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Machine learning enhanced grey
box soft sensor for melt viscosity
prediction in polymer extrusion
processes

Yasith S. Perera?, Jie Li? & Chamil Abeykoon!**

Melt viscosity is regarded as a key quality indicator of the polymer melt in polymer extrusion processes.
However, limitations such as disturbances to the melt flow and measurement delays of the existing
in-line and side-stream rheometers prevent the monitoring and controlling of this key parameter in
real time. Soft sensors can be employed to monitor physical parameters that are difficult to measure
using hardware sensing instruments. This study presents a grey-box soft sensing solution to predict the
melt viscosity in real time, which combines physics-based knowledge with machine learning. A fine-
tuned physics-based mathematical model is used to make melt viscosity predictions, and a deep neural
network is employed to compensate for its prediction errors. The proposed soft sensor model reported
a normalised root mean square error of 2.2 x 103 (0.22%), outperforming fully data-driven soft sensor
models based on multilayer perceptron and long short-term memory neural networks. Furthermore,

it exhibited an improvement of approximately 95% in terms of predictive performance, compared to a
soft sensor based on a radial basis function neural network reported in a previous study. The proposed
soft sensor can monitor viscosity changes caused by changes in operating conditions but not suitable
for detecting viscosity changes due to changes in material properties. The findings of this study can aid
in enhancing process monitoring and control in polymer extrusion processes.

Polymer extrusion is a fundamental processing stage in producing a wide range of plastic products'. Melt
viscosity is a key indicator of melt quality in continuous polymer extrusion processes. Consistency and
homogeneity of the melt viscosity directly influence the functional, aesthetic, and dimensional properties of the
extruded products?. Offline measurements result in a considerable time lag between the manufacturing of the
product and the identification of quality issues, which ultimately leads to material waste®. Hence, precise control
of melt viscosity during extrusion would enable the desired product quality to be achieved and maintained while
minimising material waste. However, to realise this, real-time monitoring of the melt viscosity is necessary. The
existing commercial polymer extruders are not equipped with any melt viscosity measuring instruments, which
inhibits the implementation of real-time quality control measures.

Past researchers have investigated techniques such as in-line and side-stream (i.e., online) rheometers to
measure the melt viscosity in real time, but these instruments also suffered from various limitations®=. Side-
stream rheometers can measure the melt viscosity during extrusion without disrupting the melt flow but suffer
from significant time delays in the order of minutes® and hence fail to capture the process dynamics accurately.
In contrast, in-line rheometers can make real-time measurements without a delay but disturb the melt flow,
while resulting in reduced throughput rates. These limitations render the in-line and side-stream rheometers
incompatible with industrial polymer extrusion processes.

Ultrasound velocity profile with pressure differential has been a widely studied technique for in-line
rheological measurements, which is non-invasive, inexpensive, and easy to install'’. This technique employs
ultrasound transducers that emit a series of short ultrasound pulses to obtain the velocity profile of a fluid by
detecting the waves reflected by the moving fluid particles. This information is then used to estimate the melt
viscosity. However, this technique is also associated with limitations such as inaccurate transducer measurements
due to the effect of ultrasonic near-field, difficulty in estimating the ultrasound velocity along the beam axis, and
the sensitivity of the determined rheological parameters to ultrasonic parameters'?. Tasaka et al.!! proposed a
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non-intrusive in-line rheometric method based on ultrasonic spinning rheometry, which eliminates the need to
measure the pressure difference. However, the viscosity range that can be measured is limited, and this technique
has not been tested on industrial processes.

The limitations of these physical melt viscosity monitoring devices have rendered them unsuitable for
real-time monitoring of melt viscosity in polymer extrusion processes. As a result, the melt quality is assessed
offline, away from the extruder, using laboratory rheometers. This prevents the implementation of real-time
melt viscosity control techniques'2. Several previous studies have attempted to control the melt viscosity based
on feedback obtained using in-line rheometer dies'317. However, the use of an in-line rheometer makes them
impractical for industrial polymer extrusion processes due to the flow constrictions and reduced production
rates caused by the in-line rheometer die. Consequently, real-time melt viscosity monitoring has become
necessary for improving process control in industrial polymer extrusion processes.

Soft sensors or virtual sensors are an attractive alternative for estimating physical parameters that are
difficult to measure in real time using hardware sensors. Soft sensors have been used in applications across a
wide range of industrial processes!®-%*. Soft measurement techniques have been investigated for estimating key
parameters such as the melt temperature profile, melt viscosity, melt pressure, energy consumption, flow rate,
and mechanical properties of the extrudate in industrial polymer extrusion processes as well>*~%”. The study by
Kumar et al.®? is one of the earliest works that proposed a soft sensing approach for melt viscosity prediction.
The soft sensor was based on a physics-based first-principles model. However, the model was derived based on
several assumptions that could adversely affect its predictive performance. Moreover, the accuracy of the model
depended on the accuracy of the feed rate and die pressure measurements. The work by Chen et al.*>* is another
early study that proposed an empirical model to predict the melt viscosity. However, the accuracy of the model
was influenced by the consistency of the polymer melt properties.

McAfee and Thompson> reported a soft sensor based on a grey-box modelling technique to predict the melt
viscosity in a single-screw extruder. A linear-in-the-parameter polynomial model with a nonlinear autoregressive
with exogenous input (NARX) model structure was used to construct two grey-box models in series. The first
model (i.e., viscosity model) predicts the melt viscosity based on input process parameters (i.e., screw speed
and barrel set temperatures), which in turn is fed to the second model (i.e., pressure model), that predicts the
melt pressure at the die. The predicted die melt pressure is then compared with the actual die melt pressure
measured using a hardware sensor, and the error between the predicted and measured values is used as feedback
to correct the errors of the viscosity model. The grey-box model structure enabled providing insight into how
the process parameters affected the melt viscosity. In another study, McAfee and Thompson?® introduced an
online correction mechanism to make the soft sensor adaptive to changes in operating conditions and feed
material. Later, Liu et al.*® proposed an improved version of the soft sensor reported in the previous work by
McAfee and Thompson®!. They used a nonlinear finite impulse response (NFIR) model structure instead of the
complex NARX model structure reported in the previous study*. The model could be made adaptive to different
polymeric materials and die designs by updating the model parameters online. In another study, Deng et al.”
proposed a data-driven soft sensor based on a radial basis function (RBF) neural network optimised using a
differential evolution (DE) algorithm and a two-stage selection algorithm, to predict the melt viscosity in a
single-screw extrusion process.

Although several past studies have attempted to develop soft sensors to predict the melt viscosity in real
time, several limitations in these soft sensors can be identified. First-principles models were derived based on
several assumptions and were not capable of capturing actual process dynamics. Early empirical models also
suffered from poor predictive performance due to the use of conventional modelling algorithms. Despite the use
of machine learning techniques, the soft sensor by Deng et al.*” reported a high root mean square percentage
error (RMSPE) of 9.35%, and the residual plot results indicated errors with a magnitude as high as 500 on an
unseen dataset. Soft sensors proposed by McAfee and Thompson® and Liu et al.*® provide good prediction
accuracy over a wide range of processing conditions, however, these works were based on traditional modelling
techniques. In the existing literature, there is a gap in assessing the potential of modern deep learning methods
and hybrid artificial intelligence-driven approaches to enhance the prediction accuracy of melt viscosity soft
sensors. Therefore, there is room for further improvement in terms of predictive performance of these soft
sensing solutions by integrating deep learning methods.

This study presents a soft sensor based on a grey-box modelling technique to predict the melt viscosity in a
single-screw extruder in real time. A grey-box model architecture was chosen for the soft sensor, as grey-box
models are generally expected to perform better than white-box and black-box models. A combined grey-box
(CGB) model architecture®® that combines physics-based knowledge about the extrusion process with artificial
intelligence-based techniques is proposed. The proposed CGB model is composed of a serial grey-box (SGB)
component and a parallel black-box component. The SGB component comprises a physics-based model, the
parameters of which were fine-tuned using linear regression. As the black-box component, a deep neural
network was chosen. The SGB component predicts the melt viscosity while the black-box component estimates
the prediction error of the SGB component. The prediction of the black-box component is then added to the
SGB component to arrive at the final melt viscosity prediction. Although previous works have reported serial
grey-box architectures® =%, no existing studies have proposed combined grey-box architectures to predict the
melt viscosity in polymer extrusion processes.

Multilayer perceptron (MLP) neural networks have been a favourable candidate for many soft sensing
applications over the years due to their ability to model complex nonlinear relationships and handle noisy
inputs39‘42. The architecture of MLPs, consisting of multiple layers of neurons, enables them to learn intricate
patterns in data, making them suitable for modelling the nonlinear characteristics of process data in soft
sensor applications*!**2. With the advancements in artificial intelligence, various other types of neural network
architectures have also been utilised in soft sensor design. Of them, LSTM neural networks and their variants have
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widely been employed as dynamic soft sensor models across numerous applications due to their ability to extract
complex temporal dependencies in industrial process data***-3!. Due to the memory units in LSTMs, they can
effectively capture temporal variations in the process leading to improved predictive performance compared to
static models such as the MLP neural network. Hence, both MLP and LSTM neural network architectures were
incorporated and compared as the black-box component of the proposed grey-box soft sensor in this study.

The key contributions of this study can be identified as follows: A grey-box soft sensor incorporating a physics-
based analytical model and a deep neural network is proposed to predict the melt viscosity of a single-screw
extrusion process in real time. To the best of knowledge of the authors, this is the first study that incorporates
deep learning techniques as well as a CGB model architecture to predict the melt viscosity in polymer extrusion
processes. The performance of the proposed soft sensor was compared with fully-data driven models to confirm
its superiority. Furthermore, its performance was compared against the radial basis function neural network-
based soft sensor reported in the previous study by Deng et al.*’ for the same task. The proposed grey-box soft
sensor exhibited excellent predictive performance, outperforming the fully-data driven models as well as the soft
sensor reported by Deng et al.>” However, it should be noted that, although the soft sensor can detect viscosity
changes caused by changes in operating conditions, it cannot detect viscosity changes due to changes in material
properties.

Experimental Dataset

To develop the soft sensor proposed in this study, the melt viscosity dataset reported by Deng et al.’” was used.
In this dataset, the melt viscosity was calculated from the ratio of the shear stress to the shear rate of the melt
flow. The shear stress was determined from the pressure drop along the channel of an in-line slit-die rheometer
(i-e., an extruder die with a rectangular flow channel that has a large width-to-height ratio) measured in real
time. A schematic diagram of the slit-die rheometer that was designed for the experiment is illustrated in Fig. 1.
The shear rate was calculated from the volumetric flow rate of the melt flow through the die. The viscosity of the
polymer melt can then be calculated from Eq. (1)%":

_T _ nHAW AP
TTY T aemr )V L

(1)
where 7 denotes the melt viscosity, while 7 and + represent shear stress and shear rate respectively. n is the
power law index of the polymer, H. is the height of the channel, W is the width of the channel, and V is the
volumetric flow rate. A P is the pressure drop along a length of L in the channel. The volumetric flow rate (V'
) was determined based on the mass throughput from the slit die and the melt density. To measure the mass
throughput, the polymer melt from the slit die was collected manually at 1-min intervals and weighed. The melt
density and power law index were determined using an RH7 viscometer>2.

The dataset was collected by conducting an experimental trial on a Killion KTS-100 single-screw extruder,
using a low-density polyethylene (LDPE) material (brand name: SABIC LDPE 2102TNOOW; melt flow rate:
2.5 g/10 min at 190 °C and 2.16 kg; density: 921 kgm™~3). The experimental trial was conducted by varying the
process settings (i.e., barrel set temperatures and screw speed) of the extruder and recording the data in real time.
As can be seen from Fig. 2, the extruder barrel consisted of three main heating zones (T,~T,). Four additional
heating zones were also available at the clamp ring, the adapter, and the slit die (i.e, T 4—T7). The barrel set
temperatures and screw speed were varied using a pseudorandom sequence signal such that a wide processing
range of the extruder was covered. In addition to the real-time melt viscosity data calculated from the slit die
measurements, real-time measurements of barrel set temperatures (T,~T.), screw speed, and melt temperature
were recorded at a sampling frequency of 10 Hz. The resulting dataset was pre-processed to eliminate melt
viscosity overshoots caused by inaccurate calculation of viscosity at certain screw speed step changes. As the
overshoot regions were very narrow and sparse, melt viscosity values in these regions were removed, and they
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Fig. 1. A schematic diagram of the slit die rheometer reported in the study by Deng et al.’”: (a) cross-sectional
view (b) longitudinal view.
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Fig. 2. A schematic diagram indicating the heating zones of the single-screw extruder used for the
experimental trial in the study by Deng et al.¥’.

were replaced using moving average smoothing. The final dataset after pre-processing consisted of a total of
99,442 data samples (see Fig. 3(a-d)).

Preliminaries

Grey-box model structure

In this study, a CGB model architecture® as shown in Fig. 4c was used to develop the grey-box soft sensor
model. This involves the integration of an SGB model component with a parallel black-box component. A CGB
model architecture was chosen as it generally exhibits improved performance compared to an SGB (see Fig. 4a)
or a parallel (see Fig. 4b) grey-box model configuration owing to the incorporation of both serial and parallel
configurations®. This section summarises the main steps involved in designing the proposed CGB model.

i

Construct an SGB component to predict the target variable.

Develop a physics-based (i.e., white-box) model.

yws = fws (zws,0) )
Here, fw B denotes the physics-based model, while yw 5 is the target variable predicted by the phys-
ics-based model. zwp and 6 represent the input variables and parameters in the physics-based

model, respectively.

Determine the value of 6 that minimises the prediction error (calculated in terms of the sum of
squared errors) of the physics-based model.

o~

6 = argeminz L(ywsi — Ymi)” (3)

where yn, ; is the i™ measured value of the target variable, yw B, is the ith prediction by the phys-
ics-based model, and M is the number of training data points.

Obtain the SGB component by combining the optimised parameters 9 with the physics-based model.

ysee = fwas (I'WB,é\) (4)

where yscp is the target variable predicted by the SGB component.

Construct a data-driven (i.e., black-box) component to predict the prediction error of the SGB component.

Calculate the prediction error of the SGB component.
€SGB = Ym — YSGB (5)

where esap is the vector that contains the prediction errors of the SGB component calculated as the
difference between the experimentally measured target values ( ¥») and the SGB model predictions
(ysaB)-

Develop the parallel black-box component.

escp = fes (zBB, D) (6)
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Fig. 3. Experimental dataset: (a) variation of barrel set temperatures (b) variation of screw speed (c) measured
melt temperature (d) measured melt viscosity.
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Fig. 4. Grey-box model configurations: (a) serial (b) parallel and (c) combined.

where escp is the prediction by the parallel black-box component. fpp is the complex nonlinear
function of the black-box component, while zpp and @ denote the input features and parameters of
the black-box component respectively.

c. Determine the value of @ that minimises the prediction error (calculated in terms of the sum of
squared errors) of the black-box component.

= . M~ 2
& = arg min E i=1(€saB,i — esaB,i) (7)
j%}

where escp,i is the i calculated prediction error of the SGB component, €sgp,; is the i predic-
tion by the black-box component, and M is the number of training data points.

d. Obtain the black-box model predictions ( yz ) with the optimised parameters 7]

yBB = fBB (xBB7é\) . (8
iii. Construct the CGB model by combining the SGB component with the parallel black-box component.
YoGB = YsGB + YBB )
where, ycgp is the final prediction of the CGB model.

To construct the parallel black-box component (represented by fzp in Eq. (8) of the grey-box soft sensor model,
neural networks with two different architectures were used. A deep neural network with an MLP architecture
and a deep LSTM neural network were employed.

MLP neural network

An MLP neural network is a feedforward neural network. A perceptron is a single neuron, which is a
computational unit that processes a set of weighted inputs using an activation function to produce an output.
In an MLP neural network, such neurons are stacked to form a hidden layer, and MLP neural networks are
composed of one or more such hidden layers. Deep networks can be constructed by stacking multiple hidden
layers. Figure 5 illustrates the network architecture of an MLP with an input layer, one hidden layer, and an
output layer.

The number of neurons in the input and output layers is determined by the number of input and target
variables in the problem under consideration. The number of neurons in a hidden layer and the number of
hidden layers in the final MLP neural network model are usually determined by a trial-and-error approach, such
that the maximum predictive performance of the model is achieved. The input-output relationship of an MLP
neural network with a single hidden layer can be described by Eq. (10).
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Fig. 5. MLP neural network architecture.

=0 (3 s (3 iwlla) +60) +0) (10)

The input vector x contains ¢ input variables, and this input vector is combined with the weights vector
w). The weight wﬁ? corresponds to the connection between the i input and the j™ neuron of the hidden

layer. The hidden layer consists of p hidden units. The weighted sum calculated at each neuron along with the
corresponding bias value bﬁ-l) is then subjected to an activation function f. The resulting vector and the bias

value b are then combined with the weights vector w® corresponding to the output layer and subjected to an
activation function g to obtain the predicted output 7. The activation functions could be any arbitrary function
including the sigmoid, hyperbolic tangent (tanh), or rectified linear unit (ReLU) functions. Equation (10) can be
extended to accommodate more hidden layers to represent a deep network.

Neural network training consists of two main phases: forward propagation and backpropagation. During
forward propagation, the input features are combined with the weights and biases, and the network makes
a prediction based on learned features using the activation functions. After each iteration of the forward
propagation, the prediction error is calculated by taking the square of the difference between the actual and
predicted values. The prediction errors are averaged over the entire training data using a cost function. The mean
square error (MSE) shown in Eq. (11) is generally chosen as the cost function, where m; denotes the number
of training samples.

1 m ~
MSE = — " ™ (yi = %)’ (11)

me

Forward propagation is followed by backpropagation, during which the gradient of the loss function with
respect to the weights is calculated. Backpropagation is carried out using an optimisation algorithm such as the
gradient descent to find the weights and biases that minimise the cost function in Eq. (11). The full mathematical
derivation is not presented here but can be found in the literature®.

LSTM neural network

The LSTM neural network is a variant of the recurrent neural network (RNN), which was designed to overcome
the issues of gradient vanishing and gradient exploding present in RNNs. LSTM networks consist of three gates;
namely, the input, forget, and output gates, which enable the handling of long-term dependencies in the data.
The structure of an LSTM cell is illustrated in Fig. 6. The internal mechanisms of an LSTM cell can be presented
as shown in Egs. (12), (13), (14), (15), (16), (17):

ft =0 (Wy.[hi—1, 2] + by) (12)
iv = o (Wi [he—1, 2] + b;) (13)
cp = tanh(We. [he—1, z¢] + be) (14)
ct = frxcio1 +irxcy (15)

or =0 (Wo [ht—1, @] + bo) (16)
ht = ot * tanh (c;) (17)
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Fig. 6. The structure of an LSTM cell.

Model name | Model type | Description

Model A Grey box CGB with an LSTM neural network as the black-box component
Model B Grey box CGB with an MLP neural network as the black-box component
Model C Data driven | LSTM neural network

Model D Data driven | MLP neural network

Table 1. Grey-box and data-driven soft sensor models developed in this study.

Here, z; is the input matrix. f;, 4:,and os represent the forget, input, and output gates, respectively. ¢; indicates
the current cell state and c; indicates the vector of new data to be added to the cell state. h; is the hidden state
of the LSTM cell. Wy, W;, W, and W, denote the corresponding weight matrices, while by, b;, bc, and b,
represent the corresponding bias terms. ¢ represents the activation function.

Soft Sensor Development

In this study, two grey-box soft sensor models were constructed. The only difference between the two models is
in the type of neural network used as the black-box component. Model A incorporated an LSTM neural network
as the black-box component, while Model B used an MLP neural network. Alongside these grey-box models,
two fully data-driven models were also constructed: Model C, based on an LSTM neural network, and Model
D, based on an MLP neural network. The fully data-driven models were designed to serve as benchmarks for
evaluating the grey-box models. The purpose of this comparison was to determine whether integrating physics-
based knowledge into soft sensor design improves the predictive performance of the soft sensor. Table 1 provides
a description of the different models developed in this study.

Grey-box soft sensor models
This section discusses the development of the grey-box soft sensor Models A and B. First, the construction of the
SGB component is discussed followed by the integration of the parallel black-box component.

Polymer melts are pseudo-plastic fluids, where the melt viscosity decreases with increasing shear rates™.
Generally, the shear rates generated during polymer extrusion processes are within the range of 1-10* s™*. Melt
viscosities within this region can be reasonably approximated using the power law of Ostwald and de Waele>>*.
This power law equation is shown in Eq. (18):

n =my n—l1 (18)

Here, 7 is the melt viscosity at a shear rate of 7. m is the melt consistency index, while n denotes the power
law index. The power law index varies between 0 and 1 for pseudo-plastic fluids such as polymer melts. The
melt consistency index is a temperature-dependent parameter, and the melt consistency index at temperature 7'
denoted by m (T') can be calculated from Eq. (19)*”:

m (T) = mye® 7" (19)

Scientific Reports |

(2025) 15:5613 | https://doi.org/10.1038/s41598-025-85619-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

where m, is the reference melt consistency index at the reference temperature 7., while « 7 represents the
temperature coefficient.

In this study, the power law equation in Eq. (19) was used for constructing the physics-based model. For
single-screw polymer extruders, the shear rate in the screw channel of the melt conveying zone (i.e., the final
zone of the processing screw) can be approximated from Eq. (20) using the flat plate approximation model®*.

NT(DN
~ H

(20)

where D, N, and H represent the screw diameter, screw rotational speed, and the depth of the screw channel,
respectively. By substituting Egs. (19), (20) in Eq. (18), the following expression can be obtained for calculating
the melt viscosity.

n—1
aT(T,,.fT)(ﬂ-DN) (21)

The parameters D and H are geometrical parameters of the extruder, while NN is a processing parameter, all of
which are readily available to the machine operators. However, material-related properties such as m,, T, o
,and n are not readily available to the machine operators and these values may not be available in the material
datasheets as well. As a result, these parameters would have to be determined via offline experimentation. Hence,
it would not be practical to use the physics-based model in Eq. (21) in its current form, to predict the melt
viscosity in real time during polymer extrusion processes in an industrial setting. Therefore, it would be more
practical to optimise these unknown parameters using actual experimental data. To make this possible, the
model presented in Eq. (21) can be re-arranged as follows:

o T(TrfT)(

n =mre 'y )n71 (22)

By taking the natural logarithm on both sides of Eq. (22), the model can be transformed into Eq. (23):
n(n) =1In(m.)+ar (T =T)+(n—-1)n(y) (23)
In(n)=mn-1)In(y)—arT+In(m.)+arT: (24)

Equation (24) has the form, y = 0 1u1 + 0 2u2+0 3, where

y=1n(n) (25)

ur =1In(y) (26)

uo =T (27)
01=n-1 (28)
0o=—ar (29)

03 =1n(m,)+arT, (30)

Here, w1 and w2 constitute the input vector xw g, while 6 1,0 2, and 6 3 constitute the parameter vector 6 of
the physics-based model as indicated by Eq. (2). w1 was computed from Egs. (20) and (26) for all data samples
collected during the experimental trial. u2 denotes the melt temperature (7"), and the bulk melt temperature
measured using a wall-mounted thermocouple at the adapter of the extruder during the experimental trial was
used (see Fig. 3c). The geometrical parameters of the extruder required to calculate the shear rate as shown in
Eq. (21) (i.e., screw diameter (D) and screw channel depth (H)) were obtained from the single-screw extruder
used for the experimental trial. The values of D and H were found to be 25 mm and 1.43 mm respectively. The
unknown parameter vector § was optimised using the training set. Both linear regression and particle swarm
optimisation (PSO) were used to optimise 6 and the performance of the two algorithms are compared in the
‘Results and Discussion’ section. Then, the optimised parameter vector § was combined with the physics-based
model to obtain the optimised model in Eq. (31):

ln(n):é\lln('&)—é\g'f—&-é\g, (31)
Then, the final SGB component in Eq. (32) was obtained by removing the logarithmic transformation.

n = e(é\llﬂ(’? )—32T+§\3) (32)

Next, the fine-tuned SGB component (in Eq. (32)) was used to make melt viscosity predictions for the training
set. This was followed by the calculation of the prediction errors of the SGB component over the entire training
set using Eq. (5). These calculated prediction errors were subsequently used as the target values to train the
parallel black-box component.

As shown in Table 1, LSTM and MLP neural networks were used as the parallel black-box component for
Models A and B, respectively. For both LSTM and MLP black-box components, eight features (i.e., seven barrel
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set temperatures and screw speed) were used as inputs to predict the output (i.e., prediction error of the SGB
model). These input features were chosen as they are the primary process control variables in polymer extruders,
and these parameters are known to have a significant influence on the melt viscosity>®**-3¢, Equations (33), (34)
describe the inputs and outputs used for the MLP black-box component of Model B.

Yyt = gmrp (T¢) (33)
e ={T1(t), T2 (t),T5(t),Ta(t),T5 (t), Ts (), T7 (t) ,w (t)} (34)

where z is the value of the input feature vector at time ¢, while y; is the value of the target variable at time ¢.
T; (t) li=1,2,... .,7 denote the barrel set temperatures at time ¢, and w (t) represents the screw speed at time ¢.
gnrp is the nonlinear function learned by the MLP neural network.

To construct the black-box component of Model A, considering the dynamic nature of LSTM neural networks,
past values of the input features were also used in addition to the present input values as shown in Eq. (35):

Yt = grsTm (Tt, Te—1,... ,Tt—d) (35)

where d is the number of past time steps or the width of the sliding window of the LSTM network, and gr.s7 s
is the nonlinear function learned by the LSTM neural network.

Before training the LSTM black-box component of Model A, the entire dataset was split into train, validation,
and test sets. Random splitting was used to ensure the same distribution of data across the three sets. However,
when dealing with LSTM networks, it is necessary to maintain the temporal order of the dataset and random
splitting disrupts the temporal order which may result in data leakage. Therefore, to prevent this, the entire
dataset was serialised using a sliding window with a suitable width before feeding the network. Serialising the
dataset before splitting it randomly into train, validation, and test sets could ensure that the temporal order of
the data is maintained®®. To prevent data leakage, non-overlapping sample sequences were created during the
serialisation process. Using non-overlapping samples ensures that no sequence samples in the serialised dataset
have exact duplicates in the train, validation, and test sets. This ensures that the model does not peak into
future time steps in addition to past time steps and hence prevents data leakage which could cause the model to
produce overly optimistic results.

Consider the original dataset {X,Y} = {(zi,¥:) |i=1,2,... x}, where x; and y; denote the values of the
input features and the target variable corresponding to the i data sample, and k is the total number of data
samples. A sliding window with a width of d can then be used to scan and serialise the dataset. This results
in a serialised dataset {X*,Y*} = {(:r}y]*) li=1, 2,... ,k—d+1}, where z} = {z; at1,... ,2;-1,7;} and

y; = {y;}. An example of this serialisation process for d = 2 is illustrated in Fig. 7.

The dataset used to train and test the soft sensor models consisted of a total of 99,442 data points. Before
splitting, it was serialised using a suitable window size as described above. The size of the sliding window was
fine-tuned along with other hyperparameters during training, and the optimum size was found to be 2. Hence,
the serialisation resulted in a total of 49,721 sample sequences. They were split into train, validation, and test
sets at a ratio of 60:20:20. This resulted in 29,832, 9,944, and 9,945 sample sequences in the train, validation, and
test sets, respectively. The same train, validation, and test splits were used to train the black-box components of
both Models A and B.

The black-box components of Models A and B were trained on the training set, while the hyperparameters
were optimised using the grid searching technique based on the models’ performance on the validation set.
Although there are several hyperparameter tuning techniques such as gradient-based optimisation, Bayesian

Original Data Serialised Data

(x1,x2), ¥2

N
- (X3, x4-)' Va
7

[ (%5, X6), Ve ] i

Xn—1Yn-1 -—) [ (Xn—1, %), Vn ]

xn' yn

Fig. 7. Serialisation of the dataset.
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optimisation, and Metaheuristic algorithms, grid searching (which is a model-free algorithm) was used due to
its simplicity and exhaustive search provided™. The test set was used to assess the model’s performance on new
unseen data. Under hyperparameter tuning, the number of hidden layers, number of neurons per hidden layer,
batch size, and the number of training iterations were fine tuned as both MLP and LSTM networks are highly
sensitive to these hyperparameters. For the LSTM network, the width of the time window was also treated as an
additional hyperparameter.

Figure 8 illustrates the final CGB model. The SGB component takes in shear rate and melt temperature
as inputs and estimates the melt viscosity using the parameters optimised with an optimisation algorithm.
Simultaneously, the black-box component takes the barrel set temperatures and screw speed as model inputs
and estimates the prediction error of the SGB component. Here, different inputs were used for the black-box
component compared to the SGB component. This was done to incorporate the control variables (i.e., barrel set
temperatures and screw speed) of the extruder as model inputs. However, it should be noted that the shear rate
and melt temperature which were used as inputs to the SGB component are also functions of the screw speed
and barrel set temperatures.

Finally, the black-box model prediction is added to the SGB prediction to obtain the final melt viscosity
prediction of the CGB model. The generalisation performance of the CGB model was further evaluated using the
unseen test set. The performance of the CGB model is discussed in detail in the ‘Results and Discussion’ section.

Data-driven soft sensor models

The same train, validation, and test split used for the grey-box models were used to design the fully data-driven
Models C and D shown in Table 1. The same input features (i.e., seven barrel set temperatures and screw speed)
used for the parallel black-box component of the grey-box models were used for Models C and D as well. The
melt viscosity was used as the output variable, as these models were designed to predict the melt viscosity
directly. Similar to the black-box components of the grey-box models, the hyperparameters of the fully data-
driven models were also fine-tuned using the grid searching technique.

Performance evaluation metrics

The soft sensor models proposed in this study were trained on a computer with an Apple M1 chip and 8GB
RAM with the TensorFlow 2.15.0 backend on Python 3.11.8. The accuracy of the trained soft sensor models
was evaluated using the root mean square error (RMSE), normalised RMSE (NRMSE), and root mean square
percentage error (RMSPE) error metrics which are defined in Egs. (36), (37), (38), respectively. Figure 3d shows
that the melt viscosity values of the collected dataset are in the range 500-3000. Therefore, it may be difficult
to get an insight into the accuracy of the models merely based on the RMSE metric due to the wide range of
melt viscosity values observed in the dataset. Hence, the NRMSE was used to better interpret the RMSE values
by eliminating the effect of the large value range of the melt viscosity values. The RMSPE was used to enable
comparison of the results of this study with those of the previous study by Deng et al.>”.

RMSE = (36)

NRMSE = —TMSE (37)

Ymaz — Ymin

~ 2
_ 1 Ng Yi — Yi 38
RMSPE = \/NS E i=1<yi) x 100% (38)

y; and y; denote the i measured and predicted outputs respectively, while N, denotes the number of data
points. Ymaz and Ymin denote the maximum and minimum values in the measured output respectively.

In addition to the above error metrics, the Kling-Gupta Efficiency (KGE) of the predictions made by
the soft sensor models was also calculated in order to further evaluate the performance of the models. The
KGE introduced by Gupta et al.®® provides a more balanced evaluation of the performance of the models by

SGB Component

*  Shear Rate ——»| BB1+ WB
¢ Melt Temperature

Melt Viscosity

BB1: Optimisation Algorithm

Parallel Black-Box Component BB2: LSTM/MLP Neural Network

WB: n= e(elln(y)—82T+83)
*  Screw Speed —>] BB2
. Barrel Set Temperatures

Fig. 8. Proposed CGB model. BB and WB denote black-box and white-box (i.e., physics-based) model
components respectively.
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decomposing the efficiency into three components: correlation, bias, and variability. The KGE is calculated as
shown in Eq. (39):

KGE:l—\/(r—1)2+(a—1)2+(ﬂ—1)2 (39)

where r denotes the correlation coefficient, « is the bias ratio (i.e., ratio of means between the predicted and
measured values), and 3 represents the variability ratio (i.e., ratio of standard deviations between the predicted
and measured values).

Results and Discussion

This section provides an in-depth analysis of the performance of the grey-box soft sensor models proposed in
this study. As discussed in the ‘Soft Sensor Development’ section, both linear regression and PSO algorithms
were used to optimise the parameter vector 6 of the physics-based model in the SGB component of the grey-
box soft sensor models. The performance of the SGB component on the train, validation, and test sets when
optimised with each algorithm are presented in Table 2. For the PSO algorithm, the number of particles in the
swarm and the maximum number of iterations were set to 100 and 200, respectively.

It is clear from the results presented in Table 2 that there is no significant influence on the predictive
performance of the SGB component of the grey-box model by the optimisation algorithm used. Hence, the
linear regression algorithm was chosen considering its simplicity. The similar RMSE values exhibited on the
train, validation, and test sets suggest that the model can generalise well on unseen data without overfitting. The
fine-tuned parameters of the SGB component were found to be —0.4394, —0.0065, and 11.5289 for 6 1, 2, and

0 3, respectively, using linear regression. Figure 9a illustrates a comparison of the SGB model predictions with
the experimentally measured melt viscosity values on the unseen test set, while Fig. 9b shows the residual plot
that indicates the error between the predicted and measured melt viscosity values across the test set.

Figure 9a shows that the predictions of the SGB component follow the dynamics in the data well but exhibit
significant deviations from the experimentally measured melt viscosity values. This is further evident from the
prediction errors with magnitudes in excess of 500 indicated by the residual plot in Fig. 9b. Since the melt viscosity
is a function of shear rate, which in turn is a function of screw speed, melt viscosity values predicted by the SGB
component can follow the changes in screw speed quite well. However, the significant deviations between the
SGB predictions and experimentally measured values can be attributed to several sources of error. As discussed
in the ‘Soft Sensor Development’ section, the unknown parameters in the SGB component are functions of
material-related parameters (i.e., melt consistency index, temperature coefficient, and power law index).
These parameters were fine-tuned using linear regression such that the SGB component fits the experimental
data. Hence, these fine-tuned parameters could slightly vary from the actual values of the polymeric material.
Moreover, the power law index is a temperature-dependent parameter, but it was defined as a constant parameter
in the SGB component. Furthermore, the melt viscosity may vary as the melt flows from the screw channel to the
die and the melt viscosity measured at the die could be different from the melt viscosity at the melt conveying
zone of the extruder that is predicted by the SGB component. All these causes may adversely affect the predictive
performance of the SGB component. Hence, the parallel black-box component was used to predict the errors of
the SGB component to obtain melt viscosity predictions with better accuracy.

After obtaining the fine-tuned SGB component, the parallel black-box component was then trained to
predict the residual between the SGB predictions and the experimentally measured melt viscosity values. The
black-box component was trained on the training set while its hyperparameters were fine-tuned based on its
performance on the validation set. The predictions from the black-box component were then added to the
predictions from the SGB component, to get the final melt viscosity predictions of the CGB model. Finally, the
fine-tuned CGB model was evaluated on the test set. Model A reported RMSE values of 4.4072, 4.9061, and
5.1743 on the training, validation, and test sets, respectively. The respective RMSE values for Model B was found
to be 4.3671, 5.0219, and 5.0394.

These results show that both Models A and B have shown slightly higher RMSE values on the validation
and test sets compared to the training set. However, the validation and test RMSE values are quite similar
indicating good generalisation performance on unseen data. Furthermore, the final CGB models show a
significant improvement in performance compared to the SGB component, and this indicates that the black-
box components of both Models A and B have substantially contributed to compensating for the prediction
errors of the SGB component. Although both Models A and B exhibit good predictive performance, Model B
has slightly better performance compared to Model A with a reduction of 2.6% in the RMSE value on unseen
test data. These findings are interesting, as one would expect Model A to outperform Model B due to the use of

Optimised model
Model performance parameters

— — —
Optimisation algorithm | Train RMSE | Validation RMSE | Test RMSE | 9 ; 0 03

Linear regression 167.2750 172.2734 169.6063 -0.4394 | -0.0065 | 11.5289
PSO 167.2703 172.2678 169.6020 -0.4351 | -0.0065 | 11.5077

Table 2. Performance comparison of the SGB component optimised with linear regression and PSO
algorithms.
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Fig. 9. Performance of the SGB component of the CGB model: (a) comparison of SGB model predictions with
experimentally measured melt viscosity values in the test set (b) residual plot for the SGB component.

an LSTM neural network as the black-box component in Model A, which can extract temporal features in the
data, unlike the MLP neural network that was used as the black-box component in model B. This behaviour may
be attributed to the following: According to Fig. 3, the dataset used in this study was collected by varying the
extruder process parameters using a pseudorandom sequence signal, which resulted in frequent step changes
in the extruder barrel set temperatures and screw speed. Figure 3(b, d) show that the resulting melt viscosity is
highly sensitive to the screw speed step changes and has immediately responded to these changes without any
noticeable delays. Moreover, as can be observed from Fig. 9a, the SGB component seems to follow the dynamics
in the data despite its static model structure, and this might have left limited room for the LSTM (which models
the SGB residuals) to contribute additional value. Hence, there may not have been any temporal features that the
LSTM neural network could learn in addition to what the MLP neural network, which does not have a memory
component, could learn. Additionally, the width of the sliding window used to serialise the dataset was also fine-
tuned as a hyperparameter, and the best value was found to be 2. Any further increments resulted in a reduction
in predictive performance of Model A. Therefore, in this case, it is clear that the CGB models exhibit comparable
predictive performance regardless of whether an MLP or LSTM neural network is employed as the parallel
black-box component, with the CGB model with an MLP neural network having a slight edge in performance.
Next, the performance of the CGB models were compared with the fully data-driven models. The
hyperparameters of all the fine-tuned models are provided in Table 3. The performance of the CGB Models A
and B as well as the data-driven Models C and D on the test set are summarised in Table 4. In addition to these

Model Model A | Model B | Model C | Model D
No. of hidden layers 5 7 4 5

No. of neurons per hidden layer 200 250 180 200
Batch size 64 256 64 128
Training iterations 5623 5597 4217 5438
Width of the sliding window 2 N/A 2 N/A
Optimiser Adam Adam Adam Adam
Learning rate 0.001 0.001 0.001 0.001
Activation function of hidden layers | tanh ReLU tanh ReLU

Table 3. Fine-tuned hyperparameters of all models developed in this study.
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Model Model type | RMSE | NRMSE | RMSPE | KGE | Correlation coefficient | Standard deviation
A | CGB with an LSTM neural network as the black-box component | Grey box 5.1743 | 0.0023 | 0.46% | 0.9992 | 0.9999 364.8

B | CGB with an MLP neural network as the black-box component | Grey box 5.0394 | 0.0022 | 0.45% | 0.9994 | 0.9999 364.8

C | LSTM neural network Data driven | 6.0134 | 0.0027 | 0.52% | 0.9994 | 0.9999 365.2

D | MLP neural network Data driven | 5.5287 | 0.0025 0.49% 0.9988 | 0.9999 364.6

E | RBF neural network optimised with DE (Deng et al.*”) Data driven | — - 9.35% | - -
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Table 4. Comparison of performance of the soft sensor models on unseen test data.

models, the performance of the RBF neural network-based soft sensor model proposed in the work by Deng et
al.¥” (i.e., Model E) is also provided in Table 4 for comparison.

According to the RMSE, NRMSE, and RMSPE error metrics presented in Table 4, the predictive performance
of the models increases in the order: B, A, D, and C. Both grey-box models exhibit better performance than the
data-driven models. The CGB Model B demonstrated superior predictive performance compared to the data-
driven Models D and C, achieving reductions in RMSE values by 8.9% and 16.2%, respectively. Additionally,
Model B matches the highest KGE value (0.9994) among the models developed in this study, indicating robust
predictive capabilities. The KGE metric represents a combination of correlation, bias, and variability of the
model. KGE values close to 1 indicate excellent model performance, and hence, the KGE metric also confirms
the excellent performance of model B. Moreover, the standard deviation of 364.8 obtained from Model B
predictions is the closest among all models to the standard deviation of 364.9 observed in the measured melt
viscosity values. This suggests that Model B most effectively captures the variability inherent in the observed
data, outperforming the other models. All these performance metrics confirm that the CGB Model B has the
best predictive performance.

The superior performance of the grey-box models relative to the fully data-driven models can likely be
attributed to the incorporation of the physics-based framework within the CGB models. As shown in Fig. 9a,
the physics-based component employed in the CGB model enables the soft sensor to capture the dynamics
accurately (despite the large residuals). This likely allows the black-box component of the CGB model to focus on
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Fig. 10. Performance of the CGB model with an LSTM neural network as the black-box component (i.e.,
Model A): (a) comparison of CGB model predictions with experimentally measured melt viscosity values in
the test set (b) residual plot for the CGB model.
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Fig. 11. Performance of the CGB model with an MLP neural network as the black-box component (i.e., Model
B): (a) comparison of CGB model predictions with experimentally measured melt viscosity values in the test
set (b) residual plot for the CGB model.

fine-tuning and capturing nonlinearities, which is a simpler learning task than learning the entire input-output
relationship from scratch.

The soft sensor models developed in this study can be compared with the previous work by Deng et al.>” using
the RMSPE metric as both studies utilised the same experimental dataset. It is clear that all models developed
in this study show a significant improvement in performance compared to the RBF neural network-based soft
sensor by Deng et al.*” (i.e., model E). This superior performance of the CGB and data-driven models can be
attributed to the deep neural network architectures that can capture complex nonlinear patterns in the data,
unlike the RBF neural network used in the previous work®’.

As the CGB models were found to have superior performance compared to fully data-driven models, they
were further analysed by plotting the CGB model predictions against the experimentally measured melt viscosity
values along with model residuals for each data sample in the test set. These plots corresponding to Models A
and B are visually presented in Figs. 10 and 11, respectively.

It is clear from both Figs. 10 and 11 that both grey-box soft sensor Models A and B can accurately track
the experimentally measured melt viscosity values across the entire processing range of the extruder. When
comparing Figs. 10 and 11 with Fig. 9, it is obvious that the black-box component of the CGB model was able to
bring down the significant prediction errors in the SGB component resulting in excellent prediction accuracy.
The residual plots presented in Figs. 10b and 11b indicate that a majority of the prediction errors made by both the
grey-box and data-driven soft sensor models are well within a magnitude of 50. There are a few prediction errors
with magnitudes greater than 50, and these large prediction errors are mostly present where screw speed step
changes were made during data collection. Among the 9945 data samples in the test set, Model B demonstrated
prediction errors exceeding a magnitude of 50 in only three instances, with the largest error magnitude being
65.36. In comparison, Model A exhibited prediction errors exceeding a magnitude of 50 in seven instances, with
the largest error magnitude reaching 74.29.

These results confirm that the CGB model with an MLP neural network as the black-box component shows
excellent predictive performance. The enhanced predictive performance and interpretability of the proposed
CGB model should enable real-time monitoring of melt viscosity, which in turn will enable process optimisation
and control. Optimisation of extrusion processes will make it possible to improve product quality while reducing
power consumption.

Conclusions
In this study, a soft sensor with a CGB model architecture was proposed to inferentially estimate the melt
viscosity of polymer melts in single-screw polymer extrusion processes. The proposed soft sensor incorporates
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an SGB component combined with a parallel black-box component. The SGB component comprises a physics-
based mathematical model fine-tuned with linear regression and predicts the melt viscosity using shear rate
and melt temperature as inputs. A deep neural network was used as the parallel black-box component, which
compensates for the prediction errors of the SGB component, using extruder process parameters (i.e., barrel set
temperatures and screw speed) as inputs.

As the black-box component of the grey-box model, two deep neural network architectures were compared:
an MLP neural network and an LSTM neural network. The CGB model with an MLP neural network exhibited
the best predictive performance. It was also compared against two fully data-driven models with MLP and
LSTM neural network architectures. The CGB model with an MLP neural network recorded the lowest RMSE,
NRMSE, and RMSPE metrics of 5.0394, 0.0022, and 0.45%, respectively, outperforming both data-driven
models. Furthermore, this CGB model exhibited reductions of 8.9% and 16.2% in terms of the RMSE values
compared to the data-driven models based on MLP and LSTM neural networks, respectively. This confirms that
the integration of the physics-based model has enabled the soft sensor to capture the dynamics in the process
accurately, simplifying the learning task of the parallel-black box component. The performance of the CGB
model was further compared against a soft sensor based on an RBF neural network reported in a previous study.
The CGB model showed an increase of approximately 95% in terms of predictive performance compared to the
soft sensor reported in the previous work.

The high accuracy reported by the grey-box soft sensor model and its ability to inferentially estimate the melt
viscosity in real time without disrupting the melt flow make it an attractive solution for the polymer processing
industry. Furthermore, the proposed soft sensor model can be used to optimise and control polymer extrusion
processes. The main limitations of this work are that the soft sensor cannot detect viscosity changes due to
changes in material properties and is not adaptive to changes in the polymeric material being processed. Future
research should focus on addressing these limitations.
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