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Tryptophan metabolism is intricately associated with the progression of colon cancer. This research 
endeavored to meticulously analyze tryptophan metabolic characteristics in colon cancer and 
forecast immunotherapy responses. This study analyzed colon cancer samples from a training 
cohort of 473 tumors and 41 normal tissues from TCGA, with validation in 902 cancer patients 
across multiple GEO datasets. Patients were stratified into subtypes through consistent clustering, 
and a tryptophan metabolic risk score model was constructed using the random forest algorithm. 
Based on these risk scores, patients were delineated into high and low-risk groups, and their 
clinicopathologic characteristics, immune cell infiltration, immune checkpoint expression, and 
signaling pathway disparities were examined. The Oncopredict algorithm facilitated the identification 
of sensitive chemotherapeutic agents, while the immune escape score was employed to evaluate the 
immunotherapy response across risk groups. Transcriptomic sequencing findings were corroborated 
by single-cell sequencing from Shanghai Ruijin Hospital. Two distinct subtypes of colon cancer 
patients emerged, exhibiting significant prognostic and immune cell infiltration differences. The 
high-risk group demonstrated a poorer prognosis (p < 0.001), advanced clinical stage (p < 0.001), and 
elevated immunosuppressive cell expression (p < 0.05). Additionally, three chemotherapeutic drugs 
showed efficacy in the high-risk cohort, displaying a heightened immune escape potential (p < 0.05) 
and diminished response to immunotherapy. Single-cell sequencing validated the overexpression 
of tryptophan-related genes in epithelial cells. In conclusion, tryptophan metabolism significantly 
influences the colon cancer immune microenvironment, with high-risk patients experiencing adverse 
prognoses and potentially reduced efficacy of immunotherapy.
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GDSC	� Genomics of Drug Sensitivity in Cancer
MSigDB	� The Molecular Signatures Database
R	� R language
NKAIN4	� Sodium/Potassium Transporting ATPase Interacting Protein4
TNNT1	� Troponin T Type 1
PCOLCE2	� Procollagen C-Endopeptidase Enhancer 2
SLC16A8	� Recombinant Solute Carrier Family 16, Member 8
UPK3B	� Human uroplakin 3b
timeROC	� Time Receiver Operating Characteristic Curve
AUC	� Area Under Curve
PCA	� Principal Component Analysis
C-index	� Concordance index
RMS	� Restricted Mean Survival
TMB	� Tumor mutational burden
MSI	� Microsatellite instability
CNV	� Copy number variations
TME	� Tumor microenvironment
GO	� Gene Ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
GSEA	� Gene Set Enrichment Analysis
GSVA	� Gene set variation analysis
TIDE	� Tumor Immune Dysfunction and Exclusion
ICB	� Immune checkpoint blockade
TISCH	� Tumor Immune Single-cell Hub
scTIME	� Single-Cell Analysis of the Immune Microenvironment
CDF	� Cumulative Distribution Function
KM	� Kaplan–Meier
T	� Tumor
N	� Node
M	� Metastasis
HR	� Hazard Rate
PD1	� Programmed cell death protein 1
PDL1	� Programmed cell death 1 ligand 1
CTLA4	� Cytotoxic T-lymphocyte associated protein 4
Treg	� Regulatory T cells
CAF	� Cancer-Associated Fibroblasts
TME	� Tumor Microenvironment

Metabolic reprogramming stands as a pivotal hallmark of cancer, where tumor cells adeptly alter their 
metabolic pathways to meet energy and biosynthetic demands, evading immune surveillance and therapeutic 
interventions1,2. While amino acid metabolism plays an important role in supporting tumor growth, recent 
research has identified tryptophan metabolism as particularly relevant to cancer progression and immune 
modulation3,4. Alterations in tryptophan pathways have been linked to diverse tumor behaviors and immune 
responses, drawing significant attention to its specific impact in cancers such as colon cancer (CC)5–7.

Numerous investigations have unveiled the intricate involvement of tryptophan metabolic reprogramming 
within cancer milieu. In melanoma, activation of the kynurenine pathway orchestrated tumor progression and 
metastasis by modulating tumor microenvironment (TME) and enkindling angiogenesis8. In breast cancer, the 
overload of the serotonin pathway was believed to be associated with resistance to tamoxifen therapy9. In CC, 
metabolites of tryptophan acted as a driving factor in the progression of inflammatory bowel disease into CC10. 
Despite the above evidence, the comprehensive landscape of tryptophan metabolism in human CC remained 
vague11,12. Major gaps in current research include the need to clarify how tryptophan metabolism affects CC 
patient prognosis, immune microenvironment dynamics, and therapeutic response13. Unraveling these complex 
patterns could deepen our understanding of cancer biology and inspire new therapeutic innovations14.

This study aims to comprehensively examine the expression profiles of tryptophan metabolism-related genes 
(TMGs) in CC at both bulk and single-cell levels to elucidate their potential oncogenic roles. By developing 
a predictive model based on TMG expression patterns, we sought to stratify patients into high- and low-risk 
groups, providing insights into prognosis and immune microenvironment characteristics. Furthermore, we 
aimed to identify targeted therapeutic options by screening potential drugs against key genes in high-risk 
samples, thereby contributing to the exploration of alternative therapeutic strategies for improved clinical 
outcomes in CC.

Materials and methods
Data source and processing
Transcriptome and clinical data were obtained from the Cancer Genome Atlas (TCGA) ​(​​​h​t​t​p​s​:​/​/​c​a​n​c​e​r​g​e​n​o​
m​e​.​n​i​h​.​g​o​v​/​​​​​) and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases15,16. Raw 
transcriptomic data from TCGA were processed using the R package TCGAbiolinks to download, normalize, 
and perform batch effect correction. GEO datasets were retrieved in their raw format and normalized using 
the limma package to ensure consistency across studies. The training cohort included 473 CC Samples and 
41 normal tissues from TCGA-COAD. Validation encompassed 902 colorectal cancer (CRC) patients from 
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GSE38832 (n = 122), GSE103479 (n = 156), GSE39582 (n = 585), GSE19862 (n = 14) and GSE107797 (n = 25). 
Tumor Immune Dysfunction and Exclusion (TIDE) database offered data on immune escape scores, while 
single-cell validation used GSE146771 (n = 20), GSE179784 (n = 4), and EMTAB8107 (n = 7) from Tumor 
Immune Single-cell Hub (TISCH) database17,18. For single-cell sequencing validation, tumor tissue samples 
(n = 4) were gathered with written informed consent obtained from all subjects involved in the study. Ethical 
approval was secured from the Ethics Committee of Ruijin Hospital before sample collection. All experimental 
methods were performed in accordance with institutional and international ethical guidelines and regulations, 
as approved by the institutional ethics committee.

Subtypes analysis of cancer samples based on TMGs
We selected 40 genes associated with tryptophan metabolism from the MSigDB and Reactome databases, as these 
genes represent key components of tryptophan-related signaling pathways that have been implicated in cancer 
progression and immune modulation. Consensus clustering was performed using the “ConsensusClusterPlus” 
R package, chosen for its capacity to generate robust clusters by resampling and aggregating multiple clustering 
results. This technique is particularly valuable in cancer research as it improves the stability of identified 
subtypes, reducing variability often encountered in single clustering approaches19. 446 CC patients in the TCGA 
cohort were divided into two distinct clusters by the "Consensus Cluster + " R package. The survival prognosis 
of these clusters was analyzed using the “survival” R package. Principal component analysis (PCA) was utilized 
to visualize the clustered patients and assess the distinguishability of different subgroups. Two clusters were 
identified: Cluster 1, characterized by higher expression of genes involved in immune suppression pathways, 
and Cluster 2, associated with immune-active profiles, indicating distinct immunological landscapes within CC 
patients.

Construction and validation of a risk score model based on tryptophan metabolism
To construct a prognostic score based on tryptophan metabolism genes, differential analysis was performed 
on two tryptophan metabolism clusters. 873 differentially expressed genes were selected and among them, 16 
genes were associated with survival. Random Forest (RF) and Support Vector Machine (SVM) machine learning 
algorithms were compared, with RF demonstrating strong diagnostic ability and stability20–22. Cox regression 
analysis identified five signature genes for the risk model: NKAIN4 (Na + /K + Transporting ATPase Interacting 
4), TNNT1 (Troponin T Type 1), PCOLCE2 (Procollagen C-Endopeptidase Enhancer 2), SLC16A8 (Solute 
Carrier Family 16 Member 8), and UPK3B (Uroplakin 3B). The risk score integrated gene expression and the 
Cox regression coefficient. Median risk score split patients into high- and low-risk groups. Survival analysis 
and time-dependent receiver operating characteristic (timeROC) curves affirmed the model’s significance and 
precision. Hazard distribution curves and PCA showcased group differences23. The tryptophan metabolic risk 
score model was validated in both the TCGA-COAD internal training cohort and the external validation cohort 
including GSE38332, GSE103479, and GSE39582.

Correlation of the tryptophan metabolism risk score model with clinicopathological features
To assess the applicability of the tryptophan metabolic risk score model, survival analysis was conducted 
across various clinicopathological subgroups (T stage, N stage, M stage, and Pathological Stage). The model’s 
performance was compared with other scoring models using metrics such as the concordance index (C-index) 
and Restricted Mean Survival (RMS). Moreover, a comparison was made between the model and previous 
studies by Hong24, Wang25, AHI26, and Du27 to ascertain its superiority. Additionally, the scoring model was 
validated at the pan-cancer level using the GEPIA2 website.

Association of the tryptophan metabolic risk score model with immune cell infiltration and 
related functions
The connection between risk scores and immune cell infiltration, as well as immune-related functions 
was investigated. The composition of 22 immune cell types in each tumor sample was quantified using the 
CIBERSORT algorithm28. The differences in immune cell infiltration between high-risk and low-risk groups 
were then analyzed. Moreover, the correlation between the scoring model and immune cell infiltration was 
explored.

Correlation of the tryptophan metabolic risk score model with the tumor microenvironment 
and immune checkpoints
In the TME, immune-infiltrating cells, stromal cells, and tumor cells all contribute to tumor progression and 
drug resistance. Immune infiltration was analyzed using the “estimate” package29, including Immune score, 
Stromal score, Tumor purity, and Estimate score. The expression of immune checkpoints (PD1, PDL1, CTLA4) 
in high-risk and low-risk patient groups was examined, and their correlation with the risk score model was 
explored.

Enrichment analysis and biological function annotation
To compare gene sets between high-risk and low-risk groups, Gene Set Enrichment Analysis (GSEA) was 
conducted using the gsea R package30. Pathways with an adjusted P value < 0.05 were considered significantly 
enriched. Furthermore, Gene set variation analysis (GSVA) based on Hallmark gene sets was performed to 
assess the biological process status in the high-risk and low-risk groups31.
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Screening of chemosensitive drugs
The “OncoPredict” R package was used to assess the sensitivity of different groups to various chemotherapy 
drugs32. By analyzing these differences, appropriate chemotherapy drugs for different patients were identified. 
Moreover, this approach serves to validate the clinical significance of the risk-scoring model.

Guiding significance of the tryptophan metabolism risk score model for immunotherapy
TIDE is a robust algorithm designed to assess tumor immune escape capacity, thereby predicting the efficacy of 
immune checkpoint blockade (ICB) therapy. A high TIDE score signifies a diminished response to ICB, whereas 
a low TIDE score suggests a favorable response33,34. The TIDE database was utilized to scrutinize the variations 
in tumor immunotherapy responses across different tryptophan metabolism subgroups.

Validation of the heterogeneity of tryptophan metabolism in cancer at the single-cell level
Gene heterogeneity in the tryptophan metabolism pathway across different immune cell types in CC was 
investigated using the Tumor Immune Single-cell Hub (TISCH)17. The expression of risk model signature 
genes in epithelial cells was also examined using the single-cell tumor immune Microenvironment (scTIME) 
database35. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on four CRC samples. 
“Seurat” R package aided data preprocessing and dimensionality reduction. Cell clusters were identified with 
t-distributed stochastic neighbor embedding (t-SNE), and “SingleR” R package used CellMarker as a reference 
for cell annotation36.“AUCell” R package gauged tryptophan metabolism gene activity. Interactions between 
epithelial cells and neighboring cells were studied with the “nichenetr” R package for ligand-receptor analysis, 
involving genes present in > 10% of cell clusters37 .

Statistical analysis
Data preprocessing and statistical analyses were conducted utilizing R software version 4.2.2. For continuous 
variables, the Wilcoxon rank-sum test was employed, while categorical variables were analyzed using the chi-
square test. Statistical significance was determined with a two-tailed P value of less than 0.05. Heatmaps depicting 
eigengene expression were constructed using the ggplot2 package. Correlation analyses were performed 
employing the Pearson correlation coefficient. Survival analyses were visualized through Kaplan–Meier curves 
and assessed using the log-rank test.

Results
Genomic and transcriptomics changes of TMGs in CC
Forty tryptophan metabolism genes (TMGs) were collected from MSigDB and Reactome. We first assessed 
their changes at the genetic level in TCGA-COAD. As shown in the waterfall diagram (Fig. 1A), 123 out of 
447 samples showed changes in tryptophan metabolism regulatory genes, among which the most common 
type of mutation was missense mutation, followed by nonsense mutation. The most commonly mutated genes 
were OGDH and OGDHL. Next, we investigated the CNV frequency mutations of TMGs. IDO1 and AFMID 
had a wide amplification in copy number. On the contrary, AADAT and IDO2 were focused on the prevalent 
CNV deletions (Fig.  1B). The location of CNV alterations of TMGs on chromosomes was demonstrated in 
Fig. 1C. Moreover, we explored differences in tryptophan metabolism genes at the transcriptome level, with 
20 genes showing significantly different levels between tumor and normal samples (p < 0.001) (Fig. 1D). The 
activity of tryptophan metabolism genes also varied among different immune cell subsets. Consistent with the 
previous results, tryptophan metabolism genes were most significantly up-regulated in malignant cells, followed 
by fibroblasts (Fig.S1). These results indicated that TMGs had a large number of mutations and transcription 
differences in CC, suggesting that TMGs played an important role in the occurrence and development of CC.

Construction and verification of tryptophan metabolism risk score model
To gain a comprehensive view of the clinical significance of TMGs in CC, we performed a clustering analysis 
based on TMGs from TCGA-COAD. As shown, CC patients could be classified into two groups with distinct 
clinical heterogeneity and prognosis (Fig. 2A-C). Cluster2 patients had a worse prognosis than cluster1 patients 
(Fig. 2C). The results demonstrated that two different patterns did exist in CC. We found that patients with 
relatively advanced N stages were probably represented by cluster 2 (Fig. S7A). 16 survival-related genes were 
identified by univariate Cox regression analysis(Fig. S7B), and genes with importance scores greater than 10 were 
selected to construct the model (Fig. 2D-F). Five characteristic genes (NKAIN4, SLC16A8, UPK3B, PCOLCE2, 
TNNT1) were finally selected (Fig. 2F).

Next, we conducted validation across diverse cohorts employing the TMGs model. We stratified CC 
patients into high-risk and low-risk categories based on TMGs expression, revealing a substantial disparity in 
prognosis between the two cohorts. Within the TCGA dataset, patients with elevated risk scores experienced 
markedly inferior outcomes compared to those with lower risk scores (P < 0.001) (Fig. 3A). The model exhibited 
commendable discriminative ability, with high AUC values, effectively predicting survival rates at 1, 3, and 
5 years (0.706, 0.703, and 0.689, respectively) (Fig. 3B). Notably, individuals classified in the high-risk group 
exhibited a heightened likelihood of mortality (Fig. 3C-D). Additionally, PCA and 3-dimensional PCA analyses 
exhibited a clear demarcation between the high and low-risk groups (Fig. 3E-F).

We then scrutinized the association with advanced clinical features and the score model. The correlations 
between the five characteristic genes of TMGs and clinical features were established (Fig. S2A). Elevated 
TMGs scores were notably prevalent among Cluster2 patients (P < 0.001), T4 patients (P < 0.001), N2 patients 
(P < 0.001), M1 patients (P = 0.018), and stage IV patients (P = 0.012) (Fig. S2B-F). These findings indicate a 
positive correlation between TMGs score and aggressive tumor behavior. Moreover, a comparative evaluation 
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between the TMGs model and four other CC scoring models confirmed the superior performance of our 
model, evidenced by a C-index value of 0.679 and HR = 1.315 (95% CI: 1.226–1.411, p < 0.001) (Fig. S3A-B). 
Furthermore, results from the external cohort GSE38322 (Fig. 3G-L), GSE39582, GSE103479, GSE107797 (Fig. 
S4A-F) , and the pan-cancer cohort (Fig. S5A-I) also validated the predictive power of our model.

Patients with different tryptophan metabolism risk scores have different signaling pathways 
and chemosensitivity drugs
To further investigate TMGs-related signaling pathways and biological functions, we performed Gene Set 
Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). Cancer-promoting pathways and 
metabolic pathways were mainly concentrated in patients with high-risk scores, including WNT, Jak, Nod, and 
TGF, as well as β-alanine, and tryptophan metabolism (Fig. 4A,S8A). Immunoactivated pathways were enriched 
in patients with low-risk scores, including oxidative phosphorylation, peroxisome, ribosome function, and 
systemic lupus erythematosus (Fig. 4A,S8B). This is consistent with the results of higher expression of inhibitory 
immune cell infiltration in high-risk patients.

We extended our investigation to evaluate whether tryptophan metabolism similarly impacts 
chemotherapeutic responsiveness in CC patients. To this end, we employed the oncoPredict algorithm to predict 
the chemosensitivity of 198 therapeutic agents, determining their half-maximal inhibitory concentration (IC50) 
values and subsequently comparing these values between the high-risk and low-risk cohorts. Within the high-

Fig. 1.  Genetic and transcriptional alterations of tryptophan metabolism genes in colon cancer. (A) Frequency 
and type of mutations in tryptophan metabolism. (B) CNV mutations are widely found in the genes with 
tryptophan metabolism including gain or loss. (C) CNV alteration on chromosome of tryptophan metabolism 
from 1 to 22. (D) The mRNA expression levels of tryptophan metabolism genes in carcinoma and adjacent 
tissues in TCGA. CNV,Copy Number Variation.* p < 0.05, * p < 0.01 and *** p < 0.001.
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risk group, patients demonstrated heightened sensitivity to three specific drugs, namely Erlotinib (Fig.  4B), 
Gefitinib (Fig.  4C), and SB505124 (Fig.  4D). Evidently, individuals classified within the high-risk category 
displayed pronounced sensitivity to these three chemotherapy agents. The potential clinical implications of 
these findings are substantial, particularly for treating refractory tumors and advancing the development and 
translation of targeted novel therapeutics. Furthermore, these outcomes offer valuable insights for guiding 
treatment stratification among CC patients.

TMGs regulate the immune microenvironment of CC
We further evaluated the effect of TMGs on the remodeling of TME of CC. Consistent with the oncogenic 
role of TMGs, the expression levels of inhibitory immune cells, such as regulatory T cells, M0 macrophages, 
and neutrophils, were increased in patients with a high tryptophan metabolic score(Fig.  5A). Furthermore, 
the expression levels of plasma cells and natural killer (NK) resting cells were significantly increased and the 
differences were statistically significant compared with patients with low tryptophan metabolic score (p < 0.05). 
In addition, TMGs showed a significant positive correlation with cytotoxic lymphocytes and endothelial 
cells (p < 0.05) (Fig.  5B). Substantial disparities emerged in key parameters such as ImmuneScore (Fig.  5C), 
StromalScore (Fig.  5D), Tumor purity (Fig.  5E), and ESTIMATE scores (Fig.  5F) between high and low-
risk patients within the TCGA-COAD cohort. These findings suggest the possibility of varied responses to 
immunotherapy interventions based on distinct immune microenvironment characteristics.

Moreover, an investigation into immune checkpoint expression about high and low-risk cohorts demonstrated 
elevated levels of PDCD1, CD274, and CTLA4 within the high-risk group (Fig. 5G). Correlation analysis further 
revealed a positive association between the risk score and important immunotherapy-responsive markers such 
as PDCD1, CD274, CTLA4, IDO1, and TDO2 (Fig. 5H). Consequently, these results indicate a potential benefit 
of immune checkpoint inhibitors for high-risk individuals. To forecast the efficacy of immunotherapy, the TIDE 

Fig. 2.  Identification of tryptophan metabolic typing and scoring model construction in colon cancer. (A) 
When K = 2, the component difference is obvious. (B) PCA analysis of the transcriptomic profiles of the 
two subtypes. (C) The difference of survival prognosis between the two subtypes was significant. (D) The 
RF algorithm is more stable than the SVM because of having lower residual values. (E) The random forest 
algorithm was used to select genes with an importance score greater than 10. (F) The forest plot shows the HR 
values and risk coefficient of risk score characteristic genes. PCA,Principal Component Analysis; RF,Random 
Forest; SVM, Support Vector Machine; HR; Hazard Ratio. * p < 0.05, ** p < 0.01 and *** p < 0.001.
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score was utilized to evaluate response in the high-risk group, yielding a significantly elevated score compared 
to the low-risk group (Fig.  5I). This suggests a heightened likelihood of immune escape and diminished 
immunotherapeutic response within the high-risk cohort. Furthermore, the high-risk group exhibited elevated 
levels of T-cell functional rejection and T-cell dysfunction relative to the low-risk group (Fig.  5J-K), also 
consistent with our results.

Single-cell sequencing data verifying the signature genes of the TMGs model
Utilizing single-cell sequencing data (GSE146771, EMTAB8107), we investigated tryptophan metabolism gene 
expression in diverse CC cell types. Employing dimensionality reduction and UMAP clustering analysis, we 
identified three cell subpopulations: immune, stromal, and malignant cells (Fig. S6A-B, E–F). In GSE179784, 
additional cell types including epithelial and dendritic cells were also annotated (Fig. S6I-J). Notably, TNNT1 
and PCOLCE2 and UPK3B exhibited distinct expression within epithelial cells (Fig. S6C, G, K, D, H, L). 
Expression of other feature genes were summarized in Fig. S6D, H, L.

To further verify our theory, four matched CRC and normal samples were subjected to single-cell sequencing 
to achieve a high-resolution landscape of colorectal cancerous and normal tissue profiling. As shown, cells 
could be annotated as 8 clusters including T cells, epithelial cells, B cells, natural killer cells, monocytes, 
neutrophils, endothelial cells, and tumor stem cells(Fig. 6A-B). AUCell algorithm was then used to assess the 
tryptophan metabolism activity and distinguished the whole cell population as high and low subgroups(Fig. 6C-
E). Consistent with the above results from bulk samples, AUC high and low groups differ in macrophages, 
neutrophils, and endothelial cells (Fig. 6F). These results may partly explain the different responses of patients 
in the TMGs-high and-low groups.

Moreover, cell–cell interaction was proved to be a key regulating factor of TME reprogramming and might play 
a crucial role in immune suppressive TME formation. In this study, we extracted multiple ligand-receptor pairs 
through the NicheNet algorithm. The results showed that there were was activated signaling of TNF, VEGFC and 
EGFR from TMGs-high epithelial niches to endothelial cells (Fig. 7A-B), indicating hyperactivated angiogenesis 
in tumor stromal tissues and a potential response to VEGF blockage. Moreover, TMGs-high epithelial cells also 
released CXCL5, CXCL3, IL-1 to promote the infiltration of macrophages and neutrophils, which may also 
serve the formation of an immune suppressive TME. In addition, there were significant differences in metabolic 
pathways between the AUC_high group and the AUC_low group(Fig. 7C). Further molecular mechanisms were 
to be investigated by sub-clustering and analysis in the future.

Discussion
Current research highlights a strong correlation between the dysregulation of tryptophan metabolism and 
the onset of various cancers, including those of the esophagus, liver, and kidney38–40. However, the specific 
mechanisms and molecular characteristics by which tryptophan metabolism influences CC remain largely 
unexplored. In this study, we stratified CC patients into two distinct subgroups based on the expression profiles 
of TMGs, each exhibiting unique molecular characteristics and clinical outcomes. The high-risk subgroup 
was characterized by reduced survival times and a diminished likelihood of benefiting from immunotherapy. 
Mechanistically, this subgroup displayed significant activation of metabolism-related pathways, including 
β-alanine metabolism, tryptophan metabolism, ECM receptor interactions, and chemokine signaling. 
Furthermore, immunosuppressive pathways such as TGF-β, JAK-STAT, and Notch were markedly upregulated 
in the high-risk group. Notably, β-alanine and tryptophan metabolism pathways have been associated with 
cancer cell proliferation and metastasis, likely by promoting metabolic reprogramming and immune escape. 
ECM receptor interactions and chemokine signaling pathways also play essential roles in CRC progression by 
enhancing cell invasion and migration. The activation of these pathways was strongly associated with tumor 
progression and poorer prognosis41–43.

The TME comprises a complex network of blood vessels, immune cells, fibroblasts, inflammatory cells, 
signaling molecules, and the extracellular matrix that encases tumor cells. Tumors influenced this environment 
through signaling molecule release, angiogenesis, and immune tolerance44. The intricate interplay between 
tumors and their immune microenvironment significantly shaped tumor progression and influenced treatment 
strategies45. Based on the results of the KEYNOTE-177 clinical trial, ICB with or without typical chemotherapy, 
achieving an objective response rate of 41%, has become the first line treatment for metastatic CRC46. In this 
study, we also analyzed the different TME contexts between high and low subgroups. As expected, high-risk 
cases were significantly enriched with immune-suppressive cells including Regulatory T cells(Treg), Cancer-
Associated Fibroblasts(CAF), and INFG, while low-risk cases possessed a more immune active TME, giving 
us a hint that these two groups might have varied responses to immunotherapy. Therefore, we performed 
preliminary validations in cohorts of cancer patients receiving adoptive T cell therapy or immune checkpoint 
blockade therapy and finally found out that TMGs active patients were less likely to respond to immune therapy, 
confirming that our model is a promising strategy to predict the survival and ICI therapeutic response. However, 
as profiling data of CRC cohorts receiving ICI treatment is still lacking, our model needs to be tested in CRC 
patients in the future.

To improve the treatment strategy of high-risk patients, we also screened possible effective drugs with the 
oncoPredict algorithm. Results showed that these patients might respond to erlotinib, gefitinib, and SB505124. 
Erlotinib and gefitinib are first and second-line therapies for non-small cell lung cancer, especially for lung 
cancer with metastatic EGFR mutation positive47,48. In addition, both drugs have been studied extensively in 
other cancer fields. A phase III clinical trial (OPTIMOX3) showed that erlotinib combined with bevacizumab 
improves progression-free survival (PFS) in unresectable metastatic bowel cancer. Moreover, it has been found 
that gefitinib combined with cucurbitacin B inhibits the CRC cell cycle49. Furthermore, Clinical studies hint 
at gefitinib’s potential as a supplement to CC treatment50. SB505124 is a novel small-molecule drug that is an 
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inhibitor of TGFβI receptors and is highly effective in cancer treatment. Studies have shown that SB505124 
can reduce the expression of pro-angiogenesis genes in pancreatic cancer and inhibit angiogenesis in vivo51. 
Other studies have shown that the combination of SB505124 and IL-12 can effectively enhance anti-melanoma 
immunotherapy52. In addition, SB505124 could encapsulated in a targeted peptide and enhance natural killer 
(NK) cell anti-tumor activity for site-specific therapy53. In addition, the study of this drug in bowel cancer is also 
worthy of our attention. SB-505124 has been reported to inhibit epithelial-mesenchymal transformation (EMT) 
in CRC cells54. These findings merit further exploration, holding promise for refined treatment approaches 
in various cancers. This study’s strengths include the establishment of a prognostic model based on robust 
machine learning algorithms and extensive validation across multiple external cohorts. However, the study has 
limitations, including its retrospective nature and reliance on publicly available datasets, which may introduce 
biases. Furthermore, the generalizability of the model needs to be validated in larger clinical cohorts.
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Conclusion
The findings of this study have significant clinical implications, particularly for the management of CC 
patients. The identification of distinct risk subgroups based on tryptophan metabolism provides a framework 
for personalized treatment strategies. The proposed TMGs risk score model can assist clinicians in predicting 
patient prognosis and optimizing therapeutic options, especially in the context of immunotherapy and targeted 
treatments. Overall, this study contributes valuable insights into the complex interplay between metabolism and 
cancer, highlighting potential avenues for future research and clinical application.

Fig. 3.  Validation of the risk score model in the TCGA and GEO independent cohorts. (A) Kaplan–Meier 
curve of OS in TCGA high-risk and low-risk patients. (B) The time-dependent ROC curve for the TCGA 
risk score. (C) The high-risk group of patients in the TCGA cohort had a high risk score (D) Patients in the 
high-grade group in the TCGA had lower survival days. (E) PCA showed that the TCGA high-risk and low-
risk groups had identifiable dimensions. F 3dPCA showed that the TCGA high-risk group and the low-risk 
group can be well distinguished. (G) Kaplan–Meier curve of OS in GEO high-risk and low-risk patients. (H) 
The time-dependent ROC curve for the GEO risk score. (I) The high-risk group of patients in the TCGA 
cohort had a high risk score (J) Patients in the high-grade group in the TCGA had lower survival days. (K) 
PCA showed that the GEO high-risk and low-risk groups had identifiable dimensions (L) 3dPCA showed that 
the GEO high-risk group and the low-risk group can be well distinguished. OS, Overall Survival; TCGA, The 
Cancer Genome Atlas; ROC,Receiver Operating Characteristic Curve; PCA,Principal Component Analysis; 
3dPCA,3d Principal Component Analysis; GEO,Gene Expression Omnibus.

◂

Fig. 4.  Immune cell infiltration and functional differences and chemotherapy drug screening in the high-
risk and low-risk groups. (A) GSVA enrichment analysis provides insights into the biological pathways and 
processes that are differentially activated or suppressed between the two groups. (B) The high-risk group had 
a high drug sensitivity for erlotinib. (C) The high-risk group had a high drug sensitivity for gefitinib. (D) The 
high-risk group had a high drug sensitivity for SB505124. GSEA,Gene-set enrichment analysis;GSVA,Gene set 
variation analysis.* p < 0.05, ** p < 0.01 and *** p < 0.001.
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Fig. 5.  Characteristics of the immune microenvironment and the prediction of immunotherapy in the high-
risk and low-risk groups. (A) Differential analysis of tumor-infiltrating immune cells between high-risk groups 
and low-risk groups. (B) Correlation between the risk score model and tumor-infiltrating immune cells. (C) 
Immune score, (D) Stroma matrix score, (E) Tumor purity and (F) Estimate score between high-risk and 
low-risk groups. (G) Differential analysis of immune checkpoint between high-risk group and low-risk groups. 
(H) Correlation analysis between score model and immune checkpoint. (I) The TIDE score were higher in 
the high-risk group. (J) The T cell functional exclusion score were higher in the high-risk group. (K) The T 
cell dysfunction score were higher in the high-risk group. TIDE,Tumor immune dysfunction and rejection.* 
p < 0.05, ** p < 0.01 and *** p < 0.001.
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Fig. 6.  Single-cell transcriptome analysis of the expression of signature genes for tryptophan metabolism in 
the tumor microenvironment. (A) Single-cell sequencing data of four intestinal cancer samples were combined 
and divided into 18 clusters. (B) After dimensionality reduction, the cluster cells are annotated as 8 cell subsets. 
(C) Expression activity of characteristic genes for tryptophan metabolism in epithelial cells. (D) The threshold 
was selected for 4661 cells at 0.068. (E) AUC score projection of tryptophan metabolism genes for all cells. (F) 
Stacked map of cell components in the AUC score group. AUC,area under the curve.* p < 0.05, ** p < 0.01 and 
*** p < 0.001.
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Data Availability
The transcriptome data and related clinical data for 33 types of cancer were downloaded from the TCGA data-
base (https://cancergenome.nih.gov/). Additional transcriptome sequencing and single-cell sequencing data can 
also be found in the GEO database (https://www.ncbi.nlm.nih.gov/geo/), TISCH database ​(​​​h​t​t​p​:​/​/​t​i​s​c​h​.​c​o​m​p​-​g​
e​n​o​m​i​c​s​.​o​r​g​/​​​​​)​, GEPIA2 database (http://gepia2.cancer-pku.cn/#index), MSigDB database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​s​e​a​-​m​
s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​/​​​​​)​, and TIDE database (http://tide.dfci.harvard.edu/login/). Any reasonable ​r​e​q​u​e​s​t​s for 
access to available data underlying the results reported in this article will be considered. Such proposals should 
be submitted to the corresponding author.
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