between PT and MT samples (Fig. 1F). In addition, we also analyzed 
the differentially expressed genes between PT and MT samples in different cell types and found that the 
upregulated genes (such as SCGB1D2, TNFAIP3, TIMP1, DCN, CALD1) in MT samples were closely related 
to inflammation and matrix remodeling (Fig. 1G). The upregulated genes in PT samples were closely related 
to metastasis (IGFBP7, CXCR4, VIM), regulation of the immune response and TME (IGFBP7, TIMP1, MGP, 
CD69), and inflammation (CXCR4, TNFAIP3) of breast cancer (Fig. 1G).

Identification of major T and B cell types
We conducted a comprehensive analysis of T and B cells utilizing single-cell transcriptomes. A total of 18,504 
T-NK cells were regrouped and categorized into T-memory, CD8 + T cells, Treg, NK cells, and CD4 + T cells 
based on marker gene expression (Fig. 2A and B, Table S2). Among these cell types, CD8 + T cells represented 
the largest proportion of the BM samples, while Treg cells accounted for the largest proportion of the PT samples 
(Fig. 2C). GSVA results showed that T-NK cells in MT samples significantly activated DNA repair, oxidative 
phosphorylation, and WNT-beta-catenin signaling pathways; while T-NK cells in PT samples significantly 
activated interferon-gamma response, complement, and IL2-STAT5 signaling pathways (Fig. 2D). The CD8 + T 
cell subset in MT samples significantly activated oxidative phosphorylation, DNA repair, and MYC-targets-v1 
signaling pathways, while the CD8 + T cell subset in PT samples significantly activated TNF-alpha signaling via 
NF-κB, hypoxia, and interferon-gamma response pathways (Figure S1B).

A total of 4029 B cells were re-grouped and divided into naïve B, memory B, and plasma B cells according to 
marker gene expression (Fig. 2E and F, Table S2). As shown in Fig. 2G, the predominant cell type in LM, OM, 
and PT samples was naïve B cells. The GSVA results showed that B cells in the MT sample significantly activated 
allograft rejection, MYC-targets-v1, KRAS signaling-up signaling, and B cells in the PT sample significantly 
activated metabolism-related pathways, such as xenobiotic metabolism, glycolysis, apoptosis (Fig. 2H). Naïve 
B cells in MT samples significantly activated allograft rejection, oxidative phosphorylation, DNA repair, and 
interferon-ALPHA response pathways, while naïve B cells in PT samples significantly activated apoptosis, TNFA 
signaling via NF-κB, and inflammatory response pathways (Figure S1G).

Identification of major fibroblast types
The GSVA results indicated that fibroblasts in MT samples significantly activated oxidative phosphorylation, 
DNA repair, coagulation, and glycolysis pathways. In contrast, fibroblasts in PT samples significantly activated 
G2M-checkpoint, TNFA signaling via NF-κB, and KRAS signaling DN pathways (Fig. 3A). We re-clustered 7,317 
fibroblasts and identified 5 subgroups based on their marker genes: smooth muscle cells (SMC, MYH11), pericyte 
(FRZB), antigen-presenting cancer-associated fibroblasts (apCAFs, HLA-DRB1), pCAFs (TOP2A), and matrix 
CAFs (mCAFs, MMP11) (Fig. 3B and C). GO and KEGG enrichment analysis showed that these subgroups 
were closely associated with responses to mechanical stimuli, reactive oxygen genes, epithelial cell proliferation, 
immune system function, and cell migration (Figure S2). As illustrated in Fig.  3D and E, the proportion of 
pericytes and mCAFs was significantly higher in BM and OM samples, respectively, when compared to PT 
samples. Differential gene expression analysis of each fibroblast subpopulation revealed that in the mCAFs 
subpopulation (Fig. 3F), APOD and CTHRC1 were significantly upregulated in MT samples compared to PT 
samples. Similarly, in the pCAFs subpopulation, STMN1 and CENPF were significantly upregulated in the MT 
samples (Fig. 3F, MT vs. PT). Furthermore, we identified ETV1 and E2F2 as the key regulatory transcription 
factors for the mCAFs and pCAFs subpopulations, respectively (Fig. 3G). These findings suggested that mCAFs 
and pCAFs subpopulations might play a role in the metastasis of breast cancer.

Identification of malignant ECs
To identify the clonal structure and cellular origin of malignant cells, we analyzed CNV and clonality of ECs 
from PT, BM, OM, and LM samples using the inferCNV algorithm. A total of 521, 1,2519, 795, and 30 malignant 
ECs were identified in the PT (Fig. 4A), BM (Fig. 4B), OM (Fig. 4C), and LM (Fig. 4D) samples, respectively. 
Loss of chromosomal regions 13q and 7q was observed in malignant ECs from branch J of the PT, BM, OM, 
and LM samples (Fig. 4A and C). Copy number losses of 115 genes located on chromosomes 7 and 13 were 
shared among subclonal cell populations with 13q and 7q gains in PT and BM samples (Fig. 4E). Copy number 
losses of 37 genes located on these chromosomes were identified in subclonal cell populations with 13q and 7q 
gains in the PT and OM samples (Fig. 4F). Subclonal cell populations with 13q and 7q gains in LM samples are 
shown in Figure S3A. Venn plots indicated that 23 gene copy number variations were shared between the BM 
and OM samples (Fig. 4G). Of these 23 genes, the high expression of SBDS, POR, YWHAG, and MDH2 was 
closely correlated with the prognosis of breast cancer (Figure S3B, p < 0.05). The proportion of malignant ECs 
was significantly higher in OM and BM samples compared to PT and LM samples (Fig. 4H and I).

Identification of major malignant ECs
Subsequently, we re-clustered 13,865 malignant ECs in the PT and MT samples and identified 4 subclusters: G0, 
G1, G2, and G3 (Fig. 5A). The G2 subcluster accounts for more of the PT, LM, and OM samples, while the G0 
subgroup accounts for more of the BM samples (Fig. 5B and C). GSVA result showed that G1 subcluster was 
significantly activated MYC-targets-V1, MYC-targets-V2, and E2F-targets pathways (Fig. 5D). G2 subcluster 
was significantly activated epithelial-mesenchymal transition and hedgehog signaling pathways (Fig.  5D). 
G3 subcluster was significantly activated G2M-checkpoint, oxidative phosphorylation, and reactive oxygen 
species pathways (Fig. 5D). We analyzed the cancer stem cell (CSC) marker genes23–25, the characteristic genes 
associated with tumor proliferation ability26,27, and the characteristic genes related to tumor migration ability 
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in each subpopulation28,29. The results indicated that the G2 subpopulation exhibited high expression levels 
of stemness and migration-related genes, while the G3 subpopulation demonstrated elevated expression of 
proliferation-related genes (Fig.  5E and G), suggesting that G2 cells have an EMT-induced CSC phenotype. 
Moreover, the pseudotime trajectory axis showed dynamic properties and heterogeneity of malignant epithelial 
cells (Fig. 5H). Specifically, G3 cells with an EMT-induced CSC phenotype were initially observed, followed by 
G2 cells exhibiting proliferative characteristics. Dormancy-like tumor G0 and proliferation-associated G1 cells 
were located in separate trajectory branches, indicating distinct differentiation states. We also found that genes 
that were gradually highly expressed from pre-branch to cell fate2 significantly activated the MYC-targets-V1 
and oxidative phosphorylation pathways, and G1 cells were located in cell fate2 at the end of the differentiation 
trajectory (Fig. 5H and J). The invasion score of G2 cells was elevated during the early stages of pseudo-time and 
gradually declined over time, while the proliferation score of G3 cells peaked in the middle stages of pseudo-
time. In summary, G2 stem cells exhibiting strong invasive capabilities may represent malignant cells with 

Fig. 2.  T and B cell repopulation. (A), T cell repopulation results. (B), The expression of marker genes 
in different T cell types. (C), The proportion of T cell types in primary, lymphatic node, brain, and bone 
metastatic samples. (D), Gene set variation analysis (GSVA) reveals differences in hallmark pathways of 
T-NK cells in primary tumor (PT) and metastasis (MT) samples. (E), (B) cell repopulation results. (F), The 
expression of marker genes in different B cell types. (G), The proportion of B cell types in primary, lymphatic 
node, brain, and bone metastatic samples. (H), Gene set variation analysis (GSVA) reveals differences in 
hallmark pathways of B cells in primary tumor (PT) and metastasis (MT) samples. PT: Primary tumor; BM: 
brain metastases; LM: lymphatic node metastases; OM: bone metastases; MT: metastases tumor.

 

Scientific Reports |         (2025) 15:2217 6| https://doi.org/10.1038/s41598-025-85531-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 3.  Fibroblast repopulation. (A), Gene set variation analysis (GSVA) reveals differences in hallmark 
pathways of fibroblasts in primary tumor (PT) and metastasis (MT) samples. (B), The expression of 
marker genes in different fibroblast types. (C), Fibroblast repopulation results. (D), Percentage of fibroblast 
subpopulations in primary tumor (PT) and metastasis (MT) samples. (E), The proportion of fibroblast types 
in primary, lymphatic node, brain, and bone metastatic samples. (F), Differentially expressed genes between 
primary tumor (PT) and metastasis (MT) samples in different fibroblast types. (G), Scatter plot showing the 
regulon specificity score (RSS) in each fibroblast subtype, with the top 5 transcription factors highlighted. PT: 
Primary tumor; BM: brain metastases; LM: lymphatic node metastases; OM: bone metastases; MT: metastases 
tumor.
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Fig. 4.  Identification of malignant epithelial cells. (A−D), the copy number variation (CNV) and phylogenetic 
tree of epithelial cells in primary, lymphatic node, brain, and bone metastatic samples. UpSet plots reveal the 
number of genes shared by subclones with 13q and 7q loss in PT and BM (E), and PT and OM (F). Red bars 
and dots represent genes shared by all subclones. G, Venn diagram displaying shared signature genes between 
primary, brain, and bone metastatic malignant cells. H, The fraction of malignant epithelial cells in primary 
and different metastatic samples. I, The proportion of malignant epithelial cells in primary tumor (PT) and 
metastasis (MT) samples. PT: Primary tumor; BM: brain metastases; LM: lymphatic node metastases; OM: 
bone metastases; MT: metastases tumor.
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Fig. 5.  Malignant epithelial cell repopulation. (A), The results of malignant epithelial cell repopulation. (B), 
The proportion of malignant epithelial cell types in primary, lymphatic node, brain, and bone metastatic 
samples. (C), The proportion of malignant epithelial cell types in primary tumor (PT) and metastasis (MT) 
samples. (D), Gene set variation analysis (GSVA) reveals differences in hallmark pathways across malignant 
cell subpopulations. (E), The heat map shows the expression of cancer stem cell (CSCs) markers (E), 
characteristic genes for tumor proliferation (F), and characteristic genes for tumor migration (G) in various 
subpopulations of malignant cells. (H), Temporal analysis results of each subpopulation of malignant epithelial 
cells. (I), Temporal analysis of top50 gene expression heat map. (J), Genes in the pseudo-time-related cluster 
3 significantly activate the MYC_TARGETS_V1 and OXIDATIVE_PHOSPHORYLATION pathways. (K), 
Changes in cancer cell stemness, proliferation, and invasion pathways along the pseudo-timeline. T: Primary 
tumor; BM: brain metastases; LM: lymphatic node metastases; OM: bone metastases; MT: metastases tumor.
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enhanced metastatic potential. Following metastasis, these cells can differentiate into G3 cells, which possess 
robust proliferative abilities, and proliferation-related G1 cells. G0 cells, which are associated with dormant 
tumors, are terminally differentiated cells (Fig. 5K).

Cell-cell interactions
Next, we analyzed the interaction between various subpopulations of fibroblasts and malignant cells in PT 
samples, and found that pCAFs had the largest number of interactions with other cells (Fig. 6A). The above 
results indicated that G2 cells were metastasis-related malignant epithelial cells. Thus, we analyzed significant 
cell-cell interaction pathways using CellChat to investigate the cell-to-cell interaction pathway between G2 cells 
and pCAFs, and discovered that KITL-KIT was found to be present only in the cellular communication of 
pCAFs to G2 cells, suggesting that KITL-KIT was identified as a significant interaction pair between pCAFs 
and G2 cells (Fig. 6B), and the corresponding pathway being the KIT signaling pathway. The only cells involved 

Fig. 6.  Cell-cell interaction in primary samples. (A), Heat map showing the number of interactions between 
CAFs and cancer cell subpopulations. (B), The interaction between CAFs and cancer cell subpopulations is 
regulated by ligand pairs. (C), Chord diagram demonstrate cell-cell interactions involving the KIT signaling 
pathway. (D), The expression of KITL and KIT in different cell types. (E), The situation of each cell signaling 
network in the KIT signaling pathway. (F), Chord diagram demonstrate cell-cell interactions involving 
VISFATIN signaling pathway. (G), The expression of NAMPT, ITGA5, and ITGB1 in different cell types. (H), 
Cell signaling networks in the VISFATIN signaling pathway.
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in this pathway are pCAFs and G2 cells (Fig. 6C). Notably, KITL was only expressed in pCAFs cells, while its 
receptor KIT was only expressed in G2 cells (Fig. 6D). These results suggested that pCAFs increased the invasion 
and metastasis capabilities of G2 tumor cells by binding to its receptor KIT through KITL (Fig. 6E). Moreover, 
we analyzed the expression of KITL (KITLG) and KIT in various cell types from PT (Figure S4A) and MT 
(Figure S4B) samples. Our findings indicated that KITLG was highly expressed exclusively in pCAFs of PT, 
while other cell types exhibited minimal to no expression. Conversely, KIT was predominantly expressed in the 
G2 subpopulation of malignant cells in PT; notably, the G2 subpopulation of malignant cells in MT samples did 
not express KIT, and the remaining cells showed minimal to no expression. Furthermore, we examined cell-cell 
interactions between fibroblast subpopulations and malignant cell subpopulations in MT samples and found 
no evidence of a KITL-KIT ligand-receptor pair. Additionally, we assessed the expression of KITL (KITLG) 
and KIT in PT and MT samples from TCGA breast cancer datasets, revealing that KITL (KITLG) expression 
was lower in PT samples. In contrast, KIT expression was higher in PT samples (Figure S4C, S4D); however, 
the statistically insignificant difference may be attributed to the limited number of metastatic samples analyzed 
(only six cases). These results suggested that the expression of KIT in the G2 subpopulation of malignant cells 
diminished at the metastasis site, leading to a reduction in the functional regulation mediated by the KITL-KIT 
ligand-receptor pair.

The regulatory receptor-ligand pair for pCAFs in G2 cells was NAMPT-(ITGA5 + ITGB1), corresponding to 
the pathway VISFATIN (Fig. 6B). Cells that regulate pCAFs through the VISFATIN pathway include G0, G3, 
mCAFs, and SMC, among which G2 cells are the most likely (Fig. 6F). Moreover, NAMPT was expressed in a 
variety of cells, while ITGA5 was only expressed in pCAFs (Fig. 6G). These findings suggested that G0, G2, G3, 
mCAF, and SMC bind to pCAFs receptors (ITGA5 + ITGB1) through NAMPT to regulate the function of pCAFs 
(Fig. 6H).

Increased pCAFs were associated with advanced breast cancer and poor prognosis
To demonstrate the clinical relevance of pCAFs in breast cancer, we analyzed the impact of the marker gene 
STMN1 in pCAFs on the prognosis of breast cancer patients. Our findings indicated that high expression 
levels of STMN1 were associated with a poor prognosis in breast cancer (Fig. 7A). Subsequently, we performed 
IHC staining on samples from both early and advanced breast cancer and observed that STMN1 was highly 

Fig. 7.  Increased pCAFs were associated with advanced breast cancer and poor prognosis. (A), The marker 
gene STMN1 of pCAFs is associated with poor prognosis of breast cancer. (B), Immunohistochemical analysis 
of STMN1 expression in early and advanced breast cancer samples. Scale bar represents 100 μm. (C), The 
role of pCAFs in the prognosis of breast cancer patients. (D), Multispectral immunohistochemical analysis 
of the proportion of pCAFs cells (a-SMA + STMN1+) in early and advanced breast cancer samples. Scale bar 
represents 20 μm.
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expressed in advanced breast cancer samples (Fig. 7B). To further investigate the influence of pCAFs on breast 
cancer prognosis, we analyzed the pCAFs score in TCGA breast cancer samples, revealing that samples with 
elevated pCAFs scores exhibited significantly worse survival outcomes (Fig. 7C). Additionally, mIHC results 
demonstrated an increased proportion of pCAFs cells (a-SMA + STMN1+) in late-stage samples (Fig. 7D). These 
results indicated that increased pCAFs were associated with advanced breast cancer and poor prognosis.

Discussion
Distant metastasis to lymphatic nodes, brain, and bone is the leading cause of breast cancer death and is 
associated with poor prognosis. In the current study, we have provided a comprehensive cellular landscape of 
breast cancer metastases to these different sites. Our findings have revealed unique characteristics of tumor 
cells and uncovered the regulatory role of pCAFs by metastatic malignant epithelial cells in breast cancer. 
Furthermore, we also found that increased pCAFs were associated with advanced breast cancer and a poor 
prognosis. These findings will provide important evidence to support the diagnosis, treatment, and molecular 
mechanisms of metastasis in breast cancer.

Within the TME, T cells, B cells, NK cells, and other types of lymphocytes play an important role in the 
progression of cancer30. In TNBC, compared to the immunosuppressive microenvironment of HER2 + breast 
cancer, triple-negative breast cancer had a higher proportion of Tregs and CD8 + T cell depletion, accompanied 
by more plasma cells31. We found that breast cancer patients with BM had significantly more CD8 + T cells and 
significantly fewer B cells than breast cancer patients with LM and OM. This finding provides a new perspective 
for us to understand the immune microenvironment under different transfer modes. A high proportion of 
CD8 + T cells often signifies that the TME is in an “inflammatory state,” which may contribute to the inhibition of 
tumor growth and spread. Research demonstrated that the proportion of CD8 + T cells was significantly elevated 
in kataegic breast BM, which might reflect an enhanced immune system response in these tumors32. In addition, 
higher proportion of CD8 + T cells was observed in smaller breast cancer BM, suggesting that an immune 
response might be initiated during the early stages of breast cancer BM; however, as the tumor progresses, the 
mechanisms of immune evasion might increasingly prevail33. Zou et al. reported that the infiltration of NK and 
CD8 + T cells was higher in breast cancer with live metastasis compared to breast cancer with MB34. After tumor 
liver metastasis occurs, the liver microenvironment changes, resulting in the “retention” of systemic CD8 + T 
cells in the liver and their apoptosis, thus evading the body’s anti-tumor immunity and immunotherapy35. 
Together, these findings suggested that the increase in CD8 + T cells observed in breast cancer BM might suggest 
a sustained immune response from the patient that inhibited tumor progression; however, this elevation could 
also be associated with T cell exhaustion, which inhibited the immune response and consequently facilitated 
tumor immune escape.

GSVA results indicated that T-NK cell subsets significantly activated different signaling pathways in 
PT and MT samples, and these pathways were closely related to the biological behavior of tumors and the 
TME. Oxidative phosphorylation is the primary pathway through which cells generate energy (ATP) via the 
mitochondrial respiratory chain. It has been reported that in breast cancer with LM samples, the oxidative 
phosphorylation pathway was significantly activated, indicating that metastatic breast cancer cells may rely more 
on aerobic respiration to meet their energy needs to support their growth and invasion capabilities36. Aberrant 
activation of the Wnt signaling pathway is a critical driver of breast cancer recurrence and progression. Studies 
indicated that activation of the Wnt/β-catenin signaling pathway can promote the proliferation and migration 
of breast cancer cells, thereby accelerating tumor growth and metastasis37. IFN-γ is a type II interferon mainly 
produced by activated T cells and NK cells. In HER2 + breast cancer, tumor-infiltrating natural killer cells (TI-
NK) produce CCL5 and IFN-ɣ when activated, thereby triggering an effective anti-tumor immune response38. 
IFNγ can promote anti-tumor immune responses through multiple mechanisms, including directly inhibiting 
tumor cell proliferation, promoting tumor cell apoptosis, and enhancing the anti-tumor activity of T cells39. In 
the present study, T-NK cells in MT samples significantly activated oxidative phosphorylation and WNT-beta-
catenin signaling pathways; while T-NK cells in PT samples significantly activated interferon-gamma response 
signaling pathways. These findings suggest that studying oxidative phosphorylation and activation of the WNT-
β-catenin signaling pathway in PT samples may provide insights into developing therapeutic strategies for breast 
cancer metastasis.

Previous studies have shown that CAF cells play an essential role in the process of tumor invasion and 
metastasis. The GSVA results indicated that fibroblasts in MT samples significantly activated oxidative 
phosphorylation and glycolysis pathways. In contrast, fibroblasts in PT samples significantly activated G2M-
checkpoint pathways. It has been reported that during the evolvement of the early dissemination of breast 
cancer, the early-disseminated cancer cell cluster undergoes a transition between glycolysis and oxidative 
phosphorylation and tends to distribute along the tumor border36, suggesting that oxidative phosphorylation 
may play an important role in lymph node metastasis. The G2/M DNA damage checkpoint prevents cells with 
genomic DNA damage from entering mitosis (M phase). Inhibition of the G2/M checkpoint can disrupt the 
DNA damage response in cancer cells, allowing them to divide despite the presence of DNA damage, which 
exacerbates genomic instability and can lead to cell apoptosis40–42. Therefore, investigating the activation of 
various pathways, including oxidative phosphorylation and the G2/M DNA checkpoint, in MT and PT samples 
may yield valuable insights for the treatment and development of therapeutic strategies against breast cancer 
metastasis.

Furthermore, mCAFs were elevated in OM, and pCAFs were increased in breast cancer with LM, BM, and 
OM compared to PT. It has been demonstrated that mCAFs could enhance the growth and metastasis of breast 
cancer43. In comparison to PT samples, mCAFs exhibited higher expression levels of APOD and CTHRC1, 
whereas pCAFs demonstrated increased expression of STMN1 and CENPF in MT samples. Elevated levels of 
APOD and CTHRC1 in breast cancer have been associated with poor prognosis44,45, suggesting that mCAFs 
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may be correlated with unfavorable outcomes in breast cancer. STMN1 is a protein linked to cancer metastasis, 
and its expression in breast cancer correlates with tumor metastasis and chemotherapy resistance46. Additionally, 
overexpression of CENPF was associated with poor prognosis in breast cancer with BM and might promote 
tumor BM by activating the PI3K-AKT-mTORC1 signaling pathway47. In the present study, we found that 
increased pCAFs were associated with advanced breast cancer and poor prognosis. These findings suggested 
that higher levels of pCAFs might correlated with the metastasis of breast cancer.

Communication between CAFs and cancer cells promotes tumor metastasis48. Cell-cell communication 
demonstrated an interaction between pCAFs and metastasis-associated malignant ECs. Notably, we found that 
KITL was expressed in pCAFs cells, while its receptor KIT was expressed in metastasis-associated malignant 
ECs. KIT is a receptor tyrosine kinase that activates signaling cascades involved in biological processes such 
as cell proliferation, differentiation, migration, and survival by binding to stem cell binding factors (SCF, 
also known as KITL)49. The c-Kit/KitL signaling pathway is also implicated in cell migration/mobilization50. 
Accordingly, pCAFs might increase the invasion and metastasis capabilities of malignant ECs by binding to 
its receptor KIT through KITL in metastatic breast cancer. In addition, the regulatory receptor-ligand pair for 
pCAFs in malignant ECs was NAMPT-(ITGA5 + ITGB1), corresponding to the VISFATIN pathway. It has been 
reported that VISFATIN/NAMPT has catabolic and pro-inflammatory properties that induce an inflammatory 
phenotype of fibroblasts in rheumatoid arthritis51 and promote chondrocyte apoptosis and extracellular matrix 
degradation in osteoarthritis52,53. Moreover, the main receptors of the VISFATIN pathway, ITGA5 and ITGB1, 
exhibited a positive association with chondrogenic marker genes and a negative correlation with osteogenic 
marker genes54. In this study, ITGA5 was expressed in pCAFs in breast cancer and pCAFs were increased in 
breast cancer with OM, indicating that malignant ECs might regulate the function of pCAFs through NAMPT 
binding to pCAFs receptors (ITGA5 + ITGB1), thereby promoting BM of breast cancer.

The study presented provides a comprehensive analysis of the single-cell transcriptional landscape in primary 
and metastatic breast cancer, offering valuable insights into the cellular heterogeneity and interactions within 
the tumor microenvironment. However, it has its limitations and areas for improvement. Frist, single-cell 
sequencing technologies, while powerful, can introduce technical noise and variability. Future studies could 
benefit from incorporating multiple replicates or using complementary technologies to validate the results. 
Secondly, the study identifies key cell-cell interactions, but the complexity of the tumor microenvironment 
suggests that additional interactions and regulatory mechanisms may be at play. Further exploration of the 
immune contexture, including other cell types and their interactions, could provide a more complete picture. 
Finally, while the study provides insights into potential therapeutic targets, such as pCAFs, the direct translation 
of these findings into clinical applications requires further investigation, including preclinical testing and clinical 
trials.

Conclusion
In summary, this study elucidated the potential cellular origins and drivers of breast cancer metastases to 
lymph nodes, the brain, and bone, utilizing single-cell transcriptomic profiles. Five subpopulations of CAFs 
were identified, with mCAFs and pCAFs potentially playing significant roles in the metastasis of breast cancer. 
Additionally, a subpopulation of malignant ECs with strong invasive capabilities was identified, which can 
differentiate into malignant ECs exhibiting robust proliferative abilities. Further investigations revealed a strong 
interaction between pCAFs and metastasis-related malignant ECs in breast cancer. Finally, we found that the 
proportion of pCAF increased in advanced breast cancer and was associated with a poor prognosis of breast 
cancer. These findings have implications for understanding the metastatic process, identifying novel therapeutic 
targets, and stratifying patients with breast cancer for more personalized treatment strategies.

Data availability
The datasets presented in this study can be found in online repositories. The names of the repository/repositories 
and accession number(s) can be found in the article/Supplementary Material . All data are available from the 
TCGA database (https://xenabrowser.net/datapages/) and GEO (https://ncbi.nlm.nih.gov/geo/) database within 
the article. GEO database under accession number GSE225600, GSE186344, and GSE190772.
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