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To improve the scientific accuracy and precision of children’s physical fitness evaluations, this study 
proposes a model that combines self-organizing maps (SOM) neural networks with cluster analysis. 
Existing evaluation methods often rely on traditional, single statistical analyses, which struggle 
to handle the complexity of high-dimensional, nonlinear data, resulting in a lack of precision and 
personalization. This study uses the SOM neural network to reduce the dimensionality of high-
dimensional health data. Moreover, it integrates cluster analysis to categorize and analyze key physical 
fitness attributes, such as strength, flexibility, and endurance. Experimental results show that the 
proposed optimized model outperforms comparison models such as T-distributed stochastic neighbor 
embedding, density peak clustering, and deep embedded clustering in terms of performance. The 
accuracy for the strength dimension reaches 0.934, the F1 score is 0.862, and the area under the curve 
of receiver operating characteristic is 0.944. The silhouette coefficients for cluster analysis in strength, 
flexibility, and endurance dimensions are 0.655, 0.559, and 0.601, respectively, demonstrating good 
intra-class and inter-class distances. The proposed model enhances the comprehensive analysis of 
children’s physical fitness and provides a scientific basis for personalized health interventions, making 
an important contribution to research in this field.
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Research background and motivations
Childhood is the key stage of physical development and healthy growth, and physical quality has a far-reaching 
impact on the future health of individuals during this period. Good physical fitness can improve children’s 
immunity and ability to resist diseases while promoting the healthy development of their psychological and 
social abilities1–3. Therefore, it is significant for parents, educational institutions, and relevant government 
departments to accurately and scientifically evaluate children’s physical fitness accurately and scientifically. With 
the rapid development of artificial intelligence (AI) technology, data mining and machine learning methods 
provide new means for analyzing and modeling complex data4. self-organizing maps (SOM) neural network is 
an unsupervised learning algorithm, which can reduce and classify data in high-dimensional space, and better 
extract potential patterns from data through cluster analysis. This method provides a new idea for evaluating 
children’s physical fitness.

Traditional evaluation methods cannot fully deal with complex multidimensional data. However, the SOM 
neural network combined with cluster analysis can improve the accuracy of classification and evaluation while 
maintaining data characteristics. Through the analysis of a large number of children’s physical fitness data, this 
study hopes to provide reliable data support for individualized evaluation and intervention.
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Research objectives

	(1)	� An evaluation model of children’s physical fitness is constructed based on the SOM neural network.
	(2)	� Classification and characteristic analysis of children’s physical fitness combined with cluster analysis.
	(3)	� The evaluation method of children’s physical fitness is optimized, improving the comprehensiveness and 

accuracy of the evaluation.

In short, this study intends to explore a more effective evaluation method of children’s physical fitness by combining 
SOM neural networks with cluster analysis. Meanwhile, it improves the accuracy and comprehensiveness of the 
evaluation results, promoting the scientific process of children’s health evaluation and management.

Literature review
In previous studies, Johnstone et al.5 found that the traditional evaluation methods of children’s physical fitness 
mainly focused on single indicators such as strength, speed, and flexibility, and often ignored the integrity of 
physical fitness. They put forward a comprehensive evaluation system based on multi-dimensional indicators. 
Still, this system had shortcomings in complex data processing5. Aubert et al. (2022) argued that there were 
regional and individual differences in the evaluation criteria of children’s physical fitness, and it was difficult 
to capture the diversity of children’s groups by a single statistical analysis method. They suggested that more 
multivariate statistical models should be used to improve the comprehensiveness of evaluation6. Conger et al.7  
found that the SOM neural network had strong dimensionality reduction and classification ability in medical 
and health data analysis, and could effectively identify potential structures in high-dimensional data. They used 
the SOM network to group patients’ data, proving its superiority in classification7. Chan et al.8 pointed out that 
the application of the SOM neural network in children’s health assessment was limited, but it had great potential 
in nonlinear data modeling and processing. Through experiments, the SOM neural network was successfully 
applied to the classification of children’s health data, and satisfactory results were achieved8. Wunsch et al.9 
discovered that cluster analysis technology could be effectively applied to analyze children’s health data. By 
clustering children’s data, the characteristics of different health groups were found, and corresponding health 
intervention measures were proposed9. Rhodes et al. (2022) found that combining cluster analysis could better 
reveal the health characteristics of different groups of children. Furthermore, through hierarchical cluster analysis 
technology, a large number of children’s physical fitness data were processed, and a clear group classification 
result was obtained, which provided data support for personalized health guidance10.

Compared to previous studies, this study introduces innovations in both methodology and evaluation 
systems. Most past studies have relied on traditional linear statistical methods or single-dimensional fitness 
evaluation indicators, such as strength, speed, and flexibility. While these methods may apply to specific 
dimensions, they fail to provide a comprehensive reflection of children’s overall health, overlooking the 
importance of multidimensional evaluation. Moreover, relying on single indicators can lead to a one-sided and 
static understanding of children’s physical fitness, making it difficult to reveal individual differences and diversity. 
In contrast, this study not only focuses on individual dimensions of physical fitness but also incorporates factors 
closely related to children’s growth, such as mental health and nutritional status, into the evaluation system. 
It develops a multidimensional and dynamic health evaluation framework. Furthermore, by combining SOM 
neural networks with cluster analysis and other data mining techniques, this study overcomes the limitations 
of traditional linear methods. It achieves dimensionality reduction and refined classification analysis of high-
dimensional health data. This method is more effective in uncovering hidden patterns in children’s health data, 
offering a more scientific, comprehensive, and personalized physical fitness evaluation.

In summary, this study surpasses traditional research in evaluation dimensions, methodological choices, and 
result refinement. It provides new ideas and tools for dynamic monitoring and comprehensive intervention of 
children’s physical fitness, with significant theoretical and practical value.

Research methodology
Application of SOM neural network in data dimension reduction and classification
SOM is a neural network algorithm based on unsupervised learning, which maps high-dimensional input 
data into low-dimensional space through the self-organization characteristics of data, forming a mapping 
relationship with topological structure11–13. Its core goal is to preserve the topological relationship between input 
data. In other words, similar data points should be as close as possible in the mapped space, thus revealing the 
potential structure and mode of data. The SOM neural network has powerful data dimensionality reduction 
and classification ability, especially when dealing with high-dimensional data, it can effectively reduce the data 
dimensionality to two-dimensional (2D) or three-dimensional space by topology preservation, and show the 
potential structure of the data by visual means14,15. Its specific application is exhibited in (Table 1):

In one word, applying the SOM neural network in data dimension reduction and classification has important 
theoretical and practical value. Especially, when handling complex high-dimensional data, it provides an 
effective way to reveal the potential patterns of data, and it is easy to understand and analyze through visual 
means. This makes the SOM neural network widely used in many fields, including health management, image 
processing, and market analysis18–20.

Application of cluster analysis in health data
Cluster analysis is an unsupervised learning method that aims to group samples in a dataset based on their 
similarity, thus forming multiple categories or “clusters”. In cluster analysis, similarity is usually judged through 
a distance measure that maximizes the similarity between samples within a cluster and minimizes the similarity 
between different clusters. Specifically, the goal of cluster analysis is: 
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	(1)	� Intra-class compactness: Samples within a cluster are close to each other and have a high degree of similar-
ity.

	(2)	� Inter-class separability: Samples from different clusters have significant differences and are separated from 
each other.

Cluster analysis does not require prior provision of data labels or category information, and is suitable for 
discovering potential structures, patterns, or distributions of data. Common clustering methods include 
K-means, density peak clustering, and hierarchical clustering21. Within a cluster, the similarity of data objects 
is high, while the data objects between different clusters are quite different. Cluster analysis does not depend 
on prior labels or classification, and it realizes automatic classification of data by mining the internal structure 
and pattern of data22. Cluster analysis is widely used in health data analysis, especially in individual health 
assessment, disease classification, patient grouping, and medical service optimization. Clustering technology 
can help identify potential patterns and heterogeneity in health data, thus supporting medical decision-making. 
For example, in health management, cluster analysis can divide patients into different groups according to 
their health status, lifestyle, or sign data23,24. For example, based on multidimensional health data, patients 
can be classified into healthy, high-risk, and disease patient populations. This can provide personalized health 
management plans for different groups, optimize the allocation of medical resources, and improve the efficiency 
of health intervention25.

Cluster analysis also plays a key role in disease classification, especially in subtype identification of complex 
diseases. For example, in cancer research, clustering based on patients’ gene expression profiles and pathological 
data can identify different subtypes of diseases and provide a basis for accurate treatment26–28. In addition, 
cluster analysis can identify the differences between patients with the same disease, thus offering data support 
for making personalized treatment plans29.

Therefore, the application of cluster analysis in health data provides a powerful tool for personalized health 
management, disease classification, and public health research. By identifying the patterns and potential groups 
in health data, cluster analysis can promote the accuracy and efficiency of medical services and improve overall 
health management levels30.

Construction of children’s physical fitness evaluation model based on SOM neural network 
and cluster analysis
Unlike traditional linear dimensionality reduction methods, the SOM neural network can effectively reduce 
data dimensions in nonlinear, high-dimensional spaces. Children’s physical fitness data typically exhibit 
characteristics of nonlinearity, multidimensionality, and complexity. SOM can map high-dimensional data 
into a lower-dimensional space through adaptive learning while preserving the topological structure of the 
original data. This helps uncover the inherent distribution and potential patterns within the data. SOM is an 
unsupervised learning algorithm, meaning it can learn and classify data without requiring label information. 
This feature is critical in evaluating children’s physical fitness, as some health data lack explicit category labels. 
SOM can achieve adaptive dimensionality reduction and cluster analysis by learning the intrinsic structure of 
the data. This makes SOM particularly suited for preliminary exploratory analysis and the processing of high-
dimensional data. In addition to dimensionality reduction, SOM can visualize data by creating grid mappings, 
projecting high-dimensional data onto a 2D space, and forming intuitive cluster maps. This visualization 
advantage helps to better understand the distribution structure and classification results of the data, making 
it more interpretable and valuable for application in children’s physical fitness evaluation. The evaluation of 
children’s physical fitness requires both scientific rigor and practicality. SOM, with its low computational cost 
and strong generalization ability, can efficiently handle high-dimensional health data in real-world scenarios, 
making it especially suitable for dynamic analysis and detailed classification of large-scale children’s health data. 
The optimized model’ architecture is displayed in (Fig. 1):

Before inputting data into the SOM neural network, a series of rigorous data preprocessing steps is required 
to ensure data quality and improve the model’s performance and stability. First, data cleaning is performed, 
which involves handling missing values and detecting outliers to remove incomplete or severely abnormal 
data. This helps to avoid noise that could interfere with the model’s learning process. Next, the data undergoes 
normalization. Since SOM is sensitive to the numerical range of input data, Z-score normalization or Min-Max 
scaling is applied to bring all feature data to the same scale, preventing features with larger values from dominating 
the model. Based on this, feature selection and dimensionality reduction are conducted. The importance of 
features is assessed through correlation analysis or random forest (RF) algorithms, and irrelevant or redundant 
features are removed to reduce data complexity. Additionally, dimensionality reduction techniques such as 
principal component analysis (PCA) are applied to retain key information while reducing the computational 

Application Analysis

Data dimensionality reduction The SOM neural network effectively reduces the data dimension by mapping high-dimensional data to a 2D plane while maintaining the 
topological relationship of input data. This makes SOM especially suitable for feature extraction and pattern recognition of complex datasets.

Unsupervised classification In the classification process, SOM maps similar data points to adjacent neurons according to the similarity of input data, thus naturally forming 
different data clusters16.

Visualization and cluster analysis SOM helps to identify the similarity between data and reveals the potential distribution pattern of data through cluster analysis17. The advantage 
of SOM in cluster analysis lies in its topology-preserving property, which can naturally reflect the distance and distribution between classes.

Table 1.  Application of SOM in data dimension reduction and classification.
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load on the model. For class imbalance issues, data balancing techniques such as under-sampling of the majority 
class are used to equalize the data distribution and prevent the model from being biased toward the majority class 
during training. Furthermore, categorical data are transformed into numerical format to meet the input format 
requirements of the SOM network. For example, one-hot encoding is used to convert categorical features into 
numeric vectors, ensuring that all sample data structures are consistent, with irrelevant columns and features 
excluded. Finally, the processed data are split into training, validation, and testing sets, typically using 70% of the 
data for training, 15% for validation, and 15% for testing. This ensures that model training and evaluation are 
representative, while random sampling helps avoid data bias.

After data preprocessing, the data is input into the architecture of the SOM neural network. SOM maps 
high-dimensional data to low-dimensional space through its unsupervised learning characteristics. Thus, it 
generates preliminary clustering results and lays a foundation for further analysis. Based on the preliminary 
clustering results, the model introduces the refined clustering module of the traditional clustering algorithm 
to classify and optimize the clustering results generated by SOM to improve the model’s accuracy and refined 
analysis abilities. On this basis, the model is verified by the performance evaluation module, and the model’s 
performance is comprehensively evaluated by using various indicators (such as accuracy, recall, and F1 score) to 
ensure its superiority in classification and clustering tasks. At the same time, the visualization module visually 
presents the final clustering and classification results, which is convenient for researchers to intuitively analyze 
the data distribution and supports subsequent decision-making. In addition, the model designs personalized 
optimization and automatic parameter adjustment modules. It dynamically optimizes the parameters and 
clustering strategy of the model according to the evaluation results to ensure its adaptability and robustness 
in different application scenarios. Finally, the model applies the analysis results to the actual scene through 
the application and feedback module and iteratively optimizes the model combined with user feedback, thus 
continuously improving the performance and application effect of the model. The design and integration of this 
series of modules make the proposed model have great significance in improving the scientific, accurate, and 
personalized analysis ability of children’s physical fitness evaluation.

Fig. 1.  Architecture of the optimized model.
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To ensure the effectiveness and stability of the clustering results produced by the model, this study has 
optimized both data preparation and model design. It ensures that the input data are free from missing values 
and outliers, and undergoes standardization to eliminate the impact of varying data dimensions on clustering 
outcomes. Meanwhile, it handles imbalanced data through over-sampling or under-sampling to prevent the 
clustering results from being biased toward certain classes. Moreover, features highly correlated with the 
clustering target are selected through correlation analysis, PCA, etc., and redundant information is removed to 
enhance clustering accuracy. In terms of model design, appropriate distance metrics (such as Euclidean distance, 
cosine similarity, or Manhattan distance) are chosen based on the data characteristics to ensure that similarity 
calculations align with the actual data distribution. The optimal number of clusters is determined automatically 
using metrics such as silhouette score and the elbow method, ensuring that the model can reasonably partition 
the dataset. The model then adjusts key parameters automatically to achieve the best clustering performance, 
enhancing both stability and the reproducibility of results.

Experimental design and performance evaluation
Datasets collection, experimental environment, and parameters setting
The dataset used in this study comes from the National Population Health Science Data Center, a professional 
institution under the China Academy of Medical Sciences; It is dedicated to collecting, sorting out, and sharing 
population health-related data nationwide. The dataset covers about 10,000 children’s health records, with 
a total of about 200,000 pieces of data, covering many aspects such as body shape, function, and quality. Its 
main features include basic information about children (such as age, gender, height, and weight), and physical 
fitness (such as the measurement data of key dimensions like strength, flexibility, and endurance). Meanwhile, 
it encompasses health assessment indicators (such as body mass indicator BMI and cardiopulmonary function 
test results). In addition, the dataset also contains information about environmental factors, such as living 
area, eating habits, and exercise frequency. To ensure the scientificity and validity of the data, this study has 
conducted strict preprocessing on the data, including data cleaning, data standardization, and dimensionality 
reduction. Data cleaning mainly deletes samples with too many missing or significant abnormal values. Data 
standardization adopts the Z-score method to normalize feature data. The dimension reduction process extracts 
the most representative features through PCA. Finally, the dataset is divided into training set (70%), verification 
set (15%), and test set (15%) to ensure that the training and evaluation of the model are representative. The 
dataset is downloaded through the National Population Health Science Data Center (https://www.ncmi.cn/).

The health and growth database of children and adolescents in China is led by the China Center for Disease 
Control and Prevention (China CDC). This dataset covers the physical health and growth data of 15,000 children 
and adolescents nationwide, with a total of about 300,000 records. Data features include basic information (e.g., 
height, weight, age, and gender), physical fitness (e.g., muscle strength, flexibility, and cardiopulmonary function), 
and behavior and living habits (e.g., diet frequency, sleep duration, and daily exercise). In the data preprocessing, 
this study uses the Interquartile Range (IQR) method to detect and remove abnormal values that deviate from 
the normal range. At the same time, it fills a few missing values by nearest neighbor interpolation. Then, the 
RF algorithm is employed to select features, and the key features that have a significant impact on the model 
are screened out, and the category data are sampled to balance the category distribution. The multidimensional 
characteristics of this dataset can provide rich information support for this study. The dataset can be obtained 
from the official website of China CDC (https://www.chinacdc.cn/).

The National Health and Nutrition Inspection Survey (NHANES) dataset is provided by the US Centers 
for Disease Control and Prevention, which is an open dataset focusing on health and nutrition surveys. This 
study selects the data from 1999 to now, of which the annual sample size is about 10,000, and the total data 
volume is huge. Its characteristics encompass physical health information (e.g., height, weight, and body fat 
percentage), health indicators (e.g., heart rate, vital capacity, and blood test results), and behavioral data (e.g., 
exercise frequency and dietary intake type). In data preprocessing, the data formats of different years are unified 
and integrated, and the numerical features are standardized by the Min-Max normalization method. Moreover, 
interactive features are constructed based on the original features, and noise data are removed by low-pass 
filtering. The diversity and scale of NHANES datasets provide reliable reference data for the study. The dataset is 
obtained through the NHANES official website (https://www.cdc.gov/nchs/nhanes/).

The European Adolescent Health Survey dataset is provided by the EU Health Data Sharing Program, 
covering more than 20 European countries and containing the health and behavior records of about 12,000 
adolescents. The characteristics of this dataset include physical health data (height, weight, and BMI), physical 
activity records (weekly exercise time and exercise type), and mental health status (stress level and life 
satisfaction assessed by questionnaire). In the data preprocessing, this study codes and cleans up the abnormal 
values in the questionnaire records, and uses multiple interpolations to deal with the missing data. Then, the 
dimension of the data is reduced by factor analysis to reduce redundant information, and the feature dimension 
is unified for clustering and classification analysis. This dataset’s international perspective and multidimensional 
characteristics provide important supplementary data support for this study. Datasets are available through 
Eurostat (https://ec.europa.eu/eurostat).

In the experiment, the processor is Intel Core i9-12900 K, and the memory is Corsair Vengeance 64 GB 
DDR 5 4800 MHz. The graphics card is NVIDIA GeForce RTX 3090, and the hard disk is Samsung 980 Pro 
NVMe 1 TB SSD. The version of the operating system is Ubuntu 22.04 LTS 64-bit. The programming language 
version is Python 3.10, the deep learning framework version is TensorFlow 2.10, and the SOM library version 
is MiniSom 2.2.9. The mesh size of the optimized model is 30 × 30, the initial learning rate is 0.5, then gradually 
decays to 0.01, and the initial radius of the neighborhood radius is 5. With the training, it gradually shrinks to 1, 
the number of training iterations is 1000, and the distance metric is Euclidean distance. The contrast models of 
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the experiment are T-distributed stochastic neighbor embedding (T-SNE), density peak clustering (DPC), and 
deep embedded clustering (DEC).

Performance evaluation
Comparative analysis of model performance
The comparison indicators selected in the performance comparison experiment are accuracy, precision, recall, 
F1 score, area under the receiver operating characteristic curve (AUC-ROC), and model training time. Firstly, 
the public dataset provided by the National Population Health Science Data Center is selected. The experimental 
data are indicated in (Fig. 2):

Figure  2 illustrates that in the proposed optimized model, the accuracy is 0.934 for strength, 0.851 for 
flexibility, and 0.863 for endurance, respectively, showing that the classification effect is superior to other models 
in all variables. In contrast, the DEC model’s accuracy is also excellent, especially in the strength dimension of 
0.917. The DPC model’s flexibility is less than 0.799, and the T-SNE model’s strength is 0.876. The proposed 
model has the best precision in the strength dimension, which is 0.844, while the flexibility and endurance are 
0.782 and 0.787 respectively, which has obvious advantages compared with other models. The precision of DEC 
in strength is 0.827, while the flexibility of T-SNE is weak, only 0.714. The proposed optimized model’s recall is 
still ahead in strength, flexibility, and endurance, which are 0.881, 0.803, and 0.809. The recall of DEC is also close 
to the optimized model, especially 0.865 in the strength dimension, and 0.749 in the flexibility of DPC, which 
is slightly lower than the optimized model. The F1 score of strength dimension, flexibility, and endurance of the 
optimized model are 0.862, 0.797, and 0.798, all of which are at the highest level. The DEC model has a score of 
0.846 in F1 in the strength dimension, while T-SNE scores 0.722 in the flexibility dimension. The AUC-ROC 
reveals that the AUC values of the optimized model in strength, flexibility, and endurance are 0.944, 0.859, and 
0.875, respectively, which shows a high classification ability. The AUC of the DEC model is 0.927 in the strength 
dimension, and the flexibility of DPC is 0.812, slightly lower than that of the optimized model. Finally, in the 
training time, the performance of the optimized model is significantly better than other models, with a training 
time of 6.729 s in the strength dimension, followed by 7.663 s in the DEC model. The training time of T-SNE and 
DPC is longer. Especially, the training time of the DPC model is 10.123 s in the endurance dimension. To further 
verify the performance of the optimized model on different datasets, this study selects four indicators: mean 
squared error (MSE), silhouette coefficient, model reasoning time, and classification balance. The experimental 
results are presented in (Fig. 3):

The results in Fig. 3 show that, in the MSE comparison, the optimized model performs best on the database of 
children and adolescents’ health and growth in China, with an MSE of 0.742, while the MSE of T-SNE and DPC 
models are 0.456 and 0.382. On NHANES and European adolescent health survey datasets, the optimized model 
reaches 0.765 and 0.753 respectively, significantly exceeding other models. In comparing silhouette coefficients, 
the optimized model performs best on the China dataset, with 0.552, while the DPC model is only 0.294. On 
the NHANES dataset, the optimized model reaches 0.575, which is better than DEC’s 0.389. The silhouette 
coefficient of the European dataset is 0.563, which continues to lead. The reasoning time of the optimized model 
is the lowest, and the China dataset is 0.293 s. In contrast, the reasoning time of DEC and T-SNE is 0.584 and 
0.745 s, respectively. On NHANES and European datasets, the time to optimize the model is still the shortest, 
at 0.312 and 0.305  s, respectively. In the classification balance, the performance of the optimized model on 
the three datasets significantly outperforms other models. It reaches 0.718 on the China dataset, much higher 
than T-SNE’s 0.423 and DPC’s 0.381. The performance on NHANES and European datasets is 0.732 and 0.724 
respectively, which is better than all other models.

Sensitivity analysis
To study the parameters of the model, the experiment also set up sensitivity analysis, and the experimental 
objectives are as follows: 

	(1)	� The impact of two core parameters, grid size, and learning rate, on the performance of the optimized model, 
is evaluated.

	(2)	� It is necessary to verify whether the parameter changes significantly affect the classification performance, 
clustering effect, and operating efficiency.

	(3)	� The best parameter configuration is found through sensitivity analysis to ensure a balance between model 
performance and efficiency.

The experimental grid size is set to 5 × 5, 10 × 10, 15 × 15 and 20 × 20 to evaluate the impact of mapping resolution 
of the SOM neural network. The learning rate is set to 0.01, 0.03, 0.05, 0.07, and 0.10, and the influence of the 
learning rate on the convergence speed and classification performance of the model is tested. The experiment 
uses the China database of children and adolescents’ health and growth. Each group of parameters is repeated 10 
times to reduce the interference of randomness on the results. The experimental results of grid size are outlined 
in (Table 2):

In Table 2, with the increase of the grid size from 5 × 5 to 20 × 20, the performance indicator of the model has 
changed. Regarding accuracy and F1 score, the grid size reaches the highest value of 0.88 and 0.87 respectively 
when it is 15 × 15. However, it drops slightly when it is 20 × 20, indicating that the mapping accuracy may 
decrease if the grid size is too large. As grid size increases, the training time increases significantly, from 10.23 s 
to 25.34 s, illustrating that higher resolution brought about an increase in computational cost. In terms of the 
silhouette coefficient, the peak value is 0.58 when the grid size is 15 × 15, which indicates that the clustering effect 
is the best under this configuration. The experimental results of the learning rate are shown in (Table 3):
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The results in Table 3 indicate that when the learning rate is 0.07, the accuracy and F1 score reach the highest 
values of 0.88 and 0.87, respectively, but too high learning rate (such as 0.1) leads to a slight decline in the 
model performance. In terms of training time, when the learning rate is high, the model converges faster, from 
18.12 s of 0.01 to 15.67 s of 0.1, which shows the influence of the learning rate on calculation efficiency. When 
the learning rate is 0.07, the silhouette coefficient reaches the highest value of 0.57, suggesting that a moderate 
learning rate can better balance the convergence speed and clustering effect.

Fig. 2.  Performance comparison experiment ((a): Accuracy; (b): Precision; (c): Recall; (d): F1 Score; (e): AUC-
ROC; (f): Training time).
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Cluster analysis experiment
The study also sets up a cluster analysis experiment to further analyze the model’s validity. The comparison 
indicators are silhouette coefficient, intra-class distance, inter-class distance, weighted average contour score, 
class distribution uniformity, and cluster number selection. The experimental results are suggested in (Fig. 4):

The results of Fig. 4 show that the proposed optimized model performs best in the silhouette coefficient, 
with the scores of strengths, flexibility, and endurance of 0.655, 0.559, and 0.601 respectively, indicating that the 
clustering effect is significantly improved. In contrast, the silhouette coefficient of the DEC model in the strength 

Grid Size Accuracy F1-Score Training time (s) Silhouette coefficient

5 0.81 0.79 10.23 0.45

10 0.85 0.84 14.67 0.52

15 0.88 0.87 19.45 0.58

20 0.86 0.85 25.34 0.55

Table 2.  Sensitivity analysis results of grid size.

 

Fig. 3.  Performance comparison under different datasets ((a): MSE; (b): Silhouette coefficient; (c): Reasoning 
time; (d): Class balance ratio).
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dimension is 0.632, while the score of T-SNE in flexibility is low, only 0.481. In terms of intra-class distance, the 
performance of the optimized model is also superior, and the intra-class distances of strength, flexibility, and 
endurance are 3.201, 3.824, and 3.511 respectively. The DEC model’s intra-class distance reaches 3.312 in the 
strength dimension, which is slightly higher than that of the optimized model, and the flexibility of T-SNE is 
the worst, at 4.212. For the inter-class distance, the optimized model has the highest value in each dimension, 
and the inter-class distances of strength, flexibility, and endurance are 6.821, 6.012, and 6.421 respectively. The 
inter-class distance of DEC in the strength dimension is close to the optimized model, reaching 6.679, and that 
of DPC in flexibility is 5.671. The weighted average contour score also shows the leading performance of the 
optimized model, with a strength dimension of 0.629, flexibility of 0.542, and endurance of 0.584, which are 
higher than other models. DEC scored 0.603 in strength dimension, while T-SNE scored only 0.463 in flexibility. 
In the uniformity of category distribution, the uniformity scores of strengths, flexibility, and endurance of the 
optimized model are 0.859, 0.789, and 0.827, respectively, showing a relatively balanced distribution. The score 
of DEC in the strength dimension is 0.834, while the flexibility of T-SNE is 0.722. For the number selection of 
clusters, the optimized model selects 9 clusters in the strength dimension, with a flexibility of 7 and endurance of 
8, all of which are more than other models. DEC chose 8 clusters in the strength dimension, while T-SNE chose 
fewer clusters in the flexibility and endurance dimensions.

Discussion
From the results of performance comparison experiments, the proposed optimized model performs well in many 
indicators, especially in the three dimensions of strength, flexibility, and endurance, which show high accuracy 
and stability. This reveals that the optimized model has obvious advantages in data dimensionality reduction 
and clustering effect while showing stronger robustness in classification performance. Although the DEC model 
is close to the optimized model in some indicators, its overall performance is slightly inferior, particularly 
in the flexibility and endurance dimensions, and its performance has not been fully surpassed. However, the 
performance of T-SNE and DPC models is insufficient, especially in training time and accuracy. This reflects 
that the traditional dimensionality reduction and clustering methods may have some limitations in effect and 
efficiency when handling complex health data. The advantage of the optimized model in training time is also 
very significant, especially when dealing with high-dimensional data, the training speed is remarkably faster 
than other models through reasonable parameter setting and optimization. This characteristic makes it have 
higher practical application value when processing large-scale data. At the same time, the comparison results of 
different datasets further verify the excellent performance of the optimized model in terms of MSE, silhouette 
coefficient, and classification balance. Among them, the performance of the optimized model in classification 
accuracy and balance exhibits its ability to solve the problem of uneven distribution of categories in health data 
analysis. In addition, in the efficiency indicator of reasoning time, the rapid response of the optimized model 
improves its practicability and provides feasibility for real-time analysis of health data.

From the results of cluster analysis experiments, the optimized model is outstanding in key indicators such 
as intra-class distance, silhouette coefficient, and inter-class distance. This shows that the model can effectively 
identify the differences between different categories. Meanwhile, it ensures the compactness of intra-class data 
and the separation of inter-class data, which reflects the strong clustering effect. Especially in the inter-class 
distance and the weighted average contour score, the numerical value of the optimized model is higher than 
other models, illustrating that it can distinguish different clustering categories more effectively. In contrast, the 
DEC model is close to the optimized model in silhouette coefficient and intra-class distance. However, it is 
insufficient in terms of inter-class distance and weighted contour score, especially in flexibility and endurance. 
However, the performance of T-SNE and DPC models lags the optimized model in many dimensions, especially 
in the intra-class distance and the balance of class distribution, and the effect of T-SNE is weak. In addition, 
the optimized model shows higher flexibility and adaptability in selecting cluster numbers, which can choose 
reasonable cluster numbers according to data characteristics and ensure the classification appropriateness of 
data with different dimensions. Generally speaking, the proposed optimized model has remarkable advantages 
in the clustering effect. It can effectively meet the analysis needs of high-dimensional and complex health data, 
and provide a scientific and efficient solution for evaluating children’s physical fitness.

Conclusion
Research contribution
This study innovatively combines SOM neural networks with cluster analysis techniques to construct a model 
for evaluating children’s physical fitness. Unlike traditional linear statistical analyses and unidimensional 
evaluation methods, this model effectively handles high-dimensional, complex data through the nonlinear 
dimensionality reduction capability of SOM. Concurrently, it utilizes optimized cluster analysis techniques 

Grid Size Accuracy F1 score Training time (s) Silhouette coefficient

0.01 0.82 0.81 18.12 0.47

0.03 0.84 0.83 17.45 0.5

0.05 0.87 0.86 16.78 0.56

0.07 0.88 0.87 16.12 0.57

0.1 0.86 0.84 15.67 0.54

Table 3.  Sensitivity analysis results of learning rate.
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for fine-grained classification of children’s physical fitness. This approach breaks through the limitations 
of traditional methods in both dimensionality reduction and clustering. Thus, it significantly enhances the 
model’s adaptability and robustness when processing children’s health data with nonlinear and heterogeneous 
characteristics. Furthermore, the optimization of the SOM neural network algorithm markedly improves 
clustering performance, as reflected in key indicators such as silhouette score, intra-cluster distance, and inter-
cluster distance. The optimized model demonstrates higher clustering accuracy and data interpretability in three 

Fig. 4.  Cluster analysis experiment ((a): Silhouette coefficient; (b): Intra-class distance; (c): Inter-class distance; 
(d): Weighted average contour score; (e): Uniformity of class distribution; (f): Number of clusters selection).
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core dimensions—strength, flexibility, and endurance—providing more precise data support for subsequent 
health interventions. Additionally, this study proposes a children’s physical fitness evaluation framework based 
on the three key dimensions of flexibility, strength, and endurance. It overcomes the limitations of traditional 
single-indicator evaluations and constructing a more comprehensive, dynamic evaluation system. This system 
helps parents and educators more intuitively and accurately understand the physical fitness status of children, 
providing a scientific basis for developing personalized health education and intervention strategies.

In conclusion, the optimized model proposed in this study holds significant importance in terms of technical 
innovation, application breadth, and practical value. It offers a scientific tool for evaluating children’s physical 
fitness and opens up new directions and methodological support for the research on health education and 
intervention systems.

Future works and research limitations
Firstly, the dataset used in this study mainly comes from a specific regional group of children, which introduces 
certain limitations regarding the regional applicability of the research findings. Children in different regions may 
exhibit significant differences in physical fitness development, influenced by various factors such as geography, 
socioeconomic background, and cultural environment. As a result, the model’s cross-regional applicability 
and generalizability may be restricted. Secondly, although the combination of the SOM neural network and 
cluster analysis has been optimized in this study, the complexity of the model may incur high computational 
costs in practical applications. In particular, when dealing with large-scale datasets, the time and computational 
resources required for model training increase significantly, posing challenges for resource-limited application 
scenarios, such as real-time health monitoring systems in schools and communities. Additionally, the physical 
fitness evaluation in this study primarily focuses on three core dimensions—strength, flexibility, and endurance. 
While these three indicators are essential components of children’s physical fitness, they do not fully encompass 
all relevant factors in children’s health assessment. For example, factors such as mental health, nutritional status, 
and lifestyle habits also remarkably influence children’s physical fitness development. However, these variables 
have not been included in the evaluation framework, which may lead to some incompleteness in the model’s 
evaluation results.

Future research could focus on several directions to enhance the model’s performance and practical 
application value. Firstly, future studies aim to collect a larger, more diverse dataset of children’s physical 
fitness, covering different regions, socioeconomic backgrounds, and cultural factors to ensure the data’s 
representativeness and generalizability. This helps improve the model’s ability to generalize and apply across 
different contexts, particularly through cross-cultural and cross-regional validation of the model’s effectiveness 
and robustness. It also explores the commonalities and differences in children’s physical fitness across diverse 
environments. Secondly, to address the computational challenges in large-scale data processing, future research 
could optimize the model structure and explore more efficient algorithms and parameter optimization methods 
to reduce computational costs and improve analysis speed. Additionally, distributed computing techniques or 
cloud computing resources may be introduced to enable distributed data processing and task parallelization, 
significantly enhancing the model’s operational efficiency and scalability, especially in large-scale health 
data analysis scenarios. Furthermore, future studies could explore integrating the model with real-time data 
acquisition technologies, such as wearable devices and health monitoring sensors, to enable dynamic monitoring 
and continuous analysis of children’s physical fitness. This transitions the model from offline analysis to real-time 
evaluation, further enhancing its practicality in health interventions and personalized recommendations. Lastly, 
future research could concentrate on the interaction between health data and psychological and environmental 
factors, building a more comprehensive children’s health evaluation framework. By integrating multimodal data 
(such as physical fitness, mental state, nutritional intake, and environmental variables), the mechanisms by 
which multiple factors influence children’s health should be explored. This can provide scientific support for the 
development of more accurate health interventions.

In conclusion, future research could delve into areas such as data scale, computational efficiency, real-
time monitoring, and multimodal data integration. This it can construct a more forward-looking, practical, 
and comprehensive children’s physical fitness evaluation system, offering strong support for children’s health 
development.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author Lili 
Wang on reasonable request via e-mail 201461019@ecut.edu.cn.
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