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Integrated single cell and bulk RNA
sequencing analyses reveal the
impact of tryptophan metabolism
on prognosis and immunotherapy
In colon cancer

Yanyan Hu'?, Ximo Xu'?, Hao Zhong'?, Chengshen Ding?, Sen zhang?, Wei Qin?,
Enkui Zhang?, Duohuo Shu?, Menggqin Yu?, Naijipu Abuduaini?, Xiao Yang'**, Bo Feng*™ &
Jianwen Li*™

Tryptophan metabolism is intricately associated with the progression of colon cancer. This research
endeavored to meticulously analyze tryptophan metabolic characteristics in colon cancer and
forecast immunotherapy responses. This study analyzed colon cancer samples from a training

cohort of 473 tumors and 41 normal tissues from TCGA, with validation in 902 cancer patients

across multiple GEO datasets. Patients were stratified into subtypes through consistent clustering,
and a tryptophan metabolic risk score model was constructed using the random forest algorithm.
Based on these risk scores, patients were delineated into high and low-risk groups, and their
clinicopathologic characteristics, immune cell infiltration, immune checkpoint expression, and
signaling pathway disparities were examined. The Oncopredict algorithm facilitated the identification
of sensitive chemotherapeutic agents, while the immune escape score was employed to evaluate the
immunotherapy response across risk groups. Transcriptomic sequencing findings were corroborated
by single-cell sequencing from Shanghai Ruijin Hospital. Two distinct subtypes of colon cancer
patients emerged, exhibiting significant prognostic and immune cell infiltration differences. The
high-risk group demonstrated a poorer prognosis (p <0.001), advanced clinical stage (p <0.001), and
elevated immunosuppressive cell expression (p <0.05). Additionally, three chemotherapeutic drugs
showed efficacy in the high-risk cohort, displaying a heightened immune escape potential (p<0.05)
and diminished response to immunotherapy. Single-cell sequencing validated the overexpression

of tryptophan-related genes in epithelial cells. In conclusion, tryptophan metabolism significantly
influences the colon cancer immune microenvironment, with high-risk patients experiencing adverse
prognoses and potentially reduced efficacy of immunotherapy.
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COAD Colon adenocarcinoma

TMGs Tryptophan metabolic related genes
RF Random Forest
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scRNA-seq  Single cell RNA sequencing
Bulk-seq Bulk sequencing

TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
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GDSC Genomics of Drug Sensitivity in Cancer

MSigDB The Molecular Signatures Database

R R language

NKAIN4 Sodium/Potassium Transporting ATPase Interacting Protein4
TNNT1 Troponin T Type 1

PCOLCE2 Procollagen C-Endopeptidase Enhancer 2
SLC16A8 Recombinant Solute Carrier Family 16, Member 8

UPK3B Human uroplakin 3b

timeROC Time Receiver Operating Characteristic Curve
AUC Area Under Curve

PCA Principal Component Analysis

C-index Concordance index

RMS Restricted Mean Survival

TMB Tumor mutational burden

MSI Microsatellite instability

CNV Copy number variations

TME Tumor microenvironment

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
GSEA Gene Set Enrichment Analysis

GSVA Gene set variation analysis

TIDE Tumor Immune Dysfunction and Exclusion
ICB Immune checkpoint blockade

TISCH Tumor Immune Single-cell Hub

scTIME Single-Cell Analysis of the Immune Microenvironment
CDF Cumulative Distribution Function

KM Kaplan-Meier

T Tumor

N Node

M Metastasis

HR Hazard Rate

PD1 Programmed cell death protein 1

PDL1 Programmed cell death 1 ligand 1

CTLA4 Cytotoxic T-lymphocyte associated protein 4
Treg Regulatory T cells

CAF Cancer-Associated Fibroblasts

TME Tumor Microenvironment

Metabolic reprogramming stands as a pivotal hallmark of cancer, where tumor cells adeptly alter their
metabolic pathways to meet energy and biosynthetic demands, evading immune surveillance and therapeutic
interventions!?. While amino acid metabolism plays an important role in supporting tumor growth, recent
research has identified tryptophan metabolism as particularly relevant to cancer progression and immune
modulation®?. Alterations in tryptophan pathways have been linked to diverse tumor behaviors and immune
responses, drawing significant attention to its specific impact in cancers such as colon cancer (CC)>~.

Numerous investigations have unveiled the intricate involvement of tryptophan metabolic reprogramming
within cancer milieu. In melanoma, activation of the kynurenine pathway orchestrated tumor progression and
metastasis by modulating tumor microenvironment (TME) and enkindling angiogenesis®. In breast cancer, the
overload of the serotonin pathway was believed to be associated with resistance to tamoxifen therapy’. In CC,
metabolites of tryptophan acted as a driving factor in the progression of inflammatory bowel disease into CC°.
Despite the above evidence, the comprehensive landscape of tryptophan metabolism in human CC remained
vague!'"12. Major gaps in current research include the need to clarify how tryptophan metabolism affects CC
patient prognosis, immune microenvironment dynamics, and therapeutic response'®. Unraveling these complex
patterns could deepen our understanding of cancer biology and inspire new therapeutic innovations'.

This study aims to comprehensively examine the expression profiles of tryptophan metabolism-related genes
(TMGs) in CC at both bulk and single-cell levels to elucidate their potential oncogenic roles. By developing
a predictive model based on TMG expression patterns, we sought to stratify patients into high- and low-risk
groups, providing insights into prognosis and immune microenvironment characteristics. Furthermore, we
aimed to identify targeted therapeutic options by screening potential drugs against key genes in high-risk
samples, thereby contributing to the exploration of alternative therapeutic strategies for improved clinical
outcomes in CC.

Materials and methods

Data source and processing

Transcriptome and clinical data were obtained from the Cancer Genome Atlas (TCGA) (https://cancergeno
me.nih.gov/) and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases'>!6. Raw
transcriptomic data from TCGA were processed using the R package TCGAbiolinks to download, normalize,
and perform batch effect correction. GEO datasets were retrieved in their raw format and normalized using
the limma package to ensure consistency across studies. The training cohort included 473 CC Samples and
41 normal tissues from TCGA-COAD. Validation encompassed 902 colorectal cancer (CRC) patients from
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GSE38832 (n=122), GSE103479 (n=156), GSE39582 (n=585), GSE19862 (n=14) and GSE107797 (n=25).
Tumor Immune Dysfunction and Exclusion (TIDE) database offered data on immune escape scores, while
single-cell validation used GSE146771 (n=20), GSE179784 (n=4), and EMTAB8107 (n=7) from Tumor
Immune Single-cell Hub (TISCH) database!”!®. For single-cell sequencing validation, tumor tissue samples
(n=4) were gathered with written informed consent obtained from all subjects involved in the study. Ethical
approval was secured from the Ethics Committee of Ruijin Hospital before sample collection. All experimental
methods were performed in accordance with institutional and international ethical guidelines and regulations,
as approved by the institutional ethics committee.

Subtypes analysis of cancer samples based on TMGs

We selected 40 genes associated with tryptophan metabolism from the MSigDB and Reactome databases, as these
genes represent key components of tryptophan-related signaling pathways that have been implicated in cancer
progression and immune modulation. Consensus clustering was performed using the “ConsensusClusterPlus”
R package, chosen for its capacity to generate robust clusters by resampling and aggregating multiple clustering
results. This technique is particularly valuable in cancer research as it improves the stability of identified
subtypes, reducing variability often encountered in single clustering approaches'®. 446 CC patients in the TCGA
cohort were divided into two distinct clusters by the "Consensus Cluster +" R package. The survival prognosis
of these clusters was analyzed using the “survival” R package. Principal component analysis (PCA) was utilized
to visualize the clustered patients and assess the distinguishability of different subgroups. Two clusters were
identified: Cluster 1, characterized by higher expression of genes involved in immune suppression pathways,
and Cluster 2, associated with immune-active profiles, indicating distinct immunological landscapes within CC
patients.

Construction and validation of a risk score model based on tryptophan metabolism

To construct a prognostic score based on tryptophan metabolism genes, differential analysis was performed
on two tryptophan metabolism clusters. 873 differentially expressed genes were selected and among them, 16
genes were associated with survival. Random Forest (RF) and Support Vector Machine (SVM) machine learning
algorithms were compared, with RF demonstrating strong diagnostic ability and stability?*-22. Cox regression
analysis identified five signature genes for the risk model: NKAIN4 (Na+ /K + Transporting ATPase Interacting
4), TNNT1 (Troponin T Type 1), PCOLCE2 (Procollagen C-Endopeptidase Enhancer 2), SLC16A8 (Solute
Carrier Family 16 Member 8), and UPK3B (Uroplakin 3B). The risk score integrated gene expression and the
Cox regression coefficient. Median risk score split patients into high- and low-risk groups. Survival analysis
and time-dependent receiver operating characteristic (timeROC) curves affirmed the model’s significance and
precision. Hazard distribution curves and PCA showcased group differences?*. The tryptophan metabolic risk
score model was validated in both the TCGA-COAD internal training cohort and the external validation cohort
including GSE38332, GSE103479, and GSE39582.

Correlation of the tryptophan metabolism risk score model with clinicopathological features
To assess the applicability of the tryptophan metabolic risk score model, survival analysis was conducted
across various clinicopathological subgroups (T stage, N stage, M stage, and Pathological Stage). The model’s
performance was compared with other scoring models using metrics such as the concordance index (C-index)
and Restricted Mean Survival (RMS). Moreover, a comparison was made between the model and previous
studies by Hong??, Wang?®, AHI?, and Du?” to ascertain its superiority. Additionally, the scoring model was
validated at the pan-cancer level using the GEPIA2 website.

Association of the tryptophan metabolic risk score model with immune cell infiltration and
related functions

The connection between risk scores and immune cell infiltration, as well as immune-related functions
was investigated. The composition of 22 immune cell types in each tumor sample was quantified using the
CIBERSORT algorithm?®. The differences in immune cell infiltration between high-risk and low-risk groups
were then analyzed. Moreover, the correlation between the scoring model and immune cell infiltration was
explored.

Correlation of the tryptophan metabolic risk score model with the tumor microenvironment
and immune checkpoints

In the TME, immune-infiltrating cells, stromal cells, and tumor cells all contribute to tumor progression and
drug resistance. Immune infiltration was analyzed using the “estimate” package?’, including Immune score,
Stromal score, Tumor purity, and Estimate score. The expression of immune checkpoints (PD1, PDL1, CTLA4)
in high-risk and low-risk patient groups was examined, and their correlation with the risk score model was
explored.

Enrichment analysis and biological function annotation

To compare gene sets between high-risk and low-risk groups, Gene Set Enrichment Analysis (GSEA) was
conducted using the gsea R package®. Pathways with an adjusted P value<0.05 were considered significantly
enriched. Furthermore, Gene set variation analysis (GSVA) based on Hallmark gene sets was performed to
assess the biological process status in the high-risk and low-risk groups®..
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Screening of chemosensitive drugs

The “OncoPredict” R package was used to assess the sensitivity of different groups to various chemotherapy
drugs®2. By analyzing these differences, appropriate chemotherapy drugs for different patients were identified.
Moreover, this approach serves to validate the clinical significance of the risk-scoring model.

Guiding significance of the tryptophan metabolism risk score model forimmunotherapy
TIDE is a robust algorithm designed to assess tumor immune escape capacity, thereby predicting the efficacy of
immune checkpoint blockade (ICB) therapy. A high TIDE score signifies a diminished response to ICB, whereas
a low TIDE score suggests a favorable response®*4. The TIDE database was utilized to scrutinize the variations
in tumor immunotherapy responses across different tryptophan metabolism subgroups.

Validation of the heterogeneity of tryptophan metabolism in cancer at the single-cell level
Gene heterogeneity in the tryptophan metabolism pathway across different immune cell types in CC was
investigated using the Tumor Immune Single-cell Hub (TISCH)'. The expression of risk model signature
genes in epithelial cells was also examined using the single-cell tumor immune Microenvironment (scTIME)
database®. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on four CRC samples.
“Seurat” R package aided data preprocessing and dimensionality reduction. Cell clusters were identified with
t-distributed stochastic neighbor embedding (t-SNE), and “SingleR” R package used CellMarker as a reference
for cell annotation®®.“AUCell” R package gauged tryptophan metabolism gene activity. Interactions between
epithelial cells and neighboring cells were studied with the “nichenetr” R package for ligand-receptor analysis,
involving genes present in > 10% of cell clusters®” .

Statistical analysis

Data preprocessing and statistical analyses were conducted utilizing R software version 4.2.2. For continuous
variables, the Wilcoxon rank-sum test was employed, while categorical variables were analyzed using the chi-
square test. Statistical significance was determined with a two-tailed P value ofless than 0.05. Heatmaps depicting
eigengene expression were constructed using the ggplot2 package. Correlation analyses were performed
employing the Pearson correlation coefficient. Survival analyses were visualized through Kaplan-Meier curves
and assessed using the log-rank test.

Results

Genomic and transcriptomics changes of TMGs in CC

Forty tryptophan metabolism genes (TMGs) were collected from MSigDB and Reactome. We first assessed
their changes at the genetic level in TCGA-COAD. As shown in the waterfall diagram (Fig. 1A), 123 out of
447 samples showed changes in tryptophan metabolism regulatory genes, among which the most common
type of mutation was missense mutation, followed by nonsense mutation. The most commonly mutated genes
were OGDH and OGDHL. Next, we investigated the CNV frequency mutations of TMGs. IDO1 and AFMID
had a wide amplification in copy number. On the contrary, AADAT and IDO2 were focused on the prevalent
CNV deletions (Fig. 1B). The location of CNV alterations of TMGs on chromosomes was demonstrated in
Fig. 1C. Moreover, we explored differences in tryptophan metabolism genes at the transcriptome level, with
20 genes showing significantly different levels between tumor and normal samples (p <0.001) (Fig. 1D). The
activity of tryptophan metabolism genes also varied among different immune cell subsets. Consistent with the
previous results, tryptophan metabolism genes were most significantly up-regulated in malignant cells, followed
by fibroblasts (Fig.S1). These results indicated that TMGs had a large number of mutations and transcription
differences in CC, suggesting that TMGs played an important role in the occurrence and development of CC.

Construction and verification of tryptophan metabolism risk score model

To gain a comprehensive view of the clinical significance of TMGs in CC, we performed a clustering analysis
based on TMGs from TCGA-COAD. As shown, CC patients could be classified into two groups with distinct
clinical heterogeneity and prognosis (Fig. 2A-C). Cluster2 patients had a worse prognosis than clusterl patients
(Fig. 2C). The results demonstrated that two different patterns did exist in CC. We found that patients with
relatively advanced N stages were probably represented by cluster 2 (Fig. S7A). 16 survival-related genes were
identified by univariate Cox regression analysis(Fig. S7B), and genes with importance scores greater than 10 were
selected to construct the model (Fig. 2D-F). Five characteristic genes (NKAIN4, SLC16A8, UPK3B, PCOLCE2,
TNNT1) were finally selected (Fig. 2F).

Next, we conducted validation across diverse cohorts employing the TMGs model. We stratified CC
patients into high-risk and low-risk categories based on TMGs expression, revealing a substantial disparity in
prognosis between the two cohorts. Within the TCGA dataset, patients with elevated risk scores experienced
markedly inferior outcomes compared to those with lower risk scores (P <0.001) (Fig. 3A). The model exhibited
commendable discriminative ability, with high AUC values, effectively predicting survival rates at 1, 3, and
5 years (0.706, 0.703, and 0.689, respectively) (Fig. 3B). Notably, individuals classified in the high-risk group
exhibited a heightened likelihood of mortality (Fig. 3C-D). Additionally, PCA and 3-dimensional PCA analyses
exhibited a clear demarcation between the high and low-risk groups (Fig. 3E-F).

We then scrutinized the association with advanced clinical features and the score model. The correlations
between the five characteristic genes of TMGs and clinical features were established (Fig. S2A). Elevated
TMGs scores were notably prevalent among Cluster2 patients (P <0.001), T4 patients (P <0.001), N2 patients
(P<0.001), M1 patients (P=0.018), and stage IV patients (P=0.012) (Fig. S2B-F). These findings indicate a
positive correlation between TMGs score and aggressive tumor behavior. Moreover, a comparative evaluation
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Fig. 1. Genetic and transcriptional alterations of tryptophan metabolism genes in colon cancer. (A) Frequency
and type of mutations in tryptophan metabolism. (B) CNV mutations are widely found in the genes with
tryptophan metabolism including gain or loss. (C) CNV alteration on chromosome of tryptophan metabolism
from 1 to 22. (D) The mRNA expression levels of tryptophan metabolism genes in carcinoma and adjacent
tissues in TCGA. CNV,Copy Number Variation.* p <0.05, * p<0.01 and *** p <0.001.

between the TMGs model and four other CC scoring models confirmed the superior performance of our
model, evidenced by a C-index value of 0.679 and HR=1.315 (95% CI: 1.226-1.411, p<0.001) (Fig. S3A-B).
Furthermore, results from the external cohort GSE38322 (Fig. 3G-L), GSE39582, GSE103479, GSE107797 (Fig.
S4A-F) , and the pan-cancer cohort (Fig. S5A-I) also validated the predictive power of our model.

Patients with different tryptophan metabolism risk scores have different signaling pathways
and chemosensitivity drugs

To further investigate TMGs-related signaling pathways and biological functions, we performed Gene Set
Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). Cancer-promoting pathways and
metabolic pathways were mainly concentrated in patients with high-risk scores, including WNT, Jak, Nod, and
TGE, as well as B-alanine, and tryptophan metabolism (Fig. 4A,S8A). Immunoactivated pathways were enriched
in patients with low-risk scores, including oxidative phosphorylation, peroxisome, ribosome function, and
systemic lupus erythematosus (Fig. 4A,S8B). This is consistent with the results of higher expression of inhibitory
immune cell infiltration in high-risk patients.

We extended our investigation to evaluate whether tryptophan metabolism similarly impacts
chemotherapeutic responsiveness in CC patients. To this end, we employed the oncoPredict algorithm to predict
the chemosensitivity of 198 therapeutic agents, determining their half-maximal inhibitory concentration (IC50)
values and subsequently comparing these values between the high-risk and low-risk cohorts. Within the high-
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Fig. 2. Identification of tryptophan metabolic typing and scoring model construction in colon cancer. (A)
When K =2, the component difference is obvious. (B) PCA analysis of the transcriptomic profiles of the

two subtypes. (C) The difference of survival prognosis between the two subtypes was significant. (D) The

RF algorithm is more stable than the SVM because of having lower residual values. (E) The random forest
algorithm was used to select genes with an importance score greater than 10. (F) The forest plot shows the HR
values and risk coefficient of risk score characteristic genes. PCA,Principal Component Analysis; RFERandom
Forest; SVM, Support Vector Machine; HR; Hazard Ratio. * p <0.05, ** p<0.01 and *** p <0.001.

risk group, patients demonstrated heightened sensitivity to three specific drugs, namely Erlotinib (Fig. 4B),
Gefitinib (Fig. 4C), and SB505124 (Fig. 4D). Evidently, individuals classified within the high-risk category
displayed pronounced sensitivity to these three chemotherapy agents. The potential clinical implications of
these findings are substantial, particularly for treating refractory tumors and advancing the development and
translation of targeted novel therapeutics. Furthermore, these outcomes offer valuable insights for guiding
treatment stratification among CC patients.

TMGs regulate the immune microenvironment of CC

We further evaluated the effect of TMGs on the remodeling of TME of CC. Consistent with the oncogenic
role of TMGs, the expression levels of inhibitory immune cells, such as regulatory T cells, MO macrophages,
and neutrophils, were increased in patients with a high tryptophan metabolic score(Fig. 5A). Furthermore,
the expression levels of plasma cells and natural killer (NK) resting cells were significantly increased and the
differences were statistically significant compared with patients with low tryptophan metabolic score (p <0.05).
In addition, TMGs showed a significant positive correlation with cytotoxic lymphocytes and endothelial
cells (p<0.05) (Fig. 5B). Substantial disparities emerged in key parameters such as ImmuneScore (Fig. 5C),
StromalScore (Fig. 5D), Tumor purity (Fig. 5E), and ESTIMATE scores (Fig. 5F) between high and low-
risk patients within the TCGA-COAD cohort. These findings suggest the possibility of varied responses to
immunotherapy interventions based on distinct immune microenvironment characteristics.

Moreover, an investigation into immune checkpoint expression about high and low-risk cohorts demonstrated
elevated levels of PDCD1, CD274, and CTLA4 within the high-risk group (Fig. 5G). Correlation analysis further
revealed a positive association between the risk score and important immunotherapy-responsive markers such
as PDCD1, CD274, CTLA4, IDO1, and TDO2 (Fig. 5H). Consequently, these results indicate a potential benefit
of immune checkpoint inhibitors for high-risk individuals. To forecast the efficacy of immunotherapy, the TIDE
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score was utilized to evaluate response in the high-risk group, yielding a significantly elevated score compared
to the low-risk group (Fig. 5I). This suggests a heightened likelihood of immune escape and diminished
immunotherapeutic response within the high-risk cohort. Furthermore, the high-risk group exhibited elevated
levels of T-cell functional rejection and T-cell dysfunction relative to the low-risk group (Fig. 5J-K), also
consistent with our results.

Single-cell sequencing data verifying the signature genes of the TMGs model

Utilizing single-cell sequencing data (GSE146771, EMTAB8107), we investigated tryptophan metabolism gene
expression in diverse CC cell types. Employing dimensionality reduction and UMAP clustering analysis, we
identified three cell subpopulations: immune, stromal, and malignant cells (Fig. S6A-B, E-F). In GSE179784,
additional cell types including epithelial and dendritic cells were also annotated (Fig. S6I-]). Notably, TNNT1
and PCOLCE2 and UPK3B exhibited distinct expression within epithelial cells (Fig. S6C, G, K, D, H, L).
Expression of other feature genes were summarized in Fig. S6D, H, L.

To further verify our theory, four matched CRC and normal samples were subjected to single-cell sequencing
to achieve a high-resolution landscape of colorectal cancerous and normal tissue profiling. As shown, cells
could be annotated as 8 clusters including T cells, epithelial cells, B cells, natural killer cells, monocytes,
neutrophils, endothelial cells, and tumor stem cells(Fig. 6A-B). AUCell algorithm was then used to assess the
tryptophan metabolism activity and distinguished the whole cell population as high and low subgroups(Fig. 6C-
E). Consistent with the above results from bulk samples, AUC high and low groups differ in macrophages,
neutrophils, and endothelial cells (Fig. 6F). These results may partly explain the different responses of patients
in the TMGs-high and-low groups.

Moreover, cell-cell interaction was proved to be a key regulating factor of TME reprogramming and might play
a crucial role in immune suppressive TME formation. In this study, we extracted multiple ligand-receptor pairs
through the NicheNet algorithm. The results showed that there were was activated signaling of TNF, VEGFC and
EGFR from TMGs-high epithelial niches to endothelial cells (Fig. 7A-B), indicating hyperactivated angiogenesis
in tumor stromal tissues and a potential response to VEGF blockage. Moreover, TMGs-high epithelial cells also
released CXCL5, CXCL3, IL-1 to promote the infiltration of macrophages and neutrophils, which may also
serve the formation of an immune suppressive TME. In addition, there were significant differences in metabolic
pathways between the AUC_high group and the AUC_low group(Fig. 7C). Further molecular mechanisms were
to be investigated by sub-clustering and analysis in the future.

Discussion

Current research highlights a strong correlation between the dysregulation of tryptophan metabolism and
the onset of various cancers, including those of the esophagus, liver, and kidney38‘4°. However, the specific
mechanisms and molecular characteristics by which tryptophan metabolism influences CC remain largely
unexplored. In this study, we stratified CC patients into two distinct subgroups based on the expression profiles
of TMGs, each exhibiting unique molecular characteristics and clinical outcomes. The high-risk subgroup
was characterized by reduced survival times and a diminished likelihood of benefiting from immunotherapy.
Mechanistically, this subgroup displayed significant activation of metabolism-related pathways, including
B-alanine metabolism, tryptophan metabolism, ECM receptor interactions, and chemokine signaling.
Furthermore, immunosuppressive pathways such as TGF-, JAK-STAT, and Notch were markedly upregulated
in the high-risk group. Notably, $-alanine and tryptophan metabolism pathways have been associated with
cancer cell proliferation and metastasis, likely by promoting metabolic reprogramming and immune escape.
ECM receptor interactions and chemokine signaling pathways also play essential roles in CRC progression by
enhancing cell invasion and migration. The activation of these pathways was strongly associated with tumor
progression and poorer prognosis*! ™,

The TME comprises a complex network of blood vessels, immune cells, fibroblasts, inflammatory cells,
signaling molecules, and the extracellular matrix that encases tumor cells. Tumors influenced this environment
through signaling molecule release, angiogenesis, and immune tolerance*!. The intricate interplay between
tumors and their immune microenvironment significantly shaped tumor progression and influenced treatment
strategies®>. Based on the results of the KEYNOTE-177 clinical trial, ICB with or without typical chemotherapy,
achieving an objective response rate of 41%, has become the first line treatment for metastatic CRC*. In this
study, we also analyzed the different TME contexts between high and low subgroups. As expected, high-risk
cases were significantly enriched with immune-suppressive cells including Regulatory T cells(Treg), Cancer-
Associated Fibroblasts(CAF), and INFG, while low-risk cases possessed a more immune active TME, giving
us a hint that these two groups might have varied responses to immunotherapy. Therefore, we performed
preliminary validations in cohorts of cancer patients receiving adoptive T cell therapy or immune checkpoint
blockade therapy and finally found out that TMGs active patients were less likely to respond to immune therapy,
confirming that our model is a promising strategy to predict the survival and ICI therapeutic response. However,
as profiling data of CRC cohorts receiving ICI treatment is still lacking, our model needs to be tested in CRC
patients in the future.

To improve the treatment strategy of high-risk patients, we also screened possible effective drugs with the
oncoPredict algorithm. Results showed that these patients might respond to erlotinib, gefitinib, and SB505124.
Erlotinib and gefitinib are first and second-line therapies for non-small cell lung cancer, especially for lung
cancer with metastatic EGFR mutation positive?”+*. In addition, both drugs have been studied extensively in
other cancer fields. A phase III clinical trial (OPTIMOX3) showed that erlotinib combined with bevacizumab
improves progression-free survival (PFS) in unresectable metastatic bowel cancer. Moreover, it has been found
that gefitinib combined with cucurbitacin B inhibits the CRC cell cycle?. Furthermore, Clinical studies hint
at gefitinib’s potential as a supplement to CC treatment®’. SB505124 is a novel small-molecule drug that is an
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inhibitor of TGFpI receptors and is highly effective in cancer treatment. Studies have shown that SB505124
can reduce the expression of pro-angiogenesis genes in pancreatic cancer and inhibit angiogenesis in vivo®!

Other studies have shown that the combination of SB505124 and IL-12 can effectively enhance anti-melanoma
immunotherapy®2. In addition, SB505124 could encapsulated in a targeted peptide and enhance natural killer
(NK) cell anti-tumor activity for site-specific therapy®. In addition, the study of this drug in bowel cancer is also
worthy of our attention. SB-505124 has been reported to inhibit epithelial-mesenchymal transformation (EMT)
in CRC cells®*. These findings merit further exploration, holding promise for refined treatment approaches
in various cancers. This study’s strengths include the establishment of a prognostic model based on robust
machine learning algorithms and extensive validation across multiple external cohorts. However, the study has
limitations, including its retrospective nature and reliance on publicly available datasets, which may introduce
biases. Furthermore, the generalizability of the model needs to be validated in larger clinical cohorts.
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«Fig. 3. Validation of the risk score model in the TCGA and GEO independent cohorts. (A) Kaplan-Meier
curve of OS in TCGA high-risk and low-risk patients. (B) The time-dependent ROC curve for the TCGA
risk score. (C) The high-risk group of patients in the TCGA cohort had a high risk score (D) Patients in the
high-grade group in the TCGA had lower survival days. (E) PCA showed that the TCGA high-risk and low-
risk groups had identifiable dimensions. F 3dPCA showed that the TCGA high-risk group and the low-risk
group can be well distinguished. (G) Kaplan-Meier curve of OS in GEO high-risk and low-risk patients. (H)
The time-dependent ROC curve for the GEO risk score. (I) The high-risk group of patients in the TCGA
cohort had a high risk score (J) Patients in the high-grade group in the TCGA had lower survival days. (K)
PCA showed that the GEO high-risk and low-risk groups had identifiable dimensions (L) 3dPCA showed that
the GEO high-risk group and the low-risk group can be well distinguished. OS, Overall Survival; TCGA, The
Cancer Genome Atlas; ROC,Receiver Operating Characteristic Curve; PCA,Principal Component Analysis;
3dPCA,3d Principal Component Analysis; GEO,Gene Expression Omnibus.
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Fig. 4. Immune cell infiltration and functional differences and chemotherapy drug screening in the high-

risk and low-risk groups. (A) GSVA enrichment analysis provides insights into the biological pathways and
processes that are differentially activated or suppressed between the two groups. (B) The high-risk group had
a high drug sensitivity for erlotinib. (C) The high-risk group had a high drug sensitivity for gefitinib. (D) The
high-risk group had a high drug sensitivity for SB505124. GSEA,Gene-set enrichment analysis;GSVA,Gene set
variation analysis.* p <0.05, ** p<0.01 and *** p <0.001.

Conclusion

The findings of this study have significant clinical implications, particularly for the management of CC
patients. The identification of distinct risk subgroups based on tryptophan metabolism provides a framework
for personalized treatment strategies. The proposed TMGs risk score model can assist clinicians in predicting
patient prognosis and optimizing therapeutic options, especially in the context of immunotherapy and targeted
treatments. Overall, this study contributes valuable insights into the complex interplay between metabolism and
cancer, highlighting potential avenues for future research and clinical application.
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Fig. 5. Characteristics of the immune microenvironment and the prediction of immunotherapy in the high-
risk and low-risk groups. (A) Differential analysis of tumor-infiltrating immune cells between high-risk groups
and low-risk groups. (B) Correlation between the risk score model and tumor-infiltrating immune cells. (C)
Immune score, (D) Stroma matrix score, (E) Tumor purity and (F) Estimate score between high-risk and
low-risk groups. (G) Differential analysis of immune checkpoint between high-risk group and low-risk groups.
(H) Correlation analysis between score model and immune checkpoint. (I) The TIDE score were higher in

the high-risk group. (J) The T cell functional exclusion score were higher in the high-risk group. (K) The T

cell dysfunction score were higher in the high-risk group. TIDE,Tumor immune dysfunction and rejection.*

p<0.05,** p<0.01 and *** p<0.001.
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Data Availability

The transcriptome data and related clinical data for 33 types of cancer were downloaded from the TCGA data-
base (https://cancergenome.nih.gov/). Additional transcriptome sequencing and single-cell sequencing data can
also be found in the GEO database (https://www.ncbi.nlm.nih.gov/geo/), TISCH database (http://tisch.comp-g
enomics.org/), GEPIA2 database (http://gepia2.cancer-pku.cn/#index), MSigDB database (https://www.gsea-m
sigdb.org/gsea/msigdb/), and TIDE database (http://tide.dfci.harvard.edu/login/). Any reasonable requests for
access to available data underlying the results reported in this article will be considered. Such proposals should
be submitted to the corresponding author.
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