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Melt viscosity is regarded as a key quality indicator of the polymer melt in polymer extrusion processes. 
However, limitations such as disturbances to the melt flow and measurement delays of the existing 
in-line and side-stream rheometers prevent the monitoring and controlling of this key parameter in 
real time. Soft sensors can be employed to monitor physical parameters that are difficult to measure 
using hardware sensing instruments. This study presents a grey-box soft sensing solution to predict the 
melt viscosity in real time, which combines physics-based knowledge with machine learning. A fine-
tuned physics-based mathematical model is used to make melt viscosity predictions, and a deep neural 
network is employed to compensate for its prediction errors. The proposed soft sensor model reported 
a normalised root mean square error of 2.2 × 10−3 (0.22%), outperforming fully data-driven soft sensor 
models based on multilayer perceptron and long short-term memory neural networks. Furthermore, 
it exhibited an improvement of approximately 95% in terms of predictive performance, compared to a 
soft sensor based on a radial basis function neural network reported in a previous study. The proposed 
soft sensor can monitor viscosity changes caused by changes in operating conditions but not suitable 
for detecting viscosity changes due to changes in material properties. The findings of this study can aid 
in enhancing process monitoring and control in polymer extrusion processes.

Polymer extrusion is a fundamental processing stage in producing a wide range of plastic products1. Melt 
viscosity is a key indicator of melt quality in continuous polymer extrusion processes. Consistency and 
homogeneity of the melt viscosity directly influence the functional, aesthetic, and dimensional properties of the 
extruded products2. Offline measurements result in a considerable time lag between the manufacturing of the 
product and the identification of quality issues, which ultimately leads to material waste3. Hence, precise control 
of melt viscosity during extrusion would enable the desired product quality to be achieved and maintained while 
minimising material waste. However, to realise this, real-time monitoring of the melt viscosity is necessary. The 
existing commercial polymer extruders are not equipped with any melt viscosity measuring instruments, which 
inhibits the implementation of real-time quality control measures.

Past researchers have investigated techniques such as in-line and side-stream (i.e., online) rheometers to 
measure the melt viscosity in real time, but these instruments also suffered from various limitations3–9. Side-
stream rheometers can measure the melt viscosity during extrusion without disrupting the melt flow but suffer 
from significant time delays in the order of minutes6 and hence fail to capture the process dynamics accurately. 
In contrast, in-line rheometers can make real-time measurements without a delay but disturb the melt flow, 
while resulting in reduced throughput rates. These limitations render the in-line and side-stream rheometers 
incompatible with industrial polymer extrusion processes.

Ultrasound velocity profile with pressure differential has been a widely studied technique for in-line 
rheological measurements, which is non-invasive, inexpensive, and easy to install10. This technique employs 
ultrasound transducers that emit a series of short ultrasound pulses to obtain the velocity profile of a fluid by 
detecting the waves reflected by the moving fluid particles. This information is then used to estimate the melt 
viscosity. However, this technique is also associated with limitations such as inaccurate transducer measurements 
due to the effect of ultrasonic near-field, difficulty in estimating the ultrasound velocity along the beam axis, and 
the sensitivity of the determined rheological parameters to ultrasonic parameters10. Tasaka et al.11 proposed a 
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non-intrusive in-line rheometric method based on ultrasonic spinning rheometry, which eliminates the need to 
measure the pressure difference. However, the viscosity range that can be measured is limited, and this technique 
has not been tested on industrial processes.

The limitations of these physical melt viscosity monitoring devices have rendered them unsuitable for 
real-time monitoring of melt viscosity in polymer extrusion processes. As a result, the melt quality is assessed 
offline, away from the extruder, using laboratory rheometers. This prevents the implementation of real-time 
melt viscosity control techniques12. Several previous studies have attempted to control the melt viscosity based 
on feedback obtained using in-line rheometer dies13–17. However, the use of an in-line rheometer makes them 
impractical for industrial polymer extrusion processes due to the flow constrictions and reduced production 
rates caused by the in-line rheometer die. Consequently, real-time melt viscosity monitoring has become 
necessary for improving process control in industrial polymer extrusion processes.

Soft sensors or virtual sensors are an attractive alternative for estimating physical parameters that are 
difficult to measure in real time using hardware sensors. Soft sensors have been used in applications across a 
wide range of industrial processes18–23. Soft measurement techniques have been investigated for estimating key 
parameters such as the melt temperature profile, melt viscosity, melt pressure, energy consumption, flow rate, 
and mechanical properties of the extrudate in industrial polymer extrusion processes as well24–37. The study by 
Kumar et al.32 is one of the earliest works that proposed a soft sensing approach for melt viscosity prediction. 
The soft sensor was based on a physics-based first-principles model. However, the model was derived based on 
several assumptions that could adversely affect its predictive performance. Moreover, the accuracy of the model 
depended on the accuracy of the feed rate and die pressure measurements. The work by Chen et al.33 is another 
early study that proposed an empirical model to predict the melt viscosity. However, the accuracy of the model 
was influenced by the consistency of the polymer melt properties.

McAfee and Thompson34 reported a soft sensor based on a grey-box modelling technique to predict the melt 
viscosity in a single-screw extruder. A linear-in-the-parameter polynomial model with a nonlinear autoregressive 
with exogenous input (NARX) model structure was used to construct two grey-box models in series. The first 
model (i.e., viscosity model) predicts the melt viscosity based on input process parameters (i.e., screw speed 
and barrel set temperatures), which in turn is fed to the second model (i.e., pressure model), that predicts the 
melt pressure at the die. The predicted die melt pressure is then compared with the actual die melt pressure 
measured using a hardware sensor, and the error between the predicted and measured values is used as feedback 
to correct the errors of the viscosity model. The grey-box model structure enabled providing insight into how 
the process parameters affected the melt viscosity. In another study, McAfee and Thompson35 introduced an 
online correction mechanism to make the soft sensor adaptive to changes in operating conditions and feed 
material. Later, Liu et al.36 proposed an improved version of the soft sensor reported in the previous work by 
McAfee and Thompson34. They used a nonlinear finite impulse response (NFIR) model structure instead of the 
complex NARX model structure reported in the previous study34. The model could be made adaptive to different 
polymeric materials and die designs by updating the model parameters online. In another study, Deng et al.37 
proposed a data-driven soft sensor based on a radial basis function (RBF) neural network optimised using a 
differential evolution (DE) algorithm and a two-stage selection algorithm, to predict the melt viscosity in a 
single-screw extrusion process.

Although several past studies have attempted to develop soft sensors to predict the melt viscosity in real 
time, several limitations in these soft sensors can be identified. First-principles models were derived based on 
several assumptions and were not capable of capturing actual process dynamics. Early empirical models also 
suffered from poor predictive performance due to the use of conventional modelling algorithms. Despite the use 
of machine learning techniques, the soft sensor by Deng et al.37 reported a high root mean square percentage 
error (RMSPE) of 9.35%, and the residual plot results indicated errors with a magnitude as high as 500 on an 
unseen dataset. Soft sensors proposed by McAfee and Thompson34 and Liu et al.36 provide good prediction 
accuracy over a wide range of processing conditions, however, these works were based on traditional modelling 
techniques. In the existing literature, there is a gap in assessing the potential of modern deep learning methods 
and hybrid artificial intelligence-driven approaches to enhance the prediction accuracy of melt viscosity soft 
sensors. Therefore, there is room for further improvement in terms of predictive performance of these soft 
sensing solutions by integrating deep learning methods.

This study presents a soft sensor based on a grey-box modelling technique to predict the melt viscosity in a 
single-screw extruder in real time. A grey-box model architecture was chosen for the soft sensor, as grey-box 
models are generally expected to perform better than white-box and black-box models. A combined grey-box 
(CGB) model architecture38 that combines physics-based knowledge about the extrusion process with artificial 
intelligence-based techniques is proposed. The proposed CGB model is composed of a serial grey-box (SGB) 
component and a parallel black-box component. The SGB component comprises a physics-based model, the 
parameters of which were fine-tuned using linear regression. As the black-box component, a deep neural 
network was chosen. The SGB component predicts the melt viscosity while the black-box component estimates 
the prediction error of the SGB component. The prediction of the black-box component is then added to the 
SGB component to arrive at the final melt viscosity prediction. Although previous works have reported serial 
grey-box architectures34–36, no existing studies have proposed combined grey-box architectures to predict the 
melt viscosity in polymer extrusion processes.

Multilayer perceptron (MLP) neural networks have been a favourable candidate for many soft sensing 
applications over the years due to their ability to model complex nonlinear relationships and handle noisy 
inputs39–42. The architecture of MLPs, consisting of multiple layers of neurons, enables them to learn intricate 
patterns in data, making them suitable for modelling the nonlinear characteristics of process data in soft 
sensor applications41,42. With the advancements in artificial intelligence, various other types of neural network 
architectures have also been utilised in soft sensor design. Of them, LSTM neural networks and their variants have 
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widely been employed as dynamic soft sensor models across numerous applications due to their ability to extract 
complex temporal dependencies in industrial process data23,43–51. Due to the memory units in LSTMs, they can 
effectively capture temporal variations in the process leading to improved predictive performance compared to 
static models such as the MLP neural network. Hence, both MLP and LSTM neural network architectures were 
incorporated and compared as the black-box component of the proposed grey-box soft sensor in this study.

The key contributions of this study can be identified as follows: A grey-box soft sensor incorporating a physics-
based analytical model and a deep neural network is proposed to predict the melt viscosity of a single-screw 
extrusion process in real time. To the best of knowledge of the authors, this is the first study that incorporates 
deep learning techniques as well as a CGB model architecture to predict the melt viscosity in polymer extrusion 
processes. The performance of the proposed soft sensor was compared with fully-data driven models to confirm 
its superiority. Furthermore, its performance was compared against the radial basis function neural network-
based soft sensor reported in the previous study by Deng et al.37 for the same task. The proposed grey-box soft 
sensor exhibited excellent predictive performance, outperforming the fully-data driven models as well as the soft 
sensor reported by Deng et al.37 However, it should be noted that, although the soft sensor can detect viscosity 
changes caused by changes in operating conditions, it cannot detect viscosity changes due to changes in material 
properties.

Experimental Dataset
To develop the soft sensor proposed in this study, the melt viscosity dataset reported by Deng et al.37 was used. 
In this dataset, the melt viscosity was calculated from the ratio of the shear stress to the shear rate of the melt 
flow. The shear stress was determined from the pressure drop along the channel of an in-line slit-die rheometer 
(i.e., an extruder die with a rectangular flow channel that has a large width-to-height ratio) measured in real 
time. A schematic diagram of the slit-die rheometer that was designed for the experiment is illustrated in Fig. 1. 
The shear rate was calculated from the volumetric flow rate of the melt flow through the die. The viscosity of the 
polymer melt can then be calculated from Eq. (1)37:

	
η = τ

γ̇
= nHc

3W

4(2n + 1)V̇
∆ P

L
� (1)

where η  denotes the melt viscosity, while τ  and γ̇  represent shear stress and shear rate respectively. n is the 
power law index of the polymer, Hc is the height of the channel, W  is the width of the channel, and V̇  is the 
volumetric flow rate. ∆ P  is the pressure drop along a length of L in the channel. The volumetric flow rate ( V̇
) was determined based on the mass throughput from the slit die and the melt density. To measure the mass 
throughput, the polymer melt from the slit die was collected manually at 1-min intervals and weighed. The melt 
density and power law index were determined using an RH7 viscometer52.

The dataset was collected by conducting an experimental trial on a Killion KTS-100 single-screw extruder, 
using a low-density polyethylene (LDPE) material (brand name: SABIC LDPE 2102TN00W; melt flow rate: 
2.5 g/10 min at 190 °C and 2.16 kg; density: 921 kgm− 3). The experimental trial was conducted by varying the 
process settings (i.e., barrel set temperatures and screw speed) of the extruder and recording the data in real time. 
As can be seen from Fig. 2, the extruder barrel consisted of three main heating zones (T1−T3). Four additional 
heating zones were also available at the clamp ring, the adapter, and the slit die (i.e., T4−T7). The barrel set 
temperatures and screw speed were varied using a pseudorandom sequence signal such that a wide processing 
range of the extruder was covered. In addition to the real-time melt viscosity data calculated from the slit die 
measurements, real-time measurements of barrel set temperatures (T1−T7), screw speed, and melt temperature 
were recorded at a sampling frequency of 10  Hz. The resulting dataset was pre-processed to eliminate melt 
viscosity overshoots caused by inaccurate calculation of viscosity at certain screw speed step changes. As the 
overshoot regions were very narrow and sparse, melt viscosity values in these regions were removed, and they 

Fig. 1.  A schematic diagram of the slit die rheometer reported in the study by Deng et al.37: (a) cross-sectional 
view (b) longitudinal view.
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were replaced using moving average smoothing. The final dataset after pre-processing consisted of a total of 
99,442 data samples (see Fig. 3(a–d)).

Preliminaries
Grey-box model structure
In this study, a CGB model architecture38 as shown in Fig. 4c was used to develop the grey-box soft sensor 
model. This involves the integration of an SGB model component with a parallel black-box component. A CGB 
model architecture was chosen as it generally exhibits improved performance compared to an SGB (see Fig. 4a) 
or a parallel (see Fig. 4b) grey-box model configuration owing to the incorporation of both serial and parallel 
configurations38. This section summarises the main steps involved in designing the proposed CGB model.

i.	�� Construct an SGB component to predict the target variable.

	 a.	� Develop a physics-based (i.e., white-box) model.

	 yW B = fW B (xW B , θ )� (2)

Here, fW B  denotes the physics-based model, while yW B  is the target variable predicted by the phys-
ics-based model. xW B  and θ  represent the input variables and parameters in the physics-based 
model, respectively.

	 b.	� Determine the value of θ  that minimises the prediction error (calculated in terms of the sum of 
squared errors) of the physics-based model.

	
θ̂ = arg min

θ

∑
M
i=1(yW B,i − ym,i)2

� (3)

where ym,i is the ith measured value of the target variable, yW B,i is the ith prediction by the phys-
ics-based model, and M  is the number of training data points.

	 c.	� Obtain the SGB component by combining the optimised parameters θ̂  with the physics-based model.

	
ySGB = fW B

(
xW B , θ̂

)
� (4)

where ySGB  is the target variable predicted by the SGB component.

	ii.	� Construct a data-driven (i.e., black-box) component to predict the prediction error of the SGB component.

�	 a.	� Calculate the prediction error of the SGB component.

	 eSGB = ym − ySGB � (5)

where eSGB  is the vector that contains the prediction errors of the SGB component calculated as the 
difference between the experimentally measured target values ( ym) and the SGB model predictions 
( ySGB).

	b.	� Develop the parallel black-box component.

	 êSGB = fBB (xBB ,∅ )� (6)

Fig. 2.  A schematic diagram indicating the heating zones of the single-screw extruder used for the 
experimental trial in the study by Deng et al.37.
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Fig. 3.  Experimental dataset: (a) variation of barrel set temperatures (b) variation of screw speed (c) measured 
melt temperature (d) measured melt viscosity.
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where êSGB  is the prediction by the parallel black-box component. fBB  is the complex nonlinear 
function of the black-box component, while xBB  and ∅  denote the input features and parameters of 
the black-box component respectively.

	 c.	� Determine the value of ∅  that minimises the prediction error (calculated in terms of the sum of 
squared errors) of the black-box component.

	
∅̂ = arg min

∅

∑
M
i=1(êSGB,i − eSGB,i)2

� (7)

where eSGB,i is the ith calculated prediction error of the SGB component, êSGB,i is the ith predic-
tion by the black-box component, and M  is the number of training data points.

	  d.	� Obtain the black-box model predictions ( yBB) with the optimised parameters ∅̂

	 yBB = fBB

(
xBB , ∅̂

)
.� (8)

	iii.	  �Construct the CGB model by combining the SGB component with the parallel black-box component.

	 yCGB = ySGB + yBB � (9)

where, yCGB  is the final prediction of the CGB model.

To construct the parallel black-box component (represented by fBB  in Eq. (8) of the grey-box soft sensor model, 
neural networks with two different architectures were used. A deep neural network with an MLP architecture 
and a deep LSTM neural network were employed.

MLP neural network
An MLP neural network is a feedforward neural network. A perceptron is a single neuron, which is a 
computational unit that processes a set of weighted inputs using an activation function to produce an output. 
In an MLP neural network, such neurons are stacked to form a hidden layer, and MLP neural networks are 
composed of one or more such hidden layers. Deep networks can be constructed by stacking multiple hidden 
layers. Figure 5 illustrates the network architecture of an MLP with an input layer, one hidden layer, and an 
output layer.

The number of neurons in the input and output layers is determined by the number of input and target 
variables in the problem under consideration. The number of neurons in a hidden layer and the number of 
hidden layers in the final MLP neural network model are usually determined by a trial-and-error approach, such 
that the maximum predictive performance of the model is achieved. The input-output relationship of an MLP 
neural network with a single hidden layer can be described by Eq. (10).

Fig. 4.  Grey-box model configurations: (a) serial (b) parallel and (c) combined.
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ŷ = g

(∑
p
j=1w

(2)
j f

((∑
q
i=1w

(1)
ij xi

)
+ b

(1)
j

)
+ b(2)

)
� (10)

The input vector x contains q input variables, and this input vector is combined with the weights vector 
w(1). The weight w

(1)
ij  corresponds to the connection between the ith input and the jth neuron of the hidden 

layer. The hidden layer consists of p hidden units. The weighted sum calculated at each neuron along with the 
corresponding bias value b

(1)
j  is then subjected to an activation function f . The resulting vector and the bias 

value b(2) are then combined with the weights vector w(2) corresponding to the output layer and subjected to an 
activation function g to obtain the predicted output ŷ. The activation functions could be any arbitrary function 
including the sigmoid, hyperbolic tangent (tanh), or rectified linear unit (ReLU) functions. Equation (10) can be 
extended to accommodate more hidden layers to represent a deep network.

Neural network training consists of two main phases: forward propagation and backpropagation. During 
forward propagation, the input features are combined with the weights and biases, and the network makes 
a prediction based on learned features using the activation functions. After each iteration of the forward 
propagation, the prediction error is calculated by taking the square of the difference between the actual and 
predicted values. The prediction errors are averaged over the entire training data using a cost function. The mean 
square error (MSE) shown in Eq. (11) is generally chosen as the cost function, where mt denotes the number 
of training samples.

	
MSE = 1

mt

∑
mt
i=1(yi − ŷi)2� (11)

Forward propagation is followed by backpropagation, during which the gradient of the loss function with 
respect to the weights is calculated. Backpropagation is carried out using an optimisation algorithm such as the 
gradient descent to find the weights and biases that minimise the cost function in Eq. (11). The full mathematical 
derivation is not presented here but can be found in the literature53.

LSTM neural network
The LSTM neural network is a variant of the recurrent neural network (RNN), which was designed to overcome 
the issues of gradient vanishing and gradient exploding present in RNNs. LSTM networks consist of three gates; 
namely, the input, forget, and output gates, which enable the handling of long-term dependencies in the data. 
The structure of an LSTM cell is illustrated in Fig. 6. The internal mechanisms of an LSTM cell can be presented 
as shown in Eqs. (12), (13), (14), (15), (16), (17):

	 ft = σ (Wf . [ht−1, xt] + bf )� (12)

	 it = σ (Wi. [ht−1, xt] + bi)� (13)

	 c′
t = tanh(Wc. [ht−1, xt] + bc)� (14)

	 ct = ft ∗ ct−1 + it ∗ c′
t � (15)

	 ot = σ (Wo [ht−1, xt] + bo)� (16)

	 ht = ot ∗ tanh (ct)� (17)

Fig. 5.  MLP neural network architecture.
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Here, xt is the input matrix. ft, it, and ot represent the forget, input, and output gates, respectively. ct indicates 
the current cell state and c′

t  indicates the vector of new data to be added to the cell state. ht is the hidden state 
of the LSTM cell. Wf , Wi, Wc, and Wo denote the corresponding weight matrices, while bf , bi, bc, and bo 
represent the corresponding bias terms. σ  represents the activation function.

Soft Sensor Development
In this study, two grey-box soft sensor models were constructed. The only difference between the two models is 
in the type of neural network used as the black-box component. Model A incorporated an LSTM neural network 
as the black-box component, while Model B used an MLP neural network. Alongside these grey-box models, 
two fully data-driven models were also constructed: Model C, based on an LSTM neural network, and Model 
D, based on an MLP neural network. The fully data-driven models were designed to serve as benchmarks for 
evaluating the grey-box models. The purpose of this comparison was to determine whether integrating physics-
based knowledge into soft sensor design improves the predictive performance of the soft sensor. Table 1 provides 
a description of the different models developed in this study.

Grey-box soft sensor models
This section discusses the development of the grey-box soft sensor Models A and B. First, the construction of the 
SGB component is discussed followed by the integration of the parallel black-box component.

Polymer melts are pseudo-plastic fluids, where the melt viscosity decreases with increasing shear rates54. 
Generally, the shear rates generated during polymer extrusion processes are within the range of 1−104 s−1. Melt 
viscosities within this region can be reasonably approximated using the power law of Ostwald and de Waele55,56. 
T﻿his power law equation is shown in Eq. (18):

	 η = mγ̇ n−1� (18)

Here, η  is the melt viscosity at a shear rate of γ̇ . m is the melt consistency index, while n denotes the power 
law index. The power law index varies between 0 and 1 for pseudo-plastic fluids such as polymer melts. The 
melt consistency index is a temperature-dependent parameter, and the melt consistency index at temperature T  
denoted by m (T ) can be calculated from Eq. (19)57:

	 m (T ) = mreα T (Tr−T )� (19)

Model name Model type Description

Model A Grey box CGB with an LSTM neural network as the black-box component

Model B Grey box CGB with an MLP neural network as the black-box component

Model C Data driven LSTM neural network

Model D Data driven MLP neural network

Table 1.  Grey-box and data-driven soft sensor models developed in this study.

 

Fig. 6.  The structure of an LSTM cell.
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where mr  is the reference melt consistency index at the reference temperature Tr , while α T  represents the 
temperature coefficient.

In this study, the power law equation in Eq. (19) was used for constructing the physics-based model. For 
single-screw polymer extruders, the shear rate in the screw channel of the melt conveying zone (i.e., the final 
zone of the processing screw) can be approximated from Eq. (20) using the flat plate approximation model54.

	
γ̇ ≈ π DN

H
� (20)

where D, N , and H  represent the screw diameter, screw rotational speed, and the depth of the screw channel, 
respectively. By substituting Eqs. (19), (20) in Eq. (18), the following expression can be obtained for calculating 
the melt viscosity.

	
η = mreα T (Tr−T )

(
π DN

H

)n−1
� (21)

The parameters D and H  are geometrical parameters of the extruder, while N  is a processing parameter, all of 
which are readily available to the machine operators. However, material-related properties such as mr , Tr , α T

, and n are not readily available to the machine operators and these values may not be available in the material 
datasheets as well. As a result, these parameters would have to be determined via offline experimentation. Hence, 
it would not be practical to use the physics-based model in Eq.  (21) in its current form, to predict the melt 
viscosity in real time during polymer extrusion processes in an industrial setting. Therefore, it would be more 
practical to optimise these unknown parameters using actual experimental data. To make this possible, the 
model presented in Eq. (21) can be re-arranged as follows:

	 η = mreα T (Tr−T )(γ̇ )n−1� (22)

By taking the natural logarithm on both sides of Eq. (22), the model can be transformed into Eq. (23):

	 ln (η ) = ln (mr) + α T (Tr − T ) + (n − 1)ln (γ̇ )� (23)

	 ln (η ) = (n − 1) ln (γ̇ ) − α T T + ln (mr) + α T Tr � (24)

Equation (24) has the form, y = θ 1u1 + θ 2u2+θ 3, where

	 y = ln (η )� (25)

	 u1 = ln (γ̇ )� (26)

	 u2 = T � (27)

	 θ 1 = n − 1� (28)

	 θ 2 = −α T � (29)

	 θ 3 = ln (mr) + α T Tr � (30)

Here, u1 and u2 constitute the input vector xW B , while θ 1, θ 2, and θ 3 constitute the parameter vector θ  of 
the physics-based model as indicated by Eq. (2). u1 was computed from Eqs. (20) and (26) for all data samples 
collected during the experimental trial. u2 denotes the melt temperature ( T ), and the bulk melt temperature 
measured using a wall-mounted thermocouple at the adapter of the extruder during the experimental trial was 
used (see Fig. 3c). The geometrical parameters of the extruder required to calculate the shear rate as shown in 
Eq. (21) (i.e., screw diameter (D) and screw channel depth (H)) were obtained from the single-screw extruder 
used for the experimental trial. The values of D and H were found to be 25 mm and 1.43 mm respectively. The 
unknown parameter vector θ  was optimised using the training set. Both linear regression and particle swarm 
optimisation (PSO) were used to optimise θ  and the performance of the two algorithms are compared in the 
‘Results and Discussion’ section. Then, the optimised parameter vector θ̂  was combined with the physics-based 
model to obtain the optimised model in Eq. (31):

	 ln (η ) = θ̂ 1ln (γ̇ ) − θ̂ 2T + θ̂ 3� (31)

Then, the final SGB component in Eq. (32) was obtained by removing the logarithmic transformation.

	 η = e

(
θ̂ 1ln(γ̇ )−θ̂ 2T +θ̂ 3

)
� (32)

Next, the fine-tuned SGB component (in Eq. (32)) was used to make melt viscosity predictions for the training 
set. This was followed by the calculation of the prediction errors of the SGB component over the entire training 
set using Eq.  (5). These calculated prediction errors were subsequently used as the target values to train the 
parallel black-box component.

As shown in Table 1, LSTM and MLP neural networks were used as the parallel black-box component for 
Models A and B, respectively. For both LSTM and MLP black-box components, eight features (i.e., seven barrel 
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set temperatures and screw speed) were used as inputs to predict the output (i.e., prediction error of the SGB 
model). These input features were chosen as they are the primary process control variables in polymer extruders, 
and these parameters are known to have a significant influence on the melt viscosity2,6,33–36. Equations (33), (34) 
describe the inputs and outputs used for the MLP black-box component of Model B.

	 yt = gMLP (xt)� (33)

	 xt = {T1 (t) , T2 (t) , T3 (t) , T4 (t) , T5 (t) , T6 (t) , T7 (t) , ω (t )}� (34)

where xt is the value of the input feature vector at time t, while yt is the value of the target variable at time t. 
Ti (t) |i=1,2,... .,7 denote the barrel set temperatures at time t, and ω (t) represents the screw speed at time t. 
gMLP  is the nonlinear function learned by the MLP neural network.

To construct the black-box component of Model A, considering the dynamic nature of LSTM neural networks, 
past values of the input features were also used in addition to the present input values as shown in Eq. (35):

	 yt = gLST M (xt, xt−1, . . . , xt−d)� (35)

where d is the number of past time steps or the width of the sliding window of the LSTM network, and gLST M  
is the nonlinear function learned by the LSTM neural network.

Before training the LSTM black-box component of Model A, the entire dataset was split into train, validation, 
and test sets. Random splitting was used to ensure the same distribution of data across the three sets. However, 
when dealing with LSTM networks, it is necessary to maintain the temporal order of the dataset and random 
splitting disrupts the temporal order which may result in data leakage. Therefore, to prevent this, the entire 
dataset was serialised using a sliding window with a suitable width before feeding the network. Serialising the 
dataset before splitting it randomly into train, validation, and test sets could ensure that the temporal order of 
the data is maintained58. To prevent data leakage, non-overlapping sample sequences were created during the 
serialisation process. Using non-overlapping samples ensures that no sequence samples in the serialised dataset 
have exact duplicates in the train, validation, and test sets. This ensures that the model does not peak into 
future time steps in addition to past time steps and hence prevents data leakage which could cause the model to 
produce overly optimistic results.

Consider the original dataset {X, Y } = {(xi, yi) |i=1, 2,... ,k}, where xi and yi denote the values of the 
input features and the target variable corresponding to the ith data sample, and k is the total number of data 
samples. A sliding window with a width of d can then be used to scan and serialise the dataset. This results 
in a serialised dataset {X∗, Y ∗} =

{(
x∗

j , y∗
j

)
|j=1, 2,... ,k−d+1

}
, where x∗

j = {xj−d+1, . . . , xj−1, xj} and 
y∗

j = {yj}. An example of this serialisation process for d = 2 is illustrated in Fig. 7.
The dataset used to train and test the soft sensor models consisted of a total of 99,442 data points. Before 

splitting, it was serialised using a suitable window size as described above. The size of the sliding window was 
fine-tuned along with other hyperparameters during training, and the optimum size was found to be 2. Hence, 
the serialisation resulted in a total of 49,721 sample sequences. They were split into train, validation, and test 
sets at a ratio of 60:20:20. This resulted in 29,832, 9,944, and 9,945 sample sequences in the train, validation, and 
test sets, respectively. The same train, validation, and test splits were used to train the black-box components of 
both Models A and B.

The black-box components of Models A and B were trained on the training set, while the hyperparameters 
were optimised using the grid searching technique based on the models’ performance on the validation set. 
Although there are several hyperparameter tuning techniques such as gradient-based optimisation, Bayesian 

Fig. 7.  Serialisation of the dataset.
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optimisation, and Metaheuristic algorithms, grid searching (which is a model-free algorithm) was used due to 
its simplicity and exhaustive search provided59. The test set was used to assess the model’s performance on new 
unseen data. Under hyperparameter tuning, the number of hidden layers, number of neurons per hidden layer, 
batch size, and the number of training iterations were fine tuned as both MLP and LSTM networks are highly 
sensitive to these hyperparameters. For the LSTM network, the width of the time window was also treated as an 
additional hyperparameter.

Figure  8 illustrates the final CGB model. The SGB component takes in shear rate and melt temperature 
as inputs and estimates the melt viscosity using the parameters optimised with an optimisation algorithm. 
Simultaneously, the black-box component takes the barrel set temperatures and screw speed as model inputs 
and estimates the prediction error of the SGB component. Here, different inputs were used for the black-box 
component compared to the SGB component. This was done to incorporate the control variables (i.e., barrel set 
temperatures and screw speed) of the extruder as model inputs. However, it should be noted that the shear rate 
and melt temperature which were used as inputs to the SGB component are also functions of the screw speed 
and barrel set temperatures.

Finally, the black-box model prediction is added to the SGB prediction to obtain the final melt viscosity 
prediction of the CGB model. The generalisation performance of the CGB model was further evaluated using the 
unseen test set. The performance of the CGB model is discussed in detail in the ‘Results and Discussion’ section.

Data-driven soft sensor models
The same train, validation, and test split used for the grey-box models were used to design the fully data-driven 
Models C and D shown in Table 1. The same input features (i.e., seven barrel set temperatures and screw speed) 
used for the parallel black-box component of the grey-box models were used for Models C and D as well. The 
melt viscosity was used as the output variable, as these models were designed to predict the melt viscosity 
directly. Similar to the black-box components of the grey-box models, the hyperparameters of the fully data-
driven models were also fine-tuned using the grid searching technique.

Performance evaluation metrics
The soft sensor models proposed in this study were trained on a computer with an Apple M1 chip and 8GB 
RAM with the TensorFlow 2.15.0 backend on Python 3.11.8. The accuracy of the trained soft sensor models 
was evaluated using the root mean square error (RMSE), normalised RMSE (NRMSE), and root mean square 
percentage error (RMSPE) error metrics which are defined in Eqs. (36), (37), (38), respectively. Figure 3d shows 
that the melt viscosity values of the collected dataset are in the range 500–3000. Therefore, it may be difficult 
to get an insight into the accuracy of the models merely based on the RMSE metric due to the wide range of 
melt viscosity values observed in the dataset. Hence, the NRMSE was used to better interpret the RMSE values 
by eliminating the effect of the large value range of the melt viscosity values. The RMSPE was used to enable 
comparison of the results of this study with those of the previous study by Deng et al.37.

	
RMSE =

√∑
Ns
i=1

(yi − ŷi)2

Ns

� (36)

	
NRMSE = RMSE

ymax − ymin
� (37)

	
RMSP E =

√
1

Ns

∑
Ns
i=1

(
yi − ŷi

yi

)2

× 100%� (38)

yi and ŷi denote the ith measured and predicted outputs respectively, while Ns denotes the number of data 
points. ymax and ymin denote the maximum and minimum values in the measured output respectively.

In addition to the above error metrics, the Kling-Gupta Efficiency (KGE) of the predictions made by 
the soft sensor models was also calculated in order to further evaluate the performance of the models. The 
KGE introduced by Gupta et al.60 provides a more balanced evaluation of the performance of the models by 

Fig. 8.  Proposed CGB model. BB and WB denote black-box and white-box (i.e., physics-based) model 
components respectively.
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decomposing the efficiency into three components: correlation, bias, and variability. The KGE is calculated as 
shown in Eq. (39):

	 KGE = 1 −
√

(r − 1)2 + (α − 1)2 + (β − 1)2� (39)

where r denotes the correlation coefficient, α  is the bias ratio (i.e., ratio of means between the predicted and 
measured values), and β  represents the variability ratio (i.e., ratio of standard deviations between the predicted 
and measured values).

Results and Discussion
This section provides an in-depth analysis of the performance of the grey-box soft sensor models proposed in 
this study. As discussed in the ‘Soft Sensor Development’ section, both linear regression and PSO algorithms 
were used to optimise the parameter vector θ  of the physics-based model in the SGB component of the grey-
box soft sensor models. The performance of the SGB component on the train, validation, and test sets when 
optimised with each algorithm are presented in Table 2. For the PSO algorithm, the number of particles in the 
swarm and the maximum number of iterations were set to 100 and 200, respectively.

It is clear from the results presented in Table  2 that there is no significant influence on the predictive 
performance of the SGB component of the grey-box model by the optimisation algorithm used. Hence, the 
linear regression algorithm was chosen considering its simplicity. The similar RMSE values exhibited on the 
train, validation, and test sets suggest that the model can generalise well on unseen data without overfitting. The 
fine-tuned parameters of the SGB component were found to be −0.4394, −0.0065, and 11.5289 for θ̂ 1, θ̂ 2, and 
θ̂ 3, respectively, using linear regression. Figure 9a illustrates a comparison of the SGB model predictions with 
the experimentally measured melt viscosity values on the unseen test set, while Fig. 9b shows the residual plot 
that indicates the error between the predicted and measured melt viscosity values across the test set.

Figure 9a shows that the predictions of the SGB component follow the dynamics in the data well but exhibit 
significant deviations from the experimentally measured melt viscosity values. This is further evident from the 
prediction errors with magnitudes in excess of 500 indicated by the residual plot in Fig. 9b. Since the melt viscosity 
is a function of shear rate, which in turn is a function of screw speed, melt viscosity values predicted by the SGB 
component can follow the changes in screw speed quite well. However, the significant deviations between the 
SGB predictions and experimentally measured values can be attributed to several sources of error. As discussed 
in the ‘Soft Sensor Development’ section, the unknown parameters in the SGB component are functions of 
material-related parameters (i.e., melt consistency index, temperature coefficient, and power law index). 
These parameters were fine-tuned using linear regression such that the SGB component fits the experimental 
data. Hence, these fine-tuned parameters could slightly vary from the actual values of the polymeric material. 
Moreover, the power law index is a temperature-dependent parameter, but it was defined as a constant parameter 
in the SGB component. Furthermore, the melt viscosity may vary as the melt flows from the screw channel to the 
die and the melt viscosity measured at the die could be different from the melt viscosity at the melt conveying 
zone of the extruder that is predicted by the SGB component. All these causes may adversely affect the predictive 
performance of the SGB component. Hence, the parallel black-box component was used to predict the errors of 
the SGB component to obtain melt viscosity predictions with better accuracy.

After obtaining the fine-tuned SGB component, the parallel black-box component was then trained to 
predict the residual between the SGB predictions and the experimentally measured melt viscosity values. The 
black-box component was trained on the training set while its hyperparameters were fine-tuned based on its 
performance on the validation set. The predictions from the black-box component were then added to the 
predictions from the SGB component, to get the final melt viscosity predictions of the CGB model. Finally, the 
fine-tuned CGB model was evaluated on the test set. Model A reported RMSE values of 4.4072, 4.9061, and 
5.1743 on the training, validation, and test sets, respectively. The respective RMSE values for Model B was found 
to be 4.3671, 5.0219, and 5.0394.

These results show that both Models A and B have shown slightly higher RMSE values on the validation 
and test sets compared to the training set. However, the validation and test RMSE values are quite similar 
indicating good generalisation performance on unseen data. Furthermore, the final CGB models show a 
significant improvement in performance compared to the SGB component, and this indicates that the black-
box components of both Models A and B have substantially contributed to compensating for the prediction 
errors of the SGB component. Although both Models A and B exhibit good predictive performance, Model B 
has slightly better performance compared to Model A with a reduction of 2.6% in the RMSE value on unseen 
test data. These findings are interesting, as one would expect Model A to outperform Model B due to the use of 

Optimisation algorithm

Model performance
Optimised model 
parameters

Train RMSE Validation RMSE Test RMSE θ̂ 1 θ̂ 2 θ̂ 3

Linear regression 167.2750 172.2734 169.6063 -0.4394 -0.0065 11.5289

PSO 167.2703 172.2678 169.6020 -0.4351 -0.0065 11.5077

Table 2.  Performance comparison of the SGB component optimised with linear regression and PSO 
algorithms.
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an LSTM neural network as the black-box component in Model A, which can extract temporal features in the 
data, unlike the MLP neural network that was used as the black-box component in model B. This behaviour may 
be attributed to the following: According to Fig. 3, the dataset used in this study was collected by varying the 
extruder process parameters using a pseudorandom sequence signal, which resulted in frequent step changes 
in the extruder barrel set temperatures and screw speed. Figure 3(b, d) show that the resulting melt viscosity is 
highly sensitive to the screw speed step changes and has immediately responded to these changes without any 
noticeable delays. Moreover, as can be observed from Fig. 9a, the SGB component seems to follow the dynamics 
in the data despite its static model structure, and this might have left limited room for the LSTM (which models 
the SGB residuals) to contribute additional value. Hence, there may not have been any temporal features that the 
LSTM neural network could learn in addition to what the MLP neural network, which does not have a memory 
component, could learn. Additionally, the width of the sliding window used to serialise the dataset was also fine-
tuned as a hyperparameter, and the best value was found to be 2. Any further increments resulted in a reduction 
in predictive performance of Model A. Therefore, in this case, it is clear that the CGB models exhibit comparable 
predictive performance regardless of whether an MLP or LSTM neural network is employed as the parallel 
black-box component, with the CGB model with an MLP neural network having a slight edge in performance.

Next, the performance of the CGB models were compared with the fully data-driven models. The 
hyperparameters of all the fine-tuned models are provided in Table 3. The performance of the CGB Models A 
and B as well as the data-driven Models C and D on the test set are summarised in Table 4. In addition to these 

Fig. 9.  Performance of the SGB component of the CGB model: (a) comparison of SGB model predictions with 
experimentally measured melt viscosity values in the test set (b) residual plot for the SGB component.

 

Model Model A Model B Model C Model D

No. of hidden layers 5 7 4 5

No. of neurons per hidden layer 200 250 180 200

Batch size 64 256 64 128

Training iterations 5623 5597 4217 5438

Width of the sliding window 2 N/A 2 N/A

Optimiser Adam Adam Adam Adam

Learning rate 0.001 0.001 0.001 0.001

Activation function of hidden layers tanh ReLU tanh ReLU

Table 3.  Fine-tuned hyperparameters of all models developed in this study.
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models, the performance of the RBF neural network-based soft sensor model proposed in the work by Deng et 
al.37 (i.e., Model E) is also provided in Table 4 for comparison.

According to the RMSE, NRMSE, and RMSPE error metrics presented in Table 4, the predictive performance 
of the models increases in the order: B, A, D, and C. Both grey-box models exhibit better performance than the 
data-driven models. The CGB Model B demonstrated superior predictive performance compared to the data-
driven Models D and C, achieving reductions in RMSE values by 8.9% and 16.2%, respectively. Additionally, 
Model B matches the highest KGE value (0.9994) among the models developed in this study, indicating robust 
predictive capabilities. The KGE metric represents a combination of correlation, bias, and variability of the 
model. KGE values close to 1 indicate excellent model performance, and hence, the KGE metric also confirms 
the excellent performance of model B. Moreover, the standard deviation of 364.8 obtained from Model B 
predictions is the closest among all models to the standard deviation of 364.9 observed in the measured melt 
viscosity values. This suggests that Model B most effectively captures the variability inherent in the observed 
data, outperforming the other models. All these performance metrics confirm that the CGB Model B has the 
best predictive performance.

The superior performance of the grey-box models relative to the fully data-driven models can likely be 
attributed to the incorporation of the physics-based framework within the CGB models. As shown in Fig. 9a, 
the physics-based component employed in the CGB model enables the soft sensor to capture the dynamics 
accurately (despite the large residuals). This likely allows the black-box component of the CGB model to focus on 

Model Model type RMSE NRMSE RMSPE KGE Correlation coefficient Standard deviation

A CGB with an LSTM neural network as the black-box component Grey box 5.1743 0.0023 0.46% 0.9992 0.9999 364.8

B CGB with an MLP neural network as the black-box component Grey box 5.0394 0.0022 0.45% 0.9994 0.9999 364.8

C LSTM neural network Data driven 6.0134 0.0027 0.52% 0.9994 0.9999 365.2

D MLP neural network Data driven 5.5287 0.0025 0.49% 0.9988 0.9999 364.6

E RBF neural network optimised with DE (Deng et al.37) Data driven – – 9.35% – – –

Table 4.  Comparison of performance of the soft sensor models on unseen test data.

 

Fig. 10.  Performance of the CGB model with an LSTM neural network as the black-box component (i.e., 
Model A): (a) comparison of CGB model predictions with experimentally measured melt viscosity values in 
the test set (b) residual plot for the CGB model.
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fine-tuning and capturing nonlinearities, which is a simpler learning task than learning the entire input-output 
relationship from scratch.

The soft sensor models developed in this study can be compared with the previous work by Deng et al.37 using 
the RMSPE metric as both studies utilised the same experimental dataset. It is clear that all models developed 
in this study show a significant improvement in performance compared to the RBF neural network-based soft 
sensor by Deng et al.37 (i.e., model E). This superior performance of the CGB and data-driven models can be 
attributed to the deep neural network architectures that can capture complex nonlinear patterns in the data, 
unlike the RBF neural network used in the previous work37.

As the CGB models were found to have superior performance compared to fully data-driven models, they 
were further analysed by plotting the CGB model predictions against the experimentally measured melt viscosity 
values along with model residuals for each data sample in the test set. These plots corresponding to Models A 
and B are visually presented in Figs. 10 and 11, respectively.

It is clear from both Figs. 10 and 11 that both grey-box soft sensor Models A and B can accurately track 
the experimentally measured melt viscosity values across the entire processing range of the extruder. When 
comparing Figs. 10 and 11 with Fig. 9, it is obvious that the black-box component of the CGB model was able to 
bring down the significant prediction errors in the SGB component resulting in excellent prediction accuracy. 
The residual plots presented in Figs. 10b and 11b indicate that a majority of the prediction errors made by both the 
grey-box and data-driven soft sensor models are well within a magnitude of 50. There are a few prediction errors 
with magnitudes greater than 50, and these large prediction errors are mostly present where screw speed step 
changes were made during data collection. Among the 9945 data samples in the test set, Model B demonstrated 
prediction errors exceeding a magnitude of 50 in only three instances, with the largest error magnitude being 
65.36. In comparison, Model A exhibited prediction errors exceeding a magnitude of 50 in seven instances, with 
the largest error magnitude reaching 74.29.

These results confirm that the CGB model with an MLP neural network as the black-box component shows 
excellent predictive performance. The enhanced predictive performance and interpretability of the proposed 
CGB model should enable real-time monitoring of melt viscosity, which in turn will enable process optimisation 
and control. Optimisation of extrusion processes will make it possible to improve product quality while reducing 
power consumption.

Conclusions
In this study, a soft sensor with a CGB model architecture was proposed to inferentially estimate the melt 
viscosity of polymer melts in single-screw polymer extrusion processes. The proposed soft sensor incorporates 

Fig. 11.  Performance of the CGB model with an MLP neural network as the black-box component (i.e., Model 
B): (a) comparison of CGB model predictions with experimentally measured melt viscosity values in the test 
set (b) residual plot for the CGB model.
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an SGB component combined with a parallel black-box component. The SGB component comprises a physics-
based mathematical model fine-tuned with linear regression and predicts the melt viscosity using shear rate 
and melt temperature as inputs. A deep neural network was used as the parallel black-box component, which 
compensates for the prediction errors of the SGB component, using extruder process parameters (i.e., barrel set 
temperatures and screw speed) as inputs.

As the black-box component of the grey-box model, two deep neural network architectures were compared: 
an MLP neural network and an LSTM neural network. The CGB model with an MLP neural network exhibited 
the best predictive performance. It was also compared against two fully data-driven models with MLP and 
LSTM neural network architectures. The CGB model with an MLP neural network recorded the lowest RMSE, 
NRMSE, and RMSPE metrics of 5.0394, 0.0022, and 0.45%, respectively, outperforming both data-driven 
models. Furthermore, this CGB model exhibited reductions of 8.9% and 16.2% in terms of the RMSE values 
compared to the data-driven models based on MLP and LSTM neural networks, respectively. This confirms that 
the integration of the physics-based model has enabled the soft sensor to capture the dynamics in the process 
accurately, simplifying the learning task of the parallel-black box component. The performance of the CGB 
model was further compared against a soft sensor based on an RBF neural network reported in a previous study. 
The CGB model showed an increase of approximately 95% in terms of predictive performance compared to the 
soft sensor reported in the previous work.

The high accuracy reported by the grey-box soft sensor model and its ability to inferentially estimate the melt 
viscosity in real time without disrupting the melt flow make it an attractive solution for the polymer processing 
industry. Furthermore, the proposed soft sensor model can be used to optimise and control polymer extrusion 
processes. The main limitations of this work are that the soft sensor cannot detect viscosity changes due to 
changes in material properties and is not adaptive to changes in the polymeric material being processed. Future 
research should focus on addressing these limitations.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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