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The existing UAV inspection images are faced with many challenges for insulator defect recognition. 
A new multi-resolution Context Cluster CenterNet++ model is proposed. First, this paper proposes 
the Context Cluster method to solve the problem of low recognition accuracy caused by non-uniform 
distribution of targets. The cluster region is used to identify and predict the location of the target, and 
the improved loss function is used to modify the cluster center. Secondly, this paper uses deformable 
convolution operator (DCNv2) combined with path aggregation network (PAN) to carry out deformable 
convolution operation on the image, and accurately predicts the regression box and key point triplet 
(KP), so as to improve the accurate positioning of the target position of any shape and any scale. 
The sensitivity of the model to target scale change and deformation is reduced, and the recognition 
accuracy of the model is improved. Then, Bhattacharyya distance is used to calculate the triplet 
prediction loss of key points and the target center point offset loss, so as to significantly improve the 
positioning accuracy of the same target in different frames. Finally, experiments are carried out on the 
MS-COCO dataset and the National Grid standardized UAV inspection insulator image dataset. Our 
code is at https://github.com/mengbonannan88/CC-CenterNet.
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As a special and very critical insulation control, insulator plays an important role in the transmission and 
distribution network. The accurate identification and location of insulator defects is of great significance1,58 in 
the field of electric power inspection. With the development of unmanned aerial vehicle (UAV) technology, UAV 
has been widely2 used in transmission line inspection.

In recent years, more and more researchers at home and abroad have devoted themselves to applying deep 
learning models to UAV power inspection based on computer vision, and have achieved3 more results. At 
present, insulator defect recognition algorithms based on deep learning models in UAV inspection images are 
mainly divided into two categories: Anchor recognition method and anchor-free recognition method4.

Region-based Convolutional Neural Network (R-CNN) series algorithms are classical algorithms in object 
recognition algorithms with detection frames5. Since then, many extended and improved methods have been 
proposed, such as Fast R-CNN6, Faster R-CNN7, Mask R-CNN8, DINO11, SPD-Conv12, MR-CNN13, Cascade 
R-CNN14, Fitness-NMS15, R-FCN16, TridentNet17, etc. Han et al.4 used the residual network ResNet-50 as the 
backbone network to establish a multi-scale insulator identification model for insulator location, and then 
used the insulator fault location method based on ROI for insulator fault identification. Chen et al.2 improved 
the insulator identification method based on the SSD algorithm. After extracting the rectangular area where 
the insulator is located, they proposed a method based on K-means and double feature constraints to further 
improve the accuracy of insulator self-explosion location identification4. The above methods pay more attention 
to the accuracy of identification. Another kind of methods that pay more attention to recognition speed, such 
as SSD9, RON18, YOLO series, RetinaNet21, DETR10, FCOS22, Objects as Points23, etc., remove the proposal 
verification phase. Liu Yue et al.19,20 used YOLOv3 and the improved watershed algorithm to identify and locate 
insulator burst. Firstly, this paper established a YOLOv3 insulator recognition model to identify the insulator 
area and accurately locate the target area20. Then, rotation cropping and other operations were performed on 
the identified insulator main image to narrow the processing scope. Finally, the burst area of the insulator is 
accurately identified by combining the traditional image processing algorithm.

The above target recognition algorithms based on detection boxes need to enumerate all possible target 
locations and scales, and classify each location to identify the target, resulting in a waste of computing resources. 
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In addition, these methods are difficult to perceive objects with special shapes, resulting in low recognition rates 
for objects with arbitrary shapes, scales, and severe shape changes.

Typical box-free recognition methods include CornerNet21, CenterNet24 and CornerNet-Lite25, which 
identify the object as diagonal corners. ExtremeNet26 detects the four extreme points (top, left, bottom and 
right) of the object. Zhou et al.27 proposed an object detector without sliding window, which models an object as 
a key-point (the center point of the object), and regress the size, position and attitude of the object according to 
the key-point. As the center-based method, it is an end-to-end differentiable recognition method. It is simpler, 
faster and more accurate than the methods based on detection boxes mentioned above.

Although the method without detection box is not sensitive to the scale and shape of the target, it relies too 
much on the high-resolution heatmap, which leads to slow inference speed and cannot be used in real time.

Most of the insulator defect images collected by unmanned aerial vehicle (UAV) are small targets with the size 
less than 30 × 30 pixels, and the problem of small target recognition has always been a tricky and urgent research 
problem. The following factors pose major challenges to the insulator defect recognition of UAV inspection: (1) 
During drone inspection, the drone typically approaches the target from a distance, which is reflected in images 
as a process where the target size decreases from large to small. Smaller targets (with width and height less than 30 
pixels)28 are non-uniformly distributed across the image. Anchor-based detectors perform block-wise prediction 
across the entire image, but small targets are often absent in most blocks, resulting in computational resource 
waste and reduced inference efficiency; (2) Moreover, during drone inspections, unavoidable movements such 
as rotation and vibration lead to phenomena like scale variation and rotational deformation in the captured 
images. Existing detectors, relying on traditional convolution operations for feature processing during bounding 
box regression, struggle to effectively recognize targets with irregular edges (e.g., insulators), thereby reducing 
detection accuracy for deformed images; (3) In drone-captured images, target positions often exhibit nonlinear 
and random variations. However, current detectors, which predict targets based on linear variation assumptions, 
are prone to inaccuracies in target localization.

To address the issue of the uneven distribution of small insulator targets in drone-captured images, this paper 
selects the advanced anchor-free detector CenterNet++29 as the baseline model and optimizes it. Considering 
that the process of drone image acquisition often involves scale variations and vibrations, which impair 
CenterNet++'s ability to effectively extract features from distorted insulator targets, we propose a deformable 
convolution-based detection module. This module introduces additional offsets during convolution operations, 
allowing the convolutional kernel to better adapt to distorted insulator targets, thereby improving the model’s 
stability on drone platforms. Furthermore, since insulator targets in drone-captured images are not linearly 
distributed, the backbone feature extractor of CenterNet++, which utilizes a linear approach for stepwise feature 
extraction, increases computational overhead and reduces the precision of target localization. To address this, we 
design a context-clustering-based feature extraction backbone. By merging and filtering similar target regions, 
sparsely distributed insulator targets are uniformly represented in lower-resolution feature maps. This not only 
alleviates the computational burden but also enhances the network’s focus on nonlinearly distributed targets. 
Further studies reveal that insulator defects of different types often exhibit similar sizes in images. However, 
the L1-norm loss used by CenterNet++ to constrain the distance between predictions and ground truths fails 
to effectively distinguish data with similar means, thereby limiting detection performance. To overcome this, 
we adopt the variance-sensitive Bhattacharyya distance to improve the original L1-loss, further enhancing the 
accuracy of the baseline model in insulator fault detection tasks.

In summary, the main contributions of this paper are as follows:

	(1)	� In the backbone module, we propose a method called Context Cluster (CC) to solve the non-uniform 
distribution and long tail problem. The clustering area is used to identify and predict the location of the 
target, and the improved loss function is used to modify the feedback of the cluster center, which not only 
improves the recognition accuracy, but also further improves the computational efficiency.

	(2)	� In the detection module, the deformable convolution operator (DCNv2) combined with Path Aggregation 
Network (PAN) is used to perform deformable convolution operation on the image, and the regression box 
and key point triple (KP) are accurately predicted. In order to improve the accurate positioning of the target 
position of any shape and any scale, the sensitivity of the model to target scale changes and deformation is 
reduced, and the recognition accuracy of the model is improved.

	(3)	� Bhattacharyya distance is used to calculate the key-point triplet prediction loss and the object center offset 
loss. The advantage of using the nonlinear distance calculation method instead of the linear distance cal-
culation method is that it is not limited by the change of object scale within frames and object position be-
tween frames, and can significantly improve the localization accuracy of the same object between different 
frames.

Related work
Types of insulator defects
The common defects of insulators have the following appearances, as shown in Fig. 1: (a) self-explosion; (b) 
damage and crack; (c) corrosion of steel cap; (d) serious fouling; (e) rupture of insulator string; (f) flashover.

The network structure of CenterNet++ identification model
CenterNet++ is an anchor-free single-stage recognition model with a compact parameter, a straightforward 
architecture and outstanding performance.
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Key-point extraction using multi-resolution CenterNet++ framework
Firstly, the image is input into the ResNet Network as the Backbone Network to extract image features. Then, 
C3, C4, C5 feature maps are selected from the backbone network as the input30 of the Feature Pyramid Networks 
(FPN). FPN outputs the feature maps P3–P7 as the prediction layer of the backbone network.

In each layer of FPN, the results of feature regression map and feature heat map are fused to predict the 
location of key points. In the prediction based on fusion regression, in order to decouple the top-left and bottom-
right prediction results, the Ground Truth (GT) image is divided into four sub-truth boxes (top left, top right, 
bottom left, bottom right), and the top left sub-truth box (TL GT) and right sub-truth box (BR GT) are selected 
to supervise the regression results. Taking the regression results of the upper left sub-truth box as an example, 
some feature points are selected in the TL GT, and three vectors are predicted for each feature point, which are 
the top left corner key point, the bottom right corner key point and the center key point. Some feature points are 
also selected in BR GT, and three vectors are predicted for each feature point, which are the top left corner key 
point, the bottom right corner key point and the center key point. Then, the Intersection of Union (IoU) loss of 
TL GT and BR GT is obtained. Finally, the loss results of TL GT and BR GT are fused to obtain the prediction 
of the target position. In the heatmap-based prediction, three light binary heatmaps are predicted to predict the 
top-left key-point, bottom-right key-point and center key-point. Since the resolution of the heatmap is the same 
as that of the prediction layer, an additional offset is predicted for each key-point to learn to map the key-point 
from the heatmap back into the input image.

In the inference process, the regression vector is used as a clue to find the closest key-point on the corresponding 
feature heatmap, so as to refine the position of the key-point. Then, a bounding box is defined for each pair of 
key-point pairs that belong to the same class (i.e., TL GT and BR GT belong to the same detection box, and the x 
and y coordinates of the top left corner point are smaller than the x and y coordinates of the bottom right corner 
point, respectively). Finally, define a center region for each bounding box and check if the center region contains 
the two predicted center key-points. If at most one center key-point is detected in its center region, the bounding 
box will be removed. The score of the bounding box will be replaced with the average score of the points, that is, 
the top left corner, bottom right corner, and center key-point.

The center region of the target as determined by the triplet key-point
In object recognition, the size of the central region of the detection box restricts the final detection result. If the 
central region is too small, the recall rate of the detection box is low, and if the central region is too large, the 
accuracy of detection and recognition will be reduced. In view of the above analysis, the CenterNet++ model 
adopts a scale-aware center region to adaptively adjust the size of the detection box35,36.

The above process can be expressed as Eq.  (1), where, n is an odd number and determines the size of 
the target central region j. (tlx, tly) denotes the coordinates of the upper left corner of the detection box, 
(brx, bry) denotes the coordinates of the lower right corner of the detection box, and defines a central region 
j,(ctlx, ctly) , (cbrx, cbry) denotes the coordinates of the upper left corner and the lower right corner of the 
central region, respectively.

	





ctlx = (n+1)tlx+(n−1)brx

2n

ctly = (n+1)tly+(n−1)bry

2n

cbrx = (n−1)tlx+(n+1)brx

2n

cbry = (n−1)tly+(n+1)bry

2n

� (1)

The multi-resolution CenterNet++ framework uses the function in Eq. (2) to calculate the training loss.
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Equation (2) consists of four parts: (1) classification loss, which is calculated by Focal Loss; (2) the regression 
box size loss, which is obtained by calculating the GIoU loss; (3) the prediction Loss of key-points triple is 
calculated by Focal Loss31; and (4) the target center point bias loss, which is calculated by L1 loss37. α, β, γ are 
the corresponding loss weight, which is set to 2, 0.25 and 1, respectively.

Status of development of defect detection tasks
Achieving accurate fault detection can significantly enhance the safety of equipment operation, providing strong 
support for industrial production38,59. By ensuring the healthy operation of various devices, it helps reduce 

Fig. 1.  Insulator defect diagram.
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overall energy consumption during the production process39,4060. Therefore, conducting research on fault 
detection holds significant scientific value. With the rapid advancement of deep learning technologies, numerous 
researchers have developed diverse frameworks tailored to defect detection tasks in various scenarios41,42. Ling 
et al.43 integrated the concept of image pyramids with deep residual networks for defect detection in trains, 
achieving promising results. However, due to the inherent computational complexity of image pyramids, the 
model’s processing speed is limited, rendering it unsuitable for real-time applications. To address this issue, Tang 
et al.44 proposed a defect detection model for circuit boards based on YOLO, incorporating MobileNetV3 and 
pruning techniques to achieve both high accuracy and fast processing speed. Similarly, Zhong et al.45 extended 
the YOLO framework by introducing attention mechanisms, setting a new benchmark for defect detection on 
metallic surfaces. Xiao et al.51 proposed an instance-level defect detection model based on hierarchical features, 
which advanced the development of freight train detection tasks. Lu et al.52 designed a defect detection network 
for powder bed defects based on residual networks, laying the foundation for the automated manufacturing of 
materials. Wu et al.53 introduced a two-stage firmware defect detection network, ensuring the stable operation 
of transportation equipment. Huang et al.54 designed a train surface defect detection network based on H-CNN, 
further enhancing the safety of train operations. Zhong et al.55 proposed a deformable context feature extraction 
block, which effectively addressed the detection of irregularly shaped defects. Jia et al.57 proposed a photovoltaic 
defect detector based on VarifocalNet, which achieves faster speed and higher accuracy compared to similar 
detectors like YOLO, effectively promoting the development of the photovoltaic power generation industry.

Although anchor-based detectors have demonstrated strong performance in many defect detection tasks, 
anchor-free detectors have shown superior capabilities when handling dense defects with irregular edges. Zhang 
et al.56 designed a lightweight backbone with a global attention mechanism, achieving high-precision anchor-
free defect detection. Kim et al. 46 optimized the advanced anchor-free detector CenterNet by incorporating an 
adversarial architecture, enabling more precise localization of defects and achieving state-of-the-art results in 
semiconductor defect detection. Moreover, Liu et al.47 designed a distillation mechanism to further optimize 
CenterNet, achieving excellent performance in fabric defect detection tasks. Fang et al.48 enhanced CenterNet 
through attention mechanisms, achieving optimal performance in power transmission line defect detection. 
These findings suggest that CenterNet performs robustly in scenarios involving ambiguous boundaries and 
unevenly distributed defects. Therefore, this study adopts CenterNet as the baseline model and optimizes it to 
address the specific requirements of insulator defect detection tasks.

Method
The proposed Context Cluster CenterNet++ (CC-CN) is a bounding-box-free object recognition method that 
predicts the size, pose, and key points of targets based on their center points. Feature extraction is achieved 
through a fully convolutional network, optimized using a contextual clustering mechanism to mitigate the adverse 
effects of uneven target distribution on detection performance. After initial feature extraction by the backbone 
network, a Path Aggregation Network (PAN) module is employed to fuse features across multiple scales, thereby 
enhancing the network’s efficiency in leveraging multi-scale features. Following feature extraction, a heatmap of 
target centers is generated, and local maxima within the heatmap are identified to locate target centers. Features 
at the peak positions are subsequently used to infer target size and pose. By leveraging multi-resolution feature 
maps for target classification, the proposed algorithm accommodates the challenges posed by deformations 
and scale variations in drone-acquired images. Furthermore, preprocessing steps such as image stabilization 
and adaptive-scale feature extraction are incorporated to improve the model’s accuracy in identifying insulator 
defects under various environmental conditions.

Figure 2 illustrates the overall workflow of the proposed network. Initially, the input image is processed by 
the backbone network (CCR), which incorporates a contextual clustering mechanism for feature extraction. 
The extracted multi-scale features are then fed into a Path Aggregation Network (PAN) for feature fusion. 
Subsequently, the fused features are passed to a deformable convolution-based detector for insulator bounding 
box prediction.

Context clustering-based backbone network (CCR)
In order to overcome the UAV image evenly distributed object distribution to the challenges of target recognition, 
this paper adopts ResNet10132 as backbone, and designs a new multiresolution based on Context Clustering 
CentetNet++ recognition model.

Because of the UAV acquisition is insulator image sequences, and as a result, this paper comprehensive 
clustering result of each frame image, the context of clustering center position. Concrete, after input sequence 
images, this article will each frame image of each pixel as one who has a color information and location 
information of (r, g, b, x, y) 5-D data points, converts the input image I ∈ R3×H×W  to the set of pixels 
P ∈ R5×N (N = H × W ), and analysis method based on point cloud to target visual representation. Among 
them, this article on every frame image processing in the paper are as follows: (1) to four stages of the image, 
every phase processing after points cut (Point the Shrink, PS) clustering and context two step, as shown in Fig. 3. 
In the image space, PS follows the hierarchical clustering method to select some cluster center points, and the 
points in their 8-neighborhood are spliced and fused into the cluster region by Linear Projection (LP), so as 
to reduce the number of data points and improve the computational efficiency. CC step is the characteristics 
of each cluster area of polymerization and the characteristics of dispatch process, similar to the local attention 
mechanism, in the image into different clustering regions, characteristics of interaction between various regions, 
polymerization and then dispatch.

Characteristics of aggregation for each cluster area, according to the corresponding points between frames on 
Euclidean distance, to determine whether the same feature points, for the same dynamic aggregation of feature 
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points, polymerization process, such as formula (3) and (4), as shown in the whole process is the aggregation of 
points in the group of the characteristics of space projection to a new value.Pv

	
g = 1

C

(
vc +

m∑
i=1

sig(αsi + β) × vi

)
� (3)

	
C = 1 +

m∑
i=1

sig(αsi + β) × vi� (4)

Among them, g said polymerization of target (characteristics), vc as the center of the cluster area, si ∈ RM  
said the first clustering regions (a total of M  cluster area), vi for the point value space Pv  (Pv ∈ RM×d′

,d′ 
for clustering region contains the number of points) of the first point i, as the function, α, β scale and offset 
parameters for learning, C  for the normalization factor. i sig(·) is the sigmoid function.

Characteristics of dispatch After getting characteristics after the polymer, according to the characteristics of 
the dynamic dispatch by the cosine similarity for each point in the cluster, there are:

	 p′
i = pi + F C(sig(αsi + β) × g)� (5)

The F C  (Full Connection) is the mean of all connections, mainly from the value space d′ to point a space d 
dimension of feature matching.

Fig. 3.  Context Clustering Process. Where PS denotes Point Shrink and CC denotes Context Cluster.

 

Fig. 2.  Context Cluster CenterNet++ framework. The flowchart at the top illustrates the overall structure of 
the proposed network. The input image is first processed by the CCR backbone for feature extraction, followed 
by feature fusion using PAN, and finally, the detection results are obtained through the Detector. The three 
subfigures at the bottom represent the overall structures of PAN, Detector, and CCR, from left to right.
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After the formation of clustering center, this article selects 10 before the clustering center with larger area, 
the clustering results to the original input image, and then after CenterNet++ network is used to identify the 
subsequent reasoning of the identification process.

Deformable convolution-based detector
This paper proposes a backbone network based on contextual clustering for feature extraction from input images. 
The extracted multi-scale features are fused using a Path Aggregation Network (PAN) layer and then fed into a 
deformable convolution-based detector for bounding box prediction. The detector comprises two branches: a 
regression map branch and a heatmap branch. The heatmap branch employs a multi-resolution design, making 
it more effective in identifying small objects. In the regression map branch, this study adopts the Deformable 
Convolution v2 (DCNv2) method33 to replace the fixed kernel convolution approach used in the original model. 
By introducing an offset to the convolution kernel during training, DCNv2 enables various transformations such 
as rotation and scale adjustment during the convolution process. This capability effectively addresses challenges 
associated with small objects and deformations, suppresses background noise, and significantly enhances the 
precision of small object feature extraction. Furthermore, it improves computational efficiency while introducing 
only a modest increase in model complexity. Its convolutional process is shown in Fig. 4.

Deformable convolution (DCNv2) can better extract image features and improve the model’s ability to adapt 
to target deformations. By adding an offset to the conventional convolution operation, the sampling position 
is no longer limited to the traditional rectangular shape, but can be freely deformed to adapt to the geometric 
deformation target. DCNv2 through modulation mechanism to study the value of each sampling point of key 
feature set higher weights, to further improve the network model of different attitude, scale and changeable 
insulator image feature extraction ability.

This paper adopts DCNv2 regression of feature detection module chart branch was improved, the sample 
point to the target position to offset, to reduce the interference of background. The structure of the proposed 
deformable convolution-based detector is shown in Fig. 5.

Overall, this study employs parallel computation for the regression branch and the heatmap branch. In the 
regression branch, predictions are refined using clustering results obtained through context-aware deformable 
convolutions, along with constrained clustering center offsets, to produce more accurate predictions for object 
locations and sizes. Additionally, the regression process incorporates the ground truth (GT) to compute 
clustering-related losses through convolution operations. For the heatmap branch, a Path Aggregation Network 
(PAN) is utilized to generate multi-resolution heatmaps. Through feature detection calculations, two types of 
feature maps are derived: one encodes the upper-left and lower-right clustering centers along with key points 
as triples, which are used to determine the target center and bounding box dimensions; the other is a multi-
resolution heatmap. The latter is used to calculate the loss value, as described in Eq. (2), for determining the 
predicted target location. Finally, the overall loss function, defined in Eq. (6), is applied to optimize and finalize 
the object localization.

Improved loss function calculation method for nonlinear changes
This article uses the formula (6) the Context Cluster CenterNet++ loss calculation model training.

	 LCC−CN = LCC + α̂Lreg + β̂
(
LCC

co + LCC
ce

)
+ γ̂

(
LCC

cooff + LCC
ceoff

)
� (6)

The formula consists of four parts: (1) the clustering loss Lcc is calculated by the Focal Loss method; (2) region 
loss Lreg  is obtained by calculating GIoU; (3) LCC

co  and LCC
ce  represents the prediction loss of the corner and 

center keypoints in the context clustering region; (4) LCC
cooff  and LCC

ceoff  represents the bias loss of the target 
center point determined by the keypoint triplets in the context clustering region. Due to L1 losses in the 

Fig. 4.  Comparison between deformable convolution (DCNv2) and standard convolution.
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computation of regression is too sensitive to the size of the target change, and neglected to identify the target 
location and sequence between the correlation between, therefore, of the type (3) and (4) using Bhattacharyya 
nonlinear distance calculation method proposed in this paper. For the corresponding weight loss, α, β, γ is set 
to 1, 0.5, and 1 respectively.

In the collected images, target position variations are often characterized by nonlinear random changes. 
Predicting such variations based solely on linear models frequently results in inaccurate target localization. To 
address this issue, numerous researchers have explored various optimization algorithms49,50. In this study, the 
Bhattacharyya nonlinear distance calculation method is introduced as a replacement for the loss calculation 
in Eq.  (2), which is employed to compute the center point offset loss in Eq.  (6). The Bhattacharyya distance 
measures the similarity between two discrete probability distributions and is closely related to the Bhattacharyya 
coefficient, which quantifies the overlap between two discrete sample sets. The definition of the discrete 
Bhattacharyya coefficient is presented in Eq. (7):

	
cBha =

∑ √
p(x)q(x)� (7)

Among them p(x), said to the target location prediction, q(x) represent the real value of the target location. 
After getting pap coefficient, pap distance formula (8),

	 dBha = − ln (cBha [p(x), q(x)])� (8)

Through the type on the computer, can predict box and real box IoU into the similarity between the two 
distribution. Using nonlinear calculation method of the distance to replace the linear distance calculation 
method has the advantage of not target dimension in the frame, frame between the limitation of target location 
changes, can be a significant boost between different frames on the same target positioning accuracy. For small 
target insulator, in most cases are not the standard rectangular box, therefore, when doing the target location 
prediction, hard to avoid can appear a lot of the interference of background pixels, makes the forecast does not 
present a good linear change. Through the calculation of nonlinear distance loss, in order to better describe the 
nonlinear change of the center of the target.

Experiments and analysis
Used in this section is mainly introduced in this paper, the experimental data set, data preprocessing and data 
process, evaluation index and the implementation details; It is necessary to develop and then introduces the 
ablation experiments to verify the proposed innovation part of the backbone of the module, test module and 
the effectiveness of the improved damage function; Finally, from the Angle of quantitative and qualitative, this 
article puts forward the model and is the most advanced (the State of the Art, SOTA) model on the basis of the 
comparison experiment, proved the superiority of the proposed model.

Fig. 5.  The Detector module of this paper.
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Data collection
Insulator data set
The data set (Table 1) used in this paper is the insulator images collected in the process of standardized UAV 
inspection by the State Grid Corporation, with a total of 2400 frames and a resolution of 640 × 640. The recognition 
algorithm is mainly studied for five kinds of defects of insulator: self-explosion, flash, dirty glass, damage and 
foreign body. The training set consists of 1600 frames, and the total number of tags is 7568, including 2636 self-
explosion, 1188 flasher, 1284 dirt, 1140 damage, and 1320 foreign objects. The test set consisted of 800 frames 
with 503 labels, including 147 self-explosion, 64 flashover, 89 dirty, 123 damaged and 80 foreign objects.

Enhancement of insulator data set
Since the insulator data set collected by UAV is rare, this paper performs data enhancement processing on 
the images in the training set based on the existing insulator data set: rotation, noise addition, cropping, and 
color transformation of the images. Finally, the original data set is expanded into 7600 insulator defect data sets 
containing five types.

Evaluation metrics
In this paper, two evaluation indicators, Class Average Precision (AP) and model Inference Speed (FPS), are used 
to measure the performance of the proposed model.

AP is the area under the curve of Precision (P) and Recall (R)34. The larger the AP, the better the performance 
of the model. AP calculations for formula shown in (25),

	
AP =

∫ 1

0
P (R)dR� (9)

Among them, TP (True Positives), FP (False Positives), FP (False Positives) and FN (False Negatives). 
P = T P

T P +F P  R = T P
T P +F N  This paper is chosen as evaluation index, the average precision of all categories, 

and said in all categories IoU average accuracy of the threshold value is 0.5 and 0.75. AP, AP50, AP75 AP  
AP50 AP75 In addition, this paper also uses evaluation metrics APS , APM , APL

42 to measure the recognition 
performance of the model for small, medium and large scale objects.

Model inference speed (frames per second, FPS)
FPS is the number of images detected by the model per second. The larger the FPS value, the better the real-time 
performance of the algorithm.

The results
This paper respectively in MS COCO data set43 and standardization of the State grid unmanned aerial vehicle 
(UAV) inspection insulator image data sets on a wide range of experiment, verify the effectiveness of the 
proposed model and the most advanced method (State-of-the Art of SOTA). Among them, MS-COCO data 
set contains 80 categories and more than 1.5 million object instances. A large number of small objects get it to 
become a widely used dataset. In this paper, train2017 is used as the training data set, test 2017 is used as the test 
set, and val2017 is used for ablation experiments and visualization experiments.

Ablation experiments
In order to demonstrate the effectiveness of the proposed three methods of innovation, this article described in 
section 3.1 data set on the ablation experiment. When the innovative method was introduced and the model 
converged, the comparative results of the ablation experiments were shown in Table 2. Among them, "√" and 
" × " in the table indicate whether this method is used for innovation, and CC, DCN-KP and Bha in the table 
represent the three improved methods proposed in this paper.

	(a)	� The influence of the CC. Clustering is proposed in this paper USES the context (CC) method to solve the 
problem of non-uniform distribution and long tail. From Table 2 row 2 as you can see, when using the 
method of clustering to return branch image and reduced heat map branch image data points after process-
ing, makes the model improves the IoUs of threshold value is 1 (mAP ) and medium target(AP50) big tar-
get (AP75),in recognition accuracy (increased by 2.2%, 3.5% and 2.0% respectively). And reasoning speed 

Total number of 
image data 7600

Training set: 6400 Test set: 1200

Self-explosion 1170 Self-explosion 307

Flash 1417 flashover 266

Filth 1225 Filth 230

Broken 1631 Broken 340

Foreign bodies 955 Foreign bodies 157

Table 1.  All kinds of image data (frames) in the data set.
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also had significant increase (11.5%). Is adopted in this paper, and the improved loss function to feedback 
correction of clustering center, to further improve the precision of recognition (Table 2 rows 5, 6 and 8).

	(b)	� The influence of DCN-KP. In this paper, the deformable convolution operator (DCNv2) combined with 
Path Aggregation Network (PAN) is used to perform deformable convolution operation on the image, so 
as to locate the regression box and key point triple (KP) more accurately, so as to improve the accurate 
positioning of the target position of any shape and any scale, and reduce the sensitivity of the model to the 
change and deformation of the target scale. To improve the recognition accuracy of the model. From rows 
3, 5, 6, and 8 in Table 2, it can be observed that the improved module can improve the overall recognition 
accuracy of the model, and the recognition accuracy (APS) of small targets is particularly effective, with 
the accuracy increased by 0.5%, 1.5%, 1.1%, and 1.7% respectively.

	(c)	� The influence of the Bha. This article USES the Bha distance to calculate the key points of triples forecast 
loss and target center offset losses. Using nonlinear calculation method of the distance to replace the linear 
distance calculation method has the advantage of not target dimension in the frame, frame between the 
limitation of target location changes, can be a significant boost between different frames on the same target 
positioning accuracy. From Table 2 rows 4, 6, 7 and 8 lines as you can see, the improvement of the loss 
function besides can improve the AP50 and AP75 model and the identification accuracy, on the scale of 
any target recognition accuracy (APS , APM , APL) increased (0.4%, 0.5%, 1.3%, 1.2%, 1.5%).

In summary, by comparing the results of ablation experiments, it can be seen that when the three improved 
schemes of CC, DCN-KP and Bha are introduced in turn, the sum will be greatly improved. mAP, AP50, AP75
APS , APM , APL. Thus, when the three kinds of improved algorithm introduced gradually, can further improve 
the accuracy of model identification and efficiency, further verify the feasibility of the scheme.

Model performance comparison experiment
This algorithm with pyramid operation in Faster-RCNN, Mask-RCNN, RetinaNet, YOLOv3, DETR, FOS-DCN 
with mainstream target identification model of testing box, And CenterNet without testing box, CenterNet++, 
YOLC recognition model in MC-COCO data set and the collection of data on the contrast experiment of the 
grid. When each model respectively to achieve convergence. The experimental results as shown in Table 3.

FPN is operated with pyramid, R-101 for ResNet101, R-50 for ResNet50, X-101 for ResNeXt-101, HG-104 for 
Hourglass-104, and n for the number of target candidate regions to be identified.

Table 3 presents the quantitative comparison with the state-of-the-art method on MS-COCO dataset. The 
results show that the proposed model performs better than SOTA on all datasets. In general, the method without 
detection box class is better than the method with box class in recognition accuracy and inference speed. 
The method proposed in this paper adopts the strategies of context clustering, key point triple and nonlinear 
loss function, fully considers the influence of adverse factors such as target scale change and deformation on 
the recognition and detection accuracy, and uses point set instead of region to calculate the target position. 
Therefore, the recognition efficiency is greatly improved and the calculation amount is greatly reduced under the 
premise of ensuring the recognition accuracy. In this model it brings great possibilities for landing deployment 
on downstream tasks such as unmanned aerial systems.

Table 4 presents a comparison of the performance between the proposed method and mainstream detection 
methods. The table shows a comparison of AP50 results across five categories. By analyzing the results, significant 
differences in performance across various defect types can be observed, with some methods demonstrating 
stronger detection capabilities for specific defect types. Among all methods, CC-CN++ (n = 2) excels in all 
defect categories, achieving the highest AP50 scores. For example, in the dirty detection task, CC-CN++ (n = 2) 
achieved an AP50 score of 39.8, and for flashover detection, the AP50 score was 35.2, the highest across all 
methods. This indicates that the CC-CN++ (n = 2) model is particularly effective in handling these defects, owing 
to its advanced architecture and optimization strategies. Trident Net performs strongly in most defect types, 
particularly in explosions (34.1) and dirty (34.4), suggesting that this method is effective at detecting large-scale 
or significant defects. FCOS-DCN also shows good performance across multiple defect types, with an AP50 
score of 35.3 for explosions and 36.1 for dirty, close to the performance of CC-CN++ (n = 2). This indicates that 
FCOS-DCN is a worthy alternative when aiming for high accuracy and speed. In contrast, Yolov3 and RCNN-
FPN perform poorly, particularly in the flashover and breakage defect types, with AP50 scores generally below 
25. This suggests that these methods may struggle with more complex or subtle defects. The CC-CN++ model 

CC DCNKP Bha AP AP50 AP75 APS APM APL Precision Recall FPS

1 x x x 51.2 63.5 60.3 32.9 56.4 65.1 62.1 61.0 12.5

2 √ x x 53.6 65.7 62.4 33.5 57.5 66.4 60.2 65.4 13.6

3 x √ x 52.3 65.4 62.6 34.8 56.8 64.5 63.5 60.2 12.9

4 x x √ 52.3 62.3 62.1 35.2 55.3 65.6 62.5 61.8 13.2

5 √ √ x 59.6 68.7 62.5 37.8 56.6 67.8 65.3 63.2 14.2

6 √ x √ 60.3 67.5 60.5 37.3 58.6 68.5 64.1 62.5 13.8

7 x √ √ 61.2 66.5 63.2 36.5 59.5 69.1 65.2 63.5 14.3

8 √ √ √ 60.1 75.2 63.5 38.7 60.1 69.6 68.1 64.0 13.9

Table 2.  Comparison of ablation experiments. Significant values are in bold.

 

Scientific Reports |         (2025) 15:2352 9| https://doi.org/10.1038/s41598-025-85630-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


shows varying trends with different values of n. As the n value increases, performance improves. For example, the 
transition from CC-CN++ (n = 1) to CC-CN++ (n = 2) significantly enhances the detection ability for flashover 
and dirty, while CC-CN++ (n = 3), although showing some decline in certain defect types such as breakage and 
foreign, still performs well in most categories. This suggests that as model complexity increases, performance 
improves, but excessive complexity may lead to performance degradation. Therefore, when choosing the value 
of n, there is a need to balance model complexity and computational cost. Traditional methods like Yolov3 and 
RCNN-FPN generally show poor performance, especially in detecting complex or subtle defects, with low AP50 
scores across the board. This is likely due to limitations in feature extraction capabilities, making it difficult for 
these methods to detect fine or hard-to-distinguish defects.

Cross-validation
To evaluate the stability of the proposed model, k-fold cross-validation was conducted on the insulator fault 
detection dataset. Specifically, the dataset was evenly divided into eight subsets, with seven subsets used as the 
training set and the remaining subset as the test set in each iteration. This process was repeated eight times 
to ensure comprehensive evaluation. Table 5 summarizes the performance metrics obtained from the cross-

Methods explods flashover dirty breakage foreign

RCNN-FPN6 24.3 21.1 24.7 21.2 21.3

Mask RCNN8 28.2 24.8 28.6 24.1 25.9

RetinaNet21 27.4 24.2 27.8 23.3 25.2

TridentNet17 34.1 29.6 34.4 29.2 31.5

Yolov320 23.2 20.5 23.6 19.7 21.3

DETR10 31.7 27.9 32.1 26.8 29.1

FCOS-DCN22 35.3 31.3 36.1 30.3 32.3

RefineNet 29.4 25.9 29.7 23.7 25.7

CenterNet 25.1 23.9 33.1 19.3 26.6

CenterNet++ 26.3 24.7 38.2 29.8 26.6

CC-CN++(n = 1) 29.5 24.9 39.5 35.2 39.2

CC-CN++(n = 2) 30.1 35.2 39.8 33.5 38.7

CC-CN++(n = 3) 38.7 34.1 39.2 32.9 35.5

Table 4.  Comparison of the performance of different defect. The table shows metrics in terms of AP50. 
Significant values are in bold.

 

Methods Backbone AP AP50 AP75 APS APM APL FPS Speed/ms

Anchor

 RCNN-FPN6 R-101 34.9 55.7 20.3 11.6 33.9 54.9 7 142

 Mask RCNN8 X-101 39.8 62.3 43.4 22.1 43.2 51.2 11 90

 RetinaNet21 R-101 39.1 59.1 42.3 21.8 42.7 50.2 5.4 185

 TridentNet17 R-101 48.4 69.7 53.5 31.8 51.3 60.3 23 43

 Yolov320 DarkNet 33.0 57.9 34.4 18.3 25.4 41.9 33.3 30

 DETR10 R-101 44.9 64.7 47.7 23.7 49.5 62.3 28 35

 FCOS-DCN X-101 50.4 68.9 55.0 33.2 53.0 62.7 27 37

 RefineNet R-101 41.8 62.9 45.7 25.6 45.1 54.1 29 34

Anchor-free

 CenterNet HG-104 45.1 63.9 49.3 26.6 47.1 57.7 11.9 83

 CenterNet++ R-50 46.3 64.7 49.8 26.6 49.6 59.3 13.8 71

 CenterNet++ (MS) R-50 57.1 73.7 62.4 38.7 59.2 71.3 14.8 66

 YOLC (k = 1) HRNet 37.7 61.7 39.0 30.2 48.4 56.4 14 71

 YOLC (k = 2) HRNet 37.8 61.7 39.4 30.5 48.3 55.4 15 67

 YOLC (k = 3) HRNet 38.3 62.3 40.1 31.7 48.0 46.5 12 83

Ours

 CC-CN++ (n = 1) R-101 59.5 73.9 65.2 39.2 59.0 71.2 15 67

 CC-CN++ (n = 2) R-101 60.1 75.2 63.5 38.7 60.1 69.6 16 62

 CC-CN++ (n = 3) R-101 54.5 74.1 62.9 38.5 59.5 60.1 13.9 71

Table 3.  Comparison of the performance of different algorithms. Significant values are in bold.
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validation. The results demonstrate that the proposed model exhibited consistent performance across all folds, 
confirming its reliability and generalization capability.

Attention map comparison
Figure 6 presents a comparison of attention maps generated by different methods. The first row displays the 
original images, the second row shows the attention maps produced by CenterNet, and the third row illustrates 
the attention maps generated by the proposed model. The comparison reveals that the attention maps from the 
proposed model more accurately focus on the fault regions of insulators, demonstrating a clearer distribution 
of fault features that aligns closely with the fault areas in the original images. In contrast to CenterNet, the 
proposed model exhibits significant improvements, highlighting its superior feature extraction capabilities and 
more targeted attention mechanism for fault detection tasks.

Conclusion
This paper analyzes the characteristics of insulator defect recognition from UAV inspection images, and 
proposes a new multi-resolution context clustering CenterNet++ model to solve the existing problems. (1) The 
clustering area is used to identify and predict the location of the target, and the improved loss function is used 
to feedback correct the clustering center, which improves the recognition accuracy and further improves the 
computational efficiency. (2) The deformable convolution operator combined with the path aggregation network 
is used to perform deformable convolution operation on the image, and the regression box and key point triples 
are accurately predicted, so as to improve the accurate positioning of the target position of any shape and any 
scale, reduce the sensitivity of the model to target scale changes and deformation, and improve the recognition 
accuracy of the model. (3) Use Bhattacharyya distance to calculate the key point of triples forecast loss and target 
center offset losses.

This study demonstrates that contextual clustering and deformable convolution play a significant role in 
enhancing performance for detection tasks involving irregular boundaries. The proposed approach shows great 
potential for extension to a broader range of fault detection tasks. While the method achieves promising results 
in insulator detection tasks from a drone perspective, its inference speed remains suboptimal. Future work will 
focus on optimizing the model’s parameter efficiency through techniques such as model pruning and knowledge 
distillation, aiming to ensure its suitability for more challenging high-resolution input images.

Data availability
All the code and details of the experiment have been uploaded to the web. ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​m​e​n​g​b​o​n​a​n​n​a​n​8​
8​/​C​C​-​C​e​n​t​e​r​N​e​t​​​​​.​​

Fig.6.  Comparison of attention maps. Top to bottom are the original image, CenterNet and the attention graph 
generated by the model in this paper respectively.

 

Fold explods flashover dirty breakage foreign

Fold 1 38.6 34.3 39.1 33.0 35.4

Fold 2 38.8 34.0 39.3 33.1 35.6

Fold 3 38.7 34.2 39.2 33.0 35.5

Fold 4 38.9 34.1 39.4 32.8 35.3

Fold 5 38.5 34.0 39.3 33.2 35.4

Fold 6 38.8 34.2 39.1 33.0 35.6

Fold 7 38.7 34.3 39.2 32.9 35.5

Fold 8 38.9 34.1 39.3 32.8 35.4

Table 5.  Cross-validation metric presentation. The table shows metrics in terms of AP50.
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